Files
SingularityViewer/indra/llcommon/llunittype.h
2019-03-24 20:59:26 -04:00

850 lines
31 KiB
C++

/**
* @file llunit.h
* @brief Unit conversion classes
*
* $LicenseInfo:firstyear=2001&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2012, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LL_UNITTYPE_H
#define LL_UNITTYPE_H
#include "stdtypes.h"
#include "llpreprocessor.h"
#include "llerror.h"
//lightweight replacement of type traits for simple type equality check
template<typename S, typename T>
struct LLIsSameType
{
static const bool value = false;
};
template<typename T>
struct LLIsSameType<T, T>
{
static const bool value = true;
};
// workaround for decltype() not existing and typeof() not working inline in gcc 4.2
template<typename S, typename T>
struct LLResultTypeAdd
{
typedef LL_TYPEOF(S() + T()) type_t;
};
template<typename S, typename T>
struct LLResultTypeSubtract
{
typedef LL_TYPEOF(S() - T()) type_t;
};
template<typename S, typename T>
struct LLResultTypeMultiply
{
typedef LL_TYPEOF(S() * T()) type_t;
};
template<typename S, typename T>
struct LLResultTypeDivide
{
typedef LL_TYPEOF(S() / T(1)) type_t;
};
template<typename S, typename T>
struct LLResultTypePromote
{
typedef LL_TYPEOF((true) ? S() : T()) type_t;
};
template<typename STORAGE_TYPE, typename UNITS>
struct LLUnit
{
typedef LLUnit<STORAGE_TYPE, UNITS> self_t;
typedef STORAGE_TYPE storage_t;
typedef void is_unit_t;
// value initialization
LL_FORCE_INLINE explicit LLUnit(storage_t value = storage_t())
: mValue(value)
{}
LL_FORCE_INLINE static self_t convert(self_t v)
{
return v;
}
template<typename FROM_STORAGE_TYPE>
LL_FORCE_INLINE static self_t convert(LLUnit<FROM_STORAGE_TYPE, UNITS> v)
{
self_t result;
result.mValue = (STORAGE_TYPE)v.value();
return result;
}
template<typename FROM_UNITS>
LL_FORCE_INLINE static self_t convert(LLUnit<STORAGE_TYPE, FROM_UNITS> v)
{
self_t result;
STORAGE_TYPE divisor = ll_convert_units(v, result);
result.mValue /= divisor;
return result;
}
template<typename FROM_STORAGE_TYPE, typename FROM_UNITS>
LL_FORCE_INLINE static self_t convert(LLUnit<FROM_STORAGE_TYPE, FROM_UNITS> v)
{
typedef typename LLResultTypePromote<FROM_STORAGE_TYPE, STORAGE_TYPE>::type_t result_storage_t;
LLUnit<result_storage_t, UNITS> result;
result_storage_t divisor = ll_convert_units(v, result);
result.value(result.value() / divisor);
return self_t(result.value());
}
// unit initialization and conversion
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE LLUnit(LLUnit<OTHER_STORAGE_TYPE, OTHER_UNITS> other)
: mValue(convert(other).mValue)
{}
LL_FORCE_INLINE storage_t value() const
{
return mValue;
}
LL_FORCE_INLINE void value(const storage_t& value)
{
mValue = value;
}
template<typename NEW_UNITS>
storage_t valueInUnits() const
{
return LLUnit<storage_t, NEW_UNITS>(*this).value();
}
template<typename NEW_UNITS>
void valueInUnits(const storage_t& value) const
{
*this = LLUnit<storage_t, NEW_UNITS>(value);
}
LL_FORCE_INLINE operator storage_t() const
{
return value();
}
/*LL_FORCE_INLINE self_t& operator= (storage_t v)
{
value(v);
return *this;
}*/
LL_FORCE_INLINE void operator += (self_t other)
{
mValue += convert(other).mValue;
}
LL_FORCE_INLINE void operator -= (self_t other)
{
mValue -= convert(other).mValue;
}
LL_FORCE_INLINE void operator *= (const storage_t& multiplicand)
{
mValue *= multiplicand;
}
LL_FORCE_INLINE void operator *= (const self_t& multiplicand)
{
// spurious use of dependent type to stop gcc from triggering the static assertion before instantiating the template
LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE, "Multiplication of unit types not supported.");
}
LL_FORCE_INLINE void operator /= (const storage_t& divisor)
{
mValue /= divisor;
}
void operator /= (const self_t& divisor)
{
// spurious use of dependent type to stop gcc from triggering the static assertion before instantiating the template
LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE, "Illegal in-place division of unit types.");
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator == (const LLUnit<OTHER_STORAGE_TYPE, OTHER_UNITS>& other) const
{
return mValue == convert(other).value();
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator != (const LLUnit<OTHER_STORAGE_TYPE, OTHER_UNITS>& other) const
{
return mValue != convert(other).value();
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator < (const LLUnit<OTHER_STORAGE_TYPE, OTHER_UNITS>& other) const
{
return mValue < convert(other).value();
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator <= (const LLUnit<OTHER_STORAGE_TYPE, OTHER_UNITS>& other) const
{
return mValue <= convert(other).value();
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator > (const LLUnit<OTHER_STORAGE_TYPE, OTHER_UNITS>& other) const
{
return mValue > convert(other).value();
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator >= (const LLUnit<OTHER_STORAGE_TYPE, OTHER_UNITS>& other) const
{
return mValue >= convert(other).value();
}
protected:
storage_t mValue;
};
template<typename STORAGE_TYPE, typename UNITS>
std::ostream& operator <<(std::ostream& s, const LLUnit<STORAGE_TYPE, UNITS>& unit)
{
s << unit.value() << UNITS::getUnitLabel();
return s;
}
template<typename STORAGE_TYPE, typename UNITS>
std::istream& operator >>(std::istream& s, LLUnit<STORAGE_TYPE, UNITS>& unit)
{
STORAGE_TYPE val;
s >> val;
unit.value(val);
return s;
}
template<typename STORAGE_TYPE, typename UNITS>
struct LLUnitImplicit : public LLUnit<STORAGE_TYPE, UNITS>
{
typedef LLUnitImplicit<STORAGE_TYPE, UNITS> self_t;
typedef typename LLUnit<STORAGE_TYPE, UNITS>::storage_t storage_t;
typedef LLUnit<STORAGE_TYPE, UNITS> base_t;
LL_FORCE_INLINE LLUnitImplicit(storage_t value = storage_t())
: base_t(value)
{}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE LLUnitImplicit(LLUnit<OTHER_STORAGE_TYPE, OTHER_UNITS> other)
: base_t(other)
{}
// unlike LLUnit, LLUnitImplicit is *implicitly* convertable to a POD value (F32, S32, etc)
// this allows for interoperability with legacy code
LL_FORCE_INLINE operator storage_t() const
{
return base_t::value();
}
using base_t::operator +=;
LL_FORCE_INLINE void operator += (storage_t value)
{
base_t::mValue += value;
}
// this overload exists to explicitly catch use of another implicit unit
// without ambiguity between conversion to storage_t vs conversion to base_t
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE void operator += (LLUnitImplicit<OTHER_STORAGE_TYPE, OTHER_UNITS> other)
{
base_t::mValue += base_t::convert(other).value();
}
using base_t::operator -=;
LL_FORCE_INLINE void operator -= (storage_t value)
{
base_t::mValue -= value;
}
// this overload exists to explicitly catch use of another implicit unit
// without ambiguity between conversion to storage_t vs conversion to base_t
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE void operator -= (LLUnitImplicit<OTHER_STORAGE_TYPE, OTHER_UNITS> other)
{
base_t::mValue -= base_t::convert(other).value();
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator == (LLUnit<OTHER_STORAGE_TYPE, OTHER_UNITS> other) const
{
return base_t::mValue == base_t::convert(other).value();
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator == (LLUnitImplicit<OTHER_STORAGE_TYPE, OTHER_UNITS> other) const
{
return base_t::mValue == base_t::convert(other).value();
}
template<typename STORAGE_T>
LL_FORCE_INLINE bool operator == (STORAGE_T other) const
{
return base_t::mValue == other;
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator != (LLUnit<OTHER_STORAGE_TYPE, OTHER_UNITS> other) const
{
return base_t::mValue != convert(other).value();
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator != (LLUnitImplicit<OTHER_STORAGE_TYPE, OTHER_UNITS> other) const
{
return base_t::mValue != base_t::convert(other).value();
}
template<typename STORAGE_T>
LL_FORCE_INLINE bool operator != (STORAGE_T other) const
{
return base_t::mValue != other;
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator < (LLUnit<OTHER_STORAGE_TYPE, OTHER_UNITS> other) const
{
return base_t::mValue < base_t::convert(other).value();
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator < (LLUnitImplicit<OTHER_STORAGE_TYPE, OTHER_UNITS> other) const
{
return base_t::mValue < base_t::convert(other).value();
}
template<typename STORAGE_T>
LL_FORCE_INLINE bool operator < (STORAGE_T other) const
{
return base_t::mValue < other;
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator <= (LLUnit<OTHER_STORAGE_TYPE, OTHER_UNITS> other) const
{
return base_t::mValue <= base_t::convert(other).value();
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator <= (LLUnitImplicit<OTHER_STORAGE_TYPE, OTHER_UNITS> other) const
{
return base_t::mValue <= base_t::convert(other).value();
}
template<typename STORAGE_T>
LL_FORCE_INLINE bool operator <= (STORAGE_T other) const
{
return base_t::mValue <= other;
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator > (LLUnit<OTHER_STORAGE_TYPE, OTHER_UNITS> other) const
{
return base_t::mValue > base_t::convert(other).value();
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator > (LLUnitImplicit<OTHER_STORAGE_TYPE, OTHER_UNITS> other) const
{
return base_t::mValue > base_t::convert(other).value();
}
template<typename STORAGE_T>
LL_FORCE_INLINE bool operator > (STORAGE_T other) const
{
return base_t::mValue > other;
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator >= (LLUnit<OTHER_STORAGE_TYPE, OTHER_UNITS> other) const
{
return base_t::mValue >= base_t::convert(other).value();
}
template<typename OTHER_STORAGE_TYPE, typename OTHER_UNITS>
LL_FORCE_INLINE bool operator >= (LLUnitImplicit<OTHER_STORAGE_TYPE, OTHER_UNITS> other) const
{
return base_t::mValue >= base_t::convert(other).value();
}
template<typename STORAGE_T>
LL_FORCE_INLINE bool operator >= (STORAGE_T other) const
{
return base_t::mValue >= other;
}
};
template<typename STORAGE_TYPE, typename UNITS>
std::ostream& operator <<(std::ostream& s, const LLUnitImplicit<STORAGE_TYPE, UNITS>& unit)
{
s << unit.value() << UNITS::getUnitLabel();
return s;
}
template<typename STORAGE_TYPE, typename UNITS>
std::istream& operator >>(std::istream& s, LLUnitImplicit<STORAGE_TYPE, UNITS>& unit)
{
STORAGE_TYPE val;
s >> val;
unit = val;
return s;
}
template<typename S1, typename T1, typename S2, typename T2>
LL_FORCE_INLINE S2 ll_convert_units(LLUnit<S1, T1> in, LLUnit<S2, T2>& out)
{
S2 divisor(1);
LL_STATIC_ASSERT((LLIsSameType<T1, T2>::value
|| !LLIsSameType<T1, typename T1::base_unit_t>::value
|| !LLIsSameType<T2, typename T2::base_unit_t>::value),
"conversion requires compatible units");
if (LLIsSameType<T1, T2>::value)
{
// T1 and T2 same type, just assign
out.value((S2)in.value());
}
else if (T1::sLevel > T2::sLevel)
{
// reduce T1
LLUnit<S2, typename T1::base_unit_t> new_in;
divisor *= (S2)ll_convert_units(in, new_in);
divisor *= (S2)ll_convert_units(new_in, out);
}
else
{
// reduce T2
LLUnit<S2, typename T2::base_unit_t> new_out;
divisor *= (S2)ll_convert_units(in, new_out);
divisor *= (S2)ll_convert_units(new_out, out);
}
return divisor;
}
template<typename T>
struct LLStorageType
{
typedef T type_t;
};
template<typename STORAGE_TYPE, typename UNITS>
struct LLStorageType<LLUnit<STORAGE_TYPE, UNITS> >
{
typedef STORAGE_TYPE type_t;
};
// all of these operators need to perform type promotion on the storage type of the units, so they
// cannot be expressed as operations on identical types with implicit unit conversion
// e.g. typeof(S32Bytes(x) + F32Megabytes(y)) <==> F32Bytes
//
// operator +
//
template<typename STORAGE_TYPE1, typename UNITS1, typename STORAGE_TYPE2, typename UNITS2>
LL_FORCE_INLINE LLUnit<typename LLResultTypeAdd<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> operator + (LLUnit<STORAGE_TYPE1, UNITS1> first, LLUnit<STORAGE_TYPE2, UNITS2> second)
{
LLUnit<typename LLResultTypeAdd<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> result(first);
result += second;
return result;
}
template<typename STORAGE_TYPE, typename UNITS, typename UNITLESS>
LLUnit<STORAGE_TYPE, UNITS> operator + (LLUnit<STORAGE_TYPE, UNITS> first, UNITLESS second)
{
LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE, "operator + requires compatible unit types");
return LLUnit<STORAGE_TYPE, UNITS>(0);
}
template<typename STORAGE_TYPE, typename UNITS, typename UNITLESS>
LLUnit<STORAGE_TYPE, UNITS> operator + (UNITLESS first, LLUnit<STORAGE_TYPE, UNITS> second)
{
LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE, "operator + requires compatible unit types");
return LLUnit<STORAGE_TYPE, UNITS>(0);
}
template<typename STORAGE_TYPE1, typename UNITS1, typename STORAGE_TYPE2, typename UNITS2>
LL_FORCE_INLINE LLUnitImplicit<typename LLResultTypeAdd<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> operator + (LLUnitImplicit<STORAGE_TYPE1, UNITS1> first, LLUnitImplicit<STORAGE_TYPE2, UNITS2> second)
{
LLUnitImplicit<typename LLResultTypeAdd<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> result(first);
result += second;
return result;
}
template<typename STORAGE_TYPE1, typename UNITS1, typename STORAGE_TYPE2, typename UNITS2>
LL_FORCE_INLINE LLUnitImplicit<typename LLResultTypeAdd<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> operator + (LLUnit<STORAGE_TYPE1, UNITS1> first, LLUnitImplicit<STORAGE_TYPE2, UNITS2> second)
{
LLUnitImplicit<typename LLResultTypeAdd<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> result(first);
result += second;
return result;
}
template<typename STORAGE_TYPE1, typename UNITS1, typename STORAGE_TYPE2, typename UNITS2>
LL_FORCE_INLINE LLUnitImplicit<typename LLResultTypeAdd<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> operator + (LLUnitImplicit<STORAGE_TYPE1, UNITS1> first, LLUnit<STORAGE_TYPE2, UNITS2> second)
{
LLUnitImplicit<typename LLResultTypeAdd<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> result(first);
result += LLUnitImplicit<STORAGE_TYPE1, UNITS1>(second);
return result;
}
template<typename STORAGE_TYPE, typename UNITS, typename UNITLESS_TYPE>
LL_FORCE_INLINE LLUnitImplicit<typename LLResultTypeAdd<STORAGE_TYPE, typename LLStorageType<UNITLESS_TYPE>::type_t>::type_t, UNITS> operator + (LLUnitImplicit<STORAGE_TYPE, UNITS> first, UNITLESS_TYPE second)
{
LLUnitImplicit<typename LLResultTypeAdd<STORAGE_TYPE, typename LLStorageType<UNITLESS_TYPE>::type_t>::type_t, UNITS> result(first);
result += second;
return result;
}
template<typename STORAGE_TYPE, typename UNITS, typename UNITLESS_TYPE>
LL_FORCE_INLINE LLUnitImplicit<typename LLResultTypeAdd<typename LLStorageType<UNITLESS_TYPE>::type_t, STORAGE_TYPE>::
type_t, UNITS> operator + (UNITLESS_TYPE first, LLUnitImplicit<STORAGE_TYPE, UNITS> second)
{
LLUnitImplicit<typename LLResultTypeAdd<typename LLStorageType<UNITLESS_TYPE>::type_t, STORAGE_TYPE>::type_t, UNITS> result(first);
result += second;
return result;
}
//
// operator -
//
template<typename STORAGE_TYPE1, typename UNITS1, typename STORAGE_TYPE2, typename UNITS2>
LL_FORCE_INLINE LLUnit<typename LLResultTypeSubtract<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> operator - (LLUnit<STORAGE_TYPE1, UNITS1> first, LLUnit<STORAGE_TYPE2, UNITS2> second)
{
LLUnit<typename LLResultTypeSubtract<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> result(first);
result -= second;
return result;
}
template<typename STORAGE_TYPE, typename UNITS, typename UNITLESS>
LLUnit<STORAGE_TYPE, UNITS> operator - (LLUnit<STORAGE_TYPE, UNITS> first, UNITLESS second)
{
LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE, "operator - requires compatible unit types");
return LLUnit<STORAGE_TYPE, UNITS>(0);
}
template<typename STORAGE_TYPE, typename UNITS, typename UNITLESS>
LLUnit<STORAGE_TYPE, UNITS> operator - (UNITLESS first, LLUnit<STORAGE_TYPE, UNITS> second)
{
LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE, "operator - requires compatible unit types");
return LLUnit<STORAGE_TYPE, UNITS>(0);
}
template<typename STORAGE_TYPE1, typename UNITS1, typename STORAGE_TYPE2, typename UNITS2>
LL_FORCE_INLINE LLUnitImplicit<typename LLResultTypeSubtract<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> operator - (LLUnitImplicit<STORAGE_TYPE1, UNITS1> first, LLUnitImplicit<STORAGE_TYPE2, UNITS2> second)
{
LLUnitImplicit<typename LLResultTypeSubtract<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> result(first);
result -= second;
return result;
}
template<typename STORAGE_TYPE1, typename UNITS1, typename STORAGE_TYPE2, typename UNITS2>
LL_FORCE_INLINE LLUnitImplicit<typename LLResultTypeSubtract<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> operator - (LLUnit<STORAGE_TYPE1, UNITS1> first, LLUnitImplicit<STORAGE_TYPE2, UNITS2> second)
{
LLUnitImplicit<typename LLResultTypeSubtract<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> result(first);
result -= second;
return result;
}
template<typename STORAGE_TYPE1, typename UNITS1, typename STORAGE_TYPE2, typename UNITS2>
LL_FORCE_INLINE LLUnitImplicit<typename LLResultTypeSubtract<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> operator - (LLUnitImplicit<STORAGE_TYPE1, UNITS1> first, LLUnit<STORAGE_TYPE2, UNITS2> second)
{
LLUnitImplicit<typename LLResultTypeSubtract<STORAGE_TYPE1, STORAGE_TYPE2>::type_t, UNITS1> result(first);
result -= LLUnitImplicit<STORAGE_TYPE1, UNITS1>(second);
return result;
}
template<typename STORAGE_TYPE, typename UNITS, typename UNITLESS_TYPE>
LL_FORCE_INLINE LLUnitImplicit<typename LLResultTypeSubtract<STORAGE_TYPE, typename LLStorageType<UNITLESS_TYPE>::type_t>::type_t, UNITS> operator - (LLUnitImplicit<STORAGE_TYPE, UNITS> first, UNITLESS_TYPE second)
{
LLUnitImplicit<typename LLResultTypeSubtract<STORAGE_TYPE, typename LLStorageType<UNITLESS_TYPE>::type_t>::type_t, UNITS> result(first);
result -= second;
return result;
}
template<typename STORAGE_TYPE, typename UNITS, typename UNITLESS_TYPE>
LL_FORCE_INLINE LLUnitImplicit<typename LLResultTypeSubtract<typename LLStorageType<UNITLESS_TYPE>::type_t, STORAGE_TYPE>::type_t, UNITS> operator - (UNITLESS_TYPE first, LLUnitImplicit<STORAGE_TYPE, UNITS> second)
{
LLUnitImplicit<typename LLResultTypeSubtract<typename LLStorageType<UNITLESS_TYPE>::type_t, STORAGE_TYPE>::type_t, UNITS> result(first);
result -= second;
return result;
}
//
// operator *
//
template<typename STORAGE_TYPE1, typename UNITS1, typename STORAGE_TYPE2, typename UNITS2>
LLUnit<STORAGE_TYPE1, UNITS1> operator * (LLUnit<STORAGE_TYPE1, UNITS1>, LLUnit<STORAGE_TYPE2, UNITS2>)
{
// spurious use of dependent type to stop gcc from triggering the static assertion before instantiating the template
LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE1, "multiplication of unit types results in new unit type - not supported.");
return LLUnit<STORAGE_TYPE1, UNITS1>();
}
template<typename STORAGE_TYPE, typename UNITS, typename UNITLESS_TYPE>
LL_FORCE_INLINE LLUnit<typename LLResultTypeMultiply<STORAGE_TYPE, typename LLStorageType<UNITLESS_TYPE>::type_t>::type_t, UNITS> operator * (LLUnit<STORAGE_TYPE, UNITS> first, UNITLESS_TYPE second)
{
return LLUnit<typename LLResultTypeMultiply<STORAGE_TYPE, typename LLStorageType<UNITLESS_TYPE>::type_t>::type_t, UNITS>(first.value() * second);
}
template<typename STORAGE_TYPE, typename UNITS, typename UNITLESS_TYPE>
LL_FORCE_INLINE LLUnit<typename LLResultTypeMultiply<typename LLStorageType<UNITLESS_TYPE>::type_t, STORAGE_TYPE>::type_t, UNITS> operator * (UNITLESS_TYPE first, LLUnit<STORAGE_TYPE, UNITS> second)
{
return LLUnit<typename LLResultTypeMultiply<typename LLStorageType<UNITLESS_TYPE>::type_t, STORAGE_TYPE>::type_t, UNITS>(first * second.value());
}
template<typename STORAGE_TYPE1, typename UNITS1, typename STORAGE_TYPE2, typename UNITS2>
LLUnitImplicit<STORAGE_TYPE1, UNITS1> operator * (LLUnitImplicit<STORAGE_TYPE1, UNITS1>, LLUnitImplicit<STORAGE_TYPE2, UNITS2>)
{
// spurious use of dependent type to stop gcc from triggering the static assertion before instantiating the template
LL_BAD_TEMPLATE_INSTANTIATION(STORAGE_TYPE1, "multiplication of unit types results in new unit type - not supported.");
return LLUnitImplicit<STORAGE_TYPE1, UNITS1>();
}
template<typename STORAGE_TYPE, typename UNITS, typename UNITLESS_TYPE>
LL_FORCE_INLINE LLUnitImplicit<typename LLResultTypeMultiply<STORAGE_TYPE, typename LLStorageType<UNITLESS_TYPE>::type_t>::type_t, UNITS> operator * (LLUnitImplicit<STORAGE_TYPE, UNITS> first, UNITLESS_TYPE second)
{
return LLUnitImplicit<typename LLResultTypeMultiply<STORAGE_TYPE, UNITLESS_TYPE>::type_t, UNITS>(first.value() * second);
}
template<typename STORAGE_TYPE, typename UNITS, typename UNITLESS_TYPE>
LL_FORCE_INLINE LLUnitImplicit<typename LLResultTypeMultiply<typename LLStorageType<UNITLESS_TYPE>::type_t, STORAGE_TYPE>::type_t, UNITS> operator * (UNITLESS_TYPE first, LLUnitImplicit<STORAGE_TYPE, UNITS> second)
{
return LLUnitImplicit<typename LLResultTypeMultiply<typename LLStorageType<UNITLESS_TYPE>::type_t, STORAGE_TYPE>::type_t, UNITS>(first * second.value());
}
//
// operator /
//
template<typename STORAGE_TYPE, typename UNITS, typename UNITLESS_TYPE>
LL_FORCE_INLINE LLUnit<typename LLResultTypeDivide<STORAGE_TYPE, typename LLStorageType<UNITLESS_TYPE>::type_t>::type_t, UNITS> operator / (LLUnit<STORAGE_TYPE, UNITS> first, UNITLESS_TYPE second)
{
return LLUnit<typename LLResultTypeDivide<STORAGE_TYPE, typename LLStorageType<UNITLESS_TYPE>::type_t>::type_t, UNITS>(first.value() / second);
}
template<typename STORAGE_TYPE1, typename UNITS1, typename STORAGE_TYPE2, typename UNITS2>
LL_FORCE_INLINE typename LLResultTypeDivide<STORAGE_TYPE1, STORAGE_TYPE2>::type_t operator / (LLUnit<STORAGE_TYPE1, UNITS1> first, LLUnit<STORAGE_TYPE2, UNITS2> second)
{
return first.value() / first.convert(second).value();
}
template<typename STORAGE_TYPE, typename UNITS, typename UNITLESS_TYPE>
LL_FORCE_INLINE LLUnitImplicit<typename LLResultTypeDivide<STORAGE_TYPE, typename LLStorageType<UNITLESS_TYPE>::type_t>::type_t, UNITS> operator / (LLUnitImplicit<STORAGE_TYPE, UNITS> first, UNITLESS_TYPE second)
{
return LLUnitImplicit<typename LLResultTypeDivide<STORAGE_TYPE, typename LLStorageType<UNITLESS_TYPE>::type_t>::type_t, UNITS>(first.value() / second);
}
template<typename STORAGE_TYPE1, typename UNITS1, typename STORAGE_TYPE2, typename UNITS2>
LL_FORCE_INLINE typename LLResultTypeDivide<STORAGE_TYPE1, STORAGE_TYPE2>::type_t operator / (LLUnitImplicit<STORAGE_TYPE1, UNITS1> first, LLUnitImplicit<STORAGE_TYPE2, UNITS2> second)
{
return (typename LLResultTypeDivide<STORAGE_TYPE1, STORAGE_TYPE2>::type_t)(first.value() / first.convert(second).value());
}
template<typename STORAGE_TYPE1, typename UNITS1, typename STORAGE_TYPE2, typename UNITS2>
LL_FORCE_INLINE typename LLResultTypeDivide<STORAGE_TYPE1, STORAGE_TYPE2>::type_t operator / (LLUnit<STORAGE_TYPE1, UNITS1> first, LLUnitImplicit<STORAGE_TYPE2, UNITS2> second)
{
return (typename LLResultTypeDivide<STORAGE_TYPE1, STORAGE_TYPE2>::type_t)(first.value() / first.convert(second).value());
}
template<typename STORAGE_TYPE1, typename UNITS1, typename STORAGE_TYPE2, typename UNITS2>
LL_FORCE_INLINE typename LLResultTypeDivide<STORAGE_TYPE1, STORAGE_TYPE2>::type_t operator / (LLUnitImplicit<STORAGE_TYPE1, UNITS1> first, LLUnit<STORAGE_TYPE2, UNITS2> second)
{
return (typename LLResultTypeDivide<STORAGE_TYPE1, STORAGE_TYPE2>::type_t)(first.value() / first.convert(second).value());
}
template<typename T>
struct LLGetUnitLabel
{
static const char* getUnitLabel() { return ""; }
};
template<typename T, typename STORAGE_T>
struct LLGetUnitLabel<LLUnit<STORAGE_T, T> >
{
static const char* getUnitLabel() { return T::getUnitLabel(); }
};
template<typename T>
struct LLUnitLinearOps
{
typedef LLUnitLinearOps<T> self_t;
LLUnitLinearOps(T val)
: mValue(val),
mDivisor(1)
{}
template<typename OTHER_T>
self_t operator * (OTHER_T other)
{
return mValue * other;
}
template<typename OTHER_T>
self_t operator / (OTHER_T other)
{
mDivisor *= other;
return *this;
}
template<typename OTHER_T>
self_t operator + (OTHER_T other)
{
mValue += other * mDivisor;
return *this;
}
template<typename OTHER_T>
self_t operator - (OTHER_T other)
{
mValue -= other * mDivisor;
return *this;
}
T mValue;
T mDivisor;
};
template<typename T>
struct LLUnitInverseLinearOps
{
typedef LLUnitInverseLinearOps<T> self_t;
LLUnitInverseLinearOps(T val)
: mValue(val),
mDivisor(1),
mMultiplicand(1)
{}
template<typename OTHER_T>
self_t operator * (OTHER_T other)
{
mDivisor *= other;
return *this;
}
template<typename OTHER_T>
self_t operator / (OTHER_T other)
{
mValue *= other;
mMultiplicand *= other;
return *this;
}
template<typename OTHER_T>
self_t operator + (OTHER_T other)
{
mValue -= other * mMultiplicand;
return *this;
}
template<typename OTHER_T>
self_t operator - (OTHER_T other)
{
mValue += other * mMultiplicand;
return *this;
}
T mValue;
T mDivisor;
T mMultiplicand;
};
#define LL_DECLARE_BASE_UNIT(base_unit_name, unit_label) \
struct base_unit_name \
{ \
static const int sLevel = 0; \
typedef base_unit_name base_unit_t; \
static const char* getUnitLabel() { return unit_label; } \
template<typename T> \
static LLUnit<T, base_unit_name> fromValue(T value) { return LLUnit<T, base_unit_name>(value); } \
template<typename STORAGE_T, typename UNIT_T> \
static LLUnit<STORAGE_T, base_unit_name> fromValue(LLUnit<STORAGE_T, UNIT_T> value) \
{ return LLUnit<STORAGE_T, base_unit_name>(value); } \
}
#define LL_DECLARE_DERIVED_UNIT(unit_name, unit_label, base_unit_name, conversion_operation) \
struct unit_name \
{ \
static const int sLevel = base_unit_name::sLevel + 1; \
typedef base_unit_name base_unit_t; \
static const char* getUnitLabel() { return unit_label; } \
template<typename T> \
static LLUnit<T, unit_name> fromValue(T value) { return LLUnit<T, unit_name>(value); } \
template<typename STORAGE_T, typename UNIT_T> \
static LLUnit<STORAGE_T, unit_name> fromValue(LLUnit<STORAGE_T, UNIT_T> value) \
{ return LLUnit<STORAGE_T, unit_name>(value); } \
}; \
\
template<typename S1, typename S2> \
LL_FORCE_INLINE S2 ll_convert_units(LLUnit<S1, unit_name> in, LLUnit<S2, base_unit_name>& out) \
{ \
typedef typename LLResultTypePromote<S1, S2>::type_t result_storage_t; \
LLUnitInverseLinearOps<result_storage_t> result = \
LLUnitInverseLinearOps<result_storage_t>(in.value()) conversion_operation; \
out = LLUnit<S2, base_unit_name>((S2)result.mValue); \
return result.mDivisor; \
} \
\
template<typename S1, typename S2> \
LL_FORCE_INLINE S2 ll_convert_units(LLUnit<S1, base_unit_name> in, LLUnit<S2, unit_name>& out) \
{ \
typedef typename LLResultTypePromote<S1, S2>::type_t result_storage_t; \
LLUnitLinearOps<result_storage_t> result = \
LLUnitLinearOps<result_storage_t>(in.value()) conversion_operation; \
out = LLUnit<S2, unit_name>((S2)result.mValue); \
return result.mDivisor; \
}
#define LL_DECLARE_UNIT_TYPEDEFS(ns, unit_name) \
typedef LLUnit<F32, ns::unit_name> F32##unit_name; \
typedef LLUnitImplicit<F32, ns::unit_name> F32##unit_name##Implicit;\
typedef LLUnit<F64, ns::unit_name> F64##unit_name; \
typedef LLUnitImplicit<F64, ns::unit_name> F64##unit_name##Implicit;\
typedef LLUnit<S32, ns::unit_name> S32##unit_name; \
typedef LLUnitImplicit<S32, ns::unit_name> S32##unit_name##Implicit;\
typedef LLUnit<S64, ns::unit_name> S64##unit_name; \
typedef LLUnitImplicit<S64, ns::unit_name> S64##unit_name##Implicit;\
typedef LLUnit<U32, ns::unit_name> U32##unit_name; \
typedef LLUnitImplicit<U32, ns::unit_name> U32##unit_name##Implicit;\
typedef LLUnit<U64, ns::unit_name> U64##unit_name; \
typedef LLUnitImplicit<U64, ns::unit_name> U64##unit_name##Implicit
#endif //LL_UNITTYPE_H