Files
SingularityViewer/indra/llcommon/llevents.h

1055 lines
43 KiB
C++

/**
* @file llevents.h
* @author Kent Quirk, Nat Goodspeed
* @date 2008-09-11
* @brief This is an implementation of the event system described at
* https://wiki.lindenlab.com/wiki/Viewer:Messaging/Event_System,
* originally introduced in llnotifications.h. It has nothing
* whatsoever to do with the older system in llevent.h.
*
* $LicenseInfo:firstyear=2008&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#if ! defined(LL_LLEVENTS_H)
#define LL_LLEVENTS_H
#include <string>
#include <map>
#include <set>
#include <vector>
#include <deque>
#include <stdexcept>
#if LL_WINDOWS
#pragma warning (push)
#pragma warning (disable : 4263) // boost::signals2::expired_slot::what() has const mismatch
#pragma warning (disable : 4264)
#endif
#include <boost/signals2.hpp>
#if LL_WINDOWS
#pragma warning (pop)
#endif
#include <boost/bind.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/enable_shared_from_this.hpp>
#include <boost/utility.hpp> // noncopyable
#include <boost/optional/optional.hpp>
#include <boost/visit_each.hpp>
#include <boost/ref.hpp> // reference_wrapper
#include <boost/type_traits/is_pointer.hpp>
#ifndef BOOST_FUNCTION_HPP_INCLUDED
#include <boost/function.hpp>
#define BOOST_FUNCTION_HPP_INCLUDED
#endif
#include <boost/static_assert.hpp>
#include "llsd.h"
#include "llsingleton.h"
#include "lldependencies.h"
#include "llstl.h"
/*==========================================================================*|
// override this to allow binding free functions with more parameters
#ifndef LLEVENTS_LISTENER_ARITY
#define LLEVENTS_LISTENER_ARITY 10
#endif
|*==========================================================================*/
// hack for testing
#ifndef testable
#define testable private
#endif
/*****************************************************************************
* Signal and handler declarations
* Using a single handler signature means that we can have a common handler
* type, rather than needing a distinct one for each different handler.
*****************************************************************************/
/**
* A boost::signals2 Combiner that stops the first time a handler returns true
* We need this because we want to have our handlers return bool, so that
* we have the option to cause a handler to stop further processing. The
* default handler fails when the signal returns a value but has no slots.
*/
struct LLStopWhenHandled
{
typedef bool result_type;
template<typename InputIterator>
result_type operator()(InputIterator first, InputIterator last) const
{
for (InputIterator si = first; si != last; ++si)
{
if (*si)
{
return true;
}
}
return false;
}
};
/**
* We want to have a standard signature for all signals; this way,
* we can easily document a protocol for communicating across
* dlls and into scripting languages someday.
*
* We want to return a bool to indicate whether the signal has been
* handled and should NOT be passed on to other listeners.
* Return true to stop further handling of the signal, and false
* to continue.
*
* We take an LLSD because this way the contents of the signal
* are independent of the API used to communicate it.
* It is const ref because then there's low cost to pass it;
* if you only need to inspect it, it's very cheap.
*
* @internal
* The @c float template parameter indicates that we will internally use @c
* float to indicate relative listener order on a given LLStandardSignal.
* Don't worry, the @c float values are strictly internal! They are not part
* of the interface, for the excellent reason that requiring the caller to
* specify a numeric key to establish order means that the caller must know
* the universe of possible values. We use LLDependencies for that instead.
*/
typedef boost::signals2::signal<bool(const LLSD&), LLStopWhenHandled, float> LLStandardSignal;
/// Methods that forward listeners (e.g. constructed with
/// <tt>boost::bind()</tt>) should accept (const LLEventListener&)
typedef LLStandardSignal::slot_type LLEventListener;
/// Result of registering a listener, supports <tt>connected()</tt>,
/// <tt>disconnect()</tt> and <tt>blocked()</tt>
typedef boost::signals2::connection LLBoundListener;
/// Storing an LLBoundListener in LLTempBoundListener will disconnect the
/// referenced listener when the LLTempBoundListener instance is destroyed.
typedef boost::signals2::scoped_connection LLTempBoundListener;
/**
* A common idiom for event-based code is to accept either a callable --
* directly called on completion -- or the string name of an LLEventPump on
* which to post the completion event. Specifying a parameter as <tt>const
* LLListenerOrPumpName&</tt> allows either.
*
* Calling a validly-constructed LLListenerOrPumpName, passing the LLSD
* 'event' object, either calls the callable or posts the event to the named
* LLEventPump.
*
* A default-constructed LLListenerOrPumpName is 'empty'. (This is useful as
* the default value of an optional method parameter.) Calling it throws
* LLListenerOrPumpName::Empty. Test for this condition beforehand using
* either <tt>if (param)</tt> or <tt>if (! param)</tt>.
*/
class LL_COMMON_API LLListenerOrPumpName
{
public:
/// passing string name of LLEventPump
LLListenerOrPumpName(const std::string& pumpname);
/// passing string literal (overload so compiler isn't forced to infer
/// double conversion)
LLListenerOrPumpName(const char* pumpname);
/// passing listener -- the "anything else" catch-all case. The type of an
/// object constructed by boost::bind() isn't intended to be written out.
/// Normally we'd just accept 'const LLEventListener&', but that would
/// require double implicit conversion: boost::bind() object to
/// LLEventListener, LLEventListener to LLListenerOrPumpName. So use a
/// template to forward anything.
template<typename T>
LLListenerOrPumpName(const T& listener): mListener(listener) {}
/// for omitted method parameter: uninitialized mListener
LLListenerOrPumpName() {}
/// test for validity
operator bool() const { return bool(mListener); }
bool operator! () const { return ! mListener; }
/// explicit accessor
const ::LLEventListener& getListener() const { return *mListener; }
/// implicit conversion to LLEventListener
operator ::LLEventListener() const { return *mListener; }
/// allow calling directly
bool operator()(const LLSD& event) const;
/// exception if you try to call when empty
struct Empty: public std::runtime_error
{
Empty(const std::string& what):
std::runtime_error(std::string("LLListenerOrPumpName::Empty: ") + what) {}
};
private:
boost::optional<LLEventListener> mListener;
};
/*****************************************************************************
* LLEventPumps
*****************************************************************************/
class LLEventPump;
/**
* LLEventPumps is a Singleton manager through which one typically accesses
* this subsystem.
*/
class LL_COMMON_API LLEventPumps: public LLSingleton<LLEventPumps>
{
friend class LLSingleton<LLEventPumps>;
public:
/**
* Find or create an LLEventPump instance with a specific name. We return
* a reference so there's no question about ownership. obtain() @em finds
* an instance without conferring @em ownership.
*/
LLEventPump& obtain(const std::string& name);
/**
* Flush all known LLEventPump instances
*/
void flush();
/**
* Reset all known LLEventPump instances
* workaround for DEV-35406 crash on shutdown
*/
void reset();
private:
friend class LLEventPump;
/**
* Register a new LLEventPump instance (internal)
*/
std::string registerNew(const LLEventPump&, const std::string& name, bool tweak);
/**
* Unregister a doomed LLEventPump instance (internal)
*/
void unregister(const LLEventPump&);
static bool sDeleted;
static void maybe_unregister(const LLEventPump&);
private:
LLEventPumps();
~LLEventPumps();
testable:
// Map of all known LLEventPump instances, whether or not we instantiated
// them. We store a plain old LLEventPump* because this map doesn't claim
// ownership of the instances. Though the common usage pattern is to
// request an instance using obtain(), it's fair to instantiate an
// LLEventPump subclass statically, as a class member, on the stack or on
// the heap. In such cases, the instantiating party is responsible for its
// lifespan.
typedef std::map<std::string, LLEventPump*> PumpMap;
PumpMap mPumpMap;
// Set of all LLEventPumps we instantiated. Membership in this set means
// we claim ownership, and will delete them when this LLEventPumps is
// destroyed.
typedef std::set<LLEventPump*> PumpSet;
PumpSet mOurPumps;
// LLEventPump names that should be instantiated as LLEventQueue rather
// than as LLEventStream
typedef std::set<std::string> PumpNames;
PumpNames mQueueNames;
};
/*****************************************************************************
* details
*****************************************************************************/
namespace LLEventDetail
{
/// Any callable capable of connecting an LLEventListener to an
/// LLStandardSignal to produce an LLBoundListener can be mapped to this
/// signature.
typedef boost::function<LLBoundListener(const ::LLEventListener&)> ConnectFunc;
/// overload of visit_and_connect() when we have a string identifier available
template <typename LISTENER>
LLBoundListener visit_and_connect(const std::string& name,
const LISTENER& listener,
const ConnectFunc& connect_func);
/**
* Utility template function to use Visitor appropriately
*
* @param listener Callable to connect, typically a boost::bind()
* expression. This will be visited by Visitor using boost::visit_each().
* @param connect_func Callable that will connect() @a listener to an
* LLStandardSignal, returning LLBoundListener.
*/
template <typename LISTENER>
LLBoundListener visit_and_connect(const LISTENER& listener,
const ConnectFunc& connect_func)
{
return visit_and_connect("", listener, connect_func);
}
} // namespace LLEventDetail
/*****************************************************************************
* LLEventTrackable
*****************************************************************************/
/**
* LLEventTrackable wraps boost::signals2::trackable, which resembles
* boost::trackable. Derive your listener class from LLEventTrackable instead,
* and use something like
* <tt>LLEventPump::listen(boost::bind(&YourTrackableSubclass::method,
* instance, _1))</tt>. This will implicitly disconnect when the object
* referenced by @c instance is destroyed.
*
* @note
* LLEventTrackable doesn't address a couple of cases:
* * Object destroyed during call
* - You enter a slot call in thread A.
* - Thread B destroys the object, which of course disconnects it from any
* future slot calls.
* - Thread A's call uses 'this', which now refers to a defunct object.
* Undefined behavior results.
* * Call during destruction
* - @c MySubclass is derived from LLEventTrackable.
* - @c MySubclass registers one of its own methods using
* <tt>LLEventPump::listen()</tt>.
* - The @c MySubclass object begins destruction. <tt>~MySubclass()</tt>
* runs, destroying state specific to the subclass. (For instance, a
* <tt>Foo*</tt> data member is <tt>delete</tt>d but not zeroed.)
* - The listening method will not be disconnected until
* <tt>~LLEventTrackable()</tt> runs.
* - Before we get there, another thread posts data to the @c LLEventPump
* instance, calling the @c MySubclass method.
* - The method in question relies on valid @c MySubclass state. (For
* instance, it attempts to dereference the <tt>Foo*</tt> pointer that was
* <tt>delete</tt>d but not zeroed.)
* - Undefined behavior results.
* If you suspect you may encounter any such scenario, you're better off
* managing the lifespan of your object with <tt>boost::shared_ptr</tt>.
* Passing <tt>LLEventPump::listen()</tt> a <tt>boost::bind()</tt> expression
* involving a <tt>boost::weak_ptr<Foo></tt> is recognized specially, engaging
* thread-safe Boost.Signals2 machinery.
*/
typedef boost::signals2::trackable LLEventTrackable;
/*****************************************************************************
* LLEventPump
*****************************************************************************/
/**
* LLEventPump is the base class interface through which we access the
* concrete subclasses LLEventStream and LLEventQueue.
*
* @NOTE
* LLEventPump derives from LLEventTrackable so that when you "chain"
* LLEventPump instances together, they will automatically disconnect on
* destruction. Please see LLEventTrackable documentation for situations in
* which this may be perilous across threads.
*/
class LL_COMMON_API LLEventPump: public LLEventTrackable
{
public:
/**
* Exception thrown by LLEventPump(). You are trying to instantiate an
* LLEventPump (subclass) using the same name as some other instance, and
* you didn't pass <tt>tweak=true</tt> to permit it to generate a unique
* variant.
*/
struct DupPumpName: public std::runtime_error
{
DupPumpName(const std::string& what):
std::runtime_error(std::string("DupPumpName: ") + what) {}
};
/**
* Instantiate an LLEventPump (subclass) with the string name by which it
* can be found using LLEventPumps::obtain().
*
* If you pass (or default) @a tweak to @c false, then a duplicate name
* will throw DupPumpName. This won't happen if LLEventPumps::obtain()
* instantiates the LLEventPump, because obtain() uses find-or-create
* logic. It can only happen if you instantiate an LLEventPump in your own
* code -- and a collision with the name of some other LLEventPump is
* likely to cause much more subtle problems!
*
* When you hand-instantiate an LLEventPump, consider passing @a tweak as
* @c true. This directs LLEventPump() to append a suffix to the passed @a
* name to make it unique. You can retrieve the adjusted name by calling
* getName() on your new instance.
*/
LLEventPump(const std::string& name, bool tweak=false);
virtual ~LLEventPump();
/// group exceptions thrown by listen(). We use exceptions because these
/// particular errors are likely to be coding errors, found and fixed by
/// the developer even before preliminary checkin.
struct ListenError: public std::runtime_error
{
ListenError(const std::string& what): std::runtime_error(what) {}
};
/**
* exception thrown by listen(). You are attempting to register a
* listener on this LLEventPump using the same listener name as an
* already-registered listener.
*/
struct DupListenerName: public ListenError
{
DupListenerName(const std::string& what):
ListenError(std::string("DupListenerName: ") + what)
{}
};
/**
* exception thrown by listen(). The order dependencies specified for your
* listener are incompatible with existing listeners.
*
* Consider listener "a" which specifies before "b" and "b" which
* specifies before "c". You are now attempting to register "c" before
* "a". There is no order that can satisfy all constraints.
*/
struct Cycle: public ListenError
{
Cycle(const std::string& what): ListenError(std::string("Cycle: ") + what) {}
};
/**
* exception thrown by listen(). This one means that your new listener
* would force a change to the order of previously-registered listeners,
* and we don't have a good way to implement that.
*
* Consider listeners "some", "other" and "third". "some" and "other" are
* registered earlier without specifying relative order, so "other"
* happens to be first. Now you attempt to register "third" after "some"
* and before "other". Whoops, that would require swapping "some" and
* "other", which we can't do. Instead we throw this exception.
*
* It may not be possible to change the registration order so we already
* know "third"s order requirement by the time we register the second of
* "some" and "other". A solution would be to specify that "some" must
* come before "other", or equivalently that "other" must come after
* "some".
*/
struct OrderChange: public ListenError
{
OrderChange(const std::string& what): ListenError(std::string("OrderChange: ") + what) {}
};
/// used by listen()
typedef std::vector<std::string> NameList;
/// convenience placeholder for when you explicitly want to pass an empty
/// NameList
const static NameList empty;
/// Get this LLEventPump's name
std::string getName() const { return mName; }
/**
* Register a new listener with a unique name. Specify an optional list
* of other listener names after which this one must be called, likewise
* an optional list of other listener names before which this one must be
* called. The other listeners mentioned need not yet be registered
* themselves. listen() can throw any ListenError; see ListenError
* subclasses.
*
* The listener name must be unique among active listeners for this
* LLEventPump, else you get DupListenerName. If you don't care to invent
* a name yourself, use inventName(). (I was tempted to recognize e.g. ""
* and internally generate a distinct name for that case. But that would
* handle badly the scenario in which you want to add, remove, re-add,
* etc. the same listener: each new listen() call would necessarily
* perform a new dependency sort. Assuming you specify the same
* after/before lists each time, using inventName() when you first
* instantiate your listener, then passing the same name on each listen()
* call, allows us to optimize away the second and subsequent dependency
* sorts.
*
* If (as is typical) you pass a <tt>boost::bind()</tt> expression as @a
* listener, listen() will inspect the components of that expression. If a
* bound object matches any of several cases, the connection will
* automatically be disconnected when that object is destroyed.
*
* * You bind a <tt>boost::weak_ptr</tt>.
* * Binding a <tt>boost::shared_ptr</tt> that way would ensure that the
* referenced object would @em never be destroyed, since the @c
* shared_ptr stored in the LLEventPump would remain an outstanding
* reference. Use the weaken() function to convert your @c shared_ptr to
* @c weak_ptr. Because this is easy to forget, binding a @c shared_ptr
* will produce a compile error (@c BOOST_STATIC_ASSERT failure).
* * You bind a simple pointer or reference to an object derived from
* <tt>boost::enable_shared_from_this</tt>. (UNDER CONSTRUCTION)
* * You bind a simple pointer or reference to an object derived from
* LLEventTrackable. Unlike the cases described above, though, this is
* vulnerable to a couple of cross-thread race conditions, as described
* in the LLEventTrackable documentation.
*/
template <typename LISTENER>
LLBoundListener listen(const std::string& name, const LISTENER& listener,
const NameList& after=NameList(),
const NameList& before=NameList())
{
// Examine listener, using our listen_impl() method to make the
// actual connection.
// This is why listen() is a template. Conversion from boost::bind()
// to LLEventListener performs type erasure, so it's important to look
// at the boost::bind object itself before that happens.
return LLEventDetail::visit_and_connect(name,
listener,
boost::bind(&LLEventPump::listen_impl,
this,
name,
_1,
after,
before));
}
/// Get the LLBoundListener associated with the passed name (dummy
/// LLBoundListener if not found)
virtual LLBoundListener getListener(const std::string& name) const;
/**
* Instantiate one of these to block an existing connection:
* @code
* { // in some local scope
* LLEventPump::Blocker block(someLLBoundListener);
* // code that needs the connection blocked
* } // unblock the connection again
* @endcode
*/
typedef boost::signals2::shared_connection_block Blocker;
/// Unregister a listener by name. Prefer this to
/// <tt>getListener(name).disconnect()</tt> because stopListening() also
/// forgets this name.
virtual void stopListening(const std::string& name);
/// Post an event to all listeners. The @c bool return is only meaningful
/// if the underlying leaf class is LLEventStream -- beware of relying on
/// it too much! Truthfully, we return @c bool mostly to permit chaining
/// one LLEventPump as a listener on another.
virtual bool post(const LLSD&) = 0;
/// Enable/disable: while disabled, silently ignore all post() calls
virtual void enable(bool enabled=true) { mEnabled = enabled; }
/// query
virtual bool enabled() const { return mEnabled; }
/// Generate a distinct name for a listener -- see listen()
static std::string inventName(const std::string& pfx="listener");
private:
friend class LLEventPumps;
/// flush queued events
virtual void flush() {}
virtual void reset();
private:
virtual LLBoundListener listen_impl(const std::string& name, const ::LLEventListener&,
const NameList& after,
const NameList& before);
std::string mName;
protected:
/// implement the dispatching
boost::shared_ptr<LLStandardSignal> mSignal;
/// valve open?
bool mEnabled;
/// Map of named listeners. This tracks the listeners that actually exist
/// at this moment. When we stopListening(), we discard the entry from
/// this map.
typedef std::map<std::string, boost::signals2::connection> ConnectionMap;
ConnectionMap mConnections;
typedef LLDependencies<std::string, float> DependencyMap;
/// Dependencies between listeners. For each listener, track the float
/// used to establish its place in mSignal's order. This caches all the
/// listeners that have ever registered; stopListening() does not discard
/// the entry from this map. This is to avoid a new dependency sort if the
/// same listener with the same dependencies keeps hopping on and off this
/// LLEventPump.
DependencyMap mDeps;
};
/*****************************************************************************
* LLEventStream
*****************************************************************************/
/**
* LLEventStream is a thin wrapper around LLStandardSignal. Posting an
* event immediately calls all registered listeners.
*/
class LL_COMMON_API LLEventStream: public LLEventPump
{
public:
LLEventStream(const std::string& name, bool tweak=false): LLEventPump(name, tweak) {}
virtual ~LLEventStream() {}
/// Post an event to all listeners
virtual bool post(const LLSD& event);
};
/*****************************************************************************
* LLEventQueue
*****************************************************************************/
/**
* LLEventQueue isa LLEventPump whose post() method defers calling registered
* listeners until flush() is called.
*/
class LL_COMMON_API LLEventQueue: public LLEventPump
{
public:
LLEventQueue(const std::string& name, bool tweak=false): LLEventPump(name, tweak) {}
virtual ~LLEventQueue() {}
/// Post an event to all listeners
virtual bool post(const LLSD& event);
private:
/// flush queued events
virtual void flush();
private:
typedef std::deque<LLSD> EventQueue;
EventQueue mEventQueue;
};
/*****************************************************************************
* LLReqID
*****************************************************************************/
/**
* This class helps the implementer of a given event API to honor the
* ["reqid"] convention. By this convention, each event API stamps into its
* response LLSD a ["reqid"] key whose value echoes the ["reqid"] value, if
* any, from the corresponding request.
*
* This supports an (atypical, but occasionally necessary) use case in which
* two or more asynchronous requests are multiplexed onto the same ["reply"]
* LLEventPump. Since the response events could arrive in arbitrary order, the
* caller must be able to demux them. It does so by matching the ["reqid"]
* value in each response with the ["reqid"] value in the corresponding
* request.
*
* It is the caller's responsibility to ensure distinct ["reqid"] values for
* that case. Though LLSD::UUID is guaranteed to work, it might be overkill:
* the "namespace" of unique ["reqid"] values is simply the set of requests
* specifying the same ["reply"] LLEventPump name.
*
* Making a given event API echo the request's ["reqid"] into the response is
* nearly trivial. This helper is mostly for mnemonic purposes, to serve as a
* place to put these comments. We hope that each time a coder implements a
* new event API based on some existing one, s/he will say, "Huh, what's an
* LLReqID?" and look up this material.
*
* The hardest part about the convention is deciding where to store the
* ["reqid"] value. Ironically, LLReqID can't help with that: you must store
* an LLReqID instance in whatever storage will persist until the reply is
* sent. For example, if the request ultimately ends up using a Responder
* subclass, storing an LLReqID instance in the Responder works.
*
* @note
* The @em implementer of an event API must honor the ["reqid"] convention.
* However, the @em caller of an event API need only use it if s/he is sharing
* the same ["reply"] LLEventPump for two or more asynchronous event API
* requests.
*
* In most cases, it's far easier for the caller to instantiate a local
* LLEventStream and pass its name to the event API in question. Then it's
* perfectly reasonable not to set a ["reqid"] key in the request, ignoring
* the @c isUndefined() ["reqid"] value in the response.
*/
class LL_COMMON_API LLReqID
{
public:
/**
* If you have the request in hand at the time you instantiate the
* LLReqID, pass that request to extract its ["reqid"].
*/
LLReqID(const LLSD& request):
mReqid(request["reqid"])
{}
/// If you don't yet have the request, use setFrom() later.
LLReqID() {}
/// Extract and store the ["reqid"] value from an incoming request.
void setFrom(const LLSD& request)
{
mReqid = request["reqid"];
}
/// Set ["reqid"] key into a pending response LLSD object.
void stamp(LLSD& response) const;
/// Make a whole new response LLSD object with our ["reqid"].
LLSD makeResponse() const
{
LLSD response;
stamp(response);
return response;
}
/// Not really sure of a use case for this accessor...
LLSD getReqID() const { return mReqid; }
private:
LLSD mReqid;
};
/**
* Conventionally send a reply to a request event.
*
* @a reply is the LLSD reply event to send
* @a request is the corresponding LLSD request event
* @a replyKey is the key in the @a request event, conventionally ["reply"],
* whose value is the name of the LLEventPump on which to send the reply.
*
* Before sending the reply event, sendReply() copies the ["reqid"] item from
* the request to the reply.
*/
LL_COMMON_API bool sendReply(const LLSD& reply, const LLSD& request,
const std::string& replyKey="reply");
/**
* Base class for LLListenerWrapper. See visit_and_connect() and llwrap(). We
* provide virtual @c accept_xxx() methods, customization points allowing a
* subclass access to certain data visible at LLEventPump::listen() time.
* Example subclass usage:
*
* @code
* myEventPump.listen("somename",
* llwrap<MyListenerWrapper>(boost::bind(&MyClass::method, instance, _1)));
* @endcode
*
* Because of the anticipated usage (note the anonymous temporary
* MyListenerWrapper instance in the example above), the @c accept_xxx()
* methods must be @c const.
*/
class LL_COMMON_API LLListenerWrapperBase
{
public:
/// New instance. The accept_xxx() machinery makes it important to use
/// shared_ptrs for our data. Many copies of this object are made before
/// the instance that actually ends up in the signal, yet accept_xxx()
/// will later be called on the @em original instance. All copies of the
/// same original instance must share the same data.
LLListenerWrapperBase():
mName(new std::string),
mConnection(new LLBoundListener)
{
}
/// Copy constructor. Copy shared_ptrs to original instance data.
LLListenerWrapperBase(const LLListenerWrapperBase& that):
mName(that.mName),
mConnection(that.mConnection)
{
}
virtual ~LLListenerWrapperBase() {}
/// Ask LLEventPump::listen() for the listener name
virtual void accept_name(const std::string& name) const
{
*mName = name;
}
/// Ask LLEventPump::listen() for the new connection
virtual void accept_connection(const LLBoundListener& connection) const
{
*mConnection = connection;
}
protected:
/// Listener name.
boost::shared_ptr<std::string> mName;
/// Connection.
boost::shared_ptr<LLBoundListener> mConnection;
};
/*****************************************************************************
* Underpinnings
*****************************************************************************/
/**
* We originally provided a suite of overloaded
* LLEventTrackable::listenTo(LLEventPump&, ...) methods that would call
* LLEventPump::listen(...) and then pass the returned LLBoundListener to
* LLEventTrackable::track(). This was workable but error-prone: the coder
* must remember to call listenTo() rather than the more straightforward
* listen() method.
*
* Now we publish only the single canonical listen() method, so there's a
* uniform mechanism. Having a single way to do this is good, in that there's
* no question in the coder's mind which of several alternatives to choose.
*
* To support automatic connection management, we use boost::visit_each
* (http://www.boost.org/doc/libs/1_37_0/doc/html/boost/visit_each.html) to
* inspect each argument of a boost::bind expression. (Although the visit_each
* mechanism was first introduced with the original Boost.Signals library, it
* was only later documented.)
*
* Cases:
* * At least one of the function's arguments is a boost::weak_ptr<T>. Pass
* the corresponding shared_ptr to slot_type::track(). Ideally that would be
* the object whose method we want to call, but in fact we do the same for
* any weak_ptr we might find among the bound arguments. If we're passing
* our bound method a weak_ptr to some object, wouldn't the destruction of
* that object invalidate the call? So we disconnect automatically when any
* such object is destroyed. This is the mechanism preferred by boost::
* signals2.
* * One of the functions's arguments is a boost::shared_ptr<T>. This produces
* a compile error: the bound copy of the shared_ptr stored in the
* boost_bind object stored in the signal object would make the referenced
* T object immortal. We provide a weaken() function. Pass
* weaken(your_shared_ptr) instead. (We can inspect, but not modify, the
* boost::bind object. Otherwise we'd replace the shared_ptr with weak_ptr
* implicitly and just proceed.)
* * One of the function's arguments is a plain pointer/reference to an object
* derived from boost::enable_shared_from_this. We assume that this object
* is managed using boost::shared_ptr, so we implicitly extract a shared_ptr
* and track that. (UNDER CONSTRUCTION)
* * One of the function's arguments is derived from LLEventTrackable. Pass
* the LLBoundListener to its LLEventTrackable::track(). This is vulnerable
* to a couple different race conditions, as described in LLEventTrackable
* documentation. (NOTE: Now that LLEventTrackable is a typedef for
* boost::signals2::trackable, the Signals2 library handles this itself, so
* our visitor needs no special logic for this case.)
* * Any other argument type is irrelevant to automatic connection management.
*/
namespace LLEventDetail
{
template <typename F>
const F& unwrap(const F& f) { return f; }
template <typename F>
const F& unwrap(const boost::reference_wrapper<F>& f) { return f.get(); }
// Most of the following is lifted from the Boost.Signals use of
// visit_each.
template<bool Cond> struct truth {};
/**
* boost::visit_each() Visitor, used on a template argument <tt>const F&
* f</tt> as follows (see visit_and_connect()):
* @code
* LLEventListener listener(f);
* Visitor visitor(listener); // bind listener so it can track() shared_ptrs
* using boost::visit_each; // allow unqualified visit_each() call for ADL
* visit_each(visitor, unwrap(f));
* @endcode
*/
class Visitor
{
public:
/**
* Visitor binds a reference to LLEventListener so we can track() any
* shared_ptrs we find in the argument list.
*/
Visitor(::LLEventListener& listener):
mListener(listener)
{
}
/**
* boost::visit_each() calls this method for each component of a
* boost::bind() expression.
*/
template <typename T>
void operator()(const T& t) const
{
decode(t, 0);
}
private:
// decode() decides between a reference wrapper and anything else
// boost::ref() variant
template<typename T>
void decode(const boost::reference_wrapper<T>& t, int) const
{
// add_if_trackable(t.get_pointer());
}
// decode() anything else
template<typename T>
void decode(const T& t, long) const
{
typedef truth<(boost::is_pointer<T>::value)> is_a_pointer;
maybe_get_pointer(t, is_a_pointer());
}
// maybe_get_pointer() decides between a pointer and a non-pointer
// plain pointer variant
template<typename T>
void maybe_get_pointer(const T& t, truth<true>) const
{
// add_if_trackable(t);
}
// shared_ptr variant
template<typename T>
void maybe_get_pointer(const boost::shared_ptr<T>& t, truth<false>) const
{
// If we have a shared_ptr to this object, it doesn't matter
// whether the object is derived from LLEventTrackable, so no
// further analysis of T is needed.
// mListener.track(t);
// Make this case illegal. Passing a bound shared_ptr to
// slot_type::track() is useless, since the bound shared_ptr will
// keep the object alive anyway! Force the coder to cast to weak_ptr.
// Trivial as it is, make the BOOST_STATIC_ASSERT() condition
// dependent on template param so the macro is only evaluated if
// this method is in fact instantiated, as described here:
// http://www.boost.org/doc/libs/1_34_1/doc/html/boost_staticassert.html
// ATTENTION: Don't bind a shared_ptr<anything> using
// LLEventPump::listen(boost::bind()). Doing so captures a copy of
// the shared_ptr, making the referenced object effectively
// immortal. Use the weaken() function, e.g.:
// somepump.listen(boost::bind(...weaken(my_shared_ptr)...));
// This lets us automatically disconnect when the referenced
// object is destroyed.
BOOST_STATIC_ASSERT(sizeof(T) == 0);
}
// weak_ptr variant
template<typename T>
void maybe_get_pointer(const boost::weak_ptr<T>& t, truth<false>) const
{
// If we have a weak_ptr to this object, it doesn't matter
// whether the object is derived from LLEventTrackable, so no
// further analysis of T is needed.
mListener.track(t);
// std::cout << "Found weak_ptr<" << typeid(T).name() << ">!\n";
}
#if 0
// reference to anything derived from boost::enable_shared_from_this
template <typename T>
inline void maybe_get_pointer(const boost::enable_shared_from_this<T>& ct,
truth<false>) const
{
// Use the slot_type::track(shared_ptr) mechanism. Cast away
// const-ness because (in our code base anyway) it's unusual
// to find shared_ptr<const T>.
boost::enable_shared_from_this<T>&
t(const_cast<boost::enable_shared_from_this<T>&>(ct));
std::cout << "Capturing shared_from_this()" << std::endl;
boost::shared_ptr<T> sp(t.shared_from_this());
/*==========================================================================*|
std::cout << "Capturing weak_ptr" << std::endl;
boost::weak_ptr<T> wp(sp);
|*==========================================================================*/
std::cout << "Tracking shared__ptr" << std::endl;
mListener.track(sp);
}
#endif
// non-pointer variant
template<typename T>
void maybe_get_pointer(const T& t, truth<false>) const
{
// Take the address of this object, because the object itself may be
// trackable
// add_if_trackable(boost::addressof(t));
}
/*==========================================================================*|
// add_if_trackable() adds LLEventTrackable objects to mTrackables
inline void add_if_trackable(const LLEventTrackable* t) const
{
if (t)
{
}
}
// pointer to anything not an LLEventTrackable subclass
inline void add_if_trackable(const void*) const
{
}
// pointer to free function
// The following construct uses the preprocessor to generate
// add_if_trackable() overloads accepting pointer-to-function taking
// 0, 1, ..., LLEVENTS_LISTENER_ARITY parameters of arbitrary type.
#define BOOST_PP_LOCAL_MACRO(n) \
template <typename R \
BOOST_PP_COMMA_IF(n) \
BOOST_PP_ENUM_PARAMS(n, typename T)> \
inline void \
add_if_trackable(R (*)(BOOST_PP_ENUM_PARAMS(n, T))) const \
{ \
}
#define BOOST_PP_LOCAL_LIMITS (0, LLEVENTS_LISTENER_ARITY)
#include BOOST_PP_LOCAL_ITERATE()
#undef BOOST_PP_LOCAL_MACRO
#undef BOOST_PP_LOCAL_LIMITS
|*==========================================================================*/
/// Bind a reference to the LLEventListener to call its track() method.
::LLEventListener& mListener;
};
/**
* Utility template function to use Visitor appropriately
*
* @param raw_listener Callable to connect, typically a boost::bind()
* expression. This will be visited by Visitor using boost::visit_each().
* @param connect_funct Callable that will connect() @a raw_listener to an
* LLStandardSignal, returning LLBoundListener.
*/
template <typename LISTENER>
LLBoundListener visit_and_connect(const std::string& name,
const LISTENER& raw_listener,
const ConnectFunc& connect_func)
{
// Capture the listener
::LLEventListener listener(raw_listener);
// Define our Visitor, binding the listener so we can call
// listener.track() if we discover any shared_ptr<Foo>.
LLEventDetail::Visitor visitor(listener);
// Allow unqualified visit_each() call for ADL
using boost::visit_each;
// Visit each component of a boost::bind() expression. Pass
// 'raw_listener', our template argument, rather than 'listener' from
// which type details have been erased. unwrap() comes from
// Boost.Signals, in case we were passed a boost::ref().
visit_each(visitor, LLEventDetail::unwrap(raw_listener));
// Make the connection using passed function.
LLBoundListener connection(connect_func(listener));
// If the LISTENER is an LLListenerWrapperBase subclass, pass it the
// desired information. It's important that we pass the raw_listener
// so the compiler can make decisions based on its original type.
const LLListenerWrapperBase* lwb =
ll_template_cast<const LLListenerWrapperBase*>(&raw_listener);
if (lwb)
{
lwb->accept_name(name);
lwb->accept_connection(connection);
}
// In any case, show new connection to caller.
return connection;
}
} // namespace LLEventDetail
// Somewhat to my surprise, passing boost::bind(...boost::weak_ptr<T>...) to
// listen() fails in Boost code trying to instantiate LLEventListener (i.e.
// LLStandardSignal::slot_type) because the boost::get_pointer() utility function isn't
// specialized for boost::weak_ptr. This remedies that omission.
namespace boost
{
template <typename T>
T* get_pointer(const weak_ptr<T>& ptr) { return shared_ptr<T>(ptr).get(); }
}
/// Since we forbid use of listen(boost::bind(...shared_ptr<T>...)), provide an
/// easy way to cast to the corresponding weak_ptr.
template <typename T>
boost::weak_ptr<T> weaken(const boost::shared_ptr<T>& ptr)
{
return boost::weak_ptr<T>(ptr);
}
#endif /* ! defined(LL_LLEVENTS_H) */