Files
SingularityViewer/indra/llcommon/lldependencies.h
2017-03-31 02:08:03 -05:00

803 lines
32 KiB
C++

/**
* @file lldependencies.h
* @author Nat Goodspeed
* @date 2008-09-17
* @brief LLDependencies: a generic mechanism for expressing "b must follow a,
* but precede c"
*
* $LicenseInfo:firstyear=2008&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#if ! defined(LL_LLDEPENDENCIES_H)
#define LL_LLDEPENDENCIES_H
#include <string>
#include <vector>
#include <set>
#include <map>
#include <stdexcept>
#include <iosfwd>
#include <boost/iterator/transform_iterator.hpp>
#include <boost/iterator/indirect_iterator.hpp>
#include <boost/range/iterator_range.hpp>
#ifndef BOOST_FUNCTION_HPP_INCLUDED
#include <boost/function.hpp>
#define BOOST_FUNCTION_HPP_INCLUDED
#endif
#include <boost/bind.hpp>
/*****************************************************************************
* Utilities
*****************************************************************************/
/**
* generic range transformer: given a range acceptable to Boost.Range (e.g. a
* standard container, an iterator pair, ...) and a unary function to apply to
* each element of the range, make a corresponding range that lazily applies
* that function to each element on dereferencing.
*/
template<typename FUNCTION, typename RANGE>
inline
boost::iterator_range<boost::transform_iterator<FUNCTION,
typename boost::range_const_iterator<RANGE>::type> >
make_transform_range(const RANGE& range, FUNCTION function)
{
// shorthand for the iterator type embedded in our return type
typedef boost::transform_iterator<FUNCTION, typename boost::range_const_iterator<RANGE>::type>
transform_iterator;
return boost::make_iterator_range(transform_iterator(boost::begin(range), function),
transform_iterator(boost::end(range), function));
}
/// non-const version of make_transform_range()
template<typename FUNCTION, typename RANGE>
inline
boost::iterator_range<boost::transform_iterator<FUNCTION,
typename boost::range_iterator<RANGE>::type> >
make_transform_range(RANGE& range, FUNCTION function)
{
// shorthand for the iterator type embedded in our return type
typedef boost::transform_iterator<FUNCTION, typename boost::range_iterator<RANGE>::type>
transform_iterator;
return boost::make_iterator_range(transform_iterator(boost::begin(range), function),
transform_iterator(boost::end(range), function));
}
/**
* From any range compatible with Boost.Range, instantiate any class capable
* of accepting an iterator pair.
*/
template<class TYPE>
struct instance_from_range: public TYPE
{
template<typename RANGE>
instance_from_range(RANGE range):
TYPE(boost::begin(range), boost::end(range))
{}
};
/*****************************************************************************
* LLDependencies
*****************************************************************************/
/**
* LLDependencies components that should not be reinstantiated for each KEY,
* NODE specialization
*/
class LL_COMMON_API LLDependenciesBase
{
public:
virtual ~LLDependenciesBase() {}
/**
* Exception thrown by sort() if there's a cycle
*/
struct Cycle: public std::runtime_error
{
Cycle(const std::string& what): std::runtime_error(what) {}
};
/**
* Provide a short description of this LLDependencies instance on the
* specified output stream, assuming that its KEY type has an operator<<()
* that works with std::ostream.
*
* Pass @a full as @c false to omit any keys without dependency constraints.
*/
virtual std::ostream& describe(std::ostream& out, bool full=true) const;
/// describe() to a string
virtual std::string describe(bool full=true) const;
protected:
typedef std::vector< std::pair<std::size_t, std::size_t> > EdgeList;
typedef std::vector<std::size_t> VertexList;
VertexList topo_sort(std::size_t vertices, const EdgeList& edges) const;
/**
* refpair is specifically intended to capture a pair of references. This
* is better than std::pair<T1&, T2&> because some implementations of
* std::pair's ctor accept const references to the two types. If the
* types are themselves references, this results in an illegal reference-
* to-reference.
*/
template<typename T1, typename T2>
struct refpair
{
refpair(T1 value1, T2 value2):
first(value1),
second(value2)
{}
T1 first;
T2 second;
};
};
/// describe() helper: for most types, report the type as usual
template<typename T>
inline
std::ostream& LLDependencies_describe(std::ostream& out, const T& key)
{
out << key;
return out;
}
/// specialize LLDependencies_describe() for std::string
template<>
inline
std::ostream& LLDependencies_describe(std::ostream& out, const std::string& key)
{
out << '"' << key << '"';
return out;
}
/**
* It's reasonable to use LLDependencies in a keys-only way, more or less like
* std::set. For that case, the default NODE type is an empty struct.
*/
struct LLDependenciesEmpty
{
LLDependenciesEmpty() {}
/**
* Give it a constructor accepting void* so caller can pass placeholder
* values such as NULL or 0 rather than having to write
* LLDependenciesEmpty().
*/
LLDependenciesEmpty(void*) {}
};
/**
* This class manages abstract dependencies between node types of your
* choosing. As with a std::map, nodes are copied when add()ed, so the node
* type should be relatively lightweight; to manipulate dependencies between
* expensive objects, use a pointer type.
*
* For a given node, you may state the keys of nodes that must precede it
* and/or nodes that must follow it. The sort() method will produce an order
* that should work, or throw an exception if the constraints are impossible.
* We cache results to minimize the cost of repeated sort() calls.
*/
template<typename KEY = std::string,
typename NODE = LLDependenciesEmpty>
class LLDependencies: public LLDependenciesBase
{
typedef LLDependencies<KEY, NODE> self_type;
/**
* Internally, we bundle the client's NODE with its before/after keys.
*/
struct DepNode
{
typedef std::set<KEY> dep_set;
DepNode(const NODE& node_, const dep_set& after_, const dep_set& before_):
node(node_),
after(after_),
before(before_)
{}
NODE node;
dep_set after, before;
};
typedef std::map<KEY, DepNode> DepNodeMap;
typedef typename DepNodeMap::value_type DepNodeMapEntry;
/// We have various ways to get the dependencies for a given DepNode.
/// Rather than having to restate each one for 'after' and 'before'
/// separately, pass a dep_selector so we can apply each to either.
typedef boost::function<const typename DepNode::dep_set&(const DepNode&)> dep_selector;
public:
LLDependencies() {}
typedef KEY key_type;
typedef NODE node_type;
/// param type used to express lists of other node keys -- note that such
/// lists can be initialized with boost::assign::list_of()
typedef std::vector<KEY> KeyList;
/**
* Add a new node. State its dependencies on other nodes (which may not
* yet have been added) by listing the keys of nodes this new one must
* follow, and separately the keys of nodes this new one must precede.
*
* The node you pass is @em copied into an internal data structure. If you
* want to modify the node value after add()ing it, capture the returned
* NODE& reference.
*
* @note
* Actual dependency analysis is deferred to the sort() method, so
* you can add an arbitrary number of nodes without incurring analysis
* overhead for each. The flip side of this is that add()ing nodes that
* define a cycle leaves this object in a state in which sort() will
* always throw the Cycle exception.
*
* Two distinct use cases are anticipated:
* * The data used to load this object are completely known at compile
* time (e.g. LLEventPump listener names). A Cycle exception represents a
* bug which can be corrected by the coder. The program need neither catch
* Cycle nor attempt to salvage the state of this object.
* * The data are loaded at runtime, therefore the universe of
* dependencies cannot be known at compile time. The client code should
* catch Cycle.
* ** If a Cycle exception indicates fatally-flawed input data, this
* object can simply be discarded, possibly with the entire program run.
* ** If it is essential to restore this object to a working state, the
* simplest workaround is to remove() nodes in LIFO order.
* *** It may be useful to add functionality to this class to track the
* add() chronology, providing a pop() method to remove the most recently
* added node.
* *** It may further be useful to add a restore() method which would
* pop() until sort() no longer throws Cycle. This method would be
* expensive -- but it's not clear that client code could resolve the
* problem more cheaply.
*/
NODE& add(const KEY& key, const NODE& node = NODE(),
const KeyList& after = KeyList(),
const KeyList& before = KeyList())
{
// Get the passed-in lists as sets for equality comparison
typename DepNode::dep_set
after_set(after.begin(), after.end()),
before_set(before.begin(), before.end());
// Try to insert the new node; if it already exists, find the old
// node instead.
std::pair<typename DepNodeMap::iterator, bool> inserted =
mNodes.insert(typename DepNodeMap::value_type(key,
DepNode(node, after_set, before_set)));
if (! inserted.second) // bool indicating success of insert()
{
// We already have a node by this name. Have its dependencies
// changed? If the existing node's dependencies are identical, the
// result will be unchanged, so we can leave the cache intact.
// Regardless of inserted.second, inserted.first is the iterator
// to the newly-inserted (or existing) map entry. Of course, that
// entry's second is the DepNode of interest.
if (inserted.first->second.after != after_set ||
inserted.first->second.before != before_set)
{
// Dependencies have changed: clear the cached result.
mCache.clear();
// save the new dependencies
inserted.first->second.after = after_set;
inserted.first->second.before = before_set;
}
}
else // this node is new
{
// This will change results.
mCache.clear();
}
return inserted.first->second.node;
}
/// the value of an iterator, showing both KEY and its NODE
typedef refpair<const KEY&, NODE&> value_type;
/// the value of a const_iterator
typedef refpair<const KEY&, const NODE&> const_value_type;
private:
// Extract functors
static value_type value_extract(DepNodeMapEntry& entry)
{
return value_type(entry.first, entry.second.node);
}
static const_value_type const_value_extract(const DepNodeMapEntry& entry)
{
return const_value_type(entry.first, entry.second.node);
}
// All the iterator access methods return iterator ranges just to cut down
// on the friggin' boilerplate!!
/// generic mNodes range method
template<typename ITERATOR, typename FUNCTION>
boost::iterator_range<ITERATOR> generic_range(FUNCTION function)
{
return make_transform_range(mNodes, function);
}
/// generic mNodes const range method
template<typename ITERATOR, typename FUNCTION>
boost::iterator_range<ITERATOR> generic_range(FUNCTION function) const
{
return make_transform_range(mNodes, function);
}
public:
/// iterator over value_type entries
typedef boost::transform_iterator<boost::function<value_type(DepNodeMapEntry&)>,
typename DepNodeMap::iterator> iterator;
/// range over value_type entries
typedef boost::iterator_range<iterator> range;
/// iterate over value_type <i>in @c KEY order</i> rather than dependency order
range get_range()
{
return generic_range<iterator>(value_extract);
}
/// iterator over const_value_type entries
typedef boost::transform_iterator<boost::function<const_value_type(const DepNodeMapEntry&)>,
typename DepNodeMap::const_iterator> const_iterator;
/// range over const_value_type entries
typedef boost::iterator_range<const_iterator> const_range;
/// iterate over const_value_type <i>in @c KEY order</i> rather than dependency order
const_range get_range() const
{
return generic_range<const_iterator>(const_value_extract);
}
/// iterator over stored NODEs
typedef boost::transform_iterator<boost::function<NODE&(DepNodeMapEntry&)>,
typename DepNodeMap::iterator> node_iterator;
/// range over stored NODEs
typedef boost::iterator_range<node_iterator> node_range;
/// iterate over NODE <i>in @c KEY order</i> rather than dependency order
node_range get_node_range()
{
// First take a DepNodeMapEntry and extract a reference to its
// DepNode, then from that extract a reference to its NODE.
return generic_range<node_iterator>(
boost::bind<NODE&>(&DepNode::node,
boost::bind<DepNode&>(&DepNodeMapEntry::second, _1)));
}
/// const iterator over stored NODEs
typedef boost::transform_iterator<boost::function<const NODE&(const DepNodeMapEntry&)>,
typename DepNodeMap::const_iterator> const_node_iterator;
/// const range over stored NODEs
typedef boost::iterator_range<const_node_iterator> const_node_range;
/// iterate over const NODE <i>in @c KEY order</i> rather than dependency order
const_node_range get_node_range() const
{
// First take a DepNodeMapEntry and extract a reference to its
// DepNode, then from that extract a reference to its NODE.
return generic_range<const_node_iterator>(
boost::bind<const NODE&>(&DepNode::node,
boost::bind<const DepNode&>(&DepNodeMapEntry::second, _1)));
}
/// const iterator over stored KEYs
typedef boost::transform_iterator<boost::function<const KEY&(const DepNodeMapEntry&)>,
typename DepNodeMap::const_iterator> const_key_iterator;
/// const range over stored KEYs
typedef boost::iterator_range<const_key_iterator> const_key_range;
// We don't provide a non-const iterator over KEYs because they should be
// immutable, and in fact our underlying std::map won't give us non-const
// references.
/// iterate over const KEY <i>in @c KEY order</i> rather than dependency order
const_key_range get_key_range() const
{
// From a DepNodeMapEntry, extract a reference to its KEY.
return generic_range<const_key_iterator>(
boost::bind<const KEY&>(&DepNodeMapEntry::first, _1));
}
/**
* Find an existing NODE, or return NULL. We decided to avoid providing a
* method analogous to std::map::find(), for a couple of reasons:
*
* * For a find-by-key, getting back an iterator to the (key, value) pair
* is less than useful, since you already have the key in hand.
* * For a failed request, comparing to end() is problematic. First, we
* provide range accessors, so it's more code to get end(). Second, we
* provide a number of different ranges -- quick, to which one's end()
* should we compare the iterator returned by find()?
*
* The returned pointer is solely to allow expressing the not-found
* condition. LLDependencies still owns the found NODE.
*/
const NODE* get(const KEY& key) const
{
typename DepNodeMap::const_iterator found = mNodes.find(key);
if (found != mNodes.end())
{
return &found->second.node;
}
return NULL;
}
/**
* non-const get()
*/
NODE* get(const KEY& key)
{
// Use const implementation, then cast away const-ness of return
return const_cast<NODE*>(const_cast<const self_type*>(this)->get(key));
}
/**
* Remove a node with specified key. This operation is the major reason
* we rebuild the graph on the fly instead of storing it.
*/
bool remove(const KEY& key)
{
typename DepNodeMap::iterator found = mNodes.find(key);
if (found != mNodes.end())
{
mNodes.erase(found);
return true;
}
return false;
}
private:
/// cached list of iterators
typedef std::vector<iterator> iterator_list;
typedef typename iterator_list::iterator iterator_list_iterator;
public:
/**
* The return type of the sort() method needs some explanation. Provide a
* public typedef to facilitate storing the result.
*
* * We will prepare mCache by looking up DepNodeMap iterators.
* * We want to return a range containing iterators that will walk mCache.
* * If we simply stored DepNodeMap iterators and returned
* (mCache.begin(), mCache.end()), dereferencing each iterator would
* obtain a DepNodeMap iterator.
* * We want the caller to loop over @c value_type: pair<KEY, NODE>.
* * This requires two transformations:
* ** mCache must contain @c LLDependencies::iterator so that
* dereferencing each entry will obtain an @c LLDependencies::value_type
* rather than a DepNodeMapEntry.
* ** We must wrap mCache's iterators in boost::indirect_iterator so that
* dereferencing one of our returned iterators will also dereference the
* iterator contained in mCache.
*/
typedef boost::iterator_range<boost::indirect_iterator<iterator_list_iterator> > sorted_range;
/// for convenience in looping over a sorted_range
typedef typename sorted_range::iterator sorted_iterator;
/**
* Once we've loaded in the dependencies of interest, arrange them into an
* order that works -- or throw Cycle exception.
*
* Return an iterator range over (key, node) pairs that traverses them in
* the desired order.
*/
sorted_range sort() const
{
// Changes to mNodes cause us to clear our cache, so empty mCache
// means it's invalid and should be recomputed. However, if mNodes is
// also empty, then an empty mCache represents a valid order, so don't
// bother sorting.
if (mCache.empty() && ! mNodes.empty())
{
// Construct a map of node keys to distinct vertex numbers -- even for
// nodes mentioned only in before/after constraints, that haven't yet
// been explicitly added. Rely on std::map rejecting a second attempt
// to insert the same key. Use the map's size() as the vertex number
// to get a distinct value for each successful insertion.
typedef std::map<KEY, std::size_t> VertexMap;
VertexMap vmap;
// Nest each of these loops because !@#$%? MSVC warns us that its
// former broken behavior has finally been fixed -- and our builds
// treat warnings as errors.
{
for (typename DepNodeMap::const_iterator nmi = mNodes.begin(), nmend = mNodes.end();
nmi != nmend; ++nmi)
{
vmap.insert(typename VertexMap::value_type(nmi->first, vmap.size()));
for (typename DepNode::dep_set::const_iterator ai = nmi->second.after.begin(),
aend = nmi->second.after.end();
ai != aend; ++ai)
{
vmap.insert(typename VertexMap::value_type(*ai, vmap.size()));
}
for (typename DepNode::dep_set::const_iterator bi = nmi->second.before.begin(),
bend = nmi->second.before.end();
bi != bend; ++bi)
{
vmap.insert(typename VertexMap::value_type(*bi, vmap.size()));
}
}
}
// Define the edges. For this we must traverse mNodes again, mapping
// all the known key dependencies to integer pairs.
EdgeList edges;
{
for (typename DepNodeMap::const_iterator nmi = mNodes.begin(), nmend = mNodes.end();
nmi != nmend; ++nmi)
{
std::size_t thisnode = vmap[nmi->first];
// after dependencies: build edges from the named node to this one
for (typename DepNode::dep_set::const_iterator ai = nmi->second.after.begin(),
aend = nmi->second.after.end();
ai != aend; ++ai)
{
edges.push_back(EdgeList::value_type(vmap[*ai], thisnode));
}
// before dependencies: build edges from this node to the
// named one
for (typename DepNode::dep_set::const_iterator bi = nmi->second.before.begin(),
bend = nmi->second.before.end();
bi != bend; ++bi)
{
edges.push_back(EdgeList::value_type(thisnode, vmap[*bi]));
}
}
}
// Hide the gory details of our topological sort, since they shouldn't
// get reinstantiated for each distinct NODE type.
VertexList sorted(topo_sort(vmap.size(), edges));
// Build the reverse of vmap to look up the key for each vertex
// descriptor. vmap contains exactly one entry for each distinct key,
// and we're certain that the associated int values are distinct
// indexes. The fact that they're not in order is irrelevant.
KeyList vkeys(vmap.size());
for (typename VertexMap::const_iterator vmi = vmap.begin(), vmend = vmap.end();
vmi != vmend; ++vmi)
{
vkeys[vmi->second] = vmi->first;
}
// Walk the sorted output list, building the result into mCache so
// we'll have it next time someone asks.
mCache.clear();
for (VertexList::const_iterator svi = sorted.begin(), svend = sorted.end();
svi != svend; ++svi)
{
// We're certain that vkeys[*svi] exists. However, there might not
// yet be a corresponding entry in mNodes.
self_type* non_const_this(const_cast<self_type*>(this));
typename DepNodeMap::iterator found = non_const_this->mNodes.find(vkeys[*svi]);
if (found != non_const_this->mNodes.end())
{
// Make an iterator of appropriate type.
mCache.push_back(iterator(found, value_extract));
}
}
}
// Whether or not we've just recomputed mCache, it should now contain
// the results we want. Return a range of indirect_iterators over it
// so that dereferencing a returned iterator will dereference the
// iterator stored in mCache and directly reference the (key, node)
// pair.
boost::indirect_iterator<iterator_list_iterator>
begin(mCache.begin()),
end(mCache.end());
return sorted_range(begin, end);
}
using LLDependenciesBase::describe; // unhide virtual std::string describe(bool full=true) const;
/// Override base-class describe() with actual implementation
virtual std::ostream& describe(std::ostream& out, bool full=true) const
{
typename DepNodeMap::const_iterator dmi(mNodes.begin()), dmend(mNodes.end());
if (dmi != dmend)
{
std::string sep;
describe(out, sep, *dmi, full);
while (++dmi != dmend)
{
describe(out, sep, *dmi, full);
}
}
return out;
}
/// describe() helper: report a DepNodeEntry
static std::ostream& describe(std::ostream& out, std::string& sep,
const DepNodeMapEntry& entry, bool full)
{
// If we were asked for a full report, describe every node regardless
// of whether it has dependencies. If we were asked to suppress
// independent nodes, describe this one if either after or before is
// non-empty.
if (full || (! entry.second.after.empty()) || (! entry.second.before.empty()))
{
out << sep;
sep = "\n";
if (! entry.second.after.empty())
{
out << "after ";
describe(out, entry.second.after);
out << " -> ";
}
LLDependencies_describe(out, entry.first);
if (! entry.second.before.empty())
{
out << " -> before ";
describe(out, entry.second.before);
}
}
return out;
}
/// describe() helper: report a dep_set
static std::ostream& describe(std::ostream& out, const typename DepNode::dep_set& keys)
{
out << '(';
typename DepNode::dep_set::const_iterator ki(keys.begin()), kend(keys.end());
if (ki != kend)
{
LLDependencies_describe(out, *ki);
while (++ki != kend)
{
out << ", ";
LLDependencies_describe(out, *ki);
}
}
out << ')';
return out;
}
/// Iterator over the before/after KEYs on which a given NODE depends
typedef typename DepNode::dep_set::const_iterator dep_iterator;
/// range over the before/after KEYs on which a given NODE depends
typedef boost::iterator_range<dep_iterator> dep_range;
/// dependencies access from key
dep_range get_dep_range_from_key(const KEY& key, const dep_selector& selector) const
{
typename DepNodeMap::const_iterator found = mNodes.find(key);
if (found != mNodes.end())
{
return dep_range(selector(found->second));
}
// We want to return an empty range. On some platforms a default-
// constructed range (e.g. dep_range()) does NOT suffice! The client
// is likely to try to iterate from boost::begin(range) to
// boost::end(range); yet these iterators might not be valid. Instead
// return a range over a valid, empty container.
static const typename DepNode::dep_set empty_deps;
return dep_range(empty_deps.begin(), empty_deps.end());
}
/// dependencies access from any one of our key-order iterators
template<typename ITERATOR>
dep_range get_dep_range_from_xform(const ITERATOR& iterator, const dep_selector& selector) const
{
return dep_range(selector(iterator.base()->second));
}
/// dependencies access from sorted_iterator
dep_range get_dep_range_from_sorted(const sorted_iterator& sortiter,
const dep_selector& selector) const
{
// sorted_iterator is a boost::indirect_iterator wrapping an mCache
// iterator, which we can obtain by sortiter.base(). Deferencing that
// gets us an mCache entry, an 'iterator' -- one of our traversal
// iterators -- on which we can use get_dep_range_from_xform().
return get_dep_range_from_xform(*sortiter.base(), selector);
}
/**
* Get a range over the after KEYs stored for the passed KEY or iterator,
* in <i>arbitrary order.</i> If you pass a nonexistent KEY, returns empty
* range -- same as a KEY with no after KEYs. Detect existence of a KEY
* using get() instead.
*/
template<typename KEY_OR_ITER>
dep_range get_after_range(const KEY_OR_ITER& key) const;
/**
* Get a range over the before KEYs stored for the passed KEY or iterator,
* in <i>arbitrary order.</i> If you pass a nonexistent KEY, returns empty
* range -- same as a KEY with no before KEYs. Detect existence of a KEY
* using get() instead.
*/
template<typename KEY_OR_ITER>
dep_range get_before_range(const KEY_OR_ITER& key) const;
private:
DepNodeMap mNodes;
mutable iterator_list mCache;
};
/**
* Functor to get a dep_range from a KEY or iterator -- generic case. If the
* passed value isn't one of our iterator specializations, assume it's
* convertible to the KEY type.
*/
template<typename KEY_ITER>
struct LLDependencies_dep_range_from
{
template<typename KEY, typename NODE, typename SELECTOR>
typename LLDependencies<KEY, NODE>::dep_range
operator()(const LLDependencies<KEY, NODE>& deps,
const KEY_ITER& key,
const SELECTOR& selector)
{
return deps.get_dep_range_from_key(key, selector);
}
};
/// Specialize LLDependencies_dep_range_from for our key-order iterators
template<typename FUNCTION, typename ITERATOR>
struct LLDependencies_dep_range_from< boost::transform_iterator<FUNCTION, ITERATOR> >
{
template<typename KEY, typename NODE, typename SELECTOR>
typename LLDependencies<KEY, NODE>::dep_range
operator()(const LLDependencies<KEY, NODE>& deps,
const boost::transform_iterator<FUNCTION, ITERATOR>& iter,
const SELECTOR& selector)
{
return deps.get_dep_range_from_xform(iter, selector);
}
};
/// Specialize LLDependencies_dep_range_from for sorted_iterator
template<typename BASEITER>
struct LLDependencies_dep_range_from< boost::indirect_iterator<BASEITER> >
{
template<typename KEY, typename NODE, typename SELECTOR>
typename LLDependencies<KEY, NODE>::dep_range
operator()(const LLDependencies<KEY, NODE>& deps,
const boost::indirect_iterator<BASEITER>& iter,
const SELECTOR& selector)
{
return deps.get_dep_range_from_sorted(iter, selector);
}
};
/// generic get_after_range() implementation
template<typename KEY, typename NODE>
template<typename KEY_OR_ITER>
typename LLDependencies<KEY, NODE>::dep_range
LLDependencies<KEY, NODE>::get_after_range(const KEY_OR_ITER& key_iter) const
{
return LLDependencies_dep_range_from<KEY_OR_ITER>()(
*this,
key_iter,
boost::bind<const typename DepNode::dep_set&>(&DepNode::after, _1));
}
/// generic get_before_range() implementation
template<typename KEY, typename NODE>
template<typename KEY_OR_ITER>
typename LLDependencies<KEY, NODE>::dep_range
LLDependencies<KEY, NODE>::get_before_range(const KEY_OR_ITER& key_iter) const
{
return LLDependencies_dep_range_from<KEY_OR_ITER>()(
*this,
key_iter,
boost::bind<const typename DepNode::dep_set&>(&DepNode::before, _1));
}
#endif /* ! defined(LL_LLDEPENDENCIES_H) */