Files
SingularityViewer/indra/llimage/llimage.cpp
Shyotl ffb285c6ff Huge renderer update (WIP). Still plenty to do, especially pertaining to UI.
-Nametag bubble visbility is oddly inconsistent. May vanish with future planned UI merges...
-VBOs are PAINFULLY slow on ATI hardware. This repos self-compiled davep/shining-fixes branch, so I'll leave the ball in LL's court for now regarding that.
2011-12-09 14:02:29 -06:00

1798 lines
43 KiB
C++

/**
* @file llimage.cpp
* @brief Base class for images.
*
* $LicenseInfo:firstyear=2001&license=viewergpl$
*
* Copyright (c) 2001-2009, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llimage.h"
#include "llmath.h"
#include "v4coloru.h"
#include "llmemtype.h"
#include "llimagebmp.h"
#include "llimagetga.h"
#include "llimagej2c.h"
#include "llimagejpeg.h"
#include "llimagepng.h"
#include "llimagedxt.h"
#include "llimageworker.h"
#include "llmemory.h"
//---------------------------------------------------------------------------
// LLImage
//---------------------------------------------------------------------------
//static
std::string LLImage::sLastErrorMessage;
LLMutex* LLImage::sMutex = NULL;
LLPrivateMemoryPool* LLImageBase::sPrivatePoolp = NULL ;
//static
void LLImage::initClass()
{
sMutex = new LLMutex;
LLImageJ2C::openDSO();
LLImageBase::createPrivatePool() ;
}
//static
void LLImage::cleanupClass()
{
LLImageJ2C::closeDSO();
delete sMutex;
sMutex = NULL;
LLImageBase::destroyPrivatePool() ;
}
//static
const std::string& LLImage::getLastError()
{
static const std::string noerr("No Error");
return sLastErrorMessage.empty() ? noerr : sLastErrorMessage;
}
//static
void LLImage::setLastError(const std::string& message)
{
LLMutexLock m(sMutex);
sLastErrorMessage = message;
}
//---------------------------------------------------------------------------
// LLImageBase
//---------------------------------------------------------------------------
LLImageBase::LLImageBase()
: mData(NULL),
mDataSize(0),
mWidth(0),
mHeight(0),
mComponents(0),
mBadBufferAllocation(false),
mAllowOverSize(false),
mMemType(LLMemType::MTYPE_IMAGEBASE)
{
}
// virtual
LLImageBase::~LLImageBase()
{
deleteData(); // virtual
}
//static
void LLImageBase::createPrivatePool()
{
if(!sPrivatePoolp)
{
sPrivatePoolp = LLPrivateMemoryPoolManager::getInstance()->newPool(LLPrivateMemoryPool::STATIC_THREADED) ;
}
}
//static
void LLImageBase::destroyPrivatePool()
{
if(sPrivatePoolp)
{
LLPrivateMemoryPoolManager::getInstance()->deletePool(sPrivatePoolp) ;
sPrivatePoolp = NULL ;
}
}
// virtual
void LLImageBase::dump()
{
llinfos << "LLImageBase mComponents " << mComponents
<< " mData " << mData
<< " mDataSize " << mDataSize
<< " mWidth " << mWidth
<< " mHeight " << mHeight
<< llendl;
}
// virtual
void LLImageBase::sanityCheck()
{
if (mWidth > MAX_IMAGE_SIZE
|| mHeight > MAX_IMAGE_SIZE
|| mDataSize > (S32)MAX_IMAGE_DATA_SIZE
|| mComponents > (S8)MAX_IMAGE_COMPONENTS
)
{
llerrs << "Failed LLImageBase::sanityCheck "
<< "width " << mWidth
<< "height " << mHeight
<< "datasize " << mDataSize
<< "components " << mComponents
<< "data " << mData
<< llendl;
}
}
// virtual
void LLImageBase::deleteData()
{
FREE_MEM(sPrivatePoolp, mData) ;
mData = NULL;
mDataSize = 0;
}
// virtual
U8* LLImageBase::allocateData(S32 size)
{
LLMemType mt1((LLMemType::EMemType)mMemType);
if (size < 0)
{
size = mWidth * mHeight * mComponents;
if (size <= 0)
{
llerrs << llformat("LLImageBase::allocateData called with bad dimensions: %dx%dx%d",mWidth,mHeight,(S32)mComponents) << llendl;
}
}
else if (size <= 0 || (size > 4096*4096*16 && !mAllowOverSize))
{
llerrs << "LLImageBase::allocateData: bad size: " << size << llendl;
}
if (!mData || size != mDataSize)
{
deleteData(); // virtual
mBadBufferAllocation = false ;
mData = (U8*)ALLOCATE_MEM(sPrivatePoolp, size);
if (!mData)
{
llwarns << "allocate image data: " << size << llendl;
size = 0 ;
mWidth = mHeight = 0 ;
mBadBufferAllocation = true ;
}
mDataSize = size;
}
return mData;
}
// virtual
U8* LLImageBase::reallocateData(S32 size)
{
if(mData && (mDataSize == size))
return mData;
LLMemType mt1((LLMemType::EMemType)mMemType);
U8 *new_datap = (U8*)ALLOCATE_MEM(sPrivatePoolp, size);
if (!new_datap)
{
llwarns << "Out of memory in LLImageBase::reallocateData" << llendl;
return 0;
}
if (mData)
{
S32 bytes = llmin(mDataSize, size);
memcpy(new_datap, mData, bytes); /* Flawfinder: ignore */
FREE_MEM(sPrivatePoolp, mData) ;
}
mData = new_datap;
mDataSize = size;
return mData;
}
const U8* LLImageBase::getData() const
{
if(mBadBufferAllocation)
{
llerrs << "Bad memory allocation for the image buffer!" << llendl ;
}
return mData;
} // read only
U8* LLImageBase::getData()
{
if(mBadBufferAllocation)
{
llerrs << "Bad memory allocation for the image buffer!" << llendl ;
}
return mData;
}
bool LLImageBase::isBufferInvalid()
{
return mBadBufferAllocation || mData == NULL ;
}
void LLImageBase::setSize(S32 width, S32 height, S32 ncomponents)
{
mWidth = width;
mHeight = height;
mComponents = ncomponents;
}
U8* LLImageBase::allocateDataSize(S32 width, S32 height, S32 ncomponents, S32 size)
{
setSize(width, height, ncomponents);
return allocateData(size); // virtual
}
//---------------------------------------------------------------------------
// LLImageRaw
//---------------------------------------------------------------------------
AITHREADSAFESIMPLE(S32, LLImageRaw::sGlobalRawMemory, );
S32 LLImageRaw::sRawImageCount = 0;
S32 LLImageRaw::sRawImageCachedCount = 0;
LLImageRaw::LLImageRaw()
: LLImageBase(), mCacheEntries(0)
{
mMemType = LLMemType::MTYPE_IMAGERAW;
++sRawImageCount;
}
LLImageRaw::LLImageRaw(U16 width, U16 height, S8 components)
: LLImageBase(), mCacheEntries(0)
{
mMemType = LLMemType::MTYPE_IMAGERAW;
llassert( S32(width) * S32(height) * S32(components) <= MAX_IMAGE_DATA_SIZE );
allocateDataSize(width, height, components);
++sRawImageCount;
}
LLImageRaw::LLImageRaw(U8 *data, U16 width, U16 height, S8 components)
: LLImageBase(), mCacheEntries(0)
{
mMemType = LLMemType::MTYPE_IMAGERAW;
if(allocateDataSize(width, height, components) && data)
{
memcpy(getData(), data, width*height*components);
}
++sRawImageCount;
}
/*LLImageRaw::LLImageRaw(const std::string& filename, bool j2c_lowest_mip_only)
: LLImageBase(), mCacheEntries(0)
{
createFromFile(filename, j2c_lowest_mip_only);
}*/
LLImageRaw::~LLImageRaw()
{
// NOTE: ~LLimageBase() call to deleteData() calls LLImageBase::deleteData()
// NOT LLImageRaw::deleteData()
deleteData();
--sRawImageCount;
setInCache(false);
}
// virtual
U8* LLImageRaw::allocateData(S32 size)
{
U8* res = LLImageBase::allocateData(size);
*AIAccess<S32>(sGlobalRawMemory) += getDataSize();
return res;
}
// virtual
U8* LLImageRaw::reallocateData(S32 size)
{
S32 old_data_size = getDataSize();
U8* res = LLImageBase::reallocateData(size);
*AIAccess<S32>(sGlobalRawMemory) += getDataSize() - old_data_size;
return res;
}
// virtual
void LLImageRaw::deleteData()
{
{
*AIAccess<S32>(sGlobalRawMemory) -= getDataSize();
}
LLImageBase::deleteData();
}
void LLImageRaw::setDataAndSize(U8 *data, S32 width, S32 height, S8 components)
{
if(data == getData())
{
return ;
}
deleteData();
LLImageBase::setSize(width, height, components) ;
LLImageBase::setDataAndSize(data, width * height * components) ;
*AIAccess<S32>(sGlobalRawMemory) += getDataSize();
}
BOOL LLImageRaw::resize(U16 width, U16 height, S8 components)
{
if ((getWidth() == width) && (getHeight() == height) && (getComponents() == components))
{
return TRUE;
}
// Reallocate the data buffer.
deleteData();
allocateDataSize(width,height,components);
return TRUE;
}
#if 0
U8 * LLImageRaw::getSubImage(U32 x_pos, U32 y_pos, U32 width, U32 height) const
{
LLMemType mt1(mMemType);
U8 *data = new U8[width*height*getComponents()];
// Should do some simple bounds checking
if (!data)
{
llerrs << "Out of memory in LLImageRaw::getSubImage" << llendl;
return NULL;
}
U32 i;
for (i = y_pos; i < y_pos+height; i++)
{
memcpy(data + i*width*getComponents(), /* Flawfinder: ignore */
getData() + ((y_pos + i)*getWidth() + x_pos)*getComponents(), getComponents()*width);
}
return data;
}
#endif
BOOL LLImageRaw::setSubImage(U32 x_pos, U32 y_pos, U32 width, U32 height,
const U8 *data, U32 stride, BOOL reverse_y)
{
if (!getData())
{
return FALSE;
}
if (!data)
{
return FALSE;
}
// Should do some simple bounds checking
U32 i;
for (i = 0; i < height; i++)
{
const U32 row = reverse_y ? height - 1 - i : i;
const U32 from_offset = row * ((stride == 0) ? width*getComponents() : stride);
const U32 to_offset = (y_pos + i)*getWidth() + x_pos;
memcpy(getData() + to_offset*getComponents(), /* Flawfinder: ignore */
data + from_offset, getComponents()*width);
}
return TRUE;
}
void LLImageRaw::clear(U8 r, U8 g, U8 b, U8 a)
{
llassert( getComponents() <= 4 );
// This is fairly bogus, but it'll do for now.
U8 *pos = getData();
U32 x, y;
for (x = 0; x < getWidth(); x++)
{
for (y = 0; y < getHeight(); y++)
{
*pos = r;
pos++;
if (getComponents() == 1)
{
continue;
}
*pos = g;
pos++;
if (getComponents() == 2)
{
continue;
}
*pos = b;
pos++;
if (getComponents() == 3)
{
continue;
}
*pos = a;
pos++;
}
}
}
// Reverses the order of the rows in the image
void LLImageRaw::verticalFlip()
{
LLMemType mt1((LLMemType::EMemType)mMemType);
S32 row_bytes = getWidth() * getComponents();
U8* line_buffer = new (std::nothrow) U8[row_bytes];
if (!line_buffer )
{
llerrs << "Out of memory in LLImageRaw::verticalFlip()" << llendl;
return;
}
S32 mid_row = getHeight() / 2;
for( S32 row = 0; row < mid_row; row++ )
{
U8* row_a_data = getData() + row * row_bytes;
U8* row_b_data = getData() + (getHeight() - 1 - row) * row_bytes;
memcpy( line_buffer, row_a_data, row_bytes ); /* Flawfinder: ignore */
memcpy( row_a_data, row_b_data, row_bytes ); /* Flawfinder: ignore */
memcpy( row_b_data, line_buffer, row_bytes ); /* Flawfinder: ignore */
}
delete[] line_buffer;
}
void LLImageRaw::expandToPowerOfTwo(S32 max_dim, BOOL scale_image)
{
// Find new sizes
S32 new_width = MIN_IMAGE_SIZE;
S32 new_height = MIN_IMAGE_SIZE;
while( (new_width < getWidth()) && (new_width < max_dim) )
{
new_width <<= 1;
}
while( (new_height < getHeight()) && (new_height < max_dim) )
{
new_height <<= 1;
}
scale( new_width, new_height, scale_image );
}
void LLImageRaw::contractToPowerOfTwo(S32 max_dim, BOOL scale_image)
{
// Find new sizes
S32 new_width = max_dim;
S32 new_height = max_dim;
while( (new_width > getWidth()) && (new_width > MIN_IMAGE_SIZE) )
{
new_width >>= 1;
}
while( (new_height > getHeight()) && (new_height > MIN_IMAGE_SIZE) )
{
new_height >>= 1;
}
scale( new_width, new_height, scale_image );
}
void LLImageRaw::biasedScaleToPowerOfTwo(S32 max_dim)
{
// Strong bias towards rounding down (to save bandwidth)
// No bias would mean THRESHOLD == 1.5f;
const F32 THRESHOLD = 1.75f;
// Find new sizes
S32 larger_w = max_dim; // 2^n >= mWidth
S32 smaller_w = max_dim; // 2^(n-1) <= mWidth
while( (smaller_w > getWidth()) && (smaller_w > MIN_IMAGE_SIZE) )
{
larger_w = smaller_w;
smaller_w >>= 1;
}
S32 new_width = ( (F32)getWidth() / smaller_w > THRESHOLD ) ? larger_w : smaller_w;
S32 larger_h = max_dim; // 2^m >= mHeight
S32 smaller_h = max_dim; // 2^(m-1) <= mHeight
while( (smaller_h > getHeight()) && (smaller_h > MIN_IMAGE_SIZE) )
{
larger_h = smaller_h;
smaller_h >>= 1;
}
S32 new_height = ( (F32)getHeight() / smaller_h > THRESHOLD ) ? larger_h : smaller_h;
scale( new_width, new_height );
}
// Calculates (U8)(255*(a/255.f)*(b/255.f) + 0.5f). Thanks, Jim Blinn!
inline U8 LLImageRaw::fastFractionalMult( U8 a, U8 b )
{
U32 i = a * b + 128;
return U8((i + (i>>8)) >> 8);
}
void LLImageRaw::composite( LLImageRaw* src )
{
LLImageRaw* dst = this; // Just for clarity.
llassert(3 == src->getComponents());
llassert(3 == dst->getComponents());
if( 3 == dst->getComponents() )
{
if( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) )
{
// No scaling needed
if( 3 == src->getComponents() )
{
copyUnscaled( src ); // alpha is one so just copy the data.
}
else
{
compositeUnscaled4onto3( src );
}
}
else
{
if( 3 == src->getComponents() )
{
copyScaled( src ); // alpha is one so just copy the data.
}
else
{
compositeScaled4onto3( src );
}
}
}
}
// Src and dst can be any size. Src has 4 components. Dst has 3 components.
void LLImageRaw::compositeScaled4onto3(LLImageRaw* src)
{
LLMemType mt1((LLMemType::EMemType)mMemType);
llinfos << "compositeScaled4onto3" << llendl;
LLImageRaw* dst = this; // Just for clarity.
llassert( (4 == src->getComponents()) && (3 == dst->getComponents()) );
// Vertical: scale but no composite
S32 temp_data_size = src->getWidth() * dst->getHeight() * src->getComponents();
U8* temp_buffer = new (std::nothrow) U8[ temp_data_size ];
if (!temp_buffer )
{
llerrs << "Out of memory in LLImageRaw::compositeScaled4onto3()" << llendl;
return;
}
for( S32 col = 0; col < src->getWidth(); col++ )
{
copyLineScaled( src->getData() + (src->getComponents() * col), temp_buffer + (src->getComponents() * col), src->getHeight(), dst->getHeight(), src->getWidth(), src->getWidth() );
}
// Horizontal: scale and composite
for( S32 row = 0; row < dst->getHeight(); row++ )
{
compositeRowScaled4onto3( temp_buffer + (src->getComponents() * src->getWidth() * row), dst->getData() + (dst->getComponents() * dst->getWidth() * row), src->getWidth(), dst->getWidth() );
}
// Clean up
delete[] temp_buffer;
}
// Src and dst are same size. Src has 4 components. Dst has 3 components.
void LLImageRaw::compositeUnscaled4onto3( LLImageRaw* src )
{
/*
//test fastFractionalMult()
{
U8 i = 255;
U8 j = 255;
do
{
do
{
llassert( fastFractionalMult(i, j) == (U8)(255*(i/255.f)*(j/255.f) + 0.5f) );
} while( j-- );
} while( i-- );
}
*/
LLImageRaw* dst = this; // Just for clarity.
llassert( (3 == src->getComponents()) || (4 == src->getComponents()) );
llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) );
U8* src_data = src->getData();
U8* dst_data = dst->getData();
S32 pixels = getWidth() * getHeight();
while( pixels-- )
{
U8 alpha = src_data[3];
if( alpha )
{
if( 255 == alpha )
{
dst_data[0] = src_data[0];
dst_data[1] = src_data[1];
dst_data[2] = src_data[2];
}
else
{
U8 transparency = 255 - alpha;
dst_data[0] = fastFractionalMult( dst_data[0], transparency ) + fastFractionalMult( src_data[0], alpha );
dst_data[1] = fastFractionalMult( dst_data[1], transparency ) + fastFractionalMult( src_data[1], alpha );
dst_data[2] = fastFractionalMult( dst_data[2], transparency ) + fastFractionalMult( src_data[2], alpha );
}
}
src_data += 4;
dst_data += 3;
}
}
// Fill the buffer with a constant color
void LLImageRaw::fill( const LLColor4U& color )
{
S32 pixels = getWidth() * getHeight();
if( 4 == getComponents() )
{
U32* data = (U32*) getData();
for( S32 i = 0; i < pixels; i++ )
{
data[i] = color.mAll;
}
}
else
if( 3 == getComponents() )
{
U8* data = getData();
for( S32 i = 0; i < pixels; i++ )
{
data[0] = color.mV[0];
data[1] = color.mV[1];
data[2] = color.mV[2];
data += 3;
}
}
}
// Src and dst can be any size. Src and dst can each have 3 or 4 components.
void LLImageRaw::copy(LLImageRaw* src)
{
if (!src)
{
llwarns << "LLImageRaw::copy called with a null src pointer" << llendl;
return;
}
LLImageRaw* dst = this; // Just for clarity.
llassert( (3 == src->getComponents()) || (4 == src->getComponents()) );
llassert( (3 == dst->getComponents()) || (4 == dst->getComponents()) );
if( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) )
{
// No scaling needed
if( src->getComponents() == dst->getComponents() )
{
copyUnscaled( src );
}
else
if( 3 == src->getComponents() )
{
copyUnscaled3onto4( src );
}
else
{
// 4 == src->getComponents()
copyUnscaled4onto3( src );
}
}
else
{
// Scaling needed
// No scaling needed
if( src->getComponents() == dst->getComponents() )
{
copyScaled( src );
}
else
if( 3 == src->getComponents() )
{
copyScaled3onto4( src );
}
else
{
// 4 == src->getComponents()
copyScaled4onto3( src );
}
}
}
// Src and dst are same size. Src and dst have same number of components.
void LLImageRaw::copyUnscaled(LLImageRaw* src)
{
LLImageRaw* dst = this; // Just for clarity.
llassert( (1 == src->getComponents()) || (3 == src->getComponents()) || (4 == src->getComponents()) );
llassert( src->getComponents() == dst->getComponents() );
llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) );
memcpy( dst->getData(), src->getData(), getWidth() * getHeight() * getComponents() ); /* Flawfinder: ignore */
}
// Src and dst can be any size. Src has 3 components. Dst has 4 components.
void LLImageRaw::copyScaled3onto4(LLImageRaw* src)
{
llassert( (3 == src->getComponents()) && (4 == getComponents()) );
// Slow, but simple. Optimize later if needed.
LLImageRaw temp( src->getWidth(), src->getHeight(), 4);
temp.copyUnscaled3onto4( src );
copyScaled( &temp );
}
// Src and dst can be any size. Src has 4 components. Dst has 3 components.
void LLImageRaw::copyScaled4onto3(LLImageRaw* src)
{
llassert( (4 == src->getComponents()) && (3 == getComponents()) );
// Slow, but simple. Optimize later if needed.
LLImageRaw temp( src->getWidth(), src->getHeight(), 3);
temp.copyUnscaled4onto3( src );
copyScaled( &temp );
}
// Src and dst are same size. Src has 4 components. Dst has 3 components.
void LLImageRaw::copyUnscaled4onto3( LLImageRaw* src )
{
LLImageRaw* dst = this; // Just for clarity.
llassert( (3 == dst->getComponents()) && (4 == src->getComponents()) );
llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) );
S32 pixels = getWidth() * getHeight();
U8* src_data = src->getData();
U8* dst_data = dst->getData();
for( S32 i=0; i<pixels; i++ )
{
dst_data[0] = src_data[0];
dst_data[1] = src_data[1];
dst_data[2] = src_data[2];
src_data += 4;
dst_data += 3;
}
}
// Src and dst are same size. Src has 3 components. Dst has 4 components.
void LLImageRaw::copyUnscaled3onto4( LLImageRaw* src )
{
LLImageRaw* dst = this; // Just for clarity.
llassert( 3 == src->getComponents() );
llassert( 4 == dst->getComponents() );
llassert( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) );
S32 pixels = getWidth() * getHeight();
U8* src_data = src->getData();
U8* dst_data = dst->getData();
for( S32 i=0; i<pixels; i++ )
{
dst_data[0] = src_data[0];
dst_data[1] = src_data[1];
dst_data[2] = src_data[2];
dst_data[3] = 255;
src_data += 3;
dst_data += 4;
}
}
// Src and dst can be any size. Src and dst have same number of components.
void LLImageRaw::copyScaled( LLImageRaw* src )
{
LLMemType mt1((LLMemType::EMemType)mMemType);
LLImageRaw* dst = this; // Just for clarity.
llassert_always( (1 == src->getComponents()) || (3 == src->getComponents()) || (4 == src->getComponents()) );
llassert_always( src->getComponents() == dst->getComponents() );
if( (src->getWidth() == dst->getWidth()) && (src->getHeight() == dst->getHeight()) )
{
memcpy( dst->getData(), src->getData(), getWidth() * getHeight() * getComponents() ); /* Flawfinder: ignore */
return;
}
// Vertical
S32 temp_data_size = src->getWidth() * dst->getHeight() * getComponents();
llassert_always(temp_data_size > 0);
U8* temp_buffer = new (std::nothrow) U8[ temp_data_size ];
if (!temp_buffer )
{
llerrs << "Out of memory in LLImageRaw::copyScaled()" << llendl;
return;
}
for( S32 col = 0; col < src->getWidth(); col++ )
{
copyLineScaled( src->getData() + (getComponents() * col), temp_buffer + (getComponents() * col), src->getHeight(), dst->getHeight(), src->getWidth(), src->getWidth() );
}
// Horizontal
for( S32 row = 0; row < dst->getHeight(); row++ )
{
copyLineScaled( temp_buffer + (getComponents() * src->getWidth() * row), dst->getData() + (getComponents() * dst->getWidth() * row), src->getWidth(), dst->getWidth(), 1, 1 );
}
// Clean up
delete[] temp_buffer;
}
#if 0
//scale down image by not blending a pixel with its neighbors.
BOOL LLImageRaw::scaleDownWithoutBlending( S32 new_width, S32 new_height)
{
LLMemType mt1(mMemType);
S8 c = getComponents() ;
llassert((1 == c) || (3 == c) || (4 == c) );
S32 old_width = getWidth();
S32 old_height = getHeight();
S32 new_data_size = old_width * new_height * c ;
llassert_always(new_data_size > 0);
F32 ratio_x = (F32)old_width / new_width ;
F32 ratio_y = (F32)old_height / new_height ;
if( ratio_x < 1.0f || ratio_y < 1.0f )
{
return TRUE; // Nothing to do.
}
ratio_x -= 1.0f ;
ratio_y -= 1.0f ;
U8* new_data = allocateMemory(new_data_size) ;
llassert_always(new_data != NULL) ;
U8* old_data = getData() ;
S32 i, j, k, s, t;
for(i = 0, s = 0, t = 0 ; i < new_height ; i++)
{
for(j = 0 ; j < new_width ; j++)
{
for(k = 0 ; k < c ; k++)
{
new_data[s++] = old_data[t++] ;
}
t += (S32)(ratio_x * c + 0.1f) ;
}
t += (S32)(ratio_y * old_width * c + 0.1f) ;
}
setDataAndSize(new_data, new_width, new_height, c) ;
return TRUE ;
}
#endif
BOOL LLImageRaw::scale( S32 new_width, S32 new_height, BOOL scale_image_data )
{
LLMemType mt1((LLMemType::EMemType)mMemType);
llassert((1 == getComponents()) || (3 == getComponents()) || (4 == getComponents()) );
S32 old_width = getWidth();
S32 old_height = getHeight();
if( (old_width == new_width) && (old_height == new_height) )
{
return TRUE; // Nothing to do.
}
// Reallocate the data buffer.
if (scale_image_data)
{
// Vertical
S32 temp_data_size = old_width * new_height * getComponents();
llassert_always(temp_data_size > 0);
U8* temp_buffer = new (std::nothrow) U8[ temp_data_size ];
if (!temp_buffer )
{
llerrs << "Out of memory in LLImageRaw::scale()" << llendl;
return FALSE;
}
for( S32 col = 0; col < old_width; col++ )
{
copyLineScaled( getData() + (getComponents() * col), temp_buffer + (getComponents() * col), old_height, new_height, old_width, old_width );
}
deleteData();
U8* new_buffer = allocateDataSize(new_width, new_height, getComponents());
// Horizontal
for( S32 row = 0; row < new_height; row++ )
{
copyLineScaled( temp_buffer + (getComponents() * old_width * row), new_buffer + (getComponents() * new_width * row), old_width, new_width, 1, 1 );
}
// Clean up
delete[] temp_buffer;
}
else
{
// copy out existing image data
S32 temp_data_size = old_width * old_height * getComponents();
U8* temp_buffer = new (std::nothrow) U8[ temp_data_size ];
if (!temp_buffer)
{
llwarns << "Out of memory in LLImageRaw::scale: old (w, h, c) = (" << old_width << ", " << old_height << ", " << (S32)getComponents() <<
") ; new (w, h, c) = (" << new_width << ", " << new_height << ", " << (S32)getComponents() << ")" << llendl;
return FALSE ;
}
memcpy(temp_buffer, getData(), temp_data_size); /* Flawfinder: ignore */
// allocate new image data, will delete old data
U8* new_buffer = allocateDataSize(new_width, new_height, getComponents());
for( S32 row = 0; row < new_height; row++ )
{
if (row < old_height)
{
memcpy(new_buffer + (new_width * row * getComponents()), temp_buffer + (old_width * row * getComponents()), getComponents() * llmin(old_width, new_width)); /* Flawfinder: ignore */
if (old_width < new_width)
{
// pad out rest of row with black
memset(new_buffer + (getComponents() * ((new_width * row) + old_width)), 0, getComponents() * (new_width - old_width));
}
}
else
{
// pad remaining rows with black
memset(new_buffer + (new_width * row * getComponents()), 0, new_width * getComponents());
}
}
// Clean up
delete[] temp_buffer;
}
return TRUE ;
}
void LLImageRaw::copyLineScaled( U8* in, U8* out, S32 in_pixel_len, S32 out_pixel_len, S32 in_pixel_step, S32 out_pixel_step )
{
const S32 components = getComponents();
llassert( components >= 1 && components <= 4 );
const F32 ratio = F32(in_pixel_len) / out_pixel_len; // ratio of old to new
const F32 norm_factor = 1.f / ratio;
S32 goff = components >= 2 ? 1 : 0;
S32 boff = components >= 3 ? 2 : 0;
for( S32 x = 0; x < out_pixel_len; x++ )
{
// Sample input pixels in range from sample0 to sample1.
// Avoid floating point accumulation error... don't just add ratio each time. JC
const F32 sample0 = x * ratio;
const F32 sample1 = (x+1) * ratio;
const S32 index0 = llfloor(sample0); // left integer (floor)
const S32 index1 = llfloor(sample1); // right integer (floor)
const F32 fract0 = 1.f - (sample0 - F32(index0)); // spill over on left
const F32 fract1 = sample1 - F32(index1); // spill-over on right
if( index0 == index1 )
{
// Interval is embedded in one input pixel
S32 t0 = x * out_pixel_step * components;
S32 t1 = index0 * in_pixel_step * components;
U8* outp = out + t0;
U8* inp = in + t1;
for (S32 i = 0; i < components; ++i)
{
*outp = *inp;
++outp;
++inp;
}
}
else
{
// Left straddle
S32 t1 = index0 * in_pixel_step * components;
F32 r = in[t1 + 0] * fract0;
F32 g = in[t1 + goff] * fract0;
F32 b = in[t1 + boff] * fract0;
F32 a = 0;
if( components == 4)
{
a = in[t1 + 3] * fract0;
}
// Central interval
if (components < 4)
{
for( S32 u = index0 + 1; u < index1; u++ )
{
S32 t2 = u * in_pixel_step * components;
r += in[t2 + 0];
g += in[t2 + goff];
b += in[t2 + boff];
}
}
else
{
for( S32 u = index0 + 1; u < index1; u++ )
{
S32 t2 = u * in_pixel_step * components;
r += in[t2 + 0];
g += in[t2 + 1];
b += in[t2 + 2];
a += in[t2 + 3];
}
}
// right straddle
// Watch out for reading off of end of input array.
if( fract1 && index1 < in_pixel_len )
{
S32 t3 = index1 * in_pixel_step * components;
if (components < 4)
{
U8 in0 = in[t3 + 0];
U8 in1 = in[t3 + goff];
U8 in2 = in[t3 + boff];
r += in0 * fract1;
g += in1 * fract1;
b += in2 * fract1;
}
else
{
U8 in0 = in[t3 + 0];
U8 in1 = in[t3 + 1];
U8 in2 = in[t3 + 2];
U8 in3 = in[t3 + 3];
r += in0 * fract1;
g += in1 * fract1;
b += in2 * fract1;
a += in3 * fract1;
}
}
r *= norm_factor;
g *= norm_factor;
b *= norm_factor;
a *= norm_factor; // skip conditional
S32 t4 = x * out_pixel_step * components;
out[t4 + 0] = U8(llround(r));
if (components >= 2)
out[t4 + 1] = U8(llround(g));
if (components >= 3)
out[t4 + 2] = U8(llround(b));
if( components == 4)
out[t4 + 3] = U8(llround(a));
}
}
}
void LLImageRaw::compositeRowScaled4onto3( U8* in, U8* out, S32 in_pixel_len, S32 out_pixel_len )
{
llassert( getComponents() == 3 );
const S32 IN_COMPONENTS = 4;
const S32 OUT_COMPONENTS = 3;
const F32 ratio = F32(in_pixel_len) / out_pixel_len; // ratio of old to new
const F32 norm_factor = 1.f / ratio;
for( S32 x = 0; x < out_pixel_len; x++ )
{
// Sample input pixels in range from sample0 to sample1.
// Avoid floating point accumulation error... don't just add ratio each time. JC
const F32 sample0 = x * ratio;
const F32 sample1 = (x+1) * ratio;
const S32 index0 = S32(sample0); // left integer (floor)
const S32 index1 = S32(sample1); // right integer (floor)
const F32 fract0 = 1.f - (sample0 - F32(index0)); // spill over on left
const F32 fract1 = sample1 - F32(index1); // spill-over on right
U8 in_scaled_r;
U8 in_scaled_g;
U8 in_scaled_b;
U8 in_scaled_a;
if( index0 == index1 )
{
// Interval is embedded in one input pixel
S32 t1 = index0 * IN_COMPONENTS;
in_scaled_r = in[t1 + 0];
in_scaled_g = in[t1 + 0];
in_scaled_b = in[t1 + 0];
in_scaled_a = in[t1 + 0];
}
else
{
// Left straddle
S32 t1 = index0 * IN_COMPONENTS;
F32 r = in[t1 + 0] * fract0;
F32 g = in[t1 + 1] * fract0;
F32 b = in[t1 + 2] * fract0;
F32 a = in[t1 + 3] * fract0;
// Central interval
for( S32 u = index0 + 1; u < index1; u++ )
{
S32 t2 = u * IN_COMPONENTS;
r += in[t2 + 0];
g += in[t2 + 1];
b += in[t2 + 2];
a += in[t2 + 3];
}
// right straddle
// Watch out for reading off of end of input array.
if( fract1 && index1 < in_pixel_len )
{
S32 t3 = index1 * IN_COMPONENTS;
r += in[t3 + 0] * fract1;
g += in[t3 + 1] * fract1;
b += in[t3 + 2] * fract1;
a += in[t3 + 3] * fract1;
}
r *= norm_factor;
g *= norm_factor;
b *= norm_factor;
a *= norm_factor;
in_scaled_r = U8(llround(r));
in_scaled_g = U8(llround(g));
in_scaled_b = U8(llround(b));
in_scaled_a = U8(llround(a));
}
if( in_scaled_a )
{
if( 255 == in_scaled_a )
{
out[0] = in_scaled_r;
out[1] = in_scaled_g;
out[2] = in_scaled_b;
}
else
{
U8 transparency = 255 - in_scaled_a;
out[0] = fastFractionalMult( out[0], transparency ) + fastFractionalMult( in_scaled_r, in_scaled_a );
out[1] = fastFractionalMult( out[1], transparency ) + fastFractionalMult( in_scaled_g, in_scaled_a );
out[2] = fastFractionalMult( out[2], transparency ) + fastFractionalMult( in_scaled_b, in_scaled_a );
}
}
out += OUT_COMPONENTS;
}
}
//----------------------------------------------------------------------------
static struct
{
const char* exten;
EImageCodec codec;
}
file_extensions[] =
{
{ "bmp", IMG_CODEC_BMP },
{ "tga", IMG_CODEC_TGA },
{ "j2c", IMG_CODEC_J2C },
{ "jp2", IMG_CODEC_J2C },
{ "texture", IMG_CODEC_J2C },
{ "jpg", IMG_CODEC_JPEG },
{ "jpeg", IMG_CODEC_JPEG },
{ "mip", IMG_CODEC_DXT },
{ "dxt", IMG_CODEC_DXT },
{ "png", IMG_CODEC_PNG }
};
#define NUM_FILE_EXTENSIONS LL_ARRAY_SIZE(file_extensions)
#if 0
static std::string find_file(std::string &name, S8 *codec)
{
std::string tname;
for (int i=0; i<(int)(NUM_FILE_EXTENSIONS); i++)
{
tname = name + "." + std::string(file_extensions[i].exten);
llifstream ifs(tname, llifstream::binary);
if (ifs.is_open())
{
ifs.close();
if (codec)
*codec = file_extensions[i].codec;
return std::string(file_extensions[i].exten);
}
}
return std::string("");
}
#endif
EImageCodec LLImageBase::getCodecFromExtension(const std::string& exten)
{
for (int i=0; i<(int)(NUM_FILE_EXTENSIONS); i++)
{
if (exten == file_extensions[i].exten)
return file_extensions[i].codec;
}
return IMG_CODEC_INVALID;
}
#if 0
bool LLImageRaw::createFromFile(const std::string &filename, bool j2c_lowest_mip_only)
{
std::string name = filename;
size_t dotidx = name.rfind('.');
S8 codec = IMG_CODEC_INVALID;
std::string exten;
deleteData(); // delete any existing data
if (dotidx != std::string::npos)
{
exten = name.substr(dotidx+1);
LLStringUtil::toLower(exten);
codec = getCodecFromExtension(exten);
}
else
{
exten = find_file(name, &codec);
name = name + "." + exten;
}
if (codec == IMG_CODEC_INVALID)
{
return false; // format not recognized
}
llifstream ifs(name, llifstream::binary);
if (!ifs.is_open())
{
// SJB: changed from llinfos to lldebugs to reduce spam
lldebugs << "Unable to open image file: " << name << llendl;
return false;
}
ifs.seekg (0, std::ios::end);
int length = ifs.tellg();
if (j2c_lowest_mip_only && length > 2048)
{
length = 2048;
}
ifs.seekg (0, std::ios::beg);
if (!length)
{
llinfos << "Zero length file file: " << name << llendl;
return false;
}
LLPointer<LLImageFormatted> image = LLImageFormatted::createFromType(codec);
llassert(image.notNull());
U8 *buffer = image->allocateData(length);
ifs.read ((char*)buffer, length); /* Flawfinder: ignore */
ifs.close();
BOOL success;
success = image->updateData();
if (success)
{
if (j2c_lowest_mip_only && codec == IMG_CODEC_J2C)
{
S32 width = image->getWidth();
S32 height = image->getHeight();
S32 discard_level = 0;
while (width > 1 && height > 1 && discard_level < MAX_DISCARD_LEVEL)
{
width >>= 1;
height >>= 1;
discard_level++;
}
((LLImageJ2C *)((LLImageFormatted*)image))->setDiscardLevel(discard_level);
}
success = image->decode(this, 100000.0f);
}
image = NULL; // deletes image
if (!success)
{
deleteData();
llwarns << "Unable to decode image" << name << llendl;
return false;
}
return true;
}
#endif
//---------------------------------------------------------------------------
// LLImageFormatted
//---------------------------------------------------------------------------
//static
S32 LLImageFormatted::sGlobalFormattedMemory = 0;
LLImageFormatted::LLImageFormatted(S8 codec)
: LLImageBase(),
mCodec(codec),
mDecoding(0),
mDecoded(0),
mDiscardLevel(-1)
{
mMemType = LLMemType::MTYPE_IMAGEFORMATTED;
}
// virtual
LLImageFormatted::~LLImageFormatted()
{
// NOTE: ~LLimageBase() call to deleteData() calls LLImageBase::deleteData()
// NOT LLImageFormatted::deleteData()
deleteData();
}
//----------------------------------------------------------------------------
//virtual
void LLImageFormatted::resetLastError()
{
LLImage::setLastError("");
}
//virtual
void LLImageFormatted::setLastError(const std::string& message, const std::string& filename)
{
std::string error = message;
if (!filename.empty())
error += std::string(" FILE: ") + filename;
LLImage::setLastError(error);
}
//----------------------------------------------------------------------------
// static
LLImageFormatted* LLImageFormatted::createFromType(S8 codec)
{
LLImageFormatted* image;
switch(codec)
{
case IMG_CODEC_BMP:
image = new LLImageBMP();
break;
case IMG_CODEC_TGA:
image = new LLImageTGA();
break;
case IMG_CODEC_JPEG:
image = new LLImageJPEG();
break;
case IMG_CODEC_PNG:
image = new LLImagePNG();
break;
case IMG_CODEC_J2C:
image = new LLImageJ2C();
break;
case IMG_CODEC_DXT:
image = new LLImageDXT();
break;
default:
image = NULL;
break;
}
return image;
}
// static
LLImageFormatted* LLImageFormatted::createFromExtension(const std::string& instring)
{
std::string exten;
size_t dotidx = instring.rfind('.');
if (dotidx != std::string::npos)
{
exten = instring.substr(dotidx+1);
}
else
{
exten = instring;
}
S8 codec = getCodecFromExtension(exten);
return createFromType(codec);
}
//----------------------------------------------------------------------------
// virtual
void LLImageFormatted::dump()
{
LLImageBase::dump();
llinfos << "LLImageFormatted"
<< " mDecoding " << mDecoding
<< " mCodec " << S32(mCodec)
<< " mDecoded " << mDecoded
<< llendl;
}
//----------------------------------------------------------------------------
S32 LLImageFormatted::calcDataSize(S32 discard_level)
{
if (discard_level < 0)
{
discard_level = mDiscardLevel;
}
S32 w = getWidth() >> discard_level;
S32 h = getHeight() >> discard_level;
w = llmax(w, 1);
h = llmax(h, 1);
return w * h * getComponents();
}
S32 LLImageFormatted::calcDiscardLevelBytes(S32 bytes)
{
llassert(bytes >= 0);
S32 discard_level = 0;
while (1)
{
S32 bytes_needed = calcDataSize(discard_level); // virtual
if (bytes_needed <= bytes)
{
break;
}
discard_level++;
if (discard_level > MAX_IMAGE_MIP)
{
return -1;
}
}
return discard_level;
}
//----------------------------------------------------------------------------
// Subclasses that can handle more than 4 channels should override this function.
BOOL LLImageFormatted::decodeChannels(LLImageRaw* raw_image,F32 decode_time, S32 first_channel, S32 max_channel)
{
llassert( (first_channel == 0) && (max_channel == 4) );
return decode( raw_image, decode_time ); // Loads first 4 channels by default.
}
//----------------------------------------------------------------------------
// virtual
U8* LLImageFormatted::allocateData(S32 size)
{
U8* res = LLImageBase::allocateData(size); // calls deleteData()
sGlobalFormattedMemory += getDataSize();
return res;
}
// virtual
U8* LLImageFormatted::reallocateData(S32 size)
{
sGlobalFormattedMemory -= getDataSize();
U8* res = LLImageBase::reallocateData(size);
sGlobalFormattedMemory += getDataSize();
return res;
}
// virtual
void LLImageFormatted::deleteData()
{
sGlobalFormattedMemory -= getDataSize();
LLImageBase::deleteData();
}
//----------------------------------------------------------------------------
// virtual
void LLImageFormatted::sanityCheck()
{
LLImageBase::sanityCheck();
if (mCodec >= IMG_CODEC_EOF)
{
llerrs << "Failed LLImageFormatted::sanityCheck "
<< "decoding " << S32(mDecoding)
<< "decoded " << S32(mDecoded)
<< "codec " << S32(mCodec)
<< llendl;
}
}
//----------------------------------------------------------------------------
BOOL LLImageFormatted::copyData(U8 *data, S32 size)
{
if ( data && ((data != getData()) || (size != getDataSize())) )
{
deleteData();
allocateData(size);
memcpy(getData(), data, size); /* Flawfinder: ignore */
}
return TRUE;
}
// LLImageFormatted becomes the owner of data
void LLImageFormatted::setData(U8 *data, S32 size)
{
if (data && data != getData())
{
deleteData();
setDataAndSize(data, size); // Access private LLImageBase members
sGlobalFormattedMemory += getDataSize();
}
}
void LLImageFormatted::appendData(U8 *data, S32 size)
{
if (data)
{
if (!getData())
{
setData(data, size);
}
else
{
S32 cursize = getDataSize();
S32 newsize = cursize + size;
reallocateData(newsize);
memcpy(getData() + cursize, data, size);
FREE_MEM(LLImageBase::getPrivatePool(), data);
}
}
}
//----------------------------------------------------------------------------
BOOL LLImageFormatted::load(const std::string &filename)
{
resetLastError();
S32 file_size = 0;
LLAPRFile infile(filename, LL_APR_RB, &file_size);
apr_file_t* apr_file = infile.getFileHandle();
if (!apr_file)
{
setLastError("Unable to open file for reading", filename);
return FALSE;
}
if (file_size == 0)
{
setLastError("File is empty",filename);
return FALSE;
}
BOOL res;
U8 *data = allocateData(file_size);
apr_size_t bytes_read = file_size;
apr_status_t s = apr_file_read(apr_file, data, &bytes_read); // modifies bytes_read
if (s != APR_SUCCESS || (S32) bytes_read != file_size)
{
deleteData();
setLastError("Unable to read entire file",filename);
res = FALSE;
}
else
{
res = updateData();
}
return res;
}
BOOL LLImageFormatted::save(const std::string &filename)
{
resetLastError();
LLAPRFile outfile(filename, LL_APR_WB);
if (!outfile.getFileHandle())
{
setLastError("Unable to open file for writing", filename);
return FALSE;
}
outfile.write(getData(), getDataSize());
outfile.close() ;
return TRUE;
}
// BOOL LLImageFormatted::save(LLVFS *vfs, const LLUUID &uuid, LLAssetType::EType type)
// Depricated to remove VFS dependency.
// Use:
// LLVFile::writeFile(image->getData(), image->getDataSize(), vfs, uuid, type);
//----------------------------------------------------------------------------
S8 LLImageFormatted::getCodec() const
{
return mCodec;
}
//============================================================================
static void avg4_colors4(const U8* a, const U8* b, const U8* c, const U8* d, U8* dst)
{
dst[0] = (U8)(((U32)(a[0]) + b[0] + c[0] + d[0])>>2);
dst[1] = (U8)(((U32)(a[1]) + b[1] + c[1] + d[1])>>2);
dst[2] = (U8)(((U32)(a[2]) + b[2] + c[2] + d[2])>>2);
dst[3] = (U8)(((U32)(a[3]) + b[3] + c[3] + d[3])>>2);
}
static void avg4_colors3(const U8* a, const U8* b, const U8* c, const U8* d, U8* dst)
{
dst[0] = (U8)(((U32)(a[0]) + b[0] + c[0] + d[0])>>2);
dst[1] = (U8)(((U32)(a[1]) + b[1] + c[1] + d[1])>>2);
dst[2] = (U8)(((U32)(a[2]) + b[2] + c[2] + d[2])>>2);
}
static void avg4_colors2(const U8* a, const U8* b, const U8* c, const U8* d, U8* dst)
{
dst[0] = (U8)(((U32)(a[0]) + b[0] + c[0] + d[0])>>2);
dst[1] = (U8)(((U32)(a[1]) + b[1] + c[1] + d[1])>>2);
}
//static
void LLImageBase::generateMip(const U8* indata, U8* mipdata, S32 width, S32 height, S32 nchannels)
{
llassert(width > 0 && height > 0);
U8* data = mipdata;
S32 in_width = width*2;
for (S32 h=0; h<height; h++)
{
for (S32 w=0; w<width; w++)
{
switch(nchannels)
{
case 4:
avg4_colors4(indata, indata+4, indata+4*in_width, indata+4*in_width+4, data);
break;
case 3:
avg4_colors3(indata, indata+3, indata+3*in_width, indata+3*in_width+3, data);
break;
case 2:
avg4_colors2(indata, indata+2, indata+2*in_width, indata+2*in_width+2, data);
break;
case 1:
*(U8*)data = (U8)(((U32)(indata[0]) + indata[1] + indata[in_width] + indata[in_width+1])>>2);
break;
default:
llerrs << "generateMmip called with bad num channels" << llendl;
}
indata += nchannels*2;
data += nchannels;
}
indata += nchannels*in_width; // skip odd lines
}
}
//============================================================================
//static
F32 LLImageBase::calc_download_priority(F32 virtual_size, F32 visible_pixels, S32 bytes_sent)
{
F32 w_priority;
F32 bytes_weight = 1.f;
if (!bytes_sent)
{
bytes_weight = 20.f;
}
else if (bytes_sent < 1000)
{
bytes_weight = 1.f;
}
else if (bytes_sent < 2000)
{
bytes_weight = 1.f/1.5f;
}
else if (bytes_sent < 4000)
{
bytes_weight = 1.f/3.f;
}
else if (bytes_sent < 8000)
{
bytes_weight = 1.f/6.f;
}
else if (bytes_sent < 16000)
{
bytes_weight = 1.f/12.f;
}
else if (bytes_sent < 32000)
{
bytes_weight = 1.f/20.f;
}
else if (bytes_sent < 64000)
{
bytes_weight = 1.f/32.f;
}
else
{
bytes_weight = 1.f/64.f;
}
bytes_weight *= bytes_weight;
//llinfos << "VS: " << virtual_size << llendl;
F32 virtual_size_factor = virtual_size / (10.f*10.f);
// The goal is for weighted priority to be <= 0 when we've reached a point where
// we've sent enough data.
//llinfos << "BytesSent: " << bytes_sent << llendl;
//llinfos << "BytesWeight: " << bytes_weight << llendl;
//llinfos << "PreLog: " << bytes_weight * virtual_size_factor << llendl;
w_priority = (F32)log10(bytes_weight * virtual_size_factor);
//llinfos << "PreScale: " << w_priority << llendl;
// We don't want to affect how MANY bytes we send based on the visible pixels, but the order
// in which they're sent. We post-multiply so we don't change the zero point.
if (w_priority > 0.f)
{
F32 pixel_weight = (F32)log10(visible_pixels + 1)*3.0f;
w_priority *= pixel_weight;
}
return w_priority;
}
//============================================================================