Files
SingularityViewer/indra/llcommon/lltreeiterators.h

706 lines
26 KiB
C++

/**
* @file lltreeiterators.h
* @author Nat Goodspeed
* @date 2008-08-19
* @brief This file defines iterators useful for traversing arbitrary node
* classes, potentially polymorphic, linked into strict tree
* structures.
*
* Dereferencing any one of these iterators actually yields a @em
* pointer to the node in question. For example, given an
* LLLinkedIter<MyNode> <tt>li</tt>, <tt>*li</tt> gets you a pointer
* to MyNode, and <tt>**li</tt> gets you the MyNode instance itself.
* More commonly, instead of writing <tt>li->member</tt>, you write
* <tt>(*li)->member</tt> -- as you would if you were traversing an
* STL container of MyNode pointers.
*
* It would certainly be possible to build these iterators so that
* <tt>*iterator</tt> would return a reference to the node itself
* rather than a pointer to the node, and for many purposes it would
* even be more convenient. However, that would be insufficiently
* flexible. If you want to use an iterator range to (e.g.) initialize
* a std::vector collecting results -- you rarely want to actually @em
* copy the nodes in question. You're much more likely to want to copy
* <i>pointers to</i> the traversed nodes. Hence these iterators
* produce pointers.
*
* Though you specify the actual NODE class as the template parameter,
* these iterators internally use LLPtrTo<> to discover whether to
* store and return an LLPointer<NODE> or a simple NODE*.
*
* By strict tree structures, we mean that each child must have
* exactly one parent. This forbids a child claiming any ancestor as a
* child of its own. Child nodes with multiple parents will be visited
* once for each parent. Cycles in the graph will result in either an
* infinite loop or an out-of-memory crash. You Have Been Warned.
*
* $LicenseInfo:firstyear=2008&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#if ! defined(LL_LLTREEITERATORS_H)
#define LL_LLTREEITERATORS_H
#include "llptrto.h"
#include <vector>
#include <deque>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/function.hpp>
#include <boost/static_assert.hpp>
namespace LLTreeIter
{
/// Discriminator between LLTreeUpIter and LLTreeDownIter
enum RootIter { UP, DOWN };
/// Discriminator between LLTreeDFSIter, LLTreeDFSPostIter and LLTreeBFSIter
enum WalkIter { DFS_PRE, DFS_POST, BFS };
}
/**
* LLBaseIter defines some machinery common to all these iterators. We use
* boost::iterator_facade to define the iterator boilerplate: the conventional
* operators and methods necessary to implement a standards-conforming
* iterator. That allows us to specify the actual iterator semantics in terms
* of equal(), dereference() and increment() methods.
*/
template <class SELFTYPE, class NODE>
class LLBaseIter: public boost::iterator_facade<SELFTYPE,
// use pointer type as the
// reference type
typename LLPtrTo<NODE>::type,
boost::forward_traversal_tag>
{
protected:
/// LLPtrTo<NODE>::type is either NODE* or LLPointer<NODE>, as appropriate
typedef typename LLPtrTo<NODE>::type ptr_type;
/// function that advances from this node to next accepts a node pointer
/// and returns another
typedef boost::function<ptr_type(const ptr_type&)> func_type;
typedef SELFTYPE self_type;
};
/// Functor returning NULL, suitable for an end-iterator's 'next' functor
template <class NODE>
typename LLPtrTo<NODE>::type LLNullNextFunctor(const typename LLPtrTo<NODE>::type&)
{
return typename LLPtrTo<NODE>::type();
}
/**
* LLLinkedIter is an iterator over an intrusive singly-linked list. The
* beginning of the list is represented by LLLinkedIter(list head); the end is
* represented by LLLinkedIter().
*
* The begin LLLinkedIter must be instantiated with a functor to extract the
* 'next' pointer from the current node. Supposing that the link pointer is @c
* public, something like:
*
* @code
* NODE* mNext;
* @endcode
*
* you can use (e.g.) <tt>boost::bind(&NODE::mNext, _1)</tt> for the purpose.
* Alternatively, you can bind whatever accessor method is normally used to
* advance to the next node, e.g. for:
*
* @code
* NODE* next() const;
* @endcode
*
* you can use <tt>boost::bind(&NODE::next, _1)</tt>.
*/
template <class NODE>
class LLLinkedIter: public LLBaseIter<LLLinkedIter<NODE>, NODE>
{
typedef LLBaseIter<LLLinkedIter<NODE>, NODE> super;
protected:
/// some methods need to return a reference to self
typedef typename super::self_type self_type;
typedef typename super::ptr_type ptr_type;
typedef typename super::func_type func_type;
public:
/// Instantiate an LLLinkedIter to start a range, or to end a range before
/// a particular list entry. Pass a functor to extract the 'next' pointer
/// from the current node.
LLLinkedIter(const ptr_type& entry, const func_type& nextfunc):
mCurrent(entry),
mNextFunc(nextfunc)
{}
/// Instantiate an LLLinkedIter to end a range at the end of the list
LLLinkedIter():
mCurrent(),
mNextFunc(LLNullNextFunctor<NODE>)
{}
private:
/// leverage boost::iterator_facade
friend class boost::iterator_core_access;
/// advance
void increment()
{
mCurrent = mNextFunc(mCurrent);
}
/// equality
bool equal(const self_type& that) const { return this->mCurrent == that.mCurrent; }
/// dereference
ptr_type& dereference() const { return const_cast<ptr_type&>(mCurrent); }
ptr_type mCurrent;
func_type mNextFunc;
};
/**
* LLTreeUpIter walks from the node in hand to the root of the tree. The term
* "up" is applied to a tree visualized with the root at the top.
*
* LLTreeUpIter is an alias for LLLinkedIter, since any linked tree that you
* can navigate that way at all contains parent pointers.
*/
template <class NODE>
class LLTreeUpIter: public LLLinkedIter<NODE>
{
typedef LLLinkedIter<NODE> super;
public:
/// Instantiate an LLTreeUpIter to start from a particular tree node, or
/// to end a parent traversal before reaching a particular ancestor. Pass
/// a functor to extract the 'parent' pointer from the current node.
LLTreeUpIter(const typename super::ptr_type& node,
const typename super::func_type& parentfunc):
super(node, parentfunc)
{}
/// Instantiate an LLTreeUpIter to end a range at the root of the tree
LLTreeUpIter():
super()
{}
};
/**
* LLTreeDownIter walks from the root of the tree to the node in hand. The
* term "down" is applied to a tree visualized with the root at the top.
*
* Though you instantiate the begin() LLTreeDownIter with a pointer to some
* node at an arbitrary location in the tree, the root will be the first node
* you dereference and the passed node will be the last node you dereference.
*
* On construction, LLTreeDownIter walks from the current node to the root,
* capturing the path. Then in use, it replays that walk in reverse. As with
* all traversals of interesting data structures, it is actively dangerous to
* modify the tree during an LLTreeDownIter walk.
*/
template <class NODE>
class LLTreeDownIter: public LLBaseIter<LLTreeDownIter<NODE>, NODE>
{
typedef LLBaseIter<LLTreeDownIter<NODE>, NODE> super;
typedef typename super::self_type self_type;
protected:
typedef typename super::ptr_type ptr_type;
typedef typename super::func_type func_type;
private:
typedef std::vector<ptr_type> list_type;
public:
/// Instantiate an LLTreeDownIter to end at a particular tree node. Pass a
/// functor to extract the 'parent' pointer from the current node.
LLTreeDownIter(const ptr_type& node,
const func_type& parentfunc)
{
for (ptr_type n = node; n; n = parentfunc(n))
mParents.push_back(n);
}
/// Instantiate an LLTreeDownIter representing "here", the end of the loop
LLTreeDownIter() {}
private:
/// leverage boost::iterator_facade
friend class boost::iterator_core_access;
/// advance
void increment()
{
mParents.pop_back();
}
/// equality
bool equal(const self_type& that) const { return this->mParents == that.mParents; }
/// implement dereference/indirection operators
ptr_type& dereference() const { return const_cast<ptr_type&>(mParents.back()); }
list_type mParents;
};
/**
* When you want to select between LLTreeUpIter and LLTreeDownIter with a
* compile-time discriminator, use LLTreeRootIter with an LLTreeIter::RootIter
* template arg.
*/
template <LLTreeIter::RootIter DISCRIM, class NODE>
class LLTreeRootIter
{
enum { use_a_valid_LLTreeIter_RootIter_value = false };
public:
/// Bogus constructors for default (unrecognized discriminator) case
template <typename TYPE1, typename TYPE2>
LLTreeRootIter(TYPE1, TYPE2)
{
BOOST_STATIC_ASSERT(use_a_valid_LLTreeIter_RootIter_value);
}
LLTreeRootIter()
{
BOOST_STATIC_ASSERT(use_a_valid_LLTreeIter_RootIter_value);
}
};
/// Specialize for LLTreeIter::UP
template <class NODE>
class LLTreeRootIter<LLTreeIter::UP, NODE>: public LLTreeUpIter<NODE>
{
typedef LLTreeUpIter<NODE> super;
public:
/// forward begin ctor
LLTreeRootIter(const typename super::ptr_type& node,
const typename super::func_type& parentfunc):
super(node, parentfunc)
{}
/// forward end ctor
LLTreeRootIter():
super()
{}
};
/// Specialize for LLTreeIter::DOWN
template <class NODE>
class LLTreeRootIter<LLTreeIter::DOWN, NODE>: public LLTreeDownIter<NODE>
{
typedef LLTreeDownIter<NODE> super;
public:
/// forward begin ctor
LLTreeRootIter(const typename super::ptr_type& node,
const typename super::func_type& parentfunc):
super(node, parentfunc)
{}
/// forward end ctor
LLTreeRootIter():
super()
{}
};
/**
* Instantiated with a tree node, typically the root, LLTreeDFSIter "flattens"
* a depth-first tree walk through that node and all its descendants.
*
* The begin() LLTreeDFSIter must be instantiated with functors to obtain from
* a given node begin() and end() iterators for that node's children. For this
* reason, you must specify the type of the node's child iterator as an
* additional template parameter.
*
* Specifically, the begin functor must return an iterator whose dereferenced
* value is a @em pointer to a child tree node. For instance, if each node
* tracks its children in an STL container of node* pointers, you can simply
* return that container's begin() iterator.
*
* Alternatively, if a node tracks its children with a classic linked list,
* write a functor returning LLLinkedIter<NODE>.
*
* The end() LLTreeDFSIter must, of course, match the begin() iterator's
* template parameters, but is constructed without runtime parameters.
*/
template <class NODE, typename CHILDITER>
class LLTreeDFSIter: public LLBaseIter<LLTreeDFSIter<NODE, CHILDITER>, NODE>
{
typedef LLBaseIter<LLTreeDFSIter<NODE, CHILDITER>, NODE> super;
typedef typename super::self_type self_type;
protected:
typedef typename super::ptr_type ptr_type;
// The func_type is different for this: from a NODE pointer, we must
// obtain a CHILDITER.
typedef boost::function<CHILDITER(const ptr_type&)> func_type;
private:
typedef std::vector<ptr_type> list_type;
public:
/// Instantiate an LLTreeDFSIter to start a depth-first walk. Pass
/// functors to extract the 'child begin' and 'child end' iterators from
/// each node.
LLTreeDFSIter(const ptr_type& node, const func_type& beginfunc, const func_type& endfunc)
: mBeginFunc(beginfunc),
mEndFunc(endfunc),
mSkipChildren(false)
{
// Only push back this node if it's non-NULL!
if (node)
mPending.push_back(node);
}
/// Instantiate an LLTreeDFSIter to mark the end of the walk
LLTreeDFSIter() : mSkipChildren(false) {}
/// flags iterator logic to skip traversing children of current node on next increment
void skipDescendants(bool skip = true) { mSkipChildren = skip; }
private:
/// leverage boost::iterator_facade
friend class boost::iterator_core_access;
/// advance
/// This implementation is due to http://en.wikipedia.org/wiki/Depth-first_search
void increment()
{
// Capture the node we were just looking at
ptr_type current = mPending.back();
// Remove it from mPending so we don't process it again later
mPending.pop_back();
if (!mSkipChildren)
{
// Add all its children to mPending
addChildren(current);
}
// reset flag after each step
mSkipChildren = false;
}
/// equality
bool equal(const self_type& that) const { return this->mPending == that.mPending; }
/// implement dereference/indirection operators
ptr_type& dereference() const { return const_cast<ptr_type&>(mPending.back()); }
/// Add the direct children of the specified node to mPending
void addChildren(const ptr_type& node)
{
// If we just use push_back() for each child in turn, we'll end up
// processing children in reverse order. We don't want to assume
// CHILDITER is reversible: some of the linked trees we'll be
// processing manage their children using singly-linked lists. So
// figure out how many children there are, grow mPending by that size
// and reverse-copy the children into the new space.
CHILDITER chi = mBeginFunc(node), chend = mEndFunc(node);
// grow mPending by the number of children
mPending.resize(mPending.size() + std::distance(chi, chend));
// reverse-copy the children into the newly-expanded space
std::copy(chi, chend, mPending.rbegin());
}
/// list of the nodes yet to be processed
list_type mPending;
/// functor to extract begin() child iterator
func_type mBeginFunc;
/// functor to extract end() child iterator
func_type mEndFunc;
/// flag which controls traversal of children (skip children of current node if true)
bool mSkipChildren;
};
/**
* Instantiated with a tree node, typically the root, LLTreeDFSPostIter
* "flattens" a depth-first tree walk through that node and all its
* descendants. Whereas LLTreeDFSIter visits each node before visiting any of
* its children, LLTreeDFSPostIter visits all of a node's children before
* visiting the node itself.
*
* The begin() LLTreeDFSPostIter must be instantiated with functors to obtain
* from a given node begin() and end() iterators for that node's children. For
* this reason, you must specify the type of the node's child iterator as an
* additional template parameter.
*
* Specifically, the begin functor must return an iterator whose dereferenced
* value is a @em pointer to a child tree node. For instance, if each node
* tracks its children in an STL container of node* pointers, you can simply
* return that container's begin() iterator.
*
* Alternatively, if a node tracks its children with a classic linked list,
* write a functor returning LLLinkedIter<NODE>.
*
* The end() LLTreeDFSPostIter must, of course, match the begin() iterator's
* template parameters, but is constructed without runtime parameters.
*/
template <class NODE, typename CHILDITER>
class LLTreeDFSPostIter: public LLBaseIter<LLTreeDFSPostIter<NODE, CHILDITER>, NODE>
{
typedef LLBaseIter<LLTreeDFSPostIter<NODE, CHILDITER>, NODE> super;
typedef typename super::self_type self_type;
protected:
typedef typename super::ptr_type ptr_type;
// The func_type is different for this: from a NODE pointer, we must
// obtain a CHILDITER.
typedef boost::function<CHILDITER(const ptr_type&)> func_type;
private:
// Upon reaching a given node in our pending list, we need to know whether
// we've already pushed that node's children, so we must associate a bool
// with each node pointer.
typedef std::vector< std::pair<ptr_type, bool> > list_type;
public:
/// Instantiate an LLTreeDFSPostIter to start a depth-first walk. Pass
/// functors to extract the 'child begin' and 'child end' iterators from
/// each node.
LLTreeDFSPostIter(const ptr_type& node, const func_type& beginfunc, const func_type& endfunc)
: mBeginFunc(beginfunc),
mEndFunc(endfunc),
mSkipAncestors(false)
{
if (! node)
return;
mPending.push_back(typename list_type::value_type(node, false));
makeCurrent();
}
/// Instantiate an LLTreeDFSPostIter to mark the end of the walk
LLTreeDFSPostIter() : mSkipAncestors(false) {}
/// flags iterator logic to skip traversing ancestors of current node on next increment
void skipAncestors(bool skip = true) { mSkipAncestors = skip; }
private:
/// leverage boost::iterator_facade
friend class boost::iterator_core_access;
/// advance
/// This implementation is due to http://en.wikipedia.org/wiki/Depth-first_search
void increment()
{
// Pop the previous current node
mPending.pop_back();
makeCurrent();
}
/// equality
bool equal(const self_type& that) const { return this->mPending == that.mPending; }
/// implement dereference/indirection operators
ptr_type& dereference() const { return const_cast<ptr_type&>(mPending.back().first); }
struct isOpen
{
bool operator()(const typename list_type::value_type& item)
{
return item.second;
}
};
/// Call this each time we change mPending.back() -- that is, every time
/// we're about to change the value returned by dereference(). If we
/// haven't yet pushed the new node's children, do so now.
void makeCurrent()
{
if (mSkipAncestors)
{
mPending.erase(std::remove_if(mPending.begin(), mPending.end(), isOpen()), mPending.end());
mSkipAncestors = false;
}
// Once we've popped the last node, this becomes a no-op.
if (mPending.empty())
return;
// Here mPending.back() holds the node pointer we're proposing to
// dereference next. Have we pushed that node's children yet?
if (mPending.back().second)
return; // if so, it's okay to visit this node now
// We haven't yet pushed this node's children. Do so now. Remember
// that we did -- while the node in question is still back().
mPending.back().second = true;
addChildren(mPending.back().first);
// Now, because we've just changed mPending.back(), make that new node
// current.
makeCurrent();
}
/// Add the direct children of the specified node to mPending
void addChildren(const ptr_type& node)
{
// If we just use push_back() for each child in turn, we'll end up
// processing children in reverse order. We don't want to assume
// CHILDITER is reversible: some of the linked trees we'll be
// processing manage their children using singly-linked lists. So
// figure out how many children there are, grow mPending by that size
// and reverse-copy the children into the new space.
CHILDITER chi = mBeginFunc(node), chend = mEndFunc(node);
// grow mPending by the number of children
mPending.resize(mPending.size() + std::distance(chi, chend));
// Reverse-copy the children into the newly-expanded space. We can't
// just use std::copy() because the source is a ptr_type, whereas the
// dest is a pair of (ptr_type, bool).
for (typename list_type::reverse_iterator pi = mPending.rbegin(); chi != chend; ++chi, ++pi)
{
pi->first = *chi; // copy the child pointer
pi->second = false; // we haven't yet pushed this child's chldren
}
}
/// list of the nodes yet to be processed
list_type mPending;
/// functor to extract begin() child iterator
func_type mBeginFunc;
/// functor to extract end() child iterator
func_type mEndFunc;
/// flags logic to skip traversal of ancestors of current node
bool mSkipAncestors;
};
/**
* Instantiated with a tree node, typically the root, LLTreeBFSIter "flattens"
* a breadth-first tree walk through that node and all its descendants.
*
* The begin() LLTreeBFSIter must be instantiated with functors to obtain from
* a given node the begin() and end() iterators of that node's children. For
* this reason, you must specify the type of the node's child iterator as an
* additional template parameter.
*
* Specifically, the begin functor must return an iterator whose dereferenced
* value is a @em pointer to a child tree node. For instance, if each node
* tracks its children in an STL container of node* pointers, you can simply
* return that container's begin() iterator.
*
* Alternatively, if a node tracks its children with a classic linked list,
* write a functor returning LLLinkedIter<NODE>.
*
* The end() LLTreeBFSIter must, of course, match the begin() iterator's
* template parameters, but is constructed without runtime parameters.
*/
template <class NODE, typename CHILDITER>
class LLTreeBFSIter: public LLBaseIter<LLTreeBFSIter<NODE, CHILDITER>, NODE>
{
typedef LLBaseIter<LLTreeBFSIter<NODE, CHILDITER>, NODE> super;
typedef typename super::self_type self_type;
protected:
typedef typename super::ptr_type ptr_type;
// The func_type is different for this: from a NODE pointer, we must
// obtain a CHILDITER.
typedef boost::function<CHILDITER(const ptr_type&)> func_type;
private:
// We need a FIFO queue rather than a LIFO stack. Use a deque rather than
// a vector, since vector can't implement pop_front() efficiently.
typedef std::deque<ptr_type> list_type;
public:
/// Instantiate an LLTreeBFSIter to start a depth-first walk. Pass
/// functors to extract the 'child begin' and 'child end' iterators from
/// each node.
LLTreeBFSIter(const ptr_type& node, const func_type& beginfunc, const func_type& endfunc):
mBeginFunc(beginfunc),
mEndFunc(endfunc)
{
if (node)
mPending.push_back(node);
}
/// Instantiate an LLTreeBFSIter to mark the end of the walk
LLTreeBFSIter() {}
private:
/// leverage boost::iterator_facade
friend class boost::iterator_core_access;
/// advance
/// This implementation is due to http://en.wikipedia.org/wiki/Breadth-first_search
void increment()
{
// Capture the node we were just looking at
ptr_type current = mPending.front();
// Remove it from mPending so we don't process it again later
mPending.pop_front();
// Add all its children to mPending
CHILDITER chend = mEndFunc(current);
for (CHILDITER chi = mBeginFunc(current); chi != chend; ++chi)
mPending.push_back(*chi);
}
/// equality
bool equal(const self_type& that) const { return this->mPending == that.mPending; }
/// implement dereference/indirection operators
ptr_type& dereference() const { return const_cast<ptr_type&>(mPending.front()); }
/// list of the nodes yet to be processed
list_type mPending;
/// functor to extract begin() child iterator
func_type mBeginFunc;
/// functor to extract end() child iterator
func_type mEndFunc;
};
/**
* When you want to select between LLTreeDFSIter, LLTreeDFSPostIter and
* LLTreeBFSIter with a compile-time discriminator, use LLTreeWalkIter with an
* LLTreeIter::WalkIter template arg.
*/
template <LLTreeIter::WalkIter DISCRIM, class NODE, typename CHILDITER>
class LLTreeWalkIter
{
enum { use_a_valid_LLTreeIter_WalkIter_value = false };
public:
/// Bogus constructors for default (unrecognized discriminator) case
template <typename TYPE1, typename TYPE2>
LLTreeWalkIter(TYPE1, TYPE2)
{
BOOST_STATIC_ASSERT(use_a_valid_LLTreeIter_WalkIter_value);
}
LLTreeWalkIter()
{
BOOST_STATIC_ASSERT(use_a_valid_LLTreeIter_WalkIter_value);
}
};
/// Specialize for LLTreeIter::DFS_PRE
template <class NODE, typename CHILDITER>
class LLTreeWalkIter<LLTreeIter::DFS_PRE, NODE, CHILDITER>:
public LLTreeDFSIter<NODE, CHILDITER>
{
typedef LLTreeDFSIter<NODE, CHILDITER> super;
public:
/// forward begin ctor
LLTreeWalkIter(const typename super::ptr_type& node,
const typename super::func_type& beginfunc,
const typename super::func_type& endfunc):
super(node, beginfunc, endfunc)
{}
/// forward end ctor
LLTreeWalkIter():
super()
{}
};
/// Specialize for LLTreeIter::DFS_POST
template <class NODE, typename CHILDITER>
class LLTreeWalkIter<LLTreeIter::DFS_POST, NODE, CHILDITER>:
public LLTreeDFSPostIter<NODE, CHILDITER>
{
typedef LLTreeDFSPostIter<NODE, CHILDITER> super;
public:
/// forward begin ctor
LLTreeWalkIter(const typename super::ptr_type& node,
const typename super::func_type& beginfunc,
const typename super::func_type& endfunc):
super(node, beginfunc, endfunc)
{}
/// forward end ctor
LLTreeWalkIter():
super()
{}
};
/// Specialize for LLTreeIter::BFS
template <class NODE, typename CHILDITER>
class LLTreeWalkIter<LLTreeIter::BFS, NODE, CHILDITER>:
public LLTreeBFSIter<NODE, CHILDITER>
{
typedef LLTreeBFSIter<NODE, CHILDITER> super;
public:
/// forward begin ctor
LLTreeWalkIter(const typename super::ptr_type& node,
const typename super::func_type& beginfunc,
const typename super::func_type& endfunc):
super(node, beginfunc, endfunc)
{}
/// forward end ctor
LLTreeWalkIter():
super()
{}
};
#endif /* ! defined(LL_LLTREEITERATORS_H) */