Files
SingularityViewer/indra/lscript/lscript_compile/lscript_tree.cpp
2011-06-16 23:56:56 -05:00

10904 lines
399 KiB
C++

/**
* @file lscript_tree.cpp
* @brief implements methods for lscript_tree.h classes
*
* $LicenseInfo:firstyear=2002&license=viewergpl$
*
* Copyright (c) 2002-2009, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
// TO DO: Move print functionality from .h file to here
#include "linden_common.h"
#include "lscript_tree.h"
#include "lscript_typecheck.h"
#include "lscript_resource.h"
#include "lscript_bytecode.h"
#include "lscript_heap.h"
#include "lscript_library.h"
#include "lscript_alloc.h"
//#define LSL_INCLUDE_DEBUG_INFO
static void print_cil_box(LLFILE* fp, LSCRIPTType type)
{
switch(type)
{
case LST_INTEGER:
fprintf(fp, "box [mscorlib]System.Int32\n");
break;
case LST_FLOATINGPOINT:
fprintf(fp, "box [mscorlib]System.Single\n");
break;
case LST_STRING:
// System.String is not a System.ValueType,
// so does not need to be boxed.
break;
case LST_KEY:
fprintf(fp, "box [ScriptTypes]LindenLab.SecondLife.Key\n");
break;
case LST_VECTOR:
fprintf(fp, "box [ScriptTypes]LindenLab.SecondLife.Vector\n");
break;
case LST_QUATERNION:
fprintf(fp, "box [ScriptTypes]LindenLab.SecondLife.Quaternion\n");
break;
default:
llassert(false);
break;
}
}
static void print_cil_type(LLFILE* fp, LSCRIPTType type)
{
switch(type)
{
case LST_INTEGER:
fprintf(fp, "int32");
break;
case LST_FLOATINGPOINT:
fprintf(fp, "float32");
break;
case LST_STRING:
fprintf(fp, "string");
break;
case LST_KEY:
fprintf(fp, "valuetype [ScriptTypes]LindenLab.SecondLife.Key");
break;
case LST_VECTOR:
fprintf(fp, "class [ScriptTypes]LindenLab.SecondLife.Vector");
break;
case LST_QUATERNION:
fprintf(fp, "class [ScriptTypes]LindenLab.SecondLife.Quaternion");
break;
case LST_LIST:
fprintf(fp, "class [mscorlib]System.Collections.ArrayList");
break;
case LST_NULL:
fprintf(fp, "void");
break;
default:
break;
}
}
void LLScriptType::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fprintf(fp,"%s",LSCRIPTTypeNames[mType]);
break;
case LSCP_TYPE:
type = mType;
break;
case LSCP_EMIT_CIL_ASSEMBLY:
print_cil_type(fp, mType);
break;
default:
break;
}
}
S32 LLScriptType::getSize()
{
return LSCRIPTDataSize[mType];
}
void LLScriptConstant::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fprintf(fp,"Script Constant Base class -- should never get here!\n");
break;
default:
break;
}
}
S32 LLScriptConstant::getSize()
{
printf("Script Constant Base class -- should never get here!\n");
return 0;
}
void LLScriptConstantInteger::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fprintf(fp, "%d", mValue);
break;
case LSCP_EMIT_ASSEMBLY:
fprintf(fp, "PUSHARGI %d\n", mValue);
break;
case LSCP_TYPE:
type = mType;
break;
case LSCP_EMIT_BYTE_CODE:
{
chunk->addInteger(mValue);
type = mType;
}
break;
case LSCP_TO_STACK:
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
chunk->addInteger(mValue);
type = mType;
}
break;
case LSCP_LIST_BUILD_SIMPLE:
{
*ldata = new LLScriptLibData(mValue);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fprintf(fp, "ldc.i4 %d\n", mValue);
type = mType;
break;
default:
break;
}
}
S32 LLScriptConstantInteger::getSize()
{
return LSCRIPTDataSize[LST_INTEGER];
}
void LLScriptConstantFloat::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fprintf(fp, "%5.5f", mValue);
break;
case LSCP_EMIT_ASSEMBLY:
fprintf(fp, "PUSHARGF %5.5f\n", mValue);
break;
case LSCP_TYPE:
type = mType;
break;
case LSCP_EMIT_BYTE_CODE:
{
chunk->addFloat(mValue);
type = mType;
}
break;
case LSCP_TO_STACK:
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGF]);
chunk->addFloat(mValue);
type = mType;
}
break;
case LSCP_LIST_BUILD_SIMPLE:
{
*ldata = new LLScriptLibData(mValue);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
double v = (double)mValue;
U8 * p = (U8 *)&v; // See ECMA-335 Partition VI, Appendix C.4.6 Examples, line 4
fprintf(fp, "ldc.r8 (%02x %02x %02x %02x %02x %02x %02x %02x)\n", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
type = mType;
}
break;
default:
break;
}
}
S32 LLScriptConstantFloat::getSize()
{
return LSCRIPTDataSize[LST_FLOATINGPOINT];
}
void print_escaped(LLFILE* fp, const char* str)
{
putc('"', fp);
for(const char* c = str; *c != '\0'; ++c)
{
switch(*c)
{
case '"':
putc('\\', fp);
putc(*c, fp);
break;
case '\n':
putc('\\', fp);
putc('n', fp);
break;
case '\t':
putc(' ', fp);
putc(' ', fp);
putc(' ', fp);
putc(' ', fp);
break;
case '\\':
putc('\\', fp);
putc('\\', fp);
break;
default:
putc(*c, fp);
}
}
putc('"', fp);
}
void LLScriptConstantString::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fprintf(fp, "\"%s\"", mValue);
break;
case LSCP_EMIT_ASSEMBLY:
fprintf(fp, "PUSHARGS \"%s\"\n", mValue);
break;
case LSCP_TYPE:
type = mType;
break;
case LSCP_EMIT_BYTE_CODE:
{
chunk->addInteger(heap->mCurrentOffset + 1);
LLScriptLibData *data = new LLScriptLibData(mValue);
U8 *temp;
S32 size = lsa_create_data_block(&temp, data, heap->mCurrentOffset);
heap->addBytes(temp, size);
delete [] temp;
delete data;
}
break;
case LSCP_TO_STACK:
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGS]);
chunk->addBytes(mValue, (S32)strlen(mValue) + 1);
type = mType;
}
break;
case LSCP_LIST_BUILD_SIMPLE:
{
*ldata = new LLScriptLibData(mValue);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fprintf(fp, "ldstr ");
print_escaped(fp, mValue);
fprintf(fp, "\n");
default:
break;
}
}
S32 LLScriptConstantString::getSize()
{
return (S32)strlen(mValue) + 1;
}
void LLScriptIdentifier::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fprintf(fp, "%s", mName);
break;
case LSCP_EMIT_ASSEMBLY:
if (mScopeEntry)
{
if (mScopeEntry->mIDType == LIT_VARIABLE)
{
fprintf(fp, "$BP + %d [%s]", mScopeEntry->mOffset, mName);
}
else if (mScopeEntry->mIDType == LIT_GLOBAL)
{
fprintf(fp, "$GVR + %d [%s]", mScopeEntry->mOffset, mName);
}
else
{
fprintf(fp, "%s", mName);
}
}
break;
case LSCP_TYPE:
if (mScopeEntry)
type = mScopeEntry->mType;
else
type = LST_NULL;
break;
case LSCP_RESOURCE:
if (mScopeEntry)
{
if (mScopeEntry->mIDType == LIT_VARIABLE)
{
// fprintf(fp, "LOCAL : %d : %d : %s\n", mScopeEntry->mOffset, mScopeEntry->mSize, mName);
}
else if (mScopeEntry->mIDType == LIT_GLOBAL)
{
// fprintf(fp, "GLOBAL: %d : %d : %s\n", mScopeEntry->mOffset, mScopeEntry->mSize, mName);
}
}
break;
case LSCP_LIST_BUILD_SIMPLE:
{
if (mScopeEntry)
{
if (mScopeEntry->mType == LST_LIST)
{
gErrorToText.writeError(fp, this, LSERROR_NO_LISTS_IN_LISTS);
}
else if (mScopeEntry->mAssignable)
{
mScopeEntry->mAssignable->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, ldata);
}
else
{
gErrorToText.writeError(fp, this, LSERROR_NO_UNITIALIZED_VARIABLES_IN_LISTS);
}
}
else
{
gErrorToText.writeError(fp, this, LSERROR_UNDEFINED_NAME);
}
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fprintf(fp, "'%s'", mName);
break;
default:
break;
}
}
S32 LLScriptIdentifier::getSize()
{
return 0;
}
void LLScriptSimpleAssignable::addAssignable(LLScriptSimpleAssignable *assign)
{
if (mNextp)
{
assign->mNextp = mNextp;
}
mNextp = assign;
}
void LLScriptSimpleAssignable::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
fprintf(fp, "Simple Assignable Base Class -- should never get here!\n");
}
S32 LLScriptSimpleAssignable::getSize()
{
printf("Simple Assignable Base Class -- should never get here!\n");
return 0;
}
static void print_cil_member(LLFILE* fp, LLScriptIdentifier *ident)
{
print_cil_type(fp, ident->mScopeEntry->mType);
fprintf(fp, " %s::'%s'\n", gScriptp->getClassName(), ident->mScopeEntry->mIdentifier);
}
void LLScriptSAIdentifier::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mNextp)
{
fprintf(fp, ", ");
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_SCOPE_PASS1:
{
LLScriptScopeEntry *entry = scope->findEntry(mIdentifier->mName);
if (!entry)
{
gErrorToText.writeError(fp, this, LSERROR_UNDEFINED_NAME);
}
else
{
// if we did find it, make sure this identifier is associated with the correct scope entry
mIdentifier->mScopeEntry = entry;
}
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
if (mIdentifier->mScopeEntry)
{
if(mIdentifier->mScopeEntry->mAssignable)
{
mIdentifier->mScopeEntry->mAssignable->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
else
{
// Babbage: 29/8/06: If the scope entry has no mAssignable,
// set the default type and add the default 0 value to the
// chunk. Without this SAVectors and SAQuaternions will
// assume the arbitrary current type is the assignable type
// and may attempt to access a null chunk. (SL-20156)
type = mIdentifier->mScopeEntry->mType;
chunk->addBytes(LSCRIPTDataSize[type]);
}
}
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
}
break;
case LSCP_LIST_BUILD_SIMPLE:
{
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, ldata);
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, &(*ldata)->mListp);
}
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
fprintf(fp, "ldarg.0\n");
fprintf(fp, "ldfld ");
print_cil_member(fp, mIdentifier);
fprintf(fp, "\n");
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
default:
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
}
S32 LLScriptSAIdentifier::getSize()
{
return mIdentifier->getSize();
}
void LLScriptSAConstant::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
mConstant->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mNextp)
{
fprintf(fp, ", ");
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_LIST_BUILD_SIMPLE:
{
mConstant->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, ldata);
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, &(*ldata)->mListp);
}
}
break;
default:
mConstant->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
}
S32 LLScriptSAConstant::getSize()
{
return mConstant->getSize();
}
static void print_cil_cast(LLFILE* fp, LSCRIPTType srcType, LSCRIPTType targetType)
{
switch(srcType)
{
case LST_INTEGER:
switch(targetType)
{
case LST_FLOATINGPOINT:
fprintf(fp, "conv.r8\n");
break;
case LST_STRING:
fprintf(fp, "call string class [mscorlib]System.Convert::ToString(int32)\n");
break;
case LST_LIST:
print_cil_box(fp, LST_INTEGER);
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList(object)\n");
break;
default:
break;
}
break;
case LST_FLOATINGPOINT:
switch(targetType)
{
case LST_INTEGER:
fprintf(fp, "call int32 [LslLibrary]LindenLab.SecondLife.LslRunTime::ToInteger(float32)\n");
//fprintf(fp, "conv.i4\n"); // TODO replace this line with the above
// we the entire grid is > 1.25.1
break;
case LST_STRING:
fprintf(fp, "call string [LslLibrary]LindenLab.SecondLife.LslRunTime::ToString(float32)\n");
break;
case LST_LIST:
print_cil_box(fp, LST_FLOATINGPOINT);
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList(object)\n");
break;
default:
break;
}
break;
case LST_STRING:
switch(targetType)
{
case LST_INTEGER:
fprintf(fp, "call int32 [LslLibrary]LindenLab.SecondLife.LslRunTime::StringToInt(string)\n");
break;
case LST_FLOATINGPOINT:
fprintf(fp, "call float32 [LslLibrary]LindenLab.SecondLife.LslRunTime::StringToFloat(string)\n");
break;
case LST_KEY:
fprintf(fp, "call valuetype [ScriptTypes]LindenLab.SecondLife.Key class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateKey'(string)\n");
break;
case LST_LIST:
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList(object)\n");
break;
case LST_VECTOR:
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'ParseVector'(string)\n");
break;
case LST_QUATERNION:
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'ParseQuaternion'(string)\n");
break;
default:
break;
}
break;
case LST_KEY:
switch(targetType)
{
case LST_KEY:
break;
case LST_STRING:
fprintf(fp, "call string [LslUserScript]LindenLab.SecondLife.LslUserScript::'ToString'(valuetype [ScriptTypes]LindenLab.SecondLife.Key)\n");
break;
case LST_LIST:
print_cil_box(fp, LST_KEY);
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList(object)\n");
break;
default:
break;
}
break;
case LST_VECTOR:
switch(targetType)
{
case LST_VECTOR:
break;
case LST_STRING:
fprintf(fp, "call string [LslUserScript]LindenLab.SecondLife.LslUserScript::'ToString'(valuetype [ScriptTypes]LindenLab.SecondLife.Vector)\n");
break;
case LST_LIST:
print_cil_box(fp, LST_VECTOR);
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList(object)\n");
break;
default:
break;
}
break;
case LST_QUATERNION:
switch(targetType)
{
case LST_QUATERNION:
break;
case LST_STRING:
fprintf(fp, "call string [LslUserScript]LindenLab.SecondLife.LslUserScript::'ToString'(valuetype [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");
break;
case LST_LIST:
print_cil_box(fp, LST_QUATERNION);
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList(object)\n");
break;
default:
break;
}
break;
case LST_LIST:
switch(targetType)
{
case LST_LIST:
break;
case LST_STRING:
fprintf(fp, "call string [LslLibrary]LindenLab.SecondLife.LslRunTime::ListToString(class [mscorlib]System.Collections.ArrayList)\n");
break;
default:
break;
}
break;
default:
break;
}
}
static void print_cil_numeric_cast(LLFILE* fp, LSCRIPTType currentArg, LSCRIPTType otherArg)
{
if((currentArg == LST_INTEGER) && ((otherArg == LST_FLOATINGPOINT) || (otherArg == LST_VECTOR)))
{
print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
}
}
static void print_cil_assignment_cast(LLFILE* fp, LSCRIPTType src,
LSCRIPTType dest)
{
if (LST_STRING == src && LST_KEY == dest)
{
print_cil_cast(fp, src, dest);
}
else if(LST_KEY == src && LST_STRING == dest)
{
print_cil_cast(fp, src, dest);
}
else
{
print_cil_numeric_cast(fp, src, dest);
}
}
// HACK! Babbage: should be converted to virtual on LSCRIPTSimpleAssignableType to avoid downcasts.
LSCRIPTType get_type(LLScriptSimpleAssignable* sa)
{
LSCRIPTType result = LST_NULL;
switch(sa->mType)
{
case LSSAT_IDENTIFIER:
result = ((LLScriptSAIdentifier*) sa)->mIdentifier->mScopeEntry->mType;
break;
case LSSAT_CONSTANT:
result = ((LLScriptSAConstant*) sa)->mConstant->mType;
break;
case LSSAT_VECTOR_CONSTANT:
result = LST_VECTOR;
break;
case LSSAT_QUATERNION_CONSTANT:
result = LST_QUATERNION;
break;
case LSSAT_LIST_CONSTANT:
result = LST_LIST;
break;
default:
result = LST_UNDEFINED;
break;
}
return result;
}
void LLScriptSAVector::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fprintf(fp, "< ");
mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", ");
mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", ");
mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " >");
if (mNextp)
{
fprintf(fp, ", ");
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_TYPE:
// vector's take floats
mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(LST_FLOATINGPOINT, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(LST_FLOATINGPOINT, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(LST_FLOATINGPOINT, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = LST_VECTOR;
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_EMIT_BYTE_CODE:
mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (type == LST_INTEGER)
{
S32 offset = chunk->mCurrentOffset - 4;
bytestream_int2float(chunk->mCodeChunk, offset);
}
mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (type == LST_INTEGER)
{
S32 offset = chunk->mCurrentOffset - 4;
bytestream_int2float(chunk->mCodeChunk, offset);
}
mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (type == LST_INTEGER)
{
S32 offset = chunk->mCurrentOffset - 4;
bytestream_int2float(chunk->mCodeChunk, offset);
}
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_LIST_BUILD_SIMPLE:
{
LLScriptByteCodeChunk *list = new LLScriptByteCodeChunk(FALSE);
mEntry3->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, list, heap, stacksize, entry, entrycount, NULL);
if (type == LST_INTEGER)
{
S32 offset = list->mCurrentOffset - 4;
bytestream_int2float(list->mCodeChunk, offset);
}
mEntry2->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, list, heap, stacksize, entry, entrycount, NULL);
if (type == LST_INTEGER)
{
S32 offset = list->mCurrentOffset - 4;
bytestream_int2float(list->mCodeChunk, offset);
}
mEntry1->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, list, heap, stacksize, entry, entrycount, NULL);
if (type == LST_INTEGER)
{
S32 offset = list->mCurrentOffset - 4;
bytestream_int2float(list->mCodeChunk, offset);
}
LLVector3 vec;
S32 offset = 0;
bytestream2vector(vec, list->mCodeChunk, offset);
*ldata = new LLScriptLibData(vec);
delete list;
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, &(*ldata)->mListp);
}
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
// Load arguments.
mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if(LST_INTEGER == get_type(mEntry1))
{
print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
}
mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if(LST_INTEGER == get_type(mEntry2))
{
print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
}
mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if(LST_INTEGER == get_type(mEntry3))
{
print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
}
// Call named ctor, which leaves new Vector on stack, so it can be saved in to local or argument just like a primitive type.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateVector'(float32, float32, float32)\n");
// Next.
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
default:
mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
}
S32 LLScriptSAVector::getSize()
{
return mEntry1->getSize() + mEntry2->getSize() + mEntry3->getSize();
}
void LLScriptSAQuaternion::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fprintf(fp, "< ");
mEntry4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", ");
mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", ");
mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", ");
mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " >");
if (mNextp)
{
fprintf(fp, ", ");
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_TYPE:
// vector's take floats
mEntry4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(LST_FLOATINGPOINT, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(LST_FLOATINGPOINT, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(LST_FLOATINGPOINT, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(LST_FLOATINGPOINT, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = LST_QUATERNION;
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_EMIT_BYTE_CODE:
mEntry4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (type == LST_INTEGER)
{
S32 offset = chunk->mCurrentOffset - 4;
bytestream_int2float(chunk->mCodeChunk, offset);
}
mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (type == LST_INTEGER)
{
S32 offset = chunk->mCurrentOffset - 4;
bytestream_int2float(chunk->mCodeChunk, offset);
}
mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (type == LST_INTEGER)
{
S32 offset = chunk->mCurrentOffset - 4;
bytestream_int2float(chunk->mCodeChunk, offset);
}
mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (type == LST_INTEGER)
{
S32 offset = chunk->mCurrentOffset - 4;
bytestream_int2float(chunk->mCodeChunk, offset);
}
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_LIST_BUILD_SIMPLE:
{
LLScriptByteCodeChunk *list = new LLScriptByteCodeChunk(FALSE);
mEntry4->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, list, heap, stacksize, entry, entrycount, NULL);
if (type == LST_INTEGER)
{
S32 offset = list->mCurrentOffset - 4;
bytestream_int2float(list->mCodeChunk, offset);
}
mEntry3->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, list, heap, stacksize, entry, entrycount, NULL);
if (type == LST_INTEGER)
{
S32 offset = list->mCurrentOffset - 4;
bytestream_int2float(list->mCodeChunk, offset);
}
mEntry2->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, list, heap, stacksize, entry, entrycount, NULL);
if (type == LST_INTEGER)
{
S32 offset = list->mCurrentOffset - 4;
bytestream_int2float(list->mCodeChunk, offset);
}
mEntry1->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, list, heap, stacksize, entry, entrycount, NULL);
if (type == LST_INTEGER)
{
S32 offset = list->mCurrentOffset - 4;
bytestream_int2float(list->mCodeChunk, offset);
}
LLQuaternion quat;
S32 offset = 0;
bytestream2quaternion(quat, list->mCodeChunk, offset);
*ldata = new LLScriptLibData(quat);
delete list;
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, &(*ldata)->mListp);
}
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
// Load arguments.
mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if(LST_INTEGER == get_type(mEntry1))
{
print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
}
mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if(LST_INTEGER == get_type(mEntry2))
{
print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
}
mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if(LST_INTEGER == get_type(mEntry3))
{
print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
}
mEntry4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if(LST_INTEGER == get_type(mEntry4))
{
print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
}
// Call named ctor, which leaves new Vector on stack, so it can be saved in to local or argument just like a primitive type.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateQuaternion'(float32, float32, float32, float32)\n");
// Next.
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
default:
mEntry4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
}
S32 LLScriptSAQuaternion::getSize()
{
return mEntry1->getSize() + mEntry2->getSize() + mEntry3->getSize() + mEntry4->getSize();
}
void LLScriptSAList::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fprintf(fp, "[ ");
if (mEntryList)
mEntryList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " ]");
if (mNextp)
{
fprintf(fp, ", ");
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_TYPE:
if (mEntryList)
mEntryList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
type = LST_LIST;
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_EMIT_BYTE_CODE:
{
LLScriptLibData *list_data = new LLScriptLibData;
list_data->mType = LST_LIST;
if (mEntryList)
mEntryList->recurse(fp, tabs, tabsize, LSCP_LIST_BUILD_SIMPLE, ptype, prunearg, scope, type, basetype, count, chunk, NULL, stacksize, entry, entrycount, &(list_data->mListp));
U8 *temp;
chunk->addInteger(heap->mCurrentOffset + 1);
S32 size = lsa_create_data_block(&temp, list_data, heap->mCurrentOffset);
heap->addBytes(temp, size);
delete list_data;
delete [] temp;
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, chunk, NULL, stacksize, entry, entrycount, NULL);
}
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
// Create list.
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList()\n");
// Add elements.
LLScriptSimpleAssignable* current_entry = mEntryList;
LLScriptSimpleAssignable* next_entry = NULL;
while(NULL != current_entry)
{
next_entry = current_entry->mNextp;
// Null mNextp pointer, so only current list element is processed.
current_entry->mNextp = NULL;
current_entry->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
// Restore mNextp pointer.
current_entry->mNextp = next_entry;
// Box element and store in list.
print_cil_box(fp, get_type(current_entry));
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(class [mscorlib]System.Collections.ArrayList, object)\n");
// Process next element.
current_entry = next_entry;
}
// Process next list.
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
}
break;
default:
if (mEntryList)
mEntryList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, ldata);
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, ldata);
}
break;
}
}
S32 LLScriptSAList::getSize()
{
return mEntryList->getSize();
}
void LLScriptGlobalVariable::addGlobal(LLScriptGlobalVariable *global)
{
if (mNextp)
{
global->mNextp = mNextp;
}
mNextp = global;
}
void LLScriptGlobalVariable::gonext(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
switch(pass)
{
case LSCP_PRETTY_PRINT:
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
default:
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
}
// Push initialised variable of type on to stack.
static void print_cil_init_variable(LLFILE* fp, LSCRIPTType type)
{
switch(type)
{
case LST_INTEGER:
fprintf(fp, "ldc.i4.0\n");
break;
case LST_FLOATINGPOINT:
fprintf(fp, "ldc.r8 0\n");
break;
case LST_STRING:
fprintf(fp, "ldstr \"\"\n");
break;
case LST_KEY:
fprintf(fp, "ldstr \"\"\n");
fprintf(fp, "call valuetype [ScriptTypes]LindenLab.SecondLife.Key class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateKey'(string)\n");
break;
case LST_VECTOR:
fprintf(fp, "ldc.r8 0\n");
fprintf(fp, "ldc.r8 0\n");
fprintf(fp, "ldc.r8 0\n");
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateVector'(float32, float32, float32)\n");
break;
case LST_QUATERNION:
fprintf(fp, "ldc.r8 0\n");
fprintf(fp, "ldc.r8 0\n");
fprintf(fp, "ldc.r8 0\n");
fprintf(fp, "ldc.r8 1\n");
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateQuaternion'(float32, float32, float32, float32)\n");
break;
case LST_LIST:
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList()\n");
break;
default:
break;
}
}
void LLScriptGlobalVariable::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp,"\t");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mAssignable)
{
fprintf(fp, " = ");
mAssignable->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
fprintf(fp, ";\n");
break;
case LSCP_EMIT_ASSEMBLY:
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp,"\t");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mAssignable)
{
fprintf(fp, " = ");
mAssignable->recurse(fp, tabs, tabsize, LSCP_PRETTY_PRINT, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
fprintf(fp, "Offset: %d Type: %d\n", mIdentifier->mScopeEntry->mOffset, (S32)LSCRIPTTypeByte[mType->mType]);
}
else
{
fprintf(fp, "\n");
fprintf(fp, "Offset: %d Type: %d\n", mIdentifier->mScopeEntry->mOffset, (S32)LSCRIPTTypeByte[mType->mType]);
}
break;
case LSCP_SCOPE_PASS1:
if (scope->checkEntry(mIdentifier->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
if (mAssignable)
{
mAssignable->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
// this needs to go after expression decent to make sure that we don't add ourselves or something silly
mIdentifier->mScopeEntry = scope->addEntry(mIdentifier->mName, LIT_GLOBAL, mType->mType);
if (mIdentifier->mScopeEntry && mAssignable)
mIdentifier->mScopeEntry->mAssignable = mAssignable;
}
break;
case LSCP_TYPE:
// if the variable has an assignable, it must assignable to the variable's type
if (mAssignable)
{
mAssignable->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mAssignableType = type;
if (!legal_assignment(mType->mType, mAssignableType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
// it also includes the name of the variable as well as the type
// plus 4 bytes of offset from it's apparent address to the actual data
#ifdef LSL_INCLUDE_DEBUG_INFO
count += strlen(mIdentifier->mName) + 1 + 1 + 4;
#else
count += 1 + 1 + 4;
#endif
mIdentifier->mScopeEntry->mOffset = (S32)count;
mIdentifier->mScopeEntry->mSize = mType->getSize();
count += mIdentifier->mScopeEntry->mSize;
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_EMIT_BYTE_CODE:
{
// order for global variables
// 0 - 4: offset to actual data
S32 offsetoffset = chunk->mCurrentOffset;
S32 offsetdelta = 0;
chunk->addBytes(4);
// type
char vtype;
vtype = LSCRIPTTypeByte[mType->mType];
chunk->addBytes(&vtype, 1);
// null terminated name
#ifdef LSL_INCLUDE_DEBUG_INFO
chunk->addBytes(mIdentifier->mName, strlen(mIdentifier->mName) + 1);
#else
chunk->addBytes(1);
#endif
// put correct offset delta in
offsetdelta = chunk->mCurrentOffset - offsetoffset;
integer2bytestream(chunk->mCodeChunk, offsetoffset, offsetdelta);
// now we need space for the variable itself
LLScriptByteCodeChunk *value = new LLScriptByteCodeChunk(FALSE);
if (mAssignable)
{
mAssignable->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, value, heap, stacksize, entry, entrycount, NULL);
// need to put sneaky type conversion here
if (mAssignableType != mType->mType)
{
// the only legal case that is a problem is int->float
if (mType->mType == LST_FLOATINGPOINT && mAssignableType == LST_INTEGER)
{
S32 offset = value->mCurrentOffset - 4;
bytestream_int2float(value->mCodeChunk, offset);
}
}
}
else
{
if ( (mType->mType == LST_STRING)
||(mType->mType == LST_KEY))
{
// string and keys (even empty ones) need heap entries
chunk->addInteger(heap->mCurrentOffset + 1);
LLScriptLibData *data = new LLScriptLibData("");
U8 *temp;
S32 size = lsa_create_data_block(&temp, data, heap->mCurrentOffset);
heap->addBytes(temp, size);
delete [] temp;
delete data;
}
else if (mType->mType == LST_LIST)
{
chunk->addInteger(heap->mCurrentOffset + 1);
LLScriptLibData *data = new LLScriptLibData;
data->mType = LST_LIST;
U8 *temp;
S32 size = lsa_create_data_block(&temp, data, heap->mCurrentOffset);
heap->addBytes(temp, size);
delete [] temp;
delete data;
}
else if (mType->mType == LST_QUATERNION)
{
chunk->addFloat(1.f);
chunk->addFloat(0.f);
chunk->addFloat(0.f);
chunk->addFloat(0.f);
}
else
{
value->addBytes(LSCRIPTDataSize[mType->mType]);
}
}
chunk->addBytes(value->mCodeChunk, value->mCurrentOffset);
delete value;
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
// Initialisation inside ctor.
fprintf(fp, "ldarg.0\n");
if (mAssignable)
{
// Initialise to value.
mAssignable->recurse(fp, tabs, tabsize, LSCP_EMIT_CIL_ASSEMBLY,
ptype, prunearg, scope, type, basetype,
count, chunk, heap, stacksize, entry,
entrycount, NULL);
print_cil_assignment_cast(fp, get_type(mAssignable), mType->mType);
}
else
{
// Initialise to zero.
print_cil_init_variable(fp, mType->mType);
}
// Store value.
fprintf(fp, "stfld ");
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp," %s::", gScriptp->getClassName());
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
break;
default:
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mAssignable)
{
mAssignable->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptGlobalVariable::getSize()
{
S32 return_size;
return_size = mType->getSize();
return return_size;
}
void LLScriptEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
fprintf(fp, "Event Base Class -- should never get here!\n");
}
S32 LLScriptEvent::getSize()
{
printf("Event Base Class -- should never get here!\n");
return 0;
}
static void checkForDuplicateHandler(LLFILE *fp, LLScriptFilePosition *pos,
LLScriptScope *scope,
const char* name)
{
LLScriptScope *parent = scope->mParentScope;
if (parent->checkEntry((char*)name))
{
gErrorToText.writeError(fp, pos, LSERROR_DUPLICATE_NAME);
}
else
{
parent->addEntry(((char*)name), LIT_HANDLER, LST_NULL);
}
}
void LLScriptStateEntryEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "state_entry()\n");
break;
case LSCP_EMIT_ASSEMBLY:
fprintf(fp, "state_entry()\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "state_entry");
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "state_entry";
chunk->addBytes(name, strlen(name) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fprintf(fp, "state_entry()");
break;
default:
break;
}
}
S32 LLScriptStateEntryEvent::getSize()
{
return 0;
}
void LLScriptStateExitEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "state_exit()\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "state_exit");
break;
case LSCP_EMIT_ASSEMBLY:
fprintf(fp, "state_exit()\n");
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "state_exit";
chunk->addBytes(name, strlen(name) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fprintf(fp, "state_exit()");
break;
default:
break;
}
}
S32 LLScriptStateExitEvent::getSize()
{
return 0;
}
void LLScriptTouchStartEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "touch_start( integer ");
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "touch_start");
if (scope->checkEntry(mCount->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mCount->mScopeEntry = scope->addEntry(mCount->mName, LIT_VARIABLE, LST_INTEGER);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mCount->mScopeEntry)
{
mCount->mScopeEntry->mOffset = (S32)count;
mCount->mScopeEntry->mSize = 4;
count += mCount->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "touch_start";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mCount->mName, strlen(mCount->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "touch_start( int32 ");
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
break;
default:
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptTouchStartEvent::getSize()
{
// integer = 4
return 4;
}
void LLScriptTouchEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "touch( integer ");
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "touch");
if (scope->checkEntry(mCount->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mCount->mScopeEntry = scope->addEntry(mCount->mName, LIT_VARIABLE, LST_INTEGER);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mCount->mScopeEntry)
{
mCount->mScopeEntry->mOffset = (S32)count;
mCount->mScopeEntry->mSize = 4;
count += mCount->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "touch";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mCount->mName, strlen(mCount->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "touch( int32 ");
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
break;
default:
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptTouchEvent::getSize()
{
// integer = 4
return 4;
}
void LLScriptTouchEndEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "touch_end( integer ");
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "touch_end");
if (scope->checkEntry(mCount->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mCount->mScopeEntry = scope->addEntry(mCount->mName, LIT_VARIABLE, LST_INTEGER);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mCount->mScopeEntry)
{
mCount->mScopeEntry->mOffset = (S32)count;
mCount->mScopeEntry->mSize = 4;
count += mCount->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "touch_end";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mCount->mName, strlen(mCount->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "touch_end( int32 ");
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
break;
default:
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptTouchEndEvent::getSize()
{
// integer = 4
return 4;
}
void LLScriptCollisionStartEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "collision_start( integer ");
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "collision_start");
if (scope->checkEntry(mCount->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mCount->mScopeEntry = scope->addEntry(mCount->mName, LIT_VARIABLE, LST_INTEGER);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mCount->mScopeEntry)
{
mCount->mScopeEntry->mOffset = (S32)count;
mCount->mScopeEntry->mSize = 4;
count += mCount->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "collision_start";
chunk->addBytes(name, (S32)strlen(name) + 1);
chunk->addBytes(mCount->mName, (S32)strlen(mCount->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "collision_start( int32 ");
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptCollisionStartEvent::getSize()
{
// integer = 4
return 4;
}
void LLScriptCollisionEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "collision( integer ");
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "collision");
if (scope->checkEntry(mCount->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mCount->mScopeEntry = scope->addEntry(mCount->mName, LIT_VARIABLE, LST_INTEGER);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mCount->mScopeEntry)
{
mCount->mScopeEntry->mOffset = (S32)count;
mCount->mScopeEntry->mSize = 4;
count += mCount->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "collision";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mCount->mName, strlen(mCount->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fprintf(fp, "collision( int32 ");
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptCollisionEvent::getSize()
{
// integer = 4
return 4;
}
void LLScriptCollisionEndEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "collision_end( integer ");
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "collision_end");
if (scope->checkEntry(mCount->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mCount->mScopeEntry = scope->addEntry(mCount->mName, LIT_VARIABLE, LST_INTEGER);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mCount->mScopeEntry)
{
mCount->mScopeEntry->mOffset = (S32)count;
mCount->mScopeEntry->mSize = 4;
count += mCount->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "collision_end";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mCount->mName, strlen(mCount->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "collision_end( int32 ");
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptCollisionEndEvent::getSize()
{
// integer = 4
return 4;
}
void LLScriptLandCollisionStartEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "land_collision_start( vector ");
mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "land_collision_start");
if (scope->checkEntry(mPosition->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mPosition->mScopeEntry = scope->addEntry(mPosition->mName, LIT_VARIABLE, LST_VECTOR);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mPosition->mScopeEntry)
{
mPosition->mScopeEntry->mOffset = (S32)count;
mPosition->mScopeEntry->mSize = 12;
count += mPosition->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "land_collision_start";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mPosition->mName, strlen(mPosition->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "land_collision_start( class [ScriptTypes]LindenLab.SecondLife.Vector ");
mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptLandCollisionStartEvent::getSize()
{
// vector = 12
return 12;
}
void LLScriptLandCollisionEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "land_collision( vector ");
mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "land_collision");
if (scope->checkEntry(mPosition->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mPosition->mScopeEntry = scope->addEntry(mPosition->mName, LIT_VARIABLE, LST_VECTOR);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mPosition->mScopeEntry)
{
mPosition->mScopeEntry->mOffset = (S32)count;
mPosition->mScopeEntry->mSize = 12;
count += mPosition->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "land_collision";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mPosition->mName, strlen(mPosition->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "land_collision( class [ScriptTypes]LindenLab.SecondLife.Vector ");
mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptLandCollisionEvent::getSize()
{
// vector = 12
return 12;
}
void LLScriptLandCollisionEndEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "land_collision_end( vector ");
mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "land_collision_end");
if (scope->checkEntry(mPosition->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mPosition->mScopeEntry = scope->addEntry(mPosition->mName, LIT_VARIABLE, LST_VECTOR);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mPosition->mScopeEntry)
{
mPosition->mScopeEntry->mOffset = (S32)count;
mPosition->mScopeEntry->mSize = 12;
count += mPosition->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "land_collision_end";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mPosition->mName, strlen(mPosition->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "land_collision_end( class [ScriptTypes]LindenLab.SecondLife.Vector ");
mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptLandCollisionEndEvent::getSize()
{
// vector = 12
return 12;
}
void LLScriptInventoryEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "changed( integer ");
mChange->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "changed");
if (scope->checkEntry(mChange->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mChange->mScopeEntry = scope->addEntry(mChange->mName, LIT_VARIABLE, LST_INTEGER);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mChange->mScopeEntry)
{
mChange->mScopeEntry->mOffset = (S32)count;
mChange->mScopeEntry->mSize = 4;
count += mChange->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "changed";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mChange->mName, strlen(mChange->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "changed( int32 ");
mChange->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mChange->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptInventoryEvent::getSize()
{
// integer = 4
return 4;
}
void LLScriptAttachEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "attach( key ");
mAttach->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "attach");
if (scope->checkEntry(mAttach->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mAttach->mScopeEntry = scope->addEntry(mAttach->mName, LIT_VARIABLE, LST_KEY);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mAttach->mScopeEntry)
{
mAttach->mScopeEntry->mOffset = (S32)count;
mAttach->mScopeEntry->mSize = 4;
count += mAttach->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "attach";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mAttach->mName, strlen(mAttach->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "attach( valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
mAttach->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
default:
mAttach->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptAttachEvent::getSize()
{
// key = 4
return 4;
}
void LLScriptDataserverEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "dataserver( key ");
mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mData->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "dataserver");
if (scope->checkEntry(mID->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mID->mScopeEntry = scope->addEntry(mID->mName, LIT_VARIABLE, LST_KEY);
}
if (scope->checkEntry(mData->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mData->mScopeEntry = scope->addEntry(mData->mName, LIT_VARIABLE, LST_STRING);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mID->mScopeEntry)
{
mID->mScopeEntry->mOffset = (S32)count;
mID->mScopeEntry->mSize = 4;
count += mID->mScopeEntry->mSize;
mData->mScopeEntry->mOffset = (S32)count;
mData->mScopeEntry->mSize = 4;
count += mData->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "dataserver";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mID->mName, strlen(mID->mName) + 1);
chunk->addBytes(mData->mName, strlen(mData->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "dataserver( valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mData->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mData->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptDataserverEvent::getSize()
{
// key + string = 8
return 8;
}
void LLScriptTimerEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "timer()\n");
break;
case LSCP_EMIT_ASSEMBLY:
fprintf(fp, "timer()\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "timer");
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "timer";
chunk->addBytes(name, strlen(name) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fprintf(fp, "timer()");
break;
default:
break;
}
}
S32 LLScriptTimerEvent::getSize()
{
return 0;
}
void LLScriptMovingStartEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "moving_start()\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "moving_start");
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "moving_start";
chunk->addBytes(name, strlen(name) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fprintf(fp, "moving_start()");
break;
default:
break;
}
}
S32 LLScriptMovingStartEvent::getSize()
{
return 0;
}
void LLScriptMovingEndEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "moving_end()\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "moving_end");
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "moving_end";
chunk->addBytes(name, strlen(name) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fprintf(fp, "moving_end()");
break;
default:
break;
}
}
S32 LLScriptMovingEndEvent::getSize()
{
return 0;
}
void LLScriptRTPEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "chat( integer ");
mRTPermissions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "run_time_perms");
if (scope->checkEntry(mRTPermissions->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mRTPermissions->mScopeEntry = scope->addEntry(mRTPermissions->mName, LIT_VARIABLE, LST_INTEGER);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mRTPermissions->mScopeEntry)
{
mRTPermissions->mScopeEntry->mOffset = (S32)count;
mRTPermissions->mScopeEntry->mSize = 4;
count += mRTPermissions->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "chat";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mRTPermissions->mName, strlen(mRTPermissions->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
// NOTE: Not replicating LSL2 bug by calling RTP event hander "chat"
fdotabs(fp, tabs, tabsize);
fprintf(fp, "run_time_perms( int32 ");
mRTPermissions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mRTPermissions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptRTPEvent::getSize()
{
// integer = 4
return 4;
}
void LLScriptChatEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "chat( integer ");
mChannel->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", key ");
mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mMessage->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "listen"); // note: this is actually listen in lsl source
if (scope->checkEntry(mChannel->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mChannel->mScopeEntry = scope->addEntry(mChannel->mName, LIT_VARIABLE, LST_INTEGER);
}
if (scope->checkEntry(mName->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mName->mScopeEntry = scope->addEntry(mName->mName, LIT_VARIABLE, LST_STRING);
}
if (scope->checkEntry(mID->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mID->mScopeEntry = scope->addEntry(mID->mName, LIT_VARIABLE, LST_KEY);
}
if (scope->checkEntry(mMessage->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mMessage->mScopeEntry = scope->addEntry(mMessage->mName, LIT_VARIABLE, LST_STRING);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mName->mScopeEntry)
{
mChannel->mScopeEntry->mOffset = (S32)count;
mChannel->mScopeEntry->mSize = 4;
count += mChannel->mScopeEntry->mSize;
mName->mScopeEntry->mOffset = (S32)count;
mName->mScopeEntry->mSize = 4;
count += mName->mScopeEntry->mSize;
mID->mScopeEntry->mOffset = (S32)count;
mID->mScopeEntry->mSize = 4;
count += mID->mScopeEntry->mSize;
mMessage->mScopeEntry->mOffset = (S32)count;
mMessage->mScopeEntry->mSize = 4;
count += mMessage->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "chat";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mChannel->mName, strlen(mChannel->mName) + 1);
chunk->addBytes(mName->mName, strlen(mName->mName) + 1);
chunk->addBytes(mID->mName, strlen(mID->mName) + 1);
chunk->addBytes(mMessage->mName, strlen(mMessage->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "chat( int32 ");
mChannel->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mMessage->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mChannel->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mMessage->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptChatEvent::getSize()
{
// integer + key + string + string = 16
return 16;
}
void LLScriptSensorEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "sensor( integer ");
mNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "sensor");
if (scope->checkEntry(mNumber->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mNumber->mScopeEntry = scope->addEntry(mNumber->mName, LIT_VARIABLE, LST_INTEGER);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mNumber->mScopeEntry)
{
mNumber->mScopeEntry->mOffset = (S32)count;
mNumber->mScopeEntry->mSize = 4;
count += mNumber->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "sensor";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mNumber->mName, strlen(mNumber->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "sensor( int32 ");
mNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptSensorEvent::getSize()
{
// integer = 4
return 4;
}
void LLScriptObjectRezEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "object_rez( key ");
mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "object_rez");
if (scope->checkEntry(mID->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mID->mScopeEntry = scope->addEntry(mID->mName, LIT_VARIABLE, LST_KEY);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mID->mScopeEntry)
{
mID->mScopeEntry->mOffset = (S32)count;
mID->mScopeEntry->mSize = 4;
count += mID->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "sensor";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mID->mName, strlen(mID->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "object_rez( valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptObjectRezEvent::getSize()
{
// key = 4
return 4;
}
void LLScriptControlEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "control( key ");
mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", integer ");
mLevels->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", integer ");
mEdges->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "control");
if (scope->checkEntry(mName->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mName->mScopeEntry = scope->addEntry(mName->mName, LIT_VARIABLE, LST_KEY);
}
if (scope->checkEntry(mLevels->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mLevels->mScopeEntry = scope->addEntry(mLevels->mName, LIT_VARIABLE, LST_INTEGER);
}
if (scope->checkEntry(mEdges->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mEdges->mScopeEntry = scope->addEntry(mEdges->mName, LIT_VARIABLE, LST_INTEGER);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mName->mScopeEntry)
{
mName->mScopeEntry->mOffset = (S32)count;
mName->mScopeEntry->mSize = 4;
count += mName->mScopeEntry->mSize;
mLevels->mScopeEntry->mOffset = (S32)count;
mLevels->mScopeEntry->mSize = 4;
count += mLevels->mScopeEntry->mSize;
mEdges->mScopeEntry->mOffset = (S32)count;
mEdges->mScopeEntry->mSize = 4;
count += mEdges->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "control";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mName->mName, strlen(mName->mName) + 1);
chunk->addBytes(mLevels->mName, strlen(mLevels->mName) + 1);
chunk->addBytes(mEdges->mName, strlen(mEdges->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "control( valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", int32 ");
mLevels->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", int32 ");
mEdges->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLevels->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mEdges->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptControlEvent::getSize()
{
// key + integer + integer = 12
return 12;
}
void LLScriptLinkMessageEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "link_message( integer ");
mSender->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", integer ");
mNum->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mStr->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", key ");
mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "link_message");
if (scope->checkEntry(mSender->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mSender->mScopeEntry = scope->addEntry(mSender->mName, LIT_VARIABLE, LST_INTEGER);
}
if (scope->checkEntry(mNum->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mNum->mScopeEntry = scope->addEntry(mNum->mName, LIT_VARIABLE, LST_INTEGER);
}
if (scope->checkEntry(mStr->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mStr->mScopeEntry = scope->addEntry(mStr->mName, LIT_VARIABLE, LST_STRING);
}
if (scope->checkEntry(mID->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mID->mScopeEntry = scope->addEntry(mID->mName, LIT_VARIABLE, LST_KEY);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mSender->mScopeEntry)
{
mSender->mScopeEntry->mOffset = (S32)count;
mSender->mScopeEntry->mSize = 4;
count += mSender->mScopeEntry->mSize;
mNum->mScopeEntry->mOffset = (S32)count;
mNum->mScopeEntry->mSize = 4;
count += mNum->mScopeEntry->mSize;
mStr->mScopeEntry->mOffset = (S32)count;
mStr->mScopeEntry->mSize = 4;
count += mStr->mScopeEntry->mSize;
mID->mScopeEntry->mOffset = (S32)count;
mID->mScopeEntry->mSize = 4;
count += mID->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "link_message";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mSender->mName, strlen(mSender->mName) + 1);
chunk->addBytes(mNum->mName, strlen(mNum->mName) + 1);
chunk->addBytes(mStr->mName, strlen(mStr->mName) + 1);
chunk->addBytes(mID->mName, strlen(mID->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "link_message( int32 ");
mSender->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", int32 ");
mNum->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mStr->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mSender->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mNum->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mStr->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptLinkMessageEvent::getSize()
{
// integer + key + integer + string = 16
return 16;
}
void LLScriptRemoteEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "remote_event( integer ");
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", key ");
mChannel->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", key ");
mMessageID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mSender->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", integer ");
mIntVal->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mStrVal->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "remote_event");
if (scope->checkEntry(mType->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mType->mScopeEntry = scope->addEntry(mType->mName, LIT_VARIABLE, LST_INTEGER);
}
if (scope->checkEntry(mChannel->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mChannel->mScopeEntry = scope->addEntry(mChannel->mName, LIT_VARIABLE, LST_KEY);
}
if (scope->checkEntry(mMessageID->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mMessageID->mScopeEntry = scope->addEntry(mMessageID->mName, LIT_VARIABLE, LST_KEY);
}
if (scope->checkEntry(mSender->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mSender->mScopeEntry = scope->addEntry(mSender->mName, LIT_VARIABLE, LST_STRING);
}
if (scope->checkEntry(mIntVal->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mIntVal->mScopeEntry = scope->addEntry(mIntVal->mName, LIT_VARIABLE, LST_INTEGER);
}
if (scope->checkEntry(mStrVal->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mStrVal->mScopeEntry = scope->addEntry(mStrVal->mName, LIT_VARIABLE, LST_STRING);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mType->mScopeEntry)
{
mType->mScopeEntry->mOffset = (S32)count;
mType->mScopeEntry->mSize = 4;
count += mType->mScopeEntry->mSize;
mChannel->mScopeEntry->mOffset = (S32)count;
mChannel->mScopeEntry->mSize = 4;
count += mChannel->mScopeEntry->mSize;
mMessageID->mScopeEntry->mOffset = (S32)count;
mMessageID->mScopeEntry->mSize = 4;
count += mMessageID->mScopeEntry->mSize;
mSender->mScopeEntry->mOffset = (S32)count;
mSender->mScopeEntry->mSize = 4;
count += mSender->mScopeEntry->mSize;
mIntVal->mScopeEntry->mOffset = (S32)count;
mIntVal->mScopeEntry->mSize = 4;
count += mIntVal->mScopeEntry->mSize;
mStrVal->mScopeEntry->mOffset = (S32)count;
mStrVal->mScopeEntry->mSize = 4;
count += mStrVal->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "remote_event";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mType->mName, strlen(mType->mName) + 1);
chunk->addBytes(mChannel->mName, strlen(mChannel->mName) + 1);
chunk->addBytes(mMessageID->mName, strlen(mMessageID->mName) + 1);
chunk->addBytes(mSender->mName, strlen(mSender->mName) + 1);
chunk->addBytes(mIntVal->mName, strlen(mIntVal->mName) + 1);
chunk->addBytes(mStrVal->mName, strlen(mStrVal->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "remote_event( int32 ");
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
mChannel->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
mMessageID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mSender->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", int32 ");
mIntVal->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mStrVal->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mChannel->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mMessageID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mSender->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mIntVal->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mStrVal->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptRemoteEvent::getSize()
{
// integer + key + key + string + integer + string = 24
return 24;
}
void LLScriptHTTPResponseEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "http_response( key ");
mRequestId->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", integer ");
mStatus->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", class [mscorlib]System.Collections.ArrayList ");
mMetadata->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "http_response");
if (scope->checkEntry(mRequestId->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mRequestId->mScopeEntry = scope->addEntry(mRequestId->mName, LIT_VARIABLE, LST_KEY);
}
if (scope->checkEntry(mStatus->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mStatus->mScopeEntry = scope->addEntry(mStatus->mName, LIT_VARIABLE, LST_INTEGER);
}
if (scope->checkEntry(mMetadata->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mMetadata->mScopeEntry = scope->addEntry(mMetadata->mName, LIT_VARIABLE, LST_LIST);
}
if (scope->checkEntry(mBody->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mBody->mScopeEntry = scope->addEntry(mBody->mName, LIT_VARIABLE, LST_STRING);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mRequestId->mScopeEntry)
{
mRequestId->mScopeEntry->mOffset = (S32)count;
mRequestId->mScopeEntry->mSize = 4;
count += mRequestId->mScopeEntry->mSize;
mStatus->mScopeEntry->mOffset = (S32)count;
mStatus->mScopeEntry->mSize = 4;
count += mStatus->mScopeEntry->mSize;
mMetadata->mScopeEntry->mOffset = (S32)count;
mMetadata->mScopeEntry->mSize = 4;
count += mMetadata->mScopeEntry->mSize;
mBody->mScopeEntry->mOffset = (S32)count;
mBody->mScopeEntry->mSize = 4;
count += mBody->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "http_response";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mRequestId->mName, strlen(mRequestId->mName) + 1);
chunk->addBytes(mStatus->mName, strlen(mStatus->mName) + 1);
chunk->addBytes(mMetadata->mName, strlen(mMetadata->mName) + 1);
chunk->addBytes(mBody->mName, strlen(mBody->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "http_response( valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
mRequestId->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", int32 ");
mStatus->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", class [mscorlib]System.Collections.ArrayList ");
mMetadata->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
default:
mRequestId->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mStatus->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mMetadata->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptHTTPResponseEvent::getSize()
{
// key + integer + list + string = 16
return 16;
}
void LLScriptHTTPRequestEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "http_request( key ");
mRequestId->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mMethod->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "http_request");
if (scope->checkEntry(mRequestId->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mRequestId->mScopeEntry = scope->addEntry(mRequestId->mName, LIT_VARIABLE, LST_KEY);
}
if (scope->checkEntry(mMethod->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mMethod->mScopeEntry = scope->addEntry(mMethod->mName, LIT_VARIABLE, LST_STRING);
}
if (scope->checkEntry(mBody->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mBody->mScopeEntry = scope->addEntry(mBody->mName, LIT_VARIABLE, LST_STRING);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mRequestId->mScopeEntry)
{
mRequestId->mScopeEntry->mOffset = (S32)count;
mRequestId->mScopeEntry->mSize = 4;
count += mRequestId->mScopeEntry->mSize;
mMethod->mScopeEntry->mOffset = (S32)count;
mMethod->mScopeEntry->mSize = 4;
count += mMethod->mScopeEntry->mSize;
mBody->mScopeEntry->mOffset = (S32)count;
mBody->mScopeEntry->mSize = 4;
count += mBody->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "http_request";
chunk->addBytes(name, strlen(name) + 1); /*Flawfinder: ignore*/
chunk->addBytes(mRequestId->mName, strlen(mRequestId->mName) + 1); /*Flawfinder: ignore*/
chunk->addBytes(mMethod->mName, strlen(mMethod->mName) + 1); /*Flawfinder: ignore*/
chunk->addBytes(mBody->mName, strlen(mBody->mName) + 1); /*Flawfinder: ignore*/
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "http_request( valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
mRequestId->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mMethod->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
default:
mRequestId->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mMethod->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptHTTPRequestEvent::getSize()
{
// key + string + string = 12
return 12;
}
void LLScriptMoneyEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "money( key ");
mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", integer ");
mAmount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "money");
if (scope->checkEntry(mName->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mName->mScopeEntry = scope->addEntry(mName->mName, LIT_VARIABLE, LST_KEY);
}
if (scope->checkEntry(mAmount->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mAmount->mScopeEntry = scope->addEntry(mAmount->mName, LIT_VARIABLE, LST_INTEGER);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mName->mScopeEntry)
{
mName->mScopeEntry->mOffset = (S32)count;
mName->mScopeEntry->mSize = 4;
count += mName->mScopeEntry->mSize;
mAmount->mScopeEntry->mOffset = (S32)count;
mAmount->mScopeEntry->mSize = 4;
count += mAmount->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "money";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mName->mName, strlen(mName->mName) + 1);
chunk->addBytes(mAmount->mName, strlen(mAmount->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "money( valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", int32 ");
mAmount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mAmount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptMoneyEvent::getSize()
{
// key + integer = 8
return 8;
}
void LLScriptEmailEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "email( string ");
mTime->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mAddress->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mSubject->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", integer ");
mNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "email");
if (scope->checkEntry(mTime->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mTime->mScopeEntry = scope->addEntry(mTime->mName, LIT_VARIABLE, LST_STRING);
}
if (scope->checkEntry(mAddress->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mAddress->mScopeEntry = scope->addEntry(mAddress->mName, LIT_VARIABLE, LST_STRING);
}
if (scope->checkEntry(mSubject->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mSubject->mScopeEntry = scope->addEntry(mSubject->mName, LIT_VARIABLE, LST_STRING);
}
if (scope->checkEntry(mBody->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mBody->mScopeEntry = scope->addEntry(mBody->mName, LIT_VARIABLE, LST_STRING);
}
if (scope->checkEntry(mNumber->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mNumber->mScopeEntry = scope->addEntry(mNumber->mName, LIT_VARIABLE, LST_INTEGER);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mAddress->mScopeEntry)
{
mTime->mScopeEntry->mOffset = (S32)count;
mTime->mScopeEntry->mSize = 4;
count += mTime->mScopeEntry->mSize;
mAddress->mScopeEntry->mOffset = (S32)count;
mAddress->mScopeEntry->mSize = 4;
count += mAddress->mScopeEntry->mSize;
mSubject->mScopeEntry->mOffset = (S32)count;
mSubject->mScopeEntry->mSize = 4;
count += mSubject->mScopeEntry->mSize;
mBody->mScopeEntry->mOffset = (S32)count;
mBody->mScopeEntry->mSize = 4;
count += mBody->mScopeEntry->mSize;
mNumber->mScopeEntry->mOffset = (S32)count;
mNumber->mScopeEntry->mSize = 4;
count += mNumber->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "email";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mTime->mName, strlen(mTime->mName) + 1);
chunk->addBytes(mAddress->mName, strlen(mAddress->mName) + 1);
chunk->addBytes(mSubject->mName, strlen(mSubject->mName) + 1);
chunk->addBytes(mBody->mName, strlen(mBody->mName) + 1);
chunk->addBytes(mNumber->mName, strlen(mNumber->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "email( string ");
mTime->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mAddress->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mSubject->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", string ");
mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", int32 ");
mNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mTime->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mAddress->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mSubject->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptEmailEvent::getSize()
{
// string + string + string + string + integer = 16
return 20;
}
void LLScriptRezEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "rez( integer ");
mStartParam->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "on_rez");
if (scope->checkEntry(mStartParam->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mStartParam->mScopeEntry = scope->addEntry(mStartParam->mName, LIT_VARIABLE, LST_INTEGER);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mStartParam->mScopeEntry)
{
mStartParam->mScopeEntry->mOffset = (S32)count;
mStartParam->mScopeEntry->mSize = 4;
count += mStartParam->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "rez";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mStartParam->mName, strlen(mStartParam->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "rez( int32 ");
mStartParam->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mStartParam->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptRezEvent::getSize()
{
// integer = 4
return 4;
}
void LLScriptNoSensorEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "no_sensor()\n");
break;
case LSCP_EMIT_ASSEMBLY:
fprintf(fp, "no_sensor()\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "no_sensor");
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "no_sensor";
chunk->addBytes(name, strlen(name) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fprintf(fp, "no_sensor()");
break;
default:
break;
}
}
S32 LLScriptNoSensorEvent::getSize()
{
return 0;
}
void LLScriptAtTarget::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "at_target( integer ");
mTargetNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", vector ");
mTargetPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", vector ");
mOurPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "at_target");
if (scope->checkEntry(mTargetNumber->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mTargetNumber->mScopeEntry = scope->addEntry(mTargetNumber->mName, LIT_VARIABLE, LST_INTEGER);
}
if (scope->checkEntry(mTargetPosition->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mTargetPosition->mScopeEntry = scope->addEntry(mTargetPosition->mName, LIT_VARIABLE, LST_VECTOR);
}
if (scope->checkEntry(mOurPosition->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mOurPosition->mScopeEntry = scope->addEntry(mOurPosition->mName, LIT_VARIABLE, LST_VECTOR);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mTargetNumber->mScopeEntry)
{
mTargetNumber->mScopeEntry->mOffset = (S32)count;
mTargetNumber->mScopeEntry->mSize = 4;
count += mTargetNumber->mScopeEntry->mSize;
mTargetPosition->mScopeEntry->mOffset = (S32)count;
mTargetPosition->mScopeEntry->mSize = 12;
count += mTargetPosition->mScopeEntry->mSize;
mOurPosition->mScopeEntry->mOffset = (S32)count;
mOurPosition->mScopeEntry->mSize = 12;
count += mOurPosition->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "at_target";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mTargetNumber->mName, strlen(mTargetNumber->mName) + 1);
chunk->addBytes(mTargetPosition->mName, strlen(mTargetPosition->mName) + 1);
chunk->addBytes(mOurPosition->mName, strlen(mOurPosition->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "at_target( int32 ");
mTargetNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", class [ScriptTypes]LindenLab.SecondLife.Vector ");
mTargetPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", class [ScriptTypes]LindenLab.SecondLife.Vector ");
mOurPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mTargetNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mTargetPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mOurPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptAtTarget::getSize()
{
// integer + vector + vector = 28
return 28;
}
void LLScriptNotAtTarget::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "not_at_target()\n");
break;
case LSCP_EMIT_ASSEMBLY:
fprintf(fp, "not_at_target()\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "not_at_target");
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "not_at_target";
chunk->addBytes(name, strlen(name) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fprintf(fp, "not_at_target()");
break;
default:
break;
}
}
S32 LLScriptNotAtTarget::getSize()
{
return 0;
}
void LLScriptAtRotTarget::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
case LSCP_EMIT_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "at_rot_target( integer ");
mTargetNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", quaternion ");
mTargetRotation->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", quaternion ");
mOurRotation->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "at_rot_target");
if (scope->checkEntry(mTargetNumber->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mTargetNumber->mScopeEntry = scope->addEntry(mTargetNumber->mName, LIT_VARIABLE, LST_INTEGER);
}
if (scope->checkEntry(mTargetRotation->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mTargetRotation->mScopeEntry = scope->addEntry(mTargetRotation->mName, LIT_VARIABLE, LST_QUATERNION);
}
if (scope->checkEntry(mOurRotation->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mOurRotation->mScopeEntry = scope->addEntry(mOurRotation->mName, LIT_VARIABLE, LST_QUATERNION);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
if (mTargetNumber->mScopeEntry)
{
mTargetNumber->mScopeEntry->mOffset = (S32)count;
mTargetNumber->mScopeEntry->mSize = 4;
count += mTargetNumber->mScopeEntry->mSize;
mTargetRotation->mScopeEntry->mOffset = (S32)count;
mTargetRotation->mScopeEntry->mSize = 16;
count += mTargetRotation->mScopeEntry->mSize;
mOurRotation->mScopeEntry->mOffset = (S32)count;
mOurRotation->mScopeEntry->mSize = 16;
count += mOurRotation->mScopeEntry->mSize;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "at_rot_target";
chunk->addBytes(name, strlen(name) + 1);
chunk->addBytes(mTargetNumber->mName, strlen(mTargetNumber->mName) + 1);
chunk->addBytes(mTargetRotation->mName, strlen(mTargetRotation->mName) + 1);
chunk->addBytes(mOurRotation->mName, strlen(mOurRotation->mName) + 1);
#endif
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "at_rot_target( int32 ");
mTargetNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", class [ScriptTypes]LindenLab.SecondLife.Quaternion ");
mTargetRotation->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", class [ScriptTypes]LindenLab.SecondLife.Quaternion ");
mOurRotation->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
default:
mTargetNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mTargetRotation->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mOurRotation->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}
S32 LLScriptAtRotTarget::getSize()
{
// integer + quaternion + quaternion = 36
return 36;
}
void LLScriptNotAtRotTarget::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "not_at_rot_target()\n");
break;
case LSCP_EMIT_ASSEMBLY:
fprintf(fp, "not_at_rot_target()\n");
break;
case LSCP_EMIT_BYTE_CODE:
{
#ifdef LSL_INCLUDE_DEBUG_INFO
char name[] = "not_at_rot_target";
chunk->addBytes(name, strlen(name) + 1);
#endif
}
break;
case LSCP_SCOPE_PASS1:
checkForDuplicateHandler(fp, this, scope, "not_at_rot_target");
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fprintf(fp, "not_at_rot_target()");
break;
default:
break;
}
}
S32 LLScriptNotAtRotTarget::getSize()
{
return 0;
}
void LLScriptExpression::addExpression(LLScriptExpression *expression)
{
if (mNextp)
{
expression->mNextp = mNextp;
}
mNextp = expression;
}
void LLScriptExpression::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
fprintf(fp, "Expression Base Class -- should never get here!\n");
}
S32 LLScriptExpression::getSize()
{
printf("Expression Base Class -- should never get here!\n");
return 0;
}
void LLScriptExpression::gonext(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
if (mNextp)
{
fprintf(fp, ", ");
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
default:
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
}
void LLScriptForExpressionList::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mSecondp)
{
fprintf(fp, ", ");
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_EMIT_ASSEMBLY:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mFirstp->mReturnType)
{
fprintf(fp, "%s\n", LSCRIPTTypePop[mFirstp->mReturnType]);
}
if (mSecondp)
{
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mSecondp->mReturnType)
{
fprintf(fp, "%s\n", LSCRIPTTypePop[mSecondp->mReturnType]);
}
}
break;
case LSCP_TO_STACK:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
switch(mFirstp->mReturnType)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
break;
case LST_STRING:
case LST_KEY:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPS]);
break;
case LST_LIST:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPL]);
break;
case LST_VECTOR:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPV]);
break;
case LST_QUATERNION:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPQ]);
break;
default:
break;
}
if (mSecondp)
{
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
switch(mSecondp->mReturnType)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
break;
case LST_STRING:
case LST_KEY:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPS]);
break;
case LST_LIST:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPL]);
break;
case LST_VECTOR:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPV]);
break;
case LST_QUATERNION:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPQ]);
break;
default:
break;
}
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mFirstp->mReturnType)
{
fprintf(fp, "pop\n");
}
if (mSecondp)
{
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mSecondp->mReturnType)
{
fprintf(fp, "pop\n");
}
}
break;
default:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mSecondp)
{
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
}
S32 LLScriptForExpressionList::getSize()
{
return 0;
}
// CIL code generation requires both caller and callee scope entries, so cannot use normal recurse signature.
// TODO: Refactor general purpose recurse calls in to pass specific virtuals using visitor pattern to select method by pass and node type.
static void print_cil_func_expression_list(LLScriptFuncExpressionList* self, LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata, LLScriptScopeEntry *callee_entry)
{
self->mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
LSCRIPTType argtype = callee_entry->mFunctionArgs.getType(entrycount);
if (argtype != self->mFirstp->mReturnType)
{
print_cil_cast(fp, self->mFirstp->mReturnType, argtype);
}
entrycount++;
if (self->mSecondp)
{
llassert(LET_FUNC_EXPRESSION_LIST == self->mSecondp->mType);
print_cil_func_expression_list((LLScriptFuncExpressionList*) self->mSecondp, fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL, callee_entry);
}
}
void LLScriptFuncExpressionList::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mSecondp)
{
fprintf(fp, ", ");
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_TYPE:
{
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!entry->mFunctionArgs.getType(entrycount))
{
gErrorToText.writeError(fp, this, LSERROR_FUNCTION_TYPE_ERROR);
}
if (!legal_assignment(entry->mFunctionArgs.getType(entrycount), mFirstp->mReturnType))
{
gErrorToText.writeError(fp, this, LSERROR_FUNCTION_TYPE_ERROR);
}
count++;
entrycount++;
if (mSecondp)
{
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mSecondp->mReturnType)
{
count++;
if (!entry->mFunctionArgs.getType(entrycount))
{
gErrorToText.writeError(fp, this, LSERROR_FUNCTION_TYPE_ERROR);
}
if (!legal_assignment(entry->mFunctionArgs.getType(entrycount), mSecondp->mReturnType))
{
gErrorToText.writeError(fp, this, LSERROR_FUNCTION_TYPE_ERROR);
}
}
}
}
break;
case LSCP_EMIT_ASSEMBLY:
{
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
LSCRIPTType argtype = entry->mFunctionArgs.getType(entrycount);
if (argtype != mFirstp->mReturnType)
{
fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mFirstp->mReturnType], LSCRIPTTypeNames[argtype]);
}
entrycount++;
if (mSecondp)
{
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mSecondp->mReturnType)
{
argtype = entry->mFunctionArgs.getType(entrycount);
if (argtype != mSecondp->mReturnType)
{
fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mSecondp->mReturnType], LSCRIPTTypeNames[argtype]);
}
}
}
}
break;
case LSCP_TO_STACK:
{
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
LSCRIPTType argtype = entry->mFunctionArgs.getType(entrycount);
if (argtype != mFirstp->mReturnType)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
U8 castbyte = LSCRIPTTypeByte[argtype] | LSCRIPTTypeHi4Bits[mFirstp->mReturnType];
chunk->addByte(castbyte);
}
entrycount++;
if (mSecondp)
{
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mSecondp->mReturnType)
{
argtype = entry->mFunctionArgs.getType(entrycount);
if (argtype != mSecondp->mReturnType)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
U8 castbyte = LSCRIPTTypeByte[argtype] | LSCRIPTTypeHi4Bits[mSecondp->mReturnType];
chunk->addByte(castbyte);
}
}
}
}
break;
default:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mSecondp)
{
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
}
S32 LLScriptFuncExpressionList::getSize()
{
return 0;
}
void LLScriptListExpressionList::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mSecondp)
{
fprintf(fp, ", ");
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_EMIT_ASSEMBLY:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mFirstp->mType != LET_LIST_EXPRESSION_LIST)
{
fprintf(fp, "%s\n", LSCRIPTListDescription[mFirstp->mReturnType]);
count++;
}
if (mSecondp)
{
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mSecondp->mType != LET_LIST_EXPRESSION_LIST)
{
fprintf(fp, "%s\n", LSCRIPTListDescription[mSecondp->mReturnType]);
count++;
}
}
break;
case LSCP_TO_STACK:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mFirstp->mType != LET_LIST_EXPRESSION_LIST)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGB]);
chunk->addByte(LSCRIPTTypeByte[mFirstp->mReturnType]);
count++;
}
if (mSecondp)
{
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mSecondp->mType != LET_LIST_EXPRESSION_LIST)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGB]);
chunk->addByte(LSCRIPTTypeByte[mSecondp->mReturnType]);
count++;
}
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mFirstp->mType != LET_LIST_EXPRESSION_LIST)
{
// Box value.
print_cil_box(fp, mFirstp->mReturnType);
++count;
}
if (mSecondp)
{
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mSecondp->mType != LET_LIST_EXPRESSION_LIST)
{
// Box value.
print_cil_box(fp, mSecondp->mReturnType);
++count;
}
}
break;
default:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mSecondp)
{
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
}
S32 LLScriptListExpressionList::getSize()
{
return 0;
}
// Returns true if identifier is a parameter and false if identifier is a local variable within function_scope.
bool is_parameter(LLScriptIdentifier* identifier, LLScriptScopeEntry* function_scope)
{
// Function stores offset of first local.
if(0 == function_scope->mOffset)
{
// Function offset 0 -> no parameters -> identifier is a local.
return false;
}
else
{
// Compare variable offset with function offset to
// determine whether variable is local or parameter.
return (identifier->mScopeEntry->mOffset < function_scope->mOffset);
}
}
// If assignment is to global variable, pushes this pointer on to stack.
static void print_cil_load_address(LLFILE* fp, LLScriptExpression* exp, LLScriptScopeEntry* function_scope)
{
LLScriptLValue *lvalue = (LLScriptLValue *) exp;
LLScriptIdentifier *ident = lvalue->mIdentifier;
// If global (member), load this pointer.
if(ident->mScopeEntry->mIDType == LIT_GLOBAL)
{
fprintf(fp, "ldarg.0\n");
}
// If accessor, load value type address, consumed by ldfld.
if(lvalue->mAccessor)
{
if(ident->mScopeEntry->mIDType == LIT_VARIABLE)
{
if(is_parameter(ident, function_scope))
{
// Parameter, load by name.
fprintf(fp, "ldarga.s '%s'\n", ident->mScopeEntry->mIdentifier);
}
else
{
// Local, load by index.
fprintf(fp, "ldloca.s %d\n", ident->mScopeEntry->mCount);
}
}
else if (ident->mScopeEntry->mIDType == LIT_GLOBAL)
{
fprintf(fp, "ldflda ");
print_cil_member(fp, ident);
}
}
}
static void print_cil_accessor(LLFILE* fp, LLScriptLValue *lvalue)
{
LLScriptIdentifier *ident = lvalue->mIdentifier;
print_cil_type(fp, lvalue->mReturnType);
fprintf(fp, " ");
print_cil_type(fp, ident->mScopeEntry->mType);
fprintf(fp, "::%s\n", lvalue->mAccessor->mName);
}
void LLScriptLValue::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mAccessor)
{
fprintf(fp, ".");
mAccessor->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_EMIT_ASSEMBLY:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
if (mAccessor)
{
fprintf(fp, "%s%d [%s.%s]\n", LSCRIPTTypeLocalPush[mReturnType], mIdentifier->mScopeEntry->mOffset + mOffset, mIdentifier->mName, mAccessor->mName);
}
else
{
fprintf(fp, "%s%d [%s]\n", LSCRIPTTypeLocalPush[mIdentifier->mScopeEntry->mType], mIdentifier->mScopeEntry->mOffset, mIdentifier->mName);
}
}
else if (mIdentifier->mScopeEntry->mIDType == LIT_GLOBAL)
{
if (mAccessor)
{
fprintf(fp, "%s%d [%s.%s]\n", LSCRIPTTypeGlobalPush[mReturnType], mIdentifier->mScopeEntry->mOffset + mOffset, mIdentifier->mName, mAccessor->mName);
}
else
{
fprintf(fp, "%s%d [%s]\n", LSCRIPTTypeGlobalPush[mIdentifier->mScopeEntry->mType], mIdentifier->mScopeEntry->mOffset, mIdentifier->mName);
}
}
else
{
fprintf(fp, "Unexpected LValue!\n");
}
break;
case LSCP_SCOPE_PASS1:
{
LLScriptScopeEntry *entry = scope->findEntry(mIdentifier->mName);
if (!entry || ( (entry->mIDType != LIT_GLOBAL) && (entry->mIDType != LIT_VARIABLE)))
{
gErrorToText.writeError(fp, this, LSERROR_UNDEFINED_NAME);
}
else
{
// if we did find it, make sure this identifier is associated with the correct scope entry
mIdentifier->mScopeEntry = entry;
}
}
break;
case LSCP_TYPE:
// if we have an accessor, we need to change what type our identifier returns and set our offset value
if (mIdentifier->mScopeEntry)
{
if (mAccessor)
{
BOOL b_ok = FALSE;
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
if (mIdentifier->mScopeEntry->mType == LST_VECTOR)
{
if (!strcmp("x", mAccessor->mName))
{
mOffset = 0;
b_ok = TRUE;
}
else if (!strcmp("y", mAccessor->mName))
{
mOffset = 4;
b_ok = TRUE;
}
else if (!strcmp("z", mAccessor->mName))
{
mOffset = 8;
b_ok = TRUE;
}
}
else if (mIdentifier->mScopeEntry->mType == LST_QUATERNION)
{
if (!strcmp("x", mAccessor->mName))
{
mOffset = 0;
b_ok = TRUE;
}
else if (!strcmp("y", mAccessor->mName))
{
mOffset = 4;
b_ok = TRUE;
}
else if (!strcmp("z", mAccessor->mName))
{
mOffset = 8;
b_ok = TRUE;
}
else if (!strcmp("s", mAccessor->mName))
{
mOffset = 12;
b_ok = TRUE;
}
}
}
else
{
if (mIdentifier->mScopeEntry->mType == LST_VECTOR)
{
if (!strcmp("x", mAccessor->mName))
{
mOffset = 8;
b_ok = TRUE;
}
else if (!strcmp("y", mAccessor->mName))
{
mOffset = 4;
b_ok = TRUE;
}
else if (!strcmp("z", mAccessor->mName))
{
mOffset = 0;
b_ok = TRUE;
}
}
else if (mIdentifier->mScopeEntry->mType == LST_QUATERNION)
{
if (!strcmp("x", mAccessor->mName))
{
mOffset = 12;
b_ok = TRUE;
}
else if (!strcmp("y", mAccessor->mName))
{
mOffset = 8;
b_ok = TRUE;
}
else if (!strcmp("z", mAccessor->mName))
{
mOffset = 4;
b_ok = TRUE;
}
else if (!strcmp("s", mAccessor->mName))
{
mOffset = 0;
b_ok = TRUE;
}
}
}
if (b_ok)
{
mReturnType = type = LST_FLOATINGPOINT;
}
else
{
gErrorToText.writeError(fp, this, LSERROR_VECTOR_METHOD_ERROR);
}
}
else
{
mReturnType = type = mIdentifier->mScopeEntry->mType;
}
}
else
{
mReturnType = type = LST_UNDEFINED;
}
break;
case LSCP_TO_STACK:
{
switch(mReturnType)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSH]);
}
else
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHG]);
}
break;
case LST_KEY:
case LST_STRING:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHS]);
}
else
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHGS]);
}
break;
case LST_LIST:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHL]);
}
else
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHGL]);
}
break;
case LST_VECTOR:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHV]);
}
else
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHGV]);
}
break;
case LST_QUATERNION:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHQ]);
}
else
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHGQ]);
}
break;
default:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSH]);
}
else
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHG]);
}
break;
}
S32 address = mIdentifier->mScopeEntry->mOffset + mOffset;
chunk->addInteger(address);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
print_cil_load_address(fp, this, entry);
if(mAccessor)
{
fprintf(fp, "ldfld ");
print_cil_accessor(fp, this);
}
else if(mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
if(is_parameter(mIdentifier, entry))
{
// Parameter, load by name.
fprintf(fp, "ldarg.s '%s'\n", mIdentifier->mScopeEntry->mIdentifier);
}
else
{
// Local, load by index.
fprintf(fp, "ldloc.s %d\n", mIdentifier->mScopeEntry->mCount);
}
}
else if (mIdentifier->mScopeEntry->mIDType == LIT_GLOBAL)
{
fprintf(fp, "ldfld ");
print_cil_member(fp, mIdentifier);
}
else
{
fprintf(fp, "Unexpected LValue!\n");
}
break;
default:
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptLValue::getSize()
{
return 0;
}
static void print_assignment(LLFILE *fp, LLScriptExpression *exp)
{
LLScriptLValue *lvalue = (LLScriptLValue *)exp;
LLScriptIdentifier *ident = lvalue->mIdentifier;
if (lvalue->mAccessor)
{
if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
{
fprintf(fp, "%s%d [%s.%s]\n", LSCRIPTTypeLocalStore[ident->mScopeEntry->mType], ident->mScopeEntry->mOffset + lvalue->mOffset, ident->mName, lvalue->mAccessor->mName);
}
else if (ident->mScopeEntry->mIDType == LIT_GLOBAL)
{
fprintf(fp, "%s%d [%s.%s]\n", LSCRIPTTypeGlobalStore[ident->mScopeEntry->mType], ident->mScopeEntry->mOffset + lvalue->mOffset, ident->mName, lvalue->mAccessor->mName);
}
}
else
{
if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
{
fprintf(fp, "%s%d [%s]\n", LSCRIPTTypeLocalStore[ident->mScopeEntry->mType], ident->mScopeEntry->mOffset, ident->mName);
}
else if (ident->mScopeEntry->mIDType == LIT_GLOBAL)
{
fprintf(fp, "%s%d [%s]\n", LSCRIPTTypeGlobalStore[ident->mScopeEntry->mType], ident->mScopeEntry->mOffset, ident->mName);
}
}
}
static void print_cil_assignment(LLFILE *fp, LLScriptExpression *exp, LLScriptScopeEntry* function_scope)
{
LLScriptLValue *lvalue = (LLScriptLValue *) exp;
LLScriptIdentifier *ident = lvalue->mIdentifier;
if (lvalue->mAccessor)
{
// Object address loaded, store in to field.
fprintf(fp, "stfld ");
print_cil_accessor(fp, lvalue);
// Load object address.
print_cil_load_address(fp, exp, function_scope);
// Load field.
fprintf(fp, "ldfld ");
print_cil_accessor(fp, lvalue);
}
else
{
if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
{
// Language semantics require value of assignment to be left on stack.
// TODO: Optimise away redundant dup/pop pairs.
fprintf(fp, "dup\n");
if(is_parameter(ident, function_scope))
{
// Parameter, store by name.
fprintf(fp, "starg.s '%s'\n", ident->mScopeEntry->mIdentifier);
}
else
{
// Local, store by index.
fprintf(fp, "stloc.s %d\n", ident->mScopeEntry->mCount);
}
}
else if (ident->mScopeEntry->mIDType == LIT_GLOBAL)
{
// Object address loaded, store in to field.
fprintf(fp, "stfld ");
print_cil_member(fp, ident);
// Load object address.
print_cil_load_address(fp, exp, function_scope);
// Load field.
fprintf(fp, "ldfld ");
print_cil_member(fp, ident);
}
}
}
void print_cast(LLFILE *fp, LSCRIPTType ret_type, LSCRIPTType right_type)
{
if (right_type != ret_type)
{
fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[right_type], LSCRIPTTypeNames[ret_type]);
}
}
void cast2stack(LLScriptByteCodeChunk *chunk, LSCRIPTType ret_type, LSCRIPTType right_type)
{
if (right_type != ret_type)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
U8 castbyte = LSCRIPTTypeByte[right_type] | LSCRIPTTypeHi4Bits[ret_type];
chunk->addByte(castbyte);
}
}
void operation2stack(LLScriptByteCodeChunk *chunk, LSCRIPTType ret_type, LSCRIPTType right_type)
{
U8 typebyte = LSCRIPTTypeByte[right_type] | LSCRIPTTypeHi4Bits[ret_type];
chunk->addByte(typebyte);
}
void store2stack(LLScriptExpression *exp, LLScriptExpression *lv, LLScriptByteCodeChunk *chunk, LSCRIPTType right_type)
{
LLScriptLValue *lvalue = (LLScriptLValue *)lv;
LLScriptIdentifier *ident = lvalue->mIdentifier;
LSCRIPTType rettype = exp->mReturnType;
if (exp->mRightType != LST_NULL)
{
if (legal_binary_expression(rettype, exp->mLeftType, exp->mRightType, exp->mType))
cast2stack(chunk, right_type, exp->mReturnType);
}
switch(exp->mReturnType)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_STORE]);
}
else
{
chunk->addByte(LSCRIPTOpCodes[LOPC_STOREG]);
}
break;
case LST_KEY:
case LST_STRING:
if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_STORES]);
}
else
{
chunk->addByte(LSCRIPTOpCodes[LOPC_STOREGS]);
}
break;
case LST_LIST:
if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_STOREL]);
}
else
{
chunk->addByte(LSCRIPTOpCodes[LOPC_STOREGL]);
}
break;
case LST_VECTOR:
if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_STOREV]);
}
else
{
chunk->addByte(LSCRIPTOpCodes[LOPC_STOREGV]);
}
break;
case LST_QUATERNION:
if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_STOREQ]);
}
else
{
chunk->addByte(LSCRIPTOpCodes[LOPC_STOREGQ]);
}
break;
default:
if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_STORE]);
}
else
{
chunk->addByte(LSCRIPTOpCodes[LOPC_STOREG]);
}
break;
}
S32 address = ident->mScopeEntry->mOffset + lvalue->mOffset;
chunk->addInteger(address);
}
void LLScriptAssignment::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " = ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cast(fp, mReturnType, mRightType);
print_assignment(fp, mLValue);
}
break;
case LSCP_TYPE:
{
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_assignment(mLeftType, mRightType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType = mLeftType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
store2stack(this, mLValue, chunk, mRightType);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
print_cil_load_address(fp, mLValue, entry);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_assignment_cast(fp, mRightType, mReturnType);
print_cil_assignment(fp, mLValue, entry);
}
break;
default:
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptAssignment::getSize()
{
return 0;
}
static void print_cil_add(LLFILE* fp, LSCRIPTType left_type, LSCRIPTType right_type)
{
if(LST_LIST == right_type && LST_LIST != left_type)
{
print_cil_box(fp, left_type);
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Prepend(class [mscorlib]System.Collections.ArrayList, object)\n");
return;
}
switch(left_type)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
// Numeric addition.
fprintf(fp, "add\n");
break;
case LST_STRING:
case LST_KEY:
// String concatenation.
fprintf(fp, "call string valuetype [LslUserScript]LindenLab.SecondLife.LslUserScript::Add(string, string)\n");
break;
case LST_VECTOR:
// Vector addition.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Add'(class [ScriptTypes]LindenLab.SecondLife.Vector, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
break;
case LST_QUATERNION:
// Rotation addition.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Add'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");
break;
case LST_LIST:
switch(right_type)
{
case LST_LIST:
// Concatenate lists.
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(class [mscorlib]System.Collections.ArrayList, class [mscorlib]System.Collections.ArrayList)\n");
break;
case LST_INTEGER:
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(int32, class [mscorlib]System.Collections.ArrayList)\n");
break;
case LST_FLOATINGPOINT:
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(float32, class [mscorlib]System.Collections.ArrayList)\n");
break;
case LST_STRING:
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(string, class [mscorlib]System.Collections.ArrayList)\n");
break;
case LST_KEY:
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(valuetype [ScriptTypes]LindenLab.SecondLife.Key, class [mscorlib]System.Collections.ArrayList)\n");
break;
case LST_VECTOR:
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(valuetype [ScriptTypes]LindenLab.SecondLife.Vector, class [mscorlib]System.Collections.ArrayList)\n");
break;
case LST_QUATERNION:
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(valuetype [ScriptTypes]LindenLab.SecondLife.Quaternion, class [mscorlib]System.Collections.ArrayList)\n");
break;
default:
break;
}
default:
break;
}
}
void LLScriptAddAssignment::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " += ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "ADD %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
print_assignment(fp, mLValue);
}
break;
case LSCP_TYPE:
{
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_ADD]);
operation2stack(chunk, mReturnType, mRightType);
store2stack(this, mLValue, chunk, mReturnType);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
print_cil_load_address(fp, mLValue, entry);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mRightSide->mReturnType, mLValue->mReturnType);
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mLValue->mReturnType, mRightSide->mReturnType);
print_cil_add(fp, mLValue->mReturnType, mRightSide->mReturnType);
print_cil_assignment(fp, mLValue, entry);
}
break;
default:
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptAddAssignment::getSize()
{
return 0;
}
static void print_cil_sub(LLFILE* fp, LSCRIPTType left_type, LSCRIPTType right_type)
{
switch(left_type)
{
case LST_INTEGER:
if(LST_INTEGER == right_type)
{
fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::Subtract(int32, int32)\n");
break;
}
case LST_FLOATINGPOINT:
// Numeric subtraction.
fprintf(fp, "call float64 [LslUserScript]LindenLab.SecondLife.LslUserScript::Subtract(float64, float64)\n");
break;
case LST_VECTOR:
// Vector subtraction.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Subtract'(class [ScriptTypes]LindenLab.SecondLife.Vector, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
break;
case LST_QUATERNION:
// Rotation subtraction.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Subtract'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");
break;
default:
// Error.
break;
}
}
void LLScriptSubAssignment::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " -= ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "SUB %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
print_assignment(fp, mLValue);
}
break;
case LSCP_TYPE:
{
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_SUB]);
operation2stack(chunk, mReturnType, mRightType);
store2stack(this, mLValue, chunk, mReturnType);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
print_cil_load_address(fp, mLValue, entry);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mRightSide->mReturnType, mLValue->mReturnType);
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mLValue->mReturnType, mRightSide->mReturnType);
print_cil_sub(fp, mLValue->mReturnType, mRightSide->mReturnType);
print_cil_assignment(fp, mLValue, entry);
}
break;
default:
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptSubAssignment::getSize()
{
return 0;
}
static void print_cil_neg(LLFILE* fp, LSCRIPTType type)
{
switch(type)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
fprintf(fp, "neg\n");
break;
case LST_VECTOR:
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Negate'(class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
break;
case LST_QUATERNION:
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Negate'(class [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");
break;
default:
break;
}
}
static void print_cil_mul(LLFILE* fp, LSCRIPTType left_type, LSCRIPTType right_type)
{
switch(left_type)
{
case LST_INTEGER:
switch(right_type)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
// Numeric multiplication.
fprintf(fp, "mul\n");
break;
case LST_VECTOR:
// Vector scaling.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Multiply'(class [ScriptTypes]LindenLab.SecondLife.Vector, float32)\n");
break;
default:
break;
}
break;
case LST_FLOATINGPOINT:
switch(right_type)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
// Numeric multiplication.
fprintf(fp, "mul\n");
break;
case LST_VECTOR:
// Vector scaling.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Multiply'(class [ScriptTypes]LindenLab.SecondLife.Vector, float32)\n");
break;
default:
break;
}
break;
case LST_VECTOR:
switch(right_type)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
// Vector scaling.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Multiply'(float32, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
break;
case LST_VECTOR:
// Dot product.
fprintf(fp, "call float32 class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Multiply'(class [ScriptTypes]LindenLab.SecondLife.Vector, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
break;
case LST_QUATERNION:
// Vector rotation.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Multiply'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
break;
default:
break;
}
break;
case LST_QUATERNION:
// Rotation multiplication.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Multiply'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");
break;
default:
// Error.
break;
}
}
void LLScriptMulAssignment::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " *= ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "MUL %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
print_assignment(fp, mLValue);
}
break;
case LSCP_TYPE:
{
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType) /*|| !legal_assignment(mLValue->mReturnType, mReturnType)*/)
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_MUL]);
operation2stack(chunk, mReturnType, mRightType);
store2stack(this, mLValue, chunk, mReturnType);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
print_cil_load_address(fp, mLValue, entry);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mRightSide->mReturnType, mLValue->mReturnType);
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mLValue->mReturnType, mRightSide->mReturnType);
print_cil_mul(fp, mLValue->mReturnType, mRightSide->mReturnType);
if((mLValue->mReturnType == LST_INTEGER) &&
(mRightSide->mReturnType == LST_FLOATINGPOINT))
{
print_cil_cast(fp, LST_FLOATINGPOINT, LST_INTEGER);
}
print_cil_assignment(fp, mLValue, entry);
}
break;
default:
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptMulAssignment::getSize()
{
return 0;
}
static void print_cil_div(LLFILE* fp, LSCRIPTType left_type, LSCRIPTType right_type)
{
switch(left_type)
{
case LST_INTEGER:
if(LST_INTEGER == right_type)
{
fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::Divide(int32, int32)\n");
break;
}
case LST_FLOATINGPOINT:
// Numeric division.
fprintf(fp, "call float64 [LslUserScript]LindenLab.SecondLife.LslUserScript::Divide(float64, float64)\n");
break;
case LST_VECTOR:
switch(right_type)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
// Scale.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Divide'(float32, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
break;
case LST_QUATERNION:
// Inverse rotation.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Divide'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
break;
default:
break;
}
break;
case LST_QUATERNION:
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Divide'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");
break;
default:
// Error.
break;
}
}
void LLScriptDivAssignment::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " /= ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "DIV %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
print_assignment(fp, mLValue);
}
break;
case LSCP_TYPE:
{
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_DIV]);
operation2stack(chunk, mReturnType, mRightType);
store2stack(this, mLValue, chunk, mReturnType);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
print_cil_load_address(fp, mLValue, entry);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mRightSide->mReturnType, mLValue->mReturnType);
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mLValue->mReturnType, mRightSide->mReturnType);
print_cil_div(fp, mLValue->mReturnType, mRightSide->mReturnType);
print_cil_assignment(fp, mLValue, entry);
}
break;
default:
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptDivAssignment::getSize()
{
return 0;
}
static void print_cil_mod(LLFILE* fp, LSCRIPTType left_type, LSCRIPTType right_type)
{
switch(left_type)
{
case LST_INTEGER:
// Numeric remainder.
fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::Modulo(int32, int32)\n");
break;
case LST_VECTOR:
// Vector cross product.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Modulo'(class [ScriptTypes]LindenLab.SecondLife.Vector, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
break;
default:
// Error.
break;
}
}
void LLScriptModAssignment::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " %%= ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "MOD %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
print_assignment(fp, mLValue);
}
break;
case LSCP_TYPE:
{
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_MOD]);
operation2stack(chunk, mReturnType, mRightType);
store2stack(this, mLValue, chunk, mReturnType);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
print_cil_load_address(fp, mLValue, entry);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_mod(fp, mLValue->mReturnType, mRightSide->mReturnType);
print_cil_assignment(fp, mLValue, entry);
}
break;
default:
mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptModAssignment::getSize()
{
return 0;
}
static void print_cil_eq(LLFILE* fp, LSCRIPTType left_type, LSCRIPTType right_type)
{
switch(right_type)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
// Numeric equality.
fprintf(fp, "ceq\n");
break;
case LST_STRING:
// NOTE: babbage: strings and keys can be compared, so a cast
// may be required
print_cil_cast(fp, left_type, right_type);
// String equality.
fprintf(fp, "call bool valuetype [mscorlib]System.String::op_Equality(string, string)\n");
break;
case LST_KEY:
// NOTE: babbage: strings and keys can be compared, so a cast
// may be required
print_cil_cast(fp, left_type, right_type);
// Key equality.
fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::'Equals'(valuetype [ScriptTypes]LindenLab.SecondLife.Key, valuetype [ScriptTypes]LindenLab.SecondLife.Key)\n");
break;
case LST_VECTOR:
// Vector equality.
fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::'Equals'(class [ScriptTypes]LindenLab.SecondLife.Vector, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
break;
case LST_QUATERNION:
// Rotation equality.
fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::'Equals'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");
break;
case LST_LIST:
fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::Equals(class [mscorlib]System.Collections.ArrayList, class [mscorlib]System.Collections.ArrayList)\n");
break;
default:
// Error.
break;
}
}
void LLScriptEquality::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " == ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "EQ %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
chunk->addByte(LSCRIPTOpCodes[LOPC_EQ]);
chunk->addByte(typebyte);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
print_cil_eq(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptEquality::getSize()
{
return 0;
}
void LLScriptNotEquals::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " != ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "NEQ %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
chunk->addByte(LSCRIPTOpCodes[LOPC_NEQ]);
chunk->addByte(typebyte);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
if (LST_LIST == mLeftSide->mReturnType)
{
fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::NotEquals(class [mscorlib]System.Collections.ArrayList, class [mscorlib]System.Collections.ArrayList)\n");
}
else
{
print_cil_eq(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
fprintf(fp, "ldc.i4.0\n");
fprintf(fp, "ceq\n"); // Compare result of first compare equal with 0 to get compare not equal.
}
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptNotEquals::getSize()
{
return 0;
}
static void print_cil_lte(LLFILE* fp)
{
// NOTE: LSL pushes operands backwards, so <= becomes >=
fprintf(fp, "clt\n");
fprintf(fp, "ldc.i4.0\n");
fprintf(fp, "ceq\n");
}
void LLScriptLessEquals::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " <= ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "LEQ %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
chunk->addByte(LSCRIPTOpCodes[LOPC_LEQ]);
chunk->addByte(typebyte);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
print_cil_lte(fp);
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptLessEquals::getSize()
{
return 0;
}
static void print_cil_gte(LLFILE* fp)
{
// NOTE: LSL pushes operands backwards, so >= becomes <=
fprintf(fp, "cgt\n");
fprintf(fp, "ldc.i4.0\n");
fprintf(fp, "ceq\n");
}
void LLScriptGreaterEquals::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " >= ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "GEQ %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
chunk->addByte(LSCRIPTOpCodes[LOPC_GEQ]);
chunk->addByte(typebyte);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
print_cil_gte(fp);
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptGreaterEquals::getSize()
{
return 0;
}
static void print_cil_lt(LLFILE* fp)
{
// NOTE: LSL pushes operands backwards, so < becomes >
fprintf(fp, "cgt\n");
}
void LLScriptLessThan::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " < ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "LESS %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
chunk->addByte(LSCRIPTOpCodes[LOPC_LESS]);
chunk->addByte(typebyte);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
print_cil_lt(fp);
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptLessThan::getSize()
{
return 0;
}
static void print_cil_gt(LLFILE* fp)
{
// NOTE: LSL pushes operands backwards, so > becomes <
fprintf(fp, "clt\n");
}
void LLScriptGreaterThan::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " > ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "GREATER %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
chunk->addByte(LSCRIPTOpCodes[LOPC_GREATER]);
chunk->addByte(typebyte);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
print_cil_gt(fp);
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptGreaterThan::getSize()
{
return 0;
}
void LLScriptPlus::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " + ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "ADD %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
chunk->addByte(LSCRIPTOpCodes[LOPC_ADD]);
chunk->addByte(typebyte);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
print_cil_add(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptPlus::getSize()
{
return 0;
}
void LLScriptMinus::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " - ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "SUB %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
chunk->addByte(LSCRIPTOpCodes[LOPC_SUB]);
chunk->addByte(typebyte);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
print_cil_sub(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptMinus::getSize()
{
return 0;
}
void LLScriptTimes::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " * ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "MUL %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
chunk->addByte(LSCRIPTOpCodes[LOPC_MUL]);
chunk->addByte(typebyte);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
print_cil_mul(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptTimes::getSize()
{
return 0;
}
void LLScriptDivide::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " / ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "DIV %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
chunk->addByte(LSCRIPTOpCodes[LOPC_DIV]);
chunk->addByte(typebyte);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
print_cil_div(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptDivide::getSize()
{
return 0;
}
void LLScriptMod::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " %% ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "MOD %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
chunk->addByte(LSCRIPTOpCodes[LOPC_MOD]);
chunk->addByte(typebyte);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_mod(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptMod::getSize()
{
return 0;
}
void LLScriptBitAnd::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " & ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "BITAND\n");
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_BITAND]);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "and\n");
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptBitAnd::getSize()
{
return 0;
}
void LLScriptBitOr::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " | ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "BITOR\n");
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_BITOR]);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "or\n");
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptBitOr::getSize()
{
return 0;
}
void LLScriptBitXor::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " ^ ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "BITXOR\n");
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_BITXOR]);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "xor\n");
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptBitXor::getSize()
{
return 0;
}
void LLScriptBooleanAnd::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " && ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "BOOLAND\n");
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_BOOLAND]);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "ldc.i4.0\n");
fprintf(fp, "ceq\n");
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "ldc.i4.0\n");
fprintf(fp, "ceq\n");
fprintf(fp, "or\n");
fprintf(fp, "ldc.i4.0\n");
fprintf(fp, "ceq\n");
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptBooleanAnd::getSize()
{
return 0;
}
void LLScriptBooleanOr::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " || ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "BOOLOR\n");
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_BOOLOR]);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "or\n");
fprintf(fp, "ldc.i4.0\n");
fprintf(fp, "ceq\n");
fprintf(fp, "ldc.i4.0\n");
fprintf(fp, "ceq\n");
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptBooleanOr::getSize()
{
return 0;
}
void LLScriptShiftLeft::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " << ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "SHL\n");
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_SHL]);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::ShiftLeft(int32, int32)\n");
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptShiftLeft::getSize()
{
return 0;
}
void LLScriptShiftRight::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " >> ");
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "SHR\n");
break;
case LSCP_TYPE:
{
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mReturnType;
}
break;
case LSCP_TO_STACK:
{
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_SHR]);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::ShiftRight(int32, int32)\n");
break;
default:
mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptShiftRight::getSize()
{
return 0;
}
void LLScriptParenthesis::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fprintf(fp, "( ");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
case LSCP_TYPE:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mReturnType = mLeftType = type;
break;
case LSCP_EMIT_ASSEMBLY:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mReturnType = mLeftType = type;
break;
default:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptParenthesis::getSize()
{
return 0;
}
void LLScriptUnaryMinus::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fprintf(fp, "-");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "NEG %s\n", LSCRIPTTypeNames[mLeftType]);
break;
case LSCP_TYPE:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_unary_expression(type, type, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
else
{
mReturnType = mLeftType = type;
}
break;
case LSCP_TO_STACK:
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
U8 typebyte = LSCRIPTTypeByte[mLeftType];
chunk->addByte(LSCRIPTOpCodes[LOPC_NEG]);
chunk->addByte(typebyte);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_neg(fp, mLeftType);
}
break;
default:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptUnaryMinus::getSize()
{
return 0;
}
void LLScriptBooleanNot::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fprintf(fp, "!");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "BOOLNOT\n");
break;
case LSCP_TYPE:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_unary_expression(type, type, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
else
{
mReturnType = mLeftType = type;
}
break;
case LSCP_TO_STACK:
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_BOOLNOT]);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "ldc.i4.0\n");
fprintf(fp, "ceq\n"); // If f(e) is (e == 0), f(e) returns 1 if e is 0 and 0 otherwise, therefore f(e) implements boolean not.
break;
default:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptBooleanNot::getSize()
{
return 0;
}
void LLScriptBitNot::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fprintf(fp, "~");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "BITNOT\n");
break;
case LSCP_TYPE:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_unary_expression(type, type, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
else
{
mReturnType = mLeftType = type;
}
break;
case LSCP_TO_STACK:
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_BITNOT]);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "not\n");
break;
default:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptBitNot::getSize()
{
return 0;
}
void LLScriptPreIncrement::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fprintf(fp, "++");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
{
if (mReturnType == LST_INTEGER)
{
fprintf(fp, "PUSHARGI 1\n");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
fprintf(fp, "ADD integer, integer\n");
}
else if (mReturnType == LST_FLOATINGPOINT)
{
fprintf(fp, "PUSHARGF 1\n");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
fprintf(fp, "ADD float, float\n");
}
else
{
fprintf(fp, "Unexpected Type\n");
}
print_assignment(fp, mExpression);
}
break;
case LSCP_TYPE:
if (mExpression->mType != LET_LVALUE)
{
gErrorToText.writeError(fp, this, LSERROR_EXPRESSION_ON_LVALUE);
}
else
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_unary_expression(type, type, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
else
{
mReturnType = mLeftType = type;
}
}
break;
case LSCP_TO_STACK:
{
if (mReturnType == LST_INTEGER)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
chunk->addInteger(1);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_ADD]);
chunk->addByte(LSCRIPTTypeByte[LST_INTEGER] | LSCRIPTTypeHi4Bits[LST_INTEGER]);
}
else if (mReturnType == LST_FLOATINGPOINT)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGF]);
chunk->addFloat(1.f);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_ADD]);
chunk->addByte(LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[LST_FLOATINGPOINT]);
}
store2stack(this, mExpression, chunk, mReturnType);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
print_cil_load_address(fp, mExpression, entry);
if (mReturnType == LST_INTEGER)
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "ldc.i4.1\n");
fprintf(fp, "add\n");
}
else if (mReturnType == LST_FLOATINGPOINT)
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "ldc.r8 1\n");
fprintf(fp, "add\n");
}
else
{
fprintf(fp, "Unexpected Type\n");
}
print_cil_assignment(fp, mExpression, entry);
}
break;
default:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptPreIncrement::getSize()
{
return 0;
}
void LLScriptPreDecrement::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fprintf(fp, "--");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
{
if (mReturnType == LST_INTEGER)
{
fprintf(fp, "PUSHARGI 1\n");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
fprintf(fp, "SUB integer, integer\n");
}
else if (mReturnType == LST_FLOATINGPOINT)
{
fprintf(fp, "PUSHARGF 1\n");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
fprintf(fp, "SUB float, float\n");
}
else
{
fprintf(fp, "Unexpected Type\n");
}
print_assignment(fp, mExpression);
}
break;
case LSCP_TYPE:
if (mExpression->mType != LET_LVALUE)
{
gErrorToText.writeError(fp, this, LSERROR_EXPRESSION_ON_LVALUE);
}
else
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_unary_expression(type, type, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
else
{
mReturnType = mLeftType = type;
}
}
break;
case LSCP_TO_STACK:
{
if (mReturnType == LST_INTEGER)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
chunk->addInteger(1);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_SUB]);
chunk->addByte(LSCRIPTTypeByte[LST_INTEGER] | LSCRIPTTypeHi4Bits[LST_INTEGER]);
}
else if (mReturnType == LST_FLOATINGPOINT)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGF]);
chunk->addFloat(1.f);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_SUB]);
chunk->addByte(LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[LST_FLOATINGPOINT]);
}
store2stack(this, mExpression, chunk, mReturnType);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
print_cil_load_address(fp, mExpression, entry);
if (mReturnType == LST_INTEGER)
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "ldc.i4.1\n");
fprintf(fp, "sub\n");
}
else if (mReturnType == LST_FLOATINGPOINT)
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "ldc.r8 1\n");
fprintf(fp, "sub\n");
}
else
{
fprintf(fp, "Unexpected Type\n");
}
print_cil_assignment(fp, mExpression, entry);
}
break;
default:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptPreDecrement::getSize()
{
return 0;
}
void LLScriptTypeCast::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fprintf(fp, "( ");
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ") ");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mType->mType]);
break;
case LSCP_TYPE:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mRightType = type;
if (!legal_casts(mType->mType, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
type = mType->mType;
mReturnType = mLeftType = type;
break;
case LSCP_TO_STACK:
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
U8 castbyte = LSCRIPTTypeByte[mType->mType] | LSCRIPTTypeHi4Bits[mRightType];
chunk->addByte(castbyte);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_cast(fp, mRightType, mType->mType);
break;
default:
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptTypeCast::getSize()
{
return 0;
}
void LLScriptVectorInitializer::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fprintf(fp, "< ");
mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", ");
mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", ");
mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " >");
break;
case LSCP_EMIT_ASSEMBLY:
mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression1->mReturnType != LST_FLOATINGPOINT)
{
fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mExpression1->mReturnType], LSCRIPTTypeNames[LST_FLOATINGPOINT]);
}
mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression2->mReturnType != LST_FLOATINGPOINT)
{
fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mExpression2->mReturnType], LSCRIPTTypeNames[LST_FLOATINGPOINT]);
}
mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression3->mReturnType != LST_FLOATINGPOINT)
{
fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mExpression3->mReturnType], LSCRIPTTypeNames[LST_FLOATINGPOINT]);
}
break;
case LSCP_TYPE:
// vector's take floats
mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(LST_FLOATINGPOINT, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(LST_FLOATINGPOINT, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(LST_FLOATINGPOINT, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
mReturnType = type = LST_VECTOR;
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_TO_STACK:
pass = LSCP_TO_STACK;
mExpression1->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression1->mReturnType != LST_FLOATINGPOINT)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
U8 castbyte = LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[mExpression1->mReturnType];
chunk->addByte(castbyte);
}
mExpression2->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression2->mReturnType != LST_FLOATINGPOINT)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
U8 castbyte = LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[mExpression2->mReturnType];
chunk->addByte(castbyte);
}
mExpression3->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression3->mReturnType != LST_FLOATINGPOINT)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
U8 castbyte = LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[mExpression3->mReturnType];
chunk->addByte(castbyte);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
// Load arguments.
mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression1->mReturnType != LST_FLOATINGPOINT)
{
print_cil_cast(fp, mExpression1->mReturnType, LST_FLOATINGPOINT);
}
mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression2->mReturnType != LST_FLOATINGPOINT)
{
print_cil_cast(fp, mExpression2->mReturnType, LST_FLOATINGPOINT);
}
mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression3->mReturnType != LST_FLOATINGPOINT)
{
print_cil_cast(fp, mExpression3->mReturnType, LST_FLOATINGPOINT);
}
// Call named ctor, which leaves new Vector on stack, so it can be saved in to local or argument just like a primitive type.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateVector'(float32, float32, float32)\n");
break;
default:
mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptVectorInitializer::getSize()
{
return 0;
}
void LLScriptQuaternionInitializer::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fprintf(fp, "< ");
mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", ");
mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", ");
mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", ");
mExpression4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " >");
break;
case LSCP_EMIT_ASSEMBLY:
mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression1->mReturnType != LST_FLOATINGPOINT)
{
fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mExpression1->mReturnType], LSCRIPTTypeNames[LST_FLOATINGPOINT]);
}
mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression2->mReturnType != LST_FLOATINGPOINT)
{
fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mExpression2->mReturnType], LSCRIPTTypeNames[LST_FLOATINGPOINT]);
}
mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression3->mReturnType != LST_FLOATINGPOINT)
{
fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mExpression3->mReturnType], LSCRIPTTypeNames[LST_FLOATINGPOINT]);
}
mExpression4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression4->mReturnType != LST_FLOATINGPOINT)
{
fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mExpression4->mReturnType], LSCRIPTTypeNames[LST_FLOATINGPOINT]);
}
break;
case LSCP_TYPE:
// vector's take floats
mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(LST_FLOATINGPOINT, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(LST_FLOATINGPOINT, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(LST_FLOATINGPOINT, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
mExpression4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(LST_FLOATINGPOINT, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
mReturnType = type = LST_QUATERNION;
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_TO_STACK:
pass = LSCP_TO_STACK;
mExpression1->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression1->mReturnType != LST_FLOATINGPOINT)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
U8 castbyte = LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[mExpression1->mReturnType];
chunk->addByte(castbyte);
}
mExpression2->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression2->mReturnType != LST_FLOATINGPOINT)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
U8 castbyte = LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[mExpression2->mReturnType];
chunk->addByte(castbyte);
}
mExpression3->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression3->mReturnType != LST_FLOATINGPOINT)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
U8 castbyte = LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[mExpression3->mReturnType];
chunk->addByte(castbyte);
}
mExpression4->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression4->mReturnType != LST_FLOATINGPOINT)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
U8 castbyte = LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[mExpression4->mReturnType];
chunk->addByte(castbyte);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
// Load arguments.
mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression1->mReturnType != LST_FLOATINGPOINT)
{
print_cil_cast(fp, mExpression1->mReturnType, LST_FLOATINGPOINT);
}
mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression2->mReturnType != LST_FLOATINGPOINT)
{
print_cil_cast(fp, mExpression2->mReturnType, LST_FLOATINGPOINT);
}
mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression3->mReturnType != LST_FLOATINGPOINT)
{
print_cil_cast(fp, mExpression3->mReturnType, LST_FLOATINGPOINT);
}
mExpression4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression4->mReturnType != LST_FLOATINGPOINT)
{
print_cil_cast(fp, mExpression4->mReturnType, LST_FLOATINGPOINT);
}
// Call named ctor, which leaves new Vector on stack, so it can be saved in to local or argument just like a primitive type.
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateQuaternion'(float32, float32, float32, float32)\n");
break;
default:
mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mExpression4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptQuaternionInitializer::getSize()
{
return 0;
}
void LLScriptListInitializer::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fprintf(fp, "[ ");
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " ]");
break;
case LSCP_EMIT_ASSEMBLY:
count = 0;
if (mExpressionList)
{
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "STACKTOL %llu\n", count);
}
break;
case LSCP_TYPE:
if (mExpressionList)
{
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mReturnType = type = LST_LIST;
}
mReturnType = type = LST_LIST;
break;
case LSCP_TO_STACK:
{
if (mExpressionList)
{
pass = LSCP_TO_STACK;
U64 list_element_count = 0;
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, list_element_count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_STACKTOL]);
chunk->addInteger((S32)list_element_count);
}
else
{
chunk->addByte(LSCRIPTOpCodes[LOPC_STACKTOL]);
chunk->addInteger(0);
}
break;
}
case LSCP_EMIT_CIL_ASSEMBLY:
{
// Push boxed elements on stack.
U64 list_element_count = 0;
if (mExpressionList)
{
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, list_element_count, chunk, heap, stacksize, entry, entrycount, NULL);
}
// Create list on stack.
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList()\n");
// Call Prepend to add remaining boxed expressions.
for(U64 i = 0; i < list_element_count; i++)
{
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Prepend(object, class [mscorlib]System.Collections.ArrayList)\n");
}
break;
}
default:
if (mExpressionList)
{
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptListInitializer::getSize()
{
return 0;
}
void LLScriptPostIncrement::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "++");
break;
case LSCP_EMIT_ASSEMBLY:
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mReturnType == LST_INTEGER)
{
fprintf(fp, "PUSHARGI 1\n");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "ADD integer, integer\n");
}
else if (mReturnType == LST_FLOATINGPOINT)
{
fprintf(fp, "PUSHARGF 1\n");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "ADD float, float\n");
}
else
{
fprintf(fp, "Unexpected Type\n");
}
print_assignment(fp, mExpression);
fprintf(fp, "%s\n", LSCRIPTTypePop[mReturnType]);
}
break;
case LSCP_TYPE:
if (mExpression->mType != LET_LVALUE)
{
gErrorToText.writeError(fp, this, LSERROR_EXPRESSION_ON_LVALUE);
}
else
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_unary_expression(type, type, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
else
{
mReturnType = mLeftType = type;
}
}
break;
case LSCP_TO_STACK:
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mReturnType == LST_INTEGER)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
chunk->addInteger(1);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_ADD]);
chunk->addByte(LSCRIPTTypeByte[LST_INTEGER] | LSCRIPTTypeHi4Bits[LST_INTEGER]);
}
else if (mReturnType == LST_FLOATINGPOINT)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGF]);
chunk->addFloat(1.f);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_ADD]);
chunk->addByte(LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[LST_FLOATINGPOINT]);
}
store2stack(this, mExpression, chunk, mReturnType);
switch(mReturnType)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
break;
case LST_KEY:
case LST_STRING:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPS]);
break;
case LST_LIST:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPL]);
break;
case LST_VECTOR:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPV]);
break;
case LST_QUATERNION:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPQ]);
break;
default:
chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
break;
}
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
// Push original value on to stack.
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
// Load address if needed for store.
print_cil_load_address(fp, mExpression, entry);
// Load value again.
// TODO: Work out if sideeffects can result in 2 evaluations of expression giving different values.
// Original LSL2 uses this method, so any bugs due to side effects will probably be identical ;-)
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mReturnType == LST_INTEGER)
{
fprintf(fp, "ldc.i4.1\n");
}
else if (mReturnType == LST_FLOATINGPOINT)
{
fprintf(fp, "ldc.r8 1\n");
}
else
{
fprintf(fp, "Unexpected Type\n");
}
fprintf(fp, "add\n");
print_cil_assignment(fp, mExpression, entry);
// Pop assignment result to leave original expression result on stack.
// TODO: Optimise away redundant pop/dup pairs.
fprintf(fp, "pop\n");
}
break;
default:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptPostIncrement::getSize()
{
return 0;
}
void LLScriptPostDecrement::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "--");
break;
case LSCP_EMIT_ASSEMBLY:
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mReturnType == LST_INTEGER)
{
fprintf(fp, "PUSHARGI 1\n");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "SUB integer, integer\n");
}
else if (mReturnType == LST_FLOATINGPOINT)
{
fprintf(fp, "PUSHARGF 1\n");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "SUB float, float\n");
}
else
{
fprintf(fp, "Unexpected Type\n");
}
print_assignment(fp, mExpression);
fprintf(fp, "%s\n", LSCRIPTTypePop[mReturnType]);
}
break;
case LSCP_TYPE:
if (mExpression->mType != LET_LVALUE)
{
gErrorToText.writeError(fp, this, LSERROR_EXPRESSION_ON_LVALUE);
}
else
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_unary_expression(type, type, mType))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
else
{
mReturnType = mLeftType = type;
}
}
break;
case LSCP_TO_STACK:
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mReturnType == LST_INTEGER)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
chunk->addInteger(1);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_SUB]);
chunk->addByte(LSCRIPTTypeByte[LST_INTEGER] | LSCRIPTTypeHi4Bits[LST_INTEGER]);
}
else if (mReturnType == LST_FLOATINGPOINT)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGF]);
chunk->addFloat(1.f);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_SUB]);
chunk->addByte(LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[LST_FLOATINGPOINT]);
}
store2stack(this, mExpression, chunk, mReturnType);
switch(mReturnType)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
break;
case LST_KEY:
case LST_STRING:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPS]);
break;
case LST_LIST:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPL]);
break;
case LST_VECTOR:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPV]);
break;
case LST_QUATERNION:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPQ]);
break;
default:
chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
break;
}
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
// Push original value on to stack.
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
// Load address if needed for store.
print_cil_load_address(fp, mExpression, entry);
// Load value again.
// TODO: Work out if sideeffects can result in 2 evaluations of expression giving different values.
// Original LSL2 uses this method, so any bugs due to side effects will probably be identical ;-)
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mReturnType == LST_INTEGER)
{
fprintf(fp, "ldc.i4.1\n");
}
else if (mReturnType == LST_FLOATINGPOINT)
{
fprintf(fp, "ldc.r8 1\n");
}
else
{
fprintf(fp, "Unexpected Type\n");
}
fprintf(fp, "sub\n");
print_cil_assignment(fp, mExpression, entry);
// Pop assignment result to leave original expression result on stack.
// TODO: Optimise away redundant pop/dup pairs.
fprintf(fp, "pop\n");
}
break;
default:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptPostDecrement::getSize()
{
return 0;
}
// Generate arg list.
static void print_cil_arg_list(LLFILE *fp, LLScriptArgString& args)
{
int i = 0;
bool finished = (i >= args.getNumber());
while(! finished)
{
print_cil_type(fp, args.getType(i));
++i;
finished = (i >= args.getNumber());
if(! finished)
{
fprintf(fp, ", ");
}
}
}
void LLScriptFunctionCall::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "( ");
if (mExpressionList)
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
case LSCP_EMIT_ASSEMBLY:
if (mIdentifier->mScopeEntry->mType)
fprintf(fp, "%s\n", LSCRIPTTypePush[mIdentifier->mScopeEntry->mType]);
fprintf(fp,"PUSHE\n");
fprintf(fp, "PUSHBP\n");
if (mExpressionList)
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, mIdentifier->mScopeEntry, 0, NULL);
fprintf(fp, "PUSHARGE %d\n", mIdentifier->mScopeEntry->mSize - mIdentifier->mScopeEntry->mOffset);
fprintf(fp, "PUSHSP\n");
fprintf(fp, "PUSHARGI %d\n", mIdentifier->mScopeEntry->mSize);
fprintf(fp, "ADD integer, integer\n");
fprintf(fp, "POPBP\n");
if (mIdentifier->mScopeEntry->mIDType != LIT_LIBRARY_FUNCTION)
{
fprintf(fp, "CALL ");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
else
{
fprintf(fp, "CALLLID ");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ", %d", (U32)mIdentifier->mScopeEntry->mLibraryNumber);
}
fprintf(fp, "\n");
fprintf(fp, "POPBP\n");
break;
case LSCP_SCOPE_PASS1:
if (mExpressionList)
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_SCOPE_PASS2:
{
LLScriptScopeEntry *entry = scope->findEntryTyped(mIdentifier->mName, LIT_FUNCTION);
if (!entry)
{
gErrorToText.writeError(fp, this, LSERROR_UNDEFINED_NAME);
}
else
{
// if we did find it, make sure this identifier is associated with the correct scope entry
mIdentifier->mScopeEntry = entry;
}
if (mExpressionList)
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_TYPE:
if (mIdentifier->mScopeEntry)
{
U64 argcount = 0;
if (mExpressionList)
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, argcount, chunk, heap, stacksize, mIdentifier->mScopeEntry, 0, NULL);
if (!mIdentifier->mScopeEntry->mFunctionArgs.mString)
{
if (argcount)
{
gErrorToText.writeError(fp, this, LSERROR_FUNCTION_TYPE_ERROR);
}
}
else if (argcount != strlen(mIdentifier->mScopeEntry->mFunctionArgs.mString))
{
gErrorToText.writeError(fp, this, LSERROR_FUNCTION_TYPE_ERROR);
}
}
if (mIdentifier->mScopeEntry)
type = mIdentifier->mScopeEntry->mType;
else
type = LST_NULL;
mReturnType = type;
break;
case LSCP_TO_STACK:
switch(mIdentifier->mScopeEntry->mType)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
case LST_STRING:
case LST_KEY:
case LST_LIST:
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHE]);
break;
case LST_VECTOR:
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHEV]);
break;
case LST_QUATERNION:
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHEQ]);
break;
default:
break;
}
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHE]);
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHBP]);
if (mExpressionList)
{
// Don't let this change the count.
U64 dummy_count = 0;
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, dummy_count, chunk, heap, stacksize, mIdentifier->mScopeEntry, 0, NULL);
//mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, mIdentifier->mScopeEntry, 0, NULL);
}
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGE]);
chunk->addInteger(mIdentifier->mScopeEntry->mSize - mIdentifier->mScopeEntry->mOffset);
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHSP]);
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
chunk->addInteger(mIdentifier->mScopeEntry->mSize);
chunk->addByte(LSCRIPTOpCodes[LOPC_ADD]);
chunk->addByte(LSCRIPTTypeByte[LST_INTEGER] | LSCRIPTTypeHi4Bits[LST_INTEGER]);
chunk->addByte(LSCRIPTOpCodes[LOPC_POPBP]);
if (mIdentifier->mScopeEntry->mIDType != LIT_LIBRARY_FUNCTION)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_CALL]);
chunk->addInteger(mIdentifier->mScopeEntry->mCount);
}
else
{
chunk->addByte(LSCRIPTOpCodes[LOPC_CALLLIB_TWO_BYTE]);
chunk->addU16(mIdentifier->mScopeEntry->mLibraryNumber);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
bool library_call = (mIdentifier->mScopeEntry->mIDType == LIT_LIBRARY_FUNCTION);
if(! library_call)
{
// Load this pointer.
fprintf(fp, "ldarg.0\n");
}
// Load args on to stack.
if (mExpressionList)
{
//mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry /* Needed for is_parameter calls */, 0, NULL);
llassert(LET_FUNC_EXPRESSION_LIST == mExpressionList->mType);
print_cil_func_expression_list((LLScriptFuncExpressionList*) mExpressionList, fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry /* Caller entry needed for is_parameter calls */, 0, NULL, mIdentifier->mScopeEntry /* Callee entry needed for argument casting */);
}
// Make call.
if (! library_call)
{
fprintf(fp, "call instance ");
}
else
{
fprintf(fp, "call ");
}
print_cil_type(fp, mIdentifier->mScopeEntry->mType);
fprintf(fp, " class ");
if (library_call)
{
fprintf(fp, "[LslLibrary]LindenLab.SecondLife.Library::'");
}
else
{
// Prefix function name with g to distinguish from
// event handlers.
fprintf(fp, "%s", gScriptp->getClassName());
fprintf(fp, "::'g");
}
fprintf(fp, "%s", mIdentifier->mName);
fprintf(fp, "'(");
print_cil_arg_list(fp, mIdentifier->mScopeEntry->mFunctionArgs);
fprintf(fp, ")\n");
}
break;
default:
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpressionList)
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptFunctionCall::getSize()
{
return 0;
}
void LLScriptPrint::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fprintf(fp, " PRINT ( ");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
break;
case LSCP_EMIT_ASSEMBLY:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "PRINT %s\n", LSCRIPTTypeNames[mLeftType]);
break;
case LSCP_TYPE:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mLeftType = type;
mReturnType = LST_NULL;
break;
case LSCP_TO_STACK:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_PRINT]);
chunk->addByte(LSCRIPTTypeByte[mLeftType]);
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_cast(fp, mLeftType, LST_STRING);
fprintf(fp, "call void class [LslLibrary]LindenLab.SecondLife.Library::Print(string)");
break;
default:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptPrint::getSize()
{
return 0;
}
void LLScriptConstantExpression::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mConstant->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_TYPE:
mConstant->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mReturnType = type;
break;
case LSCP_TO_STACK:
mConstant->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
default:
mConstant->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptConstantExpression::getSize()
{
return 0;
}
void LLScriptStatement::addStatement(LLScriptStatement *event)
{
if (mNextp)
{
event->mNextp = mNextp;
}
mNextp = event;
}
void LLScriptStatement::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
fprintf(fp, "Statement Base Class -- should never get here!\n");
}
S32 LLScriptStatement::getSize()
{
printf("Statement Base Class -- should never get here!\n");
return 0;
}
void LLScriptStatement::gonext(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
if (mNextp)
{
fprintf(fp, ", ");
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_EMIT_ASSEMBLY:
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
default:
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
}
S32 LLScriptStatementSequence::getSize()
{
return 0;
}
void LLScriptStatementSequence::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_PRUNE:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (prunearg)
{
// babbage: only warn on first dead code block found.
if(ptype != LSPRUNE_DEAD_CODE)
{
gErrorToText.writeWarning(fp, this, LSWARN_DEAD_CODE);
}
// babbage: set prune type to LSPRUNE_DEAD_CODE to mask other
// prune errors.
ptype = LSPRUNE_DEAD_CODE;
// babbage: reset prunearg, to track whether return needed at
// end of dead code path as CIL always needs a return/throw.
prunearg = FALSE;
}
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_TYPE:
// pass the return type into all statements so we can check returns
{
LSCRIPTType return_type = type;
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, return_type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
return_type = type;
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, return_type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
default:
mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptNOOP::getSize()
{
return 0;
}
void LLScriptNOOP::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
fprintf(fp, ";\n");
break;
case LSCP_PRUNE:
prunearg = FALSE;
break;
default:
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
void add_exit_pops(LLScriptByteCodeChunk *chunk, LLScriptScopeEntry *entry)
{
// remember that we need to pop in reverse order
S32 number, i;
if (entry->mLocals.mString)
{
number = (S32)strlen(entry->mLocals.mString);
for (i = number - 1; i >= 0; i--)
{
switch(entry->mLocals.getType(i))
{
case LST_INTEGER:
chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
break;
case LST_FLOATINGPOINT:
chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
break;
case LST_STRING:
case LST_KEY:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPS]);
break;
case LST_VECTOR:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPV]);
break;
case LST_QUATERNION:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPQ]);
break;
case LST_LIST:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPL]);
break;
default:
break;
}
}
}
if (entry->mFunctionArgs.mString)
{
number = (S32)strlen(entry->mFunctionArgs.mString);
for (i = number - 1; i >= 0; i--)
{
switch(entry->mFunctionArgs.getType(i))
{
case LST_INTEGER:
chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
break;
case LST_FLOATINGPOINT:
chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
break;
case LST_STRING:
case LST_KEY:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPS]);
break;
case LST_VECTOR:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPV]);
break;
case LST_QUATERNION:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPQ]);
break;
case LST_LIST:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPL]);
break;
default:
break;
}
}
}
}
void print_exit_pops(LLFILE *fp, LLScriptScopeEntry *entry)
{
// remember that we need to pop in reverse order
S32 number, i;
if (entry->mLocals.mString)
{
number = (S32)strlen(entry->mLocals.mString);
for (i = number - 1; i >= 0; i--)
{
fprintf(fp, "%s", LSCRIPTTypePop[entry->mLocals.getType(i)]);
}
}
if (entry->mFunctionArgs.mString)
{
number = (S32)strlen(entry->mFunctionArgs.mString);
for (i = number - 1; i >= 0; i--)
{
fprintf(fp, "%s", LSCRIPTTypePop[entry->mFunctionArgs.getType(i)]);
}
}
}
S32 LLScriptStateChange::getSize()
{
return 0;
}
void LLScriptStateChange::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "state ");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ";\n");
break;
case LSCP_EMIT_ASSEMBLY:
print_exit_pops(fp, entry);
fprintf(fp, "STATE ");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
break;
case LSCP_PRUNE:
if ( (ptype == LSPRUNE_GLOBAL_VOIDS)
||(ptype == LSPRUNE_GLOBAL_NON_VOIDS))
{
gErrorToText.writeError(fp, this, LSERROR_STATE_CHANGE_IN_GLOBAL);
}
prunearg = FALSE;
break;
case LSCP_SCOPE_PASS2:
{
LLScriptScopeEntry *entry = scope->findEntryTyped(mIdentifier->mName, LIT_STATE);
if (!entry)
{
gErrorToText.writeError(fp, this, LSERROR_UNDEFINED_NAME);
}
else
{
// if we did find it, make sure this identifier is associated with the correct scope entry
mIdentifier->mScopeEntry = entry;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
add_exit_pops(chunk, entry);
chunk->addByte(LSCRIPTOpCodes[LOPC_STATE]);
chunk->addInteger(mIdentifier->mScopeEntry->mCount);
}
break;
case LSCP_TYPE:
mReturnType = basetype;
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fprintf(fp, "ldarg.0\n");
fprintf(fp, "ldstr \"%s\"\n", mIdentifier->mName);
fprintf(fp, "call instance void class [LslUserScript]LindenLab.SecondLife.LslUserScript::ChangeState(string)\n");
// We are doing a state change. In the LSL interpreter, this is basically a longjmp. We emulate it
// here using a call to the ChangeState followed by a short cut return of the current method. To
// maintain type safety we need to push an arbitrary variable of the current method's return type
// onto the stack before returning. This will be ignored and discarded.
print_cil_init_variable(fp, mReturnType);
fprintf(fp, "ret\n");
break;
default:
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptJump::getSize()
{
return 0;
}
void LLScriptJump::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "jump ");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ";\n");
break;
case LSCP_EMIT_ASSEMBLY:
fprintf(fp, "JUMP ");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
break;
case LSCP_PRUNE:
prunearg = FALSE;
break;
case LSCP_SCOPE_PASS2:
{
LLScriptScopeEntry *entry = scope->findEntryTyped(mIdentifier->mName, LIT_LABEL);
if (!entry)
{
gErrorToText.writeError(fp, this, LSERROR_UNDEFINED_NAME);
}
else
{
// if we did find it, make sure this identifier is associated with the correct scope entry
mIdentifier->mScopeEntry = entry;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
chunk->addByte(LSCRIPTOpCodes[LOPC_JUMP]);
chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
chunk->addJump(mIdentifier->mName);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
fprintf(fp, "br ");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
break;
default:
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptLabel::getSize()
{
return 0;
}
void LLScriptLabel::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "@");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ";\n");
break;
case LSCP_EMIT_ASSEMBLY:
fprintf(fp, "LABEL ");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
break;
case LSCP_PRUNE:
// Always clear this flag, to stop pruning after return statements. A jump
// might start up code at this label, so we need to stop pruning.
prunearg = FALSE;
break;
case LSCP_SCOPE_PASS1:
// add labels to scope
if (scope->checkEntry(mIdentifier->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mIdentifier->mScopeEntry = scope->addEntry(mIdentifier->mName, LIT_LABEL, LST_NULL);
}
break;
case LSCP_EMIT_BYTE_CODE:
{
chunk->addLabel(mIdentifier->mName);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ":\n");
break;
default:
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
void add_return(LLScriptByteCodeChunk *chunk, LLScriptScopeEntry *entry)
{
add_exit_pops(chunk, entry);
chunk->addByte(LSCRIPTOpCodes[LOPC_RETURN]);
}
void print_return(LLFILE *fp, LLScriptScopeEntry *entry)
{
print_exit_pops(fp, entry);
fprintf(fp, "RETURN\n");
}
S32 LLScriptReturn::getSize()
{
return 0;
}
void LLScriptReturn::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
if (mExpression)
{
fdotabs(fp, tabs, tabsize);
fprintf(fp, "return ");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ";\n");
}
else
{
fdotabs(fp, tabs, tabsize);
fprintf(fp, "return;\n");
}
break;
case LSCP_EMIT_ASSEMBLY:
if (mExpression)
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "%s\n", LSCRIPTTypeReturn[mType]);
}
print_return(fp, entry);
break;
case LSCP_PRUNE:
if ( (ptype == LSPRUNE_GLOBAL_VOIDS)
||(ptype == LSPRUNE_EVENTS))
{
if (mExpression)
{
gErrorToText.writeError(fp, this, LSERROR_INVALID_RETURN);
}
}
else if (ptype == LSPRUNE_GLOBAL_NON_VOIDS)
{
if (!mExpression)
{
gErrorToText.writeError(fp, this, LSERROR_INVALID_VOID_RETURN);
}
}
prunearg = TRUE;
case LSCP_TYPE:
// if there is a return expression, it must be promotable to the return type of the function
if (mExpression)
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(basetype, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
else
{
mType = basetype;
}
}
else if (basetype != LST_NULL)
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
break;
case LSCP_EMIT_BYTE_CODE:
if (mExpression)
{
mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
switch(mType)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADP]);
chunk->addInteger(-12);
break;
case LST_STRING:
case LST_KEY:
// use normal store for reference counted types
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADSP]);
chunk->addInteger(-12);
break;
case LST_LIST:
// use normal store for reference counted types
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADLP]);
chunk->addInteger(-12);
break;
case LST_VECTOR:
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADVP]);
chunk->addInteger(-20);
break;
case LST_QUATERNION:
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADQP]);
chunk->addInteger(-24);
break;
default:
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADP]);
chunk->addInteger(-12);
break;
}
}
add_return(chunk, entry);
break;
case LSCP_EMIT_CIL_ASSEMBLY:
if (mExpression)
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_cast(fp, mExpression->mReturnType, mType);
}
fprintf(fp, "ret\n");
break;
default:
if (mExpression)
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptExpressionStatement::getSize()
{
return 0;
}
void LLScriptExpressionStatement::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ";\n");
break;
case LSCP_EMIT_ASSEMBLY:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression->mReturnType)
{
fprintf(fp, "%s\n", LSCRIPTTypePop[mExpression->mReturnType]);
}
break;
case LSCP_PRUNE:
prunearg = FALSE;
break;
case LSCP_EMIT_BYTE_CODE:
mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
switch(mExpression->mReturnType)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
break;
case LST_STRING:
case LST_KEY:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPS]);
break;
case LST_LIST:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPL]);
break;
case LST_VECTOR:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPV]);
break;
case LST_QUATERNION:
chunk->addByte(LSCRIPTOpCodes[LOPC_POPQ]);
break;
default:
break;
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if(mExpression->mReturnType)
{
fprintf(fp, "pop\n");
}
break;
default:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptIf::getSize()
{
return 0;
}
static void print_cil_if_test(LLFILE* fp, LSCRIPTType type)
{
switch(type)
{
case LST_INTEGER:
break;
case LST_FLOATINGPOINT:
fprintf(fp, "ldc.r8 0\n");
fprintf(fp, "ceq\n");
fprintf(fp, "ldc.i4.0\n");
fprintf(fp, "ceq\n");
break;
case LST_VECTOR:
fprintf(fp, "ldc.r8 0\n");
fprintf(fp, "ldc.r8 0\n");
fprintf(fp, "ldc.r8 0\n");
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateVector'(float32, float32, float32)\n");
fprintf(fp, "call bool [LslUserScript]LindenLab.SecondLife.LslUserScript::'Equals'(class [ScriptTypes]LindenLab.SecondLife.Vector, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
fprintf(fp, "ldc.i4.0\n");
fprintf(fp, "ceq\n");
break;
case LST_QUATERNION:
fprintf(fp, "ldc.r8 0\n");
fprintf(fp, "ldc.r8 0\n");
fprintf(fp, "ldc.r8 0\n");
fprintf(fp, "ldc.r8 1\n");
fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateQuaternion'(float32, float32, float32, float32)\n");
fprintf(fp, "call bool [LslUserScript]LindenLab.SecondLife.LslUserScript::'Equals'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");
fprintf(fp, "ldc.i4.0\n");
fprintf(fp, "ceq\n");
break;
case LST_KEY:
fprintf(fp, "call bool [LslUserScript]LindenLab.SecondLife.LslUserScript::'IsNonNullUuid'(valuetype [ScriptTypes]LindenLab.SecondLife.Key)\n");
break;
case LST_STRING:
fprintf(fp, "ldstr \"\"\n");
fprintf(fp, "call bool string::op_Equality(string, string)\n");
fprintf(fp, "ldc.i4.0\n");
fprintf(fp, "ceq\n");
break;
case LST_LIST:
fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList()\n");
fprintf(fp, "call bool [LslUserScript]LindenLab.SecondLife.LslUserScript::Equals(class [mscorlib]System.Collections.ArrayList, class [mscorlib]System.Collections.ArrayList)\n");
fprintf(fp, "ldc.i4.0\n");
fprintf(fp, "ceq\n");
break;
default:
break;
}
}
void LLScriptIf::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "if ( ");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
{
S32 tjump = gTempJumpCount++;
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "JUMPNIF ##Temp Jump %d##\n", tjump);
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump);
}
break;
case LSCP_PRUNE:
prunearg = FALSE;
break;
case LSCP_TYPE:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (type == LST_NULL)
{
gErrorToText.writeError(fp, mExpression, LSERROR_TYPE_MISMATCH);
}
mType = type;
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_BYTE_CODE:
{
char jumpname[32]; /*Flawfinder: ignore*/
snprintf(jumpname, sizeof(jumpname),"##Temp Jump %d##", gTempJumpCount++); /* Flawfinder: ignore */
mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_JUMPNIF]);
chunk->addByte(LSCRIPTTypeByte[mType]);
chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
chunk->addJump(jumpname);
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addLabel(jumpname);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
S32 tjump = gTempJumpCount++;
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_if_test(fp, mExpression->mReturnType);
fprintf(fp, "brfalse LabelTempJump%d\n", tjump);
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "LabelTempJump%d:\n", tjump);
}
break;
default:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptIfElse::getSize()
{
return 0;
}
void LLScriptIfElse::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "if ( ");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
mStatement1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fdotabs(fp, tabs, tabsize);
fprintf(fp, "else\n");
mStatement2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
{
S32 tjump1 = gTempJumpCount++;
S32 tjump2 = gTempJumpCount++;
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "JUMPNIF ##Temp Jump %d##\n", tjump1);
mStatement1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "JUMP ##Temp Jump %d##\n", tjump2);
fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump1);
mStatement2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump2);
}
break;
case LSCP_PRUNE:
{
BOOL arg1 = TRUE, arg2 = TRUE;
mStatement1->recurse(fp, tabs, tabsize, pass, ptype, arg1, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mStatement2->recurse(fp, tabs, tabsize, pass, ptype, arg2, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
prunearg = arg1 && arg2;
}
break;
case LSCP_TYPE:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (type == LST_NULL)
{
gErrorToText.writeError(fp, mExpression, LSERROR_TYPE_MISMATCH);
}
mType = type;
mStatement1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mStatement2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_BYTE_CODE:
{
char jumpname1[32]; /*Flawfinder: ignore*/
snprintf(jumpname1, sizeof(jumpname1), "##Temp Jump %d##", gTempJumpCount++); /* Flawfinder: ignore */
char jumpname2[32]; /*Flawfinder: ignore*/
snprintf(jumpname2, sizeof(jumpname2), "##Temp Jump %d##", gTempJumpCount++); /* Flawfinder: ignore */
mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_JUMPNIF]);
chunk->addByte(LSCRIPTTypeByte[mType]);
chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
chunk->addJump(jumpname1);
mStatement1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_JUMP]);
chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
chunk->addJump(jumpname2);
chunk->addLabel(jumpname1);
mStatement2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addLabel(jumpname2);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
S32 tjump1 = gTempJumpCount++;
S32 tjump2 = gTempJumpCount++;
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_if_test(fp, mExpression->mReturnType);
fprintf(fp, "brfalse LabelTempJump%d\n", tjump1);
mStatement1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "br LabelTempJump%d\n", tjump2);
fprintf(fp, "LabelTempJump%d:\n", tjump1);
mStatement2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "LabelTempJump%d:\n", tjump2);
}
break;
default:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mStatement1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mStatement2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
};
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptFor::getSize()
{
return 0;
}
void LLScriptFor::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "for ( ");
if(mSequence)
mSequence->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " ; ");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " ; ");
if(mExpressionList)
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
if(mStatement)
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
{
S32 tjump1 = gTempJumpCount++;
S32 tjump2 = gTempJumpCount++;
if(mSequence)
mSequence->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump1);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "JUMPNIF ##Temp Jump %d##\n", tjump2);
if(mStatement)
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if(mExpressionList)
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "JUMP ##Temp Jump %d##\n", tjump1);
fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump2);
}
break;
case LSCP_PRUNE:
prunearg = FALSE;
break;
case LSCP_TYPE:
if(mSequence)
mSequence->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (type == LST_NULL)
{
gErrorToText.writeError(fp, mExpression, LSERROR_TYPE_MISMATCH);
}
mType = type;
if(mExpressionList)
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if(mStatement)
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_BYTE_CODE:
{
char jumpname1[32]; /*Flawfinder: ignore*/
snprintf(jumpname1, sizeof(jumpname1), "##Temp Jump %d##", gTempJumpCount++); /* Flawfinder: ignore */
char jumpname2[32]; /*Flawfinder: ignore*/
snprintf(jumpname2, sizeof(jumpname2), "##Temp Jump %d##", gTempJumpCount++); /* Flawfinder: ignore */
if(mSequence)
mSequence->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addLabel(jumpname1);
mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_JUMPNIF]);
chunk->addByte(LSCRIPTTypeByte[mType]);
chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
chunk->addJump(jumpname2);
if(mStatement)
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if(mExpressionList)
mExpressionList->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_JUMP]);
chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
chunk->addJump(jumpname1);
chunk->addLabel(jumpname2);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
S32 tjump1 = gTempJumpCount++;
S32 tjump2 = gTempJumpCount++;
if(mSequence)
mSequence->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "LabelTempJump%d:\n", tjump1);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_if_test(fp, mExpression->mReturnType);
fprintf(fp, "brfalse LabelTempJump%d\n", tjump2);
if(mStatement)
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if(mExpressionList)
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "br LabelTempJump%d\n", tjump1);
fprintf(fp, "LabelTempJump%d:\n", tjump2);
}
break;
default:
if(mSequence)
mSequence->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if(mExpressionList)
mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if(mStatement)
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptDoWhile::getSize()
{
return 0;
}
void LLScriptDoWhile::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "do\n");
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fdotabs(fp, tabs, tabsize);
fprintf(fp, "while( ");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " );\n");
break;
case LSCP_EMIT_ASSEMBLY:
{
S32 tjump1 = gTempJumpCount++;
fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump1);
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "JUMPIF ##Temp Jump %d##\n", tjump1);
}
break;
case LSCP_PRUNE:
prunearg = FALSE;
break;
case LSCP_TYPE:
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (type == LST_NULL)
{
gErrorToText.writeError(fp, mExpression, LSERROR_TYPE_MISMATCH);
}
mType = type;
break;
case LSCP_EMIT_BYTE_CODE:
{
char jumpname1[32]; /*Flawfinder: ignore*/
snprintf(jumpname1, sizeof(jumpname1), "##Temp Jump %d##", gTempJumpCount++); /* Flawfinder: ignore */
chunk->addLabel(jumpname1);
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_JUMPIF]);
chunk->addByte(LSCRIPTTypeByte[mType]);
chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
chunk->addJump(jumpname1);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
S32 tjump1 = gTempJumpCount++;
fprintf(fp, "LabelTempJump%d:\n", tjump1);
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_if_test(fp, mExpression->mReturnType);
fprintf(fp, "brtrue LabelTempJump%d\n", tjump1);
}
break;
default:
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptWhile::getSize()
{
return 0;
}
void LLScriptWhile::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
fprintf(fp, "while( ");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
{
S32 tjump1 = gTempJumpCount++;
S32 tjump2 = gTempJumpCount++;
fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump1);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "JUMPNIF ##Temp Jump %d##\n", tjump2);
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "JUMP ##Temp Jump %d##\n", tjump1);
fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump2);
}
break;
case LSCP_PRUNE:
prunearg = FALSE;
break;
case LSCP_TYPE:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (type == LST_NULL)
{
gErrorToText.writeError(fp, mExpression, LSERROR_TYPE_MISMATCH);
}
mType = type;
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_BYTE_CODE:
{
char jumpname1[32]; /*Flawfinder: ignore*/
snprintf(jumpname1, sizeof(jumpname1), "##Temp Jump %d##", gTempJumpCount++); /* Flawfinder: ignore */
char jumpname2[32]; /*Flawfinder: ignore*/
snprintf(jumpname2, sizeof(jumpname2), "##Temp Jump %d##", gTempJumpCount++); /* Flawfinder: ignore */
chunk->addLabel(jumpname1);
mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_JUMPNIF]);
chunk->addByte(LSCRIPTTypeByte[mType]);
chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
chunk->addJump(jumpname2);
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
chunk->addByte(LSCRIPTOpCodes[LOPC_JUMP]);
chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
chunk->addJump(jumpname1);
chunk->addLabel(jumpname2);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
S32 tjump1 = gTempJumpCount++;
S32 tjump2 = gTempJumpCount++;
fprintf(fp, "LabelTempJump%d:\n", tjump1);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_if_test(fp, mExpression->mReturnType);
fprintf(fp, "brfalse LabelTempJump%d\n", tjump2);
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "br LabelTempJump%d\n", tjump1);
fprintf(fp, "LabelTempJump%d:\n", tjump2);
}
break;
default:
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptDeclaration::getSize()
{
return mType->getSize();
}
void LLScriptDeclaration::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
if (mExpression)
{
fdotabs(fp, tabs, tabsize);
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\t");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " = ");
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ";\n");
}
else
{
fdotabs(fp, tabs, tabsize);
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\t");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ";\n");
}
break;
case LSCP_EMIT_ASSEMBLY:
if (mExpression)
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
fprintf(fp, "%s%d [%s]\n", LSCRIPTTypeLocalDeclaration[mIdentifier->mScopeEntry->mType], mIdentifier->mScopeEntry->mOffset, mIdentifier->mName);
}
else if (mIdentifier->mScopeEntry->mIDType == LIT_GLOBAL)
{
gErrorToText.writeError(fp, this, LSERROR_UNDEFINED_NAME);
}
}
break;
case LSCP_PRUNE:
prunearg = FALSE;
break;
case LSCP_SCOPE_PASS1:
// Check to see if a declaration is valid here.
if (!mAllowDeclarations)
{
gErrorToText.writeError(fp, this, LSERROR_NEED_NEW_SCOPE);
}
// add labels to scope
else if (scope->checkEntry(mIdentifier->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
if (mExpression)
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
// this needs to go after expression decent to make sure that we don't add ourselves or something silly
// check expression if it exists
mIdentifier->mScopeEntry = scope->addEntry(mIdentifier->mName, LIT_VARIABLE, mType->mType);
}
break;
case LSCP_TYPE:
// if there is an expression, it must be promotable to variable type
if (mExpression && mIdentifier->mScopeEntry)
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!legal_assignment(mIdentifier->mScopeEntry->mType, type))
{
gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
}
}
break;
case LSCP_RESOURCE:
{
mIdentifier->mScopeEntry->mOffset = (S32)count;
mIdentifier->mScopeEntry->mSize = mType->getSize();
count += mIdentifier->mScopeEntry->mSize;
// Index into locals is current number of locals. Stored in mCount member of mScopeEntry.
mIdentifier->mScopeEntry->mCount = entry->mLocals.getNumber();
entry->mLocals.addType(mType->mType);
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_EMIT_BYTE_CODE:
if (mExpression)
{
mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mExpression->mReturnType != mIdentifier->mScopeEntry->mType)
{
cast2stack(chunk, mExpression->mReturnType, mIdentifier->mScopeEntry->mType);
}
switch(mExpression->mReturnType)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADP]);
}
break;
case LST_STRING:
case LST_KEY:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADSP]);
}
break;
case LST_LIST:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADLP]);
}
break;
case LST_VECTOR:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADVP]);
}
break;
case LST_QUATERNION:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADQP]);
}
break;
default:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADP]);
}
break;
}
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
S32 address = mIdentifier->mScopeEntry->mOffset;
chunk->addInteger(address);
}
}
else
{
switch(mIdentifier->mScopeEntry->mType)
{
case LST_INTEGER:
case LST_FLOATINGPOINT:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
chunk->addInteger(0);
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADP]);
}
break;
case LST_STRING:
case LST_KEY:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGS]);
chunk->addBytes("", 1);
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADSP]);
}
break;
case LST_LIST:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_STACKTOL]);
chunk->addInteger(0);
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADLP]);
}
break;
case LST_VECTOR:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGV]);
chunk->addFloat(0);
chunk->addFloat(0);
chunk->addFloat(0);
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADVP]);
}
break;
case LST_QUATERNION:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGQ]);
chunk->addFloat(1);
chunk->addFloat(0);
chunk->addFloat(0);
chunk->addFloat(0);
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADQP]);
}
break;
default:
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
chunk->addInteger(0);
chunk->addByte(LSCRIPTOpCodes[LOPC_LOADP]);
}
break;
}
if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
{
S32 address = mIdentifier->mScopeEntry->mOffset;
chunk->addInteger(address);
}
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
if (mExpression)
{
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
print_cil_cast(fp, mExpression->mReturnType, mIdentifier->mScopeEntry->mType);
}
else
{
print_cil_init_variable(fp, mIdentifier->mScopeEntry->mType);
}
fprintf(fp, "stloc.s %d\n", mIdentifier->mScopeEntry->mCount);
break;
default:
if (mExpression)
{
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
else
{
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
S32 LLScriptCompoundStatement::getSize()
{
return 0;
}
void LLScriptCompoundStatement::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
if (mStatement)
{
fdotabs(fp, tabs, tabsize);
fprintf(fp, "{\n");
mStatement->recurse(fp, tabs + 1, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fdotabs(fp, tabs, tabsize);
fprintf(fp, "}\n");
}
else
{
fdotabs(fp, tabs, tabsize);
fprintf(fp, "{\n");
fdotabs(fp, tabs, tabsize);
fprintf(fp, "}\n");
}
break;
case LSCP_EMIT_ASSEMBLY:
if (mStatement)
{
mStatement->recurse(fp, tabs + 1, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_PRUNE:
if (mStatement)
{
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
else
{
prunearg = FALSE;
}
break;
case LSCP_SCOPE_PASS1:
// compound statements create a new scope
if (mStatement)
{
mStatementScope = new LLScriptScope(gScopeStringTable);
mStatementScope->addParentScope(scope);
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mStatementScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_SCOPE_PASS2:
// compound statements create a new scope
if (mStatement)
{
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mStatementScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
default:
if (mStatement)
{
mStatement->recurse(fp, tabs + 1, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
void LLScriptEventHandler::addEvent(LLScriptEventHandler *event)
{
if (mNextp)
{
event->mNextp = mNextp;
}
mNextp = event;
}
void LLScriptEventHandler::gonext(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
default:
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
}
S32 LLScriptEventHandler::getSize()
{
return mStackSpace;
}
U64 gCurrentHandler = 0;
static void print_cil_local_init(LLFILE* fp, LLScriptScopeEntry* scopeEntry)
{
if(scopeEntry->mLocals.getNumber() > 0)
{
fprintf(fp, ".locals init (");
for(int local = 0; local < scopeEntry->mLocals.getNumber(); ++local)
{
if(local > 0)
{
fprintf(fp, ", ");
}
print_cil_type(fp, scopeEntry->mLocals.getType(local));
}
fprintf(fp, ")\n");
}
}
void LLScriptEventHandler::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
mEventp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mStatement)
{
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
else
{
fdotabs(fp, tabs, tabsize);
fprintf(fp, "{\n");
fdotabs(fp, tabs, tabsize);
fprintf(fp, "}\n");
}
break;
case LSCP_EMIT_ASSEMBLY:
mEventp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mStatement)
{
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, getSize(), mScopeEntry, entrycount, NULL);
}
if (mbNeedTrailingReturn)
{
print_return(fp, mScopeEntry);
}
fprintf(fp, "\n");
break;
case LSCP_PRUNE:
mbNeedTrailingReturn = FALSE;
prunearg = TRUE;
mStatement->recurse(fp, tabs, tabsize, pass, LSPRUNE_EVENTS, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!prunearg)
{
// this means that we didn't end with a return statement, need to add one
mbNeedTrailingReturn = TRUE;
}
break;
case LSCP_SCOPE_PASS1:
// create event level scope
mEventScope = new LLScriptScope(gScopeStringTable);
mEventScope->addParentScope(scope);
// add event parameters
mEventp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mEventScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mEventScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_SCOPE_PASS2:
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mEventScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_TYPE:
mScopeEntry = new LLScriptScopeEntry("Event", LIT_HANDLER, LST_NULL);
switch(mEventp->mType)
{
case LSTT_STATE_ENTRY:
break;
case LSTT_STATE_EXIT:
break;
case LSTT_TOUCH_START:
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
break;
case LSTT_TOUCH:
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
break;
case LSTT_TOUCH_END:
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
break;
case LSTT_COLLISION_START:
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
break;
case LSTT_COLLISION:
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
break;
case LSTT_COLLISION_END:
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
break;
case LSTT_LAND_COLLISION_START:
mScopeEntry->mFunctionArgs.addType(LST_VECTOR);
break;
case LSTT_LAND_COLLISION:
mScopeEntry->mFunctionArgs.addType(LST_VECTOR);
break;
case LSTT_LAND_COLLISION_END:
mScopeEntry->mFunctionArgs.addType(LST_VECTOR);
break;
case LSTT_INVENTORY:
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
break;
case LSTT_ATTACH:
mScopeEntry->mFunctionArgs.addType(LST_KEY);
break;
case LSTT_DATASERVER:
mScopeEntry->mFunctionArgs.addType(LST_KEY);
mScopeEntry->mFunctionArgs.addType(LST_STRING);
break;
case LSTT_TIMER:
break;
case LSTT_MOVING_START:
break;
case LSTT_MOVING_END:
break;
case LSTT_OBJECT_REZ:
mScopeEntry->mFunctionArgs.addType(LST_KEY);
break;
case LSTT_REMOTE_DATA:
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
mScopeEntry->mFunctionArgs.addType(LST_KEY);
mScopeEntry->mFunctionArgs.addType(LST_KEY);
mScopeEntry->mFunctionArgs.addType(LST_STRING);
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
mScopeEntry->mFunctionArgs.addType(LST_STRING);
break;
case LSTT_CHAT:
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
mScopeEntry->mFunctionArgs.addType(LST_STRING);
mScopeEntry->mFunctionArgs.addType(LST_KEY);
mScopeEntry->mFunctionArgs.addType(LST_STRING);
break;
case LSTT_SENSOR:
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
break;
case LSTT_CONTROL:
mScopeEntry->mFunctionArgs.addType(LST_KEY);
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
break;
case LSTT_LINK_MESSAGE:
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
mScopeEntry->mFunctionArgs.addType(LST_STRING);
mScopeEntry->mFunctionArgs.addType(LST_KEY);
break;
case LSTT_MONEY:
mScopeEntry->mFunctionArgs.addType(LST_KEY);
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
break;
case LSTT_EMAIL:
mScopeEntry->mFunctionArgs.addType(LST_STRING);
mScopeEntry->mFunctionArgs.addType(LST_STRING);
mScopeEntry->mFunctionArgs.addType(LST_STRING);
mScopeEntry->mFunctionArgs.addType(LST_STRING);
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
break;
case LSTT_REZ:
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
break;
case LSTT_NO_SENSOR:
break;
case LSTT_AT_TARGET:
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
mScopeEntry->mFunctionArgs.addType(LST_VECTOR);
mScopeEntry->mFunctionArgs.addType(LST_VECTOR);
break;
case LSTT_NOT_AT_TARGET:
break;
case LSTT_AT_ROT_TARGET:
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
mScopeEntry->mFunctionArgs.addType(LST_QUATERNION);
mScopeEntry->mFunctionArgs.addType(LST_QUATERNION);
break;
case LSTT_NOT_AT_ROT_TARGET:
break;
case LSTT_RTPERMISSIONS:
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
break;
case LSTT_HTTP_RESPONSE:
mScopeEntry->mFunctionArgs.addType(LST_KEY);
mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
mScopeEntry->mFunctionArgs.addType(LST_LIST);
mScopeEntry->mFunctionArgs.addType(LST_STRING);
break;
case LSTT_HTTP_REQUEST:
mScopeEntry->mFunctionArgs.addType(LST_KEY);
mScopeEntry->mFunctionArgs.addType(LST_STRING);
mScopeEntry->mFunctionArgs.addType(LST_STRING);
break;
default:
break;
}
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_RESOURCE:
// first determine resource counts for globals
count = 0;
mEventp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
// Store offset of first local as with global functions, so locals and arguments can be distinguished with is_parameter when compiling to CIL.
mScopeEntry->mOffset = (S32) count;
if (mStatement)
{
entrycount = 0;
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, mScopeEntry, entrycount, NULL);
const char *function_args = mScopeEntry->mFunctionArgs.mString;
fprintf(fp, "Function Args: %s\n", function_args?function_args:"");
const char *local_list = mScopeEntry->mLocals.mString;
fprintf(fp, "Local List: %s\n", local_list?local_list:"");
}
mStackSpace = (S32)count;
break;
case LSCP_DETERMINE_HANDLERS:
count |= LSCRIPTStateBitField[mEventp->mType];
break;
case LSCP_EMIT_BYTE_CODE:
{
llassert(mEventp);
if (!mEventp) return;
// order for event handler
// set jump table value
S32 jumpoffset;
jumpoffset = LSCRIPTDataSize[LST_INTEGER]*get_event_handler_jump_position(gCurrentHandler, mEventp->mType)*2;
integer2bytestream(chunk->mCodeChunk, jumpoffset, chunk->mCurrentOffset);
// 0 - 3: offset to actual data
S32 offsetoffset = chunk->mCurrentOffset;
S32 offsetdelta = 0;
chunk->addBytes(4);
// null terminated event name and null terminated parameters
LLScriptByteCodeChunk *event = new LLScriptByteCodeChunk(FALSE);
mEventp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, event, heap, stacksize, entry, entrycount, NULL);
chunk->addBytes(event->mCodeChunk, event->mCurrentOffset);
delete event;
chunk->addBytes(1);
// now we're at the first opcode
offsetdelta = chunk->mCurrentOffset - offsetoffset;
integer2bytestream(chunk->mCodeChunk, offsetoffset, offsetdelta);
// get ready to compute the number of bytes of opcode
offsetdelta = chunk->mCurrentOffset;
if (mStatement)
{
LLScriptByteCodeChunk *statements = new LLScriptByteCodeChunk(TRUE);
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, statements, heap, getSize(), mScopeEntry, entrycount, NULL);
statements->connectJumps();
chunk->addBytes(statements->mCodeChunk, statements->mCurrentOffset);
delete statements;
}
if (mbNeedTrailingReturn)
{
add_return(chunk, mScopeEntry);
}
// now stuff in the number of bytes of stack space that this routine needs
integer2bytestream(chunk->mCodeChunk, jumpoffset, getSize());
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
// Method signature prefix.
fprintf(fp, ".method public hidebysig instance default void ");
// Mangle event handler name by prefixing it with state name.
// Allows state changing by finding handlers prefixed with new
// state name. Prefix disambiguates functions and event handlers.
fprintf(fp, "e");
fprintf(fp, "%s", entry->mIdentifier);
// Handler name and arguments.
mEventp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
// Method signature postfix.
fprintf(fp, " cil managed\n");
// Function header.
fprintf(fp,"{\n");
fprintf(fp, ".maxstack 500\n"); // TODO: Calculated stack size...
// Allocate space for locals.
print_cil_local_init(fp, mScopeEntry);
if (mStatement)
{
// Pass scope so identifiers can determine parameter or local.
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, mScopeEntry, entrycount, NULL);
}
// Function footer.
if (mbNeedTrailingReturn)
{
// TODO: throw exception?
fprintf(fp, "ret\n");
}
fprintf(fp, "}\n");
break;
default:
mEventp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mStatement)
{
mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
void LLScriptFunctionDec::addFunctionParameter(LLScriptFunctionDec *dec)
{
if (mNextp)
{
dec->mNextp = mNextp;
}
mNextp = dec;
}
void LLScriptFunctionDec::gonext(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
if (mNextp)
{
fprintf(fp, ", ");
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_EMIT_ASSEMBLY:
if (mNextp)
{
fprintf(fp, ", ");
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
default:
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
}
S32 LLScriptFunctionDec::getSize()
{
return 0;
}
void LLScriptFunctionDec::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " ");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " ");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_SCOPE_PASS1:
// add function names into global scope
if (scope->checkEntry(mIdentifier->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mIdentifier->mScopeEntry = scope->addEntry(mIdentifier->mName, LIT_VARIABLE, mType->mType);
}
break;
case LSCP_RESOURCE:
{
// we're just tryng to determine how much space the variable needs
mIdentifier->mScopeEntry->mOffset = (S32)count;
mIdentifier->mScopeEntry->mSize = mType->getSize();
count += mIdentifier->mScopeEntry->mSize;
}
break;
case LSCP_EMIT_BYTE_CODE:
{
// return type
char typereturn;
if (mType)
{
typereturn = LSCRIPTTypeByte[mType->mType];
}
else
{
typereturn = LSCRIPTTypeByte[LST_NULL];
}
chunk->addBytes(&typereturn, 1);
// name
#ifdef LSL_INCLUDE_DEBUG_INFO
chunk->addBytes(mIdentifier->mName, strlen(mIdentifier->mName) + 1);
#else
chunk->addBytes(1);
#endif
}
break;
case LSCP_BUILD_FUNCTION_ARGS:
{
entry->mFunctionArgs.addType(mType->mType);
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " ");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if(NULL != mNextp)
{
fprintf(fp, ",");
}
break;
default:
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
void LLScriptGlobalFunctions::addGlobalFunction(LLScriptGlobalFunctions *global)
{
if (mNextp)
{
global->mNextp = mNextp;
}
mNextp = global;
}
void LLScriptGlobalFunctions::gonext(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
default:
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
}
S32 LLScriptGlobalFunctions::getSize()
{
return 0;
}
void LLScriptGlobalFunctions::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
if (mType)
{
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\t");
}
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mParameters)
{
fprintf(fp, "( ");
mParameters->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
}
else
{
fprintf(fp, "()\n");
}
if (mStatements)
{
fdotabs(fp, tabs, tabsize);
mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, mIdentifier->mScopeEntry, entrycount, NULL);
}
else
{
fdotabs(fp, tabs, tabsize);
fprintf(fp, "{\n");
fdotabs(fp, tabs, tabsize);
fprintf(fp, "}\n");
}
break;
case LSCP_EMIT_ASSEMBLY:
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mParameters)
{
fprintf(fp, "( ");
mParameters->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )\n");
}
else
{
fprintf(fp, "()\n");
}
if (mStatements)
{
mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, mIdentifier->mScopeEntry->mSize, mIdentifier->mScopeEntry, entrycount, NULL);
}
if (mbNeedTrailingReturn)
{
print_return(fp, mIdentifier->mScopeEntry);
}
fprintf(fp, "\n");
break;
case LSCP_PRUNE:
mbNeedTrailingReturn = FALSE;
if (mType)
{
prunearg = TRUE;
mStatements->recurse(fp, tabs, tabsize, pass, LSPRUNE_GLOBAL_NON_VOIDS, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!prunearg)
{
gErrorToText.writeError(fp, this, LSERROR_NO_RETURN);
}
}
else
{
prunearg = TRUE;
mStatements->recurse(fp, tabs, tabsize, pass, LSPRUNE_GLOBAL_VOIDS, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (!prunearg)
{
// this means that we didn't end with a return statement, need to add one
mbNeedTrailingReturn = TRUE;
}
}
break;
case LSCP_SCOPE_PASS1:
// add function names into global scope
if (scope->checkEntry(mIdentifier->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
if (mType)
{
mIdentifier->mScopeEntry = scope->addEntry(mIdentifier->mName, LIT_FUNCTION, mType->mType);
}
else
{
mIdentifier->mScopeEntry = scope->addEntry(mIdentifier->mName, LIT_FUNCTION, LST_NULL);
}
}
// create function level scope
mFunctionScope = new LLScriptScope(gScopeStringTable);
mFunctionScope->addParentScope(scope);
// function parameters
if (mParameters)
{
mParameters->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mFunctionScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mFunctionScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_SCOPE_PASS2:
mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mFunctionScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mParameters)
{
if (mIdentifier->mScopeEntry)
{
mParameters->recurse(fp, tabs, tabsize, LSCP_BUILD_FUNCTION_ARGS, ptype, prunearg, mFunctionScope, type, basetype, count, chunk, heap, stacksize, mIdentifier->mScopeEntry, 0, NULL);
}
}
break;
case LSCP_TYPE:
if (mType)
{
mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, mType->mType, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
else
{
type = LST_NULL;
mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_RESOURCE:
// first determine resource counts for globals
count = 0;
if (mParameters)
{
mParameters->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
if (mIdentifier->mScopeEntry)
{
// this isn't a bug . . . Offset is used to determine how much is params vs locals
mIdentifier->mScopeEntry->mOffset = (S32)count;
}
if (mStatements)
{
entrycount = 0;
mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, mIdentifier->mScopeEntry, entrycount, NULL);
fprintf(fp, "Function Args: %s\n", mIdentifier->mScopeEntry->mFunctionArgs.mString);
fprintf(fp, "Local List: %s\n", mIdentifier->mScopeEntry->mLocals.mString);
if (mIdentifier->mScopeEntry)
{
mIdentifier->mScopeEntry->mSize = (S32)count;
}
}
break;
case LSCP_EMIT_BYTE_CODE:
{
// order for global functions
// set jump table value
S32 jumpoffset = LSCRIPTDataSize[LST_INTEGER]*mIdentifier->mScopeEntry->mCount + LSCRIPTDataSize[LST_INTEGER];
integer2bytestream(chunk->mCodeChunk, jumpoffset, chunk->mCurrentOffset);
// 0 - 3: offset to actual data
S32 offsetoffset = chunk->mCurrentOffset;
S32 offsetdelta = 0;
chunk->addBytes(4);
// null terminated function name
#ifdef LSL_INCLUDE_DEBUG_INFO
chunk->addBytes(mIdentifier->mName, strlen(mIdentifier->mName) + 1);
#else
chunk->addBytes(1);
#endif
// return type
char typereturn;
if (mType)
{
typereturn = LSCRIPTTypeByte[mType->mType];
}
else
{
typereturn = LSCRIPTTypeByte[LST_NULL];
}
chunk->addBytes(&typereturn, 1);
// null terminated parameters, followed by type
if (mParameters)
{
LLScriptByteCodeChunk *params = new LLScriptByteCodeChunk(FALSE);
mParameters->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, params, heap, stacksize, entry, entrycount, NULL);
chunk->addBytes(params->mCodeChunk, params->mCurrentOffset);
delete params;
}
chunk->addBytes(1);
// now we're at the first opcode
offsetdelta = chunk->mCurrentOffset - offsetoffset;
integer2bytestream(chunk->mCodeChunk, offsetoffset, offsetdelta);
if (mStatements)
{
LLScriptByteCodeChunk *statements = new LLScriptByteCodeChunk(TRUE);
mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, statements, heap, mIdentifier->mScopeEntry->mSize, mIdentifier->mScopeEntry, entrycount, NULL);
statements->connectJumps();
chunk->addBytes(statements->mCodeChunk, statements->mCurrentOffset);
delete statements;
}
if (mbNeedTrailingReturn)
{
add_return(chunk, mIdentifier->mScopeEntry);
}
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
// Function header. Prefix function name with g to distinguish
// from event handlers.
fprintf(fp, ".method public hidebysig instance default ");
print_cil_type(fp, mType ? mType->mType : LST_NULL);
fprintf(fp, " 'g");
fprintf(fp, "%s", mIdentifier->mName);
fprintf(fp, "'");
if (mParameters)
{
fprintf(fp, "( ");
mParameters->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, " )");
}
else
{
fprintf(fp, "()");
}
fprintf(fp, " cil managed\n{\n");
fprintf(fp, ".maxstack 500\n"); // TODO: Calculated stack size...
// Allocate space for locals.
print_cil_local_init(fp, mIdentifier->mScopeEntry);
if (mStatements)
{
mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, mIdentifier->mScopeEntry->mSize, mIdentifier->mScopeEntry, entrycount, NULL);
}
// Function footer.
if (mbNeedTrailingReturn)
{
// TODO: throw exception?
fprintf(fp, "ret\n");
}
fprintf(fp, "}\n");
fprintf(fp, "\n");
}
break;
default:
if (mType)
{
mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mParameters)
{
mParameters->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
if (mStatements)
{
mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
void LLScriptState::addState(LLScriptState *state)
{
if (mNextp)
{
state->mNextp = mNextp;
}
mNextp = state;
}
void LLScriptState::gonext(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
default:
if (mNextp)
{
mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
}
S32 LLScriptState::getSize()
{
return 0;
}
void LLScriptState::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
fdotabs(fp, tabs, tabsize);
if (mType == LSSTYPE_DEFAULT)
{
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
fdotabs(fp, tabs, tabsize);
fprintf(fp, "{\n");
}
else
{
fprintf(fp, "state ");
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
fdotabs(fp, tabs, tabsize);
fprintf(fp, "{\n");
}
if (mEvent)
{
mEvent->recurse(fp, tabs + 1, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
fdotabs(fp, tabs, tabsize);
fprintf(fp, "}\n");
break;
case LSCP_EMIT_ASSEMBLY:
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, ":\n");
if (mEvent)
{
fprintf(fp, "EVENTS\n");
mEvent->recurse(fp, tabs + 1, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
}
break;
case LSCP_SCOPE_PASS1:
// add state name
if (scope->checkEntry(mIdentifier->mName))
{
gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
}
else
{
mIdentifier->mScopeEntry = scope->addEntry(mIdentifier->mName, LIT_STATE, LST_NULL);
}
mStateScope = new LLScriptScope(gScopeStringTable);
mStateScope->addParentScope(scope);
// now do the events
if (mEvent)
{
mEvent->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mStateScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_SCOPE_PASS2:
if (mEvent)
{
mEvent->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_TYPE:
if (mEvent)
{
mEvent->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
case LSCP_EMIT_BYTE_CODE:
{
// order for states
// set jump table value
S32 jumpoffset;
if (LSL2_CURRENT_MAJOR_VERSION == LSL2_MAJOR_VERSION_TWO)
{
jumpoffset = LSCRIPTDataSize[LST_INTEGER]*3*mIdentifier->mScopeEntry->mCount + LSCRIPTDataSize[LST_INTEGER];
}
else
{
jumpoffset = LSCRIPTDataSize[LST_INTEGER]*2*mIdentifier->mScopeEntry->mCount + LSCRIPTDataSize[LST_INTEGER];
}
integer2bytestream(chunk->mCodeChunk, jumpoffset, chunk->mCurrentOffset);
// need to figure out what handlers this state has registered
// we'll use to count to find it
count = 0;
if (mEvent)
{
mEvent->recurse(fp, tabs, tabsize, LSCP_DETERMINE_HANDLERS, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
gCurrentHandler = count;
}
// add description word into chunk
if (LSL2_CURRENT_MAJOR_VERSION == LSL2_MAJOR_VERSION_TWO)
{
u642bytestream(chunk->mCodeChunk, jumpoffset, gCurrentHandler);
}
else
{
integer2bytestream(chunk->mCodeChunk, jumpoffset, (S32)gCurrentHandler);
}
// 0 - 3: offset to event jump table
S32 offsetoffset = chunk->mCurrentOffset;
S32 offsetdelta = 0;
chunk->addBytes(4);
// null terminated state name
#ifdef LSL_INCLUDE_DEBUG_INFO
chunk->addBytes(mIdentifier->mName, strlen(mIdentifier->mName) + 1);
#else
chunk->addBytes(1);
#endif
// now we're at the jump table
offsetdelta = chunk->mCurrentOffset - offsetoffset;
integer2bytestream(chunk->mCodeChunk, offsetoffset, offsetdelta);
// add the events themselves
if (mEvent)
{
LLScriptByteCodeChunk *events = new LLScriptByteCodeChunk(FALSE);
// make space for event jump table
events->addBytes(LSCRIPTDataSize[LST_INTEGER]*get_number_of_event_handlers(gCurrentHandler)*2);
mEvent->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, events, heap, stacksize, entry, entrycount, NULL);
chunk->addBytes(events->mCodeChunk, events->mCurrentOffset);
delete events;
}
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
if (mEvent)
{
// Entry not used at this level, so pass state scope as entry parameter, to allow event handlers to do name mangling.
mEvent->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, mIdentifier->mScopeEntry, entrycount, NULL);
}
break;
default:
if (mType == LSSTYPE_DEFAULT)
{
}
else
{
mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
if (mEvent)
{
mEvent->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
break;
}
gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
// Converts string to a valid CIL class name and stores the result
// in the supplied buffer, which should be at least 32 chars long.
// If the string starts with a UUID, all characters in the UUID are included
// in the generated name.
void to_class_name(char* buffer, const char* string)
{
strcpy(buffer, "LSL-");
strcat(buffer, string);
char* current_char = buffer;
while((*current_char) != 0)
{
if(isalnum(*current_char))
{
++current_char;
}
else if((*current_char) == '-')
{
(*current_char) = '_';
++current_char;
}
else
{
(*current_char) = 0;
}
}
}
void LLScriptScript::setClassName(const char* class_name)
{
to_class_name(mClassName, class_name);
}
S32 LLScriptScript::getSize()
{
return 0;
}
LLScriptScript::LLScriptScript(LLScritpGlobalStorage *globals,
LLScriptState *states) :
LLScriptFilePosition(0, 0),
mStates(states), mGlobalScope(NULL), mGlobals(NULL), mGlobalFunctions(NULL), mGodLike(FALSE)
{
const char DEFAULT_BYTECODE_FILENAME[] = "lscript.lso";
mBytecodeDest = DEFAULT_BYTECODE_FILENAME;
LLScriptGlobalVariable *tvar;
LLScriptGlobalFunctions *tfunc;
LLScritpGlobalStorage *temp;
temp = globals;
while(temp)
{
if (temp->mbGlobalFunction)
{
if (!mGlobalFunctions)
{
mGlobalFunctions = (LLScriptGlobalFunctions *)temp->mGlobal;
}
else
{
tfunc = mGlobalFunctions;
while(tfunc->mNextp)
{
tfunc = tfunc->mNextp;
}
tfunc->mNextp = (LLScriptGlobalFunctions *)temp->mGlobal;
}
}
else
{
if (!mGlobals)
{
mGlobals = (LLScriptGlobalVariable *)temp->mGlobal;
}
else
{
tvar = mGlobals;
while(tvar->mNextp)
{
tvar = tvar->mNextp;
}
tvar->mNextp = (LLScriptGlobalVariable *)temp->mGlobal;
}
}
temp = temp->mNextp;
}
mClassName[0] = '\0';
}
void LLScriptScript::setBytecodeDest(const char* dst_filename)
{
mBytecodeDest = ll_safe_string(dst_filename);
}
static void print_cil_globals(LLFILE* fp, LLScriptGlobalVariable* global)
{
fprintf(fp, ".field public ");
print_cil_type(fp, global->mType->mType);
fprintf(fp, " '%s'\n", global->mIdentifier->mName);
if(NULL != global->mNextp)
{
print_cil_globals(fp, global->mNextp);
}
}
void LLScriptScript::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
if (gErrorToText.getErrors())
{
return;
}
switch(pass)
{
case LSCP_PRETTY_PRINT:
if (mGlobals)
{
fdotabs(fp, tabs, tabsize);
mGlobals->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
if (mGlobalFunctions)
{
fdotabs(fp, tabs, tabsize);
mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
fdotabs(fp, tabs, tabsize);
mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_PRUNE:
if (mGlobalFunctions)
{
mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}
mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_SCOPE_PASS1:
{
mGlobalScope = new LLScriptScope(gScopeStringTable);
// zeroth, add library functions to global scope
U16 function_index = 0;
const char *arg;
LLScriptScopeEntry *sentry;
for (std::vector<LLScriptLibraryFunction>::const_iterator i = gScriptLibrary.mFunctions.begin();
i != gScriptLibrary.mFunctions.end(); ++i)
{
// First, check to make sure this isn't a god only function, or that the viewer's agent is a god.
if (!i->mGodOnly || mGodLike)
{
if (i->mReturnType)
sentry = mGlobalScope->addEntry(i->mName, LIT_LIBRARY_FUNCTION, char2type(*i->mReturnType));
else
sentry = mGlobalScope->addEntry(i->mName, LIT_LIBRARY_FUNCTION, LST_NULL);
sentry->mLibraryNumber = function_index;
arg = i->mArgs;
if (arg)
{
while (*arg)
{
sentry->mFunctionArgs.addType(char2type(*arg));
sentry->mSize += LSCRIPTDataSize[char2type(*arg)];
sentry->mOffset += LSCRIPTDataSize[char2type(*arg)];
arg++;
}
}
}
function_index++;
}
// first go and collect all the global variables
if (mGlobals)
mGlobals->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mGlobalScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
// second, do the global functions
if (mGlobalFunctions)
mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mGlobalScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
// now do states
mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mGlobalScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
case LSCP_SCOPE_PASS2:
// now we're checking jumps, function calls, and state transitions
if (mGlobalFunctions)
mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mGlobalScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mGlobalScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_TYPE:
// first we need to check global variables
if (mGlobals)
mGlobals->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
// now do global functions and states
if (mGlobalFunctions)
mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_RESOURCE:
// first determine resource counts for globals
count = 0;
if (mGlobals)
mGlobals->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
// now do locals
if (mGlobalFunctions)
mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
case LSCP_EMIT_ASSEMBLY:
if (mGlobals)
{
fprintf(fp, "GLOBALS\n");
fdotabs(fp, tabs, tabsize);
mGlobals->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
}
if (mGlobalFunctions)
{
fprintf(fp, "GLOBAL FUNCTIONS\n");
fdotabs(fp, tabs, tabsize);
mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
}
fprintf(fp, "STATES\n");
fdotabs(fp, tabs, tabsize);
mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(fp, "\n");
break;
case LSCP_EMIT_BYTE_CODE:
{
// first, create data structure to hold the whole shebang
LLScriptScriptCodeChunk *code = new LLScriptScriptCodeChunk(TOP_OF_MEMORY);
// ok, let's add the registers, all zeroes for now
S32 i;
S32 nooffset = 0;
for (i = LREG_IP; i < LREG_EOF; i++)
{
if (i < LREG_NCE)
code->mRegisters->addBytes(4);
else if (LSL2_CURRENT_MAJOR_VERSION == LSL2_MAJOR_VERSION_TWO)
code->mRegisters->addBytes(8);
}
// global variables
if (mGlobals)
mGlobals->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, code->mGlobalVariables, code->mHeap, stacksize, entry, entrycount, NULL);
// put the ending heap block onto the heap
U8 *temp;
S32 size = lsa_create_data_block(&temp, NULL, 0);
code->mHeap->addBytes(temp, size);
delete [] temp;
// global functions
// make space for global function jump table
if (mGlobalFunctions)
{
code->mGlobalFunctions->addBytes(LSCRIPTDataSize[LST_INTEGER]*mGlobalScope->mFunctionCount + LSCRIPTDataSize[LST_INTEGER]);
integer2bytestream(code->mGlobalFunctions->mCodeChunk, nooffset, mGlobalScope->mFunctionCount);
mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, code->mGlobalFunctions, NULL, stacksize, entry, entrycount, NULL);
}
nooffset = 0;
// states
// make space for state jump/info table
if (LSL2_CURRENT_MAJOR_VERSION == LSL2_MAJOR_VERSION_TWO)
{
code->mStates->addBytes(LSCRIPTDataSize[LST_INTEGER]*3*mGlobalScope->mStateCount + LSCRIPTDataSize[LST_INTEGER]);
}
else
{
code->mStates->addBytes(LSCRIPTDataSize[LST_INTEGER]*2*mGlobalScope->mStateCount + LSCRIPTDataSize[LST_INTEGER]);
}
integer2bytestream(code->mStates->mCodeChunk, nooffset, mGlobalScope->mStateCount);
mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, code->mStates, NULL, stacksize, entry, entrycount, NULL);
// now, put it all together and spit it out
// we need
LLFILE* bcfp = LLFile::fopen(mBytecodeDest, "wb"); /*Flawfinder: ignore*/
code->build(fp, bcfp);
fclose(bcfp);
delete code;
}
break;
case LSCP_EMIT_CIL_ASSEMBLY:
{
LLFILE *bcfp = LLFile::fopen(mBytecodeDest, "wb");
// Output dependencies.
fprintf(bcfp, ".assembly extern mscorlib {.ver 1:0:5000:0}\n");
fprintf(bcfp, ".assembly extern LslLibrary {.ver 0:1:0:0}\n");
fprintf(bcfp, ".assembly extern LslUserScript {.ver 0:1:0:0}\n");
fprintf(bcfp, ".assembly extern ScriptTypes {.ver 0:1:0:0}\n");
// Output assembly name.
fprintf(bcfp, ".assembly '%s' {.ver 0:0:0:0}\n", gScriptp->getClassName());
// Output class header.
fprintf(bcfp, ".class public auto ansi serializable beforefieldinit %s extends [LslUserScript]LindenLab.SecondLife.LslUserScript\n", gScriptp->getClassName());
fprintf(bcfp, "{\n");
// Output globals as members.
if(NULL != mGlobals)
{
print_cil_globals(bcfp, mGlobals);
}
// Output ctor header.
fprintf(bcfp, ".method public hidebysig specialname rtspecialname instance default void .ctor () cil managed\n");
fprintf(bcfp, "{\n");
fprintf(bcfp, ".maxstack 500\n");
// Initialise globals as members in ctor.
if (mGlobals)
{
fdotabs(bcfp, tabs, tabsize);
mGlobals->recurse(bcfp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(bcfp, "\n");
}
// Output ctor footer.
fprintf(bcfp, "ldarg.0\n");
fprintf(bcfp, "call instance void [LslUserScript]LindenLab.SecondLife.LslUserScript::.ctor()\n");
fprintf(bcfp, "ret\n");
fprintf(bcfp, "}\n");
// Output functions as methods.
if (mGlobalFunctions)
{
fdotabs(bcfp, tabs, tabsize);
mGlobalFunctions->recurse(bcfp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(bcfp, "\n");
}
// Output states as name mangled methods.
fdotabs(bcfp, tabs, tabsize);
mStates->recurse(bcfp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
fprintf(bcfp, "\n");
// Output class footer.
fprintf(bcfp, "}\n");
// Close file.
fclose(bcfp);
}
break;
default:
if (mGlobals)
mGlobals->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
if (mGlobalFunctions)
mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
break;
}
}