Files
SingularityViewer/indra/newview/llworld.cpp
2011-03-05 18:00:16 -06:00

1444 lines
42 KiB
C++

/**
* @file llworld.cpp
* @brief Initial test structure to organize viewer regions
*
* $LicenseInfo:firstyear=2001&license=viewergpl$
*
* Copyright (c) 2001-2009, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "llworld.h"
#include "llrender.h"
#include "indra_constants.h"
#include "llstl.h"
#include "llagent.h"
#include "llviewercontrol.h"
#include "lldrawpool.h"
#include "llglheaders.h"
#include "llhttpnode.h"
#include "llregionhandle.h"
#include "llsurface.h"
#include "llviewercamera.h"
#include "llviewerimage.h"
#include "llviewerimagelist.h"
#include "llviewernetwork.h"
#include "llviewerobjectlist.h"
#include "llviewerparceloverlay.h"
#include "llviewerregion.h"
#include "llviewerstats.h"
#include "llvlcomposition.h"
#include "llvoavatar.h"
#include "llvowater.h"
#include "message.h"
#include "pipeline.h"
#include "llappviewer.h" // for do_disconnect()
#include <deque>
#include <queue>
#include <map>
#include <cstring>
//
// Globals
//
U32 gAgentPauseSerialNum = 0;
//
// Constants
//
const S32 MAX_NUMBER_OF_CLOUDS = 750;
const S32 WORLD_PATCH_SIZE = 16;
extern LLColor4U MAX_WATER_COLOR;
const U32 LLWorld::mWidth = 256;
// meters/point, therefore mWidth * mScale = meters per edge
const F32 LLWorld::mScale = 1.f;
const F32 LLWorld::mWidthInMeters = mWidth * mScale;
//
// Functions
//
// allocate the stack
LLWorld::LLWorld() :
mLandFarClip(DEFAULT_FAR_PLANE),
mLastPacketsIn(0),
mLastPacketsOut(0),
mLastPacketsLost(0),
mSpaceTimeUSec(0)
{
for (S32 i = 0; i < 8; i++)
{
mEdgeWaterObjects[i] = NULL;
}
if (gNoRender)
{
return;
}
LLPointer<LLImageRaw> raw = new LLImageRaw(1,1,4);
U8 *default_texture = raw->getData();
*(default_texture++) = MAX_WATER_COLOR.mV[0];
*(default_texture++) = MAX_WATER_COLOR.mV[1];
*(default_texture++) = MAX_WATER_COLOR.mV[2];
*(default_texture++) = MAX_WATER_COLOR.mV[3];
mDefaultWaterTexturep = new LLViewerImage(raw, FALSE);
gGL.getTexUnit(0)->bind(mDefaultWaterTexturep.get());
mDefaultWaterTexturep->setAddressMode(LLTexUnit::TAM_CLAMP);
}
void LLWorld::destroyClass()
{
mHoleWaterObjects.clear();
gObjectList.destroy();
for(region_list_t::iterator region_it = mRegionList.begin(); region_it != mRegionList.end(); )
{
LLViewerRegion* region_to_delete = *region_it++;
removeRegion(region_to_delete->getHost());
}
LLViewerPartSim::getInstance()->destroyClass();
}
LLViewerRegion* LLWorld::addRegion(const U64 &region_handle, const LLHost &host)
{
LLMemType mt(LLMemType::MTYPE_REGIONS);
LLViewerRegion *regionp = getRegionFromHandle(region_handle);
if (regionp)
{
LLHost old_host = regionp->getHost();
// region already exists!
if (host == old_host && regionp->isAlive())
{
// This is a duplicate for the same host and it's alive, don't bother.
return regionp;
}
if (host != old_host)
{
llwarns << "LLWorld::addRegion exists, but old host " << old_host
<< " does not match new host " << host << llendl;
}
if (!regionp->isAlive())
{
llwarns << "LLWorld::addRegion exists, but isn't alive" << llendl;
}
// Kill the old host, and then we can continue on and add the new host. We have to kill even if the host
// matches, because all the agent state for the new camera is completely different.
removeRegion(old_host);
}
U32 iindex = 0;
U32 jindex = 0;
from_region_handle(region_handle, &iindex, &jindex);
S32 x = (S32)(iindex/mWidth);
S32 y = (S32)(jindex/mWidth);
llinfos << "Adding new region (" << x << ":" << y << ")" << llendl;
llinfos << "Host: " << host << llendl;
LLVector3d origin_global;
origin_global = from_region_handle(region_handle);
regionp = new LLViewerRegion(region_handle,
host,
mWidth,
WORLD_PATCH_SIZE,
getRegionWidthInMeters() );
if (!regionp)
{
llerrs << "Unable to create new region!" << llendl;
}
regionp->mCloudLayer.create(regionp);
regionp->mCloudLayer.setWidth((F32)mWidth);
regionp->mCloudLayer.setWindPointer(&regionp->mWind);
mRegionList.push_back(regionp);
mActiveRegionList.push_back(regionp);
mCulledRegionList.push_back(regionp);
// Find all the adjacent regions, and attach them.
// Generate handles for all of the adjacent regions, and attach them in the correct way.
// connect the edges
F32 adj_x = 0.f;
F32 adj_y = 0.f;
F32 region_x = 0.f;
F32 region_y = 0.f;
U64 adj_handle = 0;
F32 width = getRegionWidthInMeters();
LLViewerRegion *neighborp;
from_region_handle(region_handle, &region_x, &region_y);
// Iterate through all directions, and connect neighbors if there.
S32 dir;
for (dir = 0; dir < 8; dir++)
{
adj_x = region_x + width * gDirAxes[dir][0];
adj_y = region_y + width * gDirAxes[dir][1];
to_region_handle(adj_x, adj_y, &adj_handle);
neighborp = getRegionFromHandle(adj_handle);
if (neighborp)
{
//llinfos << "Connecting " << region_x << ":" << region_y << " -> " << adj_x << ":" << adj_y << llendl;
regionp->connectNeighbor(neighborp, dir);
}
}
updateWaterObjects();
return regionp;
}
void LLWorld::removeRegion(const LLHost &host)
{
F32 x, y;
LLViewerRegion *regionp = getRegion(host);
if (!regionp)
{
llwarns << "Trying to remove region that doesn't exist!" << llendl;
return;
}
if (regionp == gAgent.getRegion())
{
for (region_list_t::iterator iter = mRegionList.begin();
iter != mRegionList.end(); ++iter)
{
LLViewerRegion* reg = *iter;
llwarns << "RegionDump: " << reg->getName()
<< " " << reg->getHost()
<< " " << reg->getOriginGlobal()
<< llendl;
}
llwarns << "Agent position global " << gAgent.getPositionGlobal()
<< " agent " << gAgent.getPositionAgent()
<< llendl;
llwarns << "Regions visited " << gAgent.getRegionsVisited() << llendl;
llwarns << "gFrameTimeSeconds " << gFrameTimeSeconds << llendl;
llwarns << "Disabling region " << regionp->getName() << " that agent is in!" << llendl;
LLAppViewer::instance()->forceDisconnect("You have been disconnected from the region you were in.");
return;
}
from_region_handle(regionp->getHandle(), &x, &y);
llinfos << "Removing region " << x << ":" << y << llendl;
mRegionList.remove(regionp);
mActiveRegionList.remove(regionp);
mCulledRegionList.remove(regionp);
mVisibleRegionList.remove(regionp);
delete regionp;
updateWaterObjects();
}
LLViewerRegion* LLWorld::getRegion(const LLHost &host)
{
for (region_list_t::iterator iter = mRegionList.begin();
iter != mRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
if (regionp->getHost() == host)
{
return regionp;
}
}
return NULL;
}
LLViewerRegion* LLWorld::getRegionFromPosAgent(const LLVector3 &pos)
{
return getRegionFromPosGlobal(gAgent.getPosGlobalFromAgent(pos));
}
LLViewerRegion* LLWorld::getRegionFromPosGlobal(const LLVector3d &pos)
{
for (region_list_t::iterator iter = mRegionList.begin();
iter != mRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
if (regionp->pointInRegionGlobal(pos))
{
return regionp;
}
}
return NULL;
}
LLVector3d LLWorld::clipToVisibleRegions(const LLVector3d &start_pos, const LLVector3d &end_pos)
{
if (positionRegionValidGlobal(end_pos))
{
return end_pos;
}
LLViewerRegion* regionp = getRegionFromPosGlobal(start_pos);
if (!regionp)
{
return start_pos;
}
LLVector3d delta_pos = end_pos - start_pos;
LLVector3d delta_pos_abs;
delta_pos_abs.setVec(delta_pos);
delta_pos_abs.abs();
LLVector3 region_coord = regionp->getPosRegionFromGlobal(end_pos);
F64 clip_factor = 1.0;
F32 region_width = regionp->getWidth();
if (region_coord.mV[VX] < 0.f)
{
if (region_coord.mV[VY] < region_coord.mV[VX])
{
// clip along y -
clip_factor = -(region_coord.mV[VY] / delta_pos_abs.mdV[VY]);
}
else
{
// clip along x -
clip_factor = -(region_coord.mV[VX] / delta_pos_abs.mdV[VX]);
}
}
else if (region_coord.mV[VX] > region_width)
{
if (region_coord.mV[VY] > region_coord.mV[VX])
{
// clip along y +
clip_factor = (region_coord.mV[VY] - region_width) / delta_pos_abs.mdV[VY];
}
else
{
//clip along x +
clip_factor = (region_coord.mV[VX] - region_width) / delta_pos_abs.mdV[VX];
}
}
else if (region_coord.mV[VY] < 0.f)
{
// clip along y -
clip_factor = -(region_coord.mV[VY] / delta_pos_abs.mdV[VY]);
}
else if (region_coord.mV[VY] > region_width)
{
// clip along y +
clip_factor = (region_coord.mV[VY] - region_width) / delta_pos_abs.mdV[VY];
}
// clamp to < 256 to stay in sim
LLVector3d final_region_pos = LLVector3d(region_coord) - (delta_pos * clip_factor);
final_region_pos.clamp(0.0, 255.999);
return regionp->getPosGlobalFromRegion(LLVector3(final_region_pos));
}
LLViewerRegion* LLWorld::getRegionFromHandle(const U64 &handle)
{
for (region_list_t::iterator iter = mRegionList.begin();
iter != mRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
if (regionp->getHandle() == handle)
{
return regionp;
}
}
return NULL;
}
void LLWorld::updateAgentOffset(const LLVector3d &offset_global)
{
#if 0
for (region_list_t::iterator iter = mRegionList.begin();
iter != mRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
regionp->setAgentOffset(offset_global);
}
#endif
}
BOOL LLWorld::positionRegionValidGlobal(const LLVector3d &pos_global)
{
for (region_list_t::iterator iter = mRegionList.begin();
iter != mRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
if (regionp->pointInRegionGlobal(pos_global))
{
return TRUE;
}
}
return FALSE;
}
// Allow objects to go up to their radius underground.
F32 LLWorld::getMinAllowedZ(LLViewerObject* object)
{
F32 land_height = resolveLandHeightGlobal(object->getPositionGlobal());
F32 radius = 0.5f * object->getScale().length();
return land_height - radius;
}
LLViewerRegion* LLWorld::resolveRegionGlobal(LLVector3 &pos_region, const LLVector3d &pos_global)
{
LLViewerRegion *regionp = getRegionFromPosGlobal(pos_global);
if (regionp)
{
pos_region = regionp->getPosRegionFromGlobal(pos_global);
return regionp;
}
return NULL;
}
LLViewerRegion* LLWorld::resolveRegionAgent(LLVector3 &pos_region, const LLVector3 &pos_agent)
{
LLVector3d pos_global = gAgent.getPosGlobalFromAgent(pos_agent);
LLViewerRegion *regionp = getRegionFromPosGlobal(pos_global);
if (regionp)
{
pos_region = regionp->getPosRegionFromGlobal(pos_global);
return regionp;
}
return NULL;
}
F32 LLWorld::resolveLandHeightAgent(const LLVector3 &pos_agent)
{
LLVector3d pos_global = gAgent.getPosGlobalFromAgent(pos_agent);
return resolveLandHeightGlobal(pos_global);
}
F32 LLWorld::resolveLandHeightGlobal(const LLVector3d &pos_global)
{
LLViewerRegion *regionp = getRegionFromPosGlobal(pos_global);
if (regionp)
{
return regionp->getLand().resolveHeightGlobal(pos_global);
}
return 0.0f;
}
// Takes a line defined by "point_a" and "point_b" and determines the closest (to point_a)
// point where the the line intersects an object or the land surface. Stores the results
// in "intersection" and "intersection_normal" and returns a scalar value that represents
// the normalized distance along the line from "point_a" to "intersection".
//
// Currently assumes point_a and point_b only differ in z-direction,
// but it may eventually become more general.
F32 LLWorld::resolveStepHeightGlobal(const LLVOAvatar* avatarp, const LLVector3d &point_a, const LLVector3d &point_b,
LLVector3d &intersection, LLVector3 &intersection_normal,
LLViewerObject **viewerObjectPtr)
{
// initialize return value to null
if (viewerObjectPtr)
{
*viewerObjectPtr = NULL;
}
LLViewerRegion *regionp = getRegionFromPosGlobal(point_a);
if (!regionp)
{
// We're outside the world
intersection = 0.5f * (point_a + point_b);
intersection_normal.setVec(0.0f, 0.0f, 1.0f);
return 0.5f;
}
// calculate the length of the segment
F32 segment_length = (F32)((point_a - point_b).length());
if (0.0f == segment_length)
{
intersection = point_a;
intersection_normal.setVec(0.0f, 0.0f, 1.0f);
return segment_length;
}
// get land height
// Note: we assume that the line is parallel to z-axis here
LLVector3d land_intersection = point_a;
F32 normalized_land_distance;
land_intersection.mdV[VZ] = regionp->getLand().resolveHeightGlobal(point_a);
normalized_land_distance = (F32)(point_a.mdV[VZ] - land_intersection.mdV[VZ]) / segment_length;
intersection = land_intersection;
intersection_normal = resolveLandNormalGlobal(land_intersection);
if (avatarp && !avatarp->mFootPlane.isExactlyClear())
{
LLVector3 foot_plane_normal(avatarp->mFootPlane.mV);
LLVector3 start_pt = avatarp->getRegion()->getPosRegionFromGlobal(point_a);
// added 0.05 meters to compensate for error in foot plane reported by Havok
F32 norm_dist_from_plane = ((start_pt * foot_plane_normal) - avatarp->mFootPlane.mV[VW]) + 0.05f;
norm_dist_from_plane = llclamp(norm_dist_from_plane / segment_length, 0.f, 1.f);
if (norm_dist_from_plane < normalized_land_distance)
{
// collided with object before land
normalized_land_distance = norm_dist_from_plane;
intersection = point_a;
intersection.mdV[VZ] -= norm_dist_from_plane * segment_length;
intersection_normal = foot_plane_normal;
}
else
{
intersection = land_intersection;
intersection_normal = resolveLandNormalGlobal(land_intersection);
}
}
return normalized_land_distance;
}
LLSurfacePatch * LLWorld::resolveLandPatchGlobal(const LLVector3d &pos_global)
{
// returns a pointer to the patch at this location
LLViewerRegion *regionp = getRegionFromPosGlobal(pos_global);
if (!regionp)
{
return NULL;
}
return regionp->getLand().resolvePatchGlobal(pos_global);
}
LLVector3 LLWorld::resolveLandNormalGlobal(const LLVector3d &pos_global)
{
LLViewerRegion *regionp = getRegionFromPosGlobal(pos_global);
if (!regionp)
{
return LLVector3::z_axis;
}
return regionp->getLand().resolveNormalGlobal(pos_global);
}
void LLWorld::updateVisibilities()
{
F32 cur_far_clip = LLViewerCamera::getInstance()->getFar();
LLViewerCamera::getInstance()->setFar(mLandFarClip);
F32 diagonal_squared = F_SQRT2 * F_SQRT2 * mWidth * mWidth;
// Go through the culled list and check for visible regions
for (region_list_t::iterator iter = mCulledRegionList.begin();
iter != mCulledRegionList.end(); )
{
region_list_t::iterator curiter = iter++;
LLViewerRegion* regionp = *curiter;
F32 height = regionp->getLand().getMaxZ() - regionp->getLand().getMinZ();
F32 radius = 0.5f*fsqrtf(height * height + diagonal_squared);
if (!regionp->getLand().hasZData()
|| LLViewerCamera::getInstance()->sphereInFrustum(regionp->getCenterAgent(), radius))
{
mCulledRegionList.erase(curiter);
mVisibleRegionList.push_back(regionp);
}
}
// Update all of the visible regions
for (region_list_t::iterator iter = mVisibleRegionList.begin();
iter != mVisibleRegionList.end(); )
{
region_list_t::iterator curiter = iter++;
LLViewerRegion* regionp = *curiter;
if (!regionp->getLand().hasZData())
{
continue;
}
F32 height = regionp->getLand().getMaxZ() - regionp->getLand().getMinZ();
F32 radius = 0.5f*fsqrtf(height * height + diagonal_squared);
if (LLViewerCamera::getInstance()->sphereInFrustum(regionp->getCenterAgent(), radius))
{
regionp->calculateCameraDistance();
if (!gNoRender)
{
regionp->getLand().updatePatchVisibilities(gAgent);
}
}
else
{
mVisibleRegionList.erase(curiter);
mCulledRegionList.push_back(regionp);
}
}
// Sort visible regions
mVisibleRegionList.sort(LLViewerRegion::CompareDistance());
LLViewerCamera::getInstance()->setFar(cur_far_clip);
}
void LLWorld::updateRegions(F32 max_update_time)
{
LLTimer update_timer;
BOOL did_one = FALSE;
// Perform idle time updates for the regions (and associated surfaces)
for (region_list_t::iterator iter = mRegionList.begin();
iter != mRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
F32 max_time = max_update_time - update_timer.getElapsedTimeF32();
if (did_one && max_time <= 0.f)
break;
max_time = llmin(max_time, max_update_time*.1f);
did_one |= regionp->idleUpdate(max_update_time);
}
}
void LLWorld::updateParticles()
{
LLViewerPartSim::getInstance()->updateSimulation();
}
void LLWorld::updateClouds(const F32 dt)
{
static const LLCachedControl<bool> freeze_time("FreezeTime",false);
static const LLCachedControl<bool> sky_use_classic_clouds("SkyUseClassicClouds",false);
if (freeze_time ||
!sky_use_classic_clouds)
{
// don't move clouds in snapshot mode
return;
}
if (mActiveRegionList.size())
{
// Update all the cloud puff positions, and timer based stuff
// such as death decay
for (region_list_t::iterator iter = mActiveRegionList.begin();
iter != mActiveRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
regionp->mCloudLayer.updatePuffs(dt);
}
// Reshuffle who owns which puffs
for (region_list_t::iterator iter = mActiveRegionList.begin();
iter != mActiveRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
regionp->mCloudLayer.updatePuffOwnership();
}
// Add new puffs
for (region_list_t::iterator iter = mActiveRegionList.begin();
iter != mActiveRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
regionp->mCloudLayer.updatePuffCount();
}
}
}
LLCloudGroup* LLWorld::findCloudGroup(const LLCloudPuff &puff)
{
if (mActiveRegionList.size())
{
// Update all the cloud puff positions, and timer based stuff
// such as death decay
for (region_list_t::iterator iter = mActiveRegionList.begin();
iter != mActiveRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
LLCloudGroup *groupp = regionp->mCloudLayer.findCloudGroup(puff);
if (groupp)
{
return groupp;
}
}
}
return NULL;
}
void LLWorld::renderPropertyLines()
{
S32 region_count = 0;
S32 vertex_count = 0;
for (region_list_t::iterator iter = mVisibleRegionList.begin();
iter != mVisibleRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
region_count++;
vertex_count += regionp->renderPropertyLines();
}
}
void LLWorld::updateNetStats()
{
F32 bits = 0.f;
U32 packets = 0;
for (region_list_t::iterator iter = mActiveRegionList.begin();
iter != mActiveRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
regionp->updateNetStats();
bits += regionp->mBitStat.getCurrent();
packets += llfloor( regionp->mPacketsStat.getCurrent() );
}
S32 packets_in = gMessageSystem->mPacketsIn - mLastPacketsIn;
S32 packets_out = gMessageSystem->mPacketsOut - mLastPacketsOut;
S32 packets_lost = gMessageSystem->mDroppedPackets - mLastPacketsLost;
S32 actual_in_bits = gMessageSystem->mPacketRing.getAndResetActualInBits();
S32 actual_out_bits = gMessageSystem->mPacketRing.getAndResetActualOutBits();
LLViewerStats::getInstance()->mActualInKBitStat.addValue(actual_in_bits/1024.f);
LLViewerStats::getInstance()->mActualOutKBitStat.addValue(actual_out_bits/1024.f);
LLViewerStats::getInstance()->mKBitStat.addValue(bits/1024.f);
LLViewerStats::getInstance()->mPacketsInStat.addValue(packets_in);
LLViewerStats::getInstance()->mPacketsOutStat.addValue(packets_out);
LLViewerStats::getInstance()->mPacketsLostStat.addValue(gMessageSystem->mDroppedPackets);
if (packets_in)
{
LLViewerStats::getInstance()->mPacketsLostPercentStat.addValue(100.f*((F32)packets_lost/(F32)packets_in));
}
else
{
LLViewerStats::getInstance()->mPacketsLostPercentStat.addValue(0.f);
}
mLastPacketsIn = gMessageSystem->mPacketsIn;
mLastPacketsOut = gMessageSystem->mPacketsOut;
mLastPacketsLost = gMessageSystem->mDroppedPackets;
}
void LLWorld::printPacketsLost()
{
llinfos << "Simulators:" << llendl;
llinfos << "----------" << llendl;
LLCircuitData *cdp = NULL;
for (region_list_t::iterator iter = mActiveRegionList.begin();
iter != mActiveRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
cdp = gMessageSystem->mCircuitInfo.findCircuit(regionp->getHost());
if (cdp)
{
LLVector3d range = regionp->getCenterGlobal() - gAgent.getPositionGlobal();
llinfos << regionp->getHost() << ", range: " << range.length()
<< " packets lost: " << cdp->getPacketsLost() << llendl;
}
}
}
void LLWorld::processCoarseUpdate(LLMessageSystem* msg, void** user_data)
{
LLViewerRegion* region = LLWorld::getInstance()->getRegion(msg->getSender());
if( region )
{
region->updateCoarseLocations(msg);
}
}
F32 LLWorld::getLandFarClip() const
{
return mLandFarClip;
}
void LLWorld::setLandFarClip(const F32 far_clip)
{
static S32 const rwidth = (S32)REGION_WIDTH_U32;
S32 const n1 = (llceil(mLandFarClip) - 1) / rwidth;
S32 const n2 = (llceil(far_clip) - 1) / rwidth;
bool need_water_objects_update = n1 != n2;
mLandFarClip = far_clip;
if (need_water_objects_update)
{
updateWaterObjects();
}
}
// Some region that we're connected to, but not the one we're in, gave us
// a (possibly) new water height. Update it in our local copy.
void LLWorld::waterHeightRegionInfo(std::string const& sim_name, F32 water_height)
{
for (region_list_t::iterator iter = mRegionList.begin(); iter != mRegionList.end(); ++iter)
{
if ((*iter)->getName() == sim_name)
{
(*iter)->setWaterHeight(water_height);
break;
}
}
}
// There are three types of water objects:
// Region water objects: the water in a region.
// Hole water objects: water in the void but within current draw distance.
// Edge water objects: the water outside the draw distance, up till the horizon.
//
// For example:
//
// -----------------------horizon-------------------------
// | | | |
// | Edge Water | | |
// | | | |
// | | | |
// | | | |
// | | | |
// | | rwidth | |
// | | <-----> | |
// -------------------------------------------------------
// | |Hole |other| | |
// | |Water|reg. | | |
// | |-----------------| |
// | |other|cur. |<--> | |
// | |reg. | reg.| \__|_ draw distance |
// | |-----------------| |
// | | | |<--->| |
// | | | | \__|_ range |
// -------------------------------------------------------
// | |<----width------>|<--horizon ext.->|
// | | | |
// | | | |
// | | | |
// | | | |
// | | | |
// | | | |
// | | | |
// -------------------------------------------------------
//
void LLWorld::updateWaterObjects()
{
if (!gAgent.getRegion())
{
return;
}
if (mRegionList.empty())
{
llwarns << "No regions!" << llendl;
return;
}
// Region width in meters.
S32 const rwidth = (S32)REGION_WIDTH_U32;
// The distance we might see into the void
// when standing on the edge of a region, in meters.
S32 const draw_distance = llceil(mLandFarClip);
// We can only have "holes" in the water (where there no region) if we
// can have existing regions around it. Taking into account that this
// code is only executed when we enter a region, and not when we walk
// around in it, we (only) need to take into account regions that fall
// within the draw_distance.
//
// Set 'range' to draw_distance, rounded up to the nearest multiple of rwidth.
S32 const nsims = (draw_distance + rwidth - 1) / rwidth;
S32 const range = nsims * rwidth;
// Get South-West corner of current region.
LLViewerRegion const* regionp = gAgent.getRegion();
U32 region_x, region_y;
from_region_handle(regionp->getHandle(), &region_x, &region_y);
// The min. and max. coordinates of the South-West corners of the Hole water objects.
S32 const min_x = (S32)region_x - range;
S32 const min_y = (S32)region_y - range;
S32 const max_x = (S32)region_x + range;
S32 const max_y = (S32)region_y + range;
// Attempt to determine a sensible water height for all the
// Hole Water objects.
//
// It make little sense to try to guess what the best water
// height should be when that isn't completely obvious: if it's
// impossible to satisfy every region's water height without
// getting a jump in the water height.
//
// In order to keep the reasoning simple, we assume something
// logical as a group of connected regions, where the coastline
// is at the outer edge. Anything more complex that would "break"
// under such an assumption would probably break anyway (would
// depend on terrain editing and existing mega prims, say, if
// anything would make sense at all).
//
// So, what we do is find all connected regions within the
// draw distance that border void, and then pick the lowest
// water height of those (coast) regions.
S32 const n = 2 * nsims + 1;
S32 const origin = nsims + nsims * n;
std::vector<F32> water_heights(n * n);
std::vector<U8> checked(n * n, 0); // index = nx + ny * n + origin;
U8 const region_bit = 1;
U8 const hole_bit = 2;
U8 const bordering_hole_bit = 4;
U8 const bordering_edge_bit = 8;
// Use the legacy waterheight for the Edge water in the case
// that we don't find any Hole water at all.
F32 water_height = DEFAULT_WATER_HEIGHT;
int max_count = 0;
LL_DEBUGS("WaterHeight") << "Current region: " << regionp->getName() << "; water height: " << regionp->getWaterHeight() << " m." << LL_ENDL;
std::map<S32, int> water_height_counts;
typedef std::queue<std::pair<S32, S32>, std::deque<std::pair<S32, S32> > > nxny_pairs_type;
nxny_pairs_type nxny_pairs;
nxny_pairs.push(nxny_pairs_type::value_type(0, 0));
water_heights[origin] = regionp->getWaterHeight();
checked[origin] = region_bit;
// For debugging purposes.
int number_of_connected_regions = 1;
int uninitialized_regions = 0;
int bordering_hole = 0;
int bordering_edge = 0;
while(!nxny_pairs.empty())
{
S32 const nx = nxny_pairs.front().first;
S32 const ny = nxny_pairs.front().second;
LL_DEBUGS("WaterHeight") << "nx,ny = " << nx << "," << ny << LL_ENDL;
S32 const index = nx + ny * n + origin;
nxny_pairs.pop();
for (S32 dir = 0; dir < 4; ++dir)
{
S32 const cnx = nx + gDirAxes[dir][0];
S32 const cny = ny + gDirAxes[dir][1];
LL_DEBUGS("WaterHeight") << "dir = " << dir << "; cnx,cny = " << cnx << "," << cny << LL_ENDL;
S32 const cindex = cnx + cny * n + origin;
bool is_hole = false;
bool is_edge = false;
LLViewerRegion* new_region_found = NULL;
if (cnx < -nsims || cnx > nsims ||
cny < -nsims || cny > nsims)
{
LL_DEBUGS("WaterHeight") << " Edge Water!" << LL_ENDL;
// Bumped into Edge water object.
is_edge = true;
}
else if (checked[cindex])
{
LL_DEBUGS("WaterHeight") << " Already checked before!" << LL_ENDL;
// Already checked.
is_hole = (checked[cindex] & hole_bit);
}
else
{
S32 x = (S32)region_x + cnx * rwidth;
S32 y = (S32)region_y + cny * rwidth;
U64 region_handle = to_region_handle(x, y);
new_region_found = getRegionFromHandle(region_handle);
is_hole = !new_region_found;
checked[cindex] = is_hole ? hole_bit : region_bit;
}
if (is_hole)
{
// This was a region that borders at least one 'hole'.
// Count the found coastline.
F32 new_water_height = water_heights[index];
LL_DEBUGS("WaterHeight") << " This is void; counting coastline with water height of " << new_water_height << LL_ENDL;
S32 new_water_height_cm = llround(new_water_height * 100);
int count = (water_height_counts[new_water_height_cm] += 1);
// Just use the lowest water height: this is mainly about the horizon water,
// and whatever we do, we don't want it to be possible to look under the water
// when looking in the distance: it is better to make a step downwards in water
// height when going away from the avie than a step upwards. However, since
// everyone is used to DEFAULT_WATER_HEIGHT, don't allow a single region
// to drag the water level below DEFAULT_WATER_HEIGHT on it's own.
if (bordering_hole == 0 || // First time we get here.
(new_water_height >= DEFAULT_WATER_HEIGHT &&
new_water_height < water_height) ||
(new_water_height < DEFAULT_WATER_HEIGHT &&
count > max_count)
)
{
water_height = new_water_height;
}
if (count > max_count)
{
max_count = count;
}
if (!(checked[index] & bordering_hole_bit))
{
checked[index] |= bordering_hole_bit;
++bordering_hole;
}
}
else if (is_edge && !(checked[index] & bordering_edge_bit))
{
checked[index] |= bordering_edge_bit;
++bordering_edge;
}
if (!new_region_found)
{
// Dead end, there is no region here.
continue;
}
// Found a new connected region.
++number_of_connected_regions;
if (new_region_found->getName().empty())
{
// Uninitialized LLViewerRegion, don't use it's water height.
LL_DEBUGS("WaterHeight") << " Uninitialized region." << LL_ENDL;
++uninitialized_regions;
continue;
}
nxny_pairs.push(nxny_pairs_type::value_type(cnx, cny));
water_heights[cindex] = new_region_found->getWaterHeight();
LL_DEBUGS("WaterHeight") << " Found a new region (name: " << new_region_found->getName() << "; water height: " << water_heights[cindex] << " m)!" << LL_ENDL;
}
}
llinfos << "Number of connected regions: " << number_of_connected_regions << " (" << uninitialized_regions <<
" uninitialized); number of regions bordering Hole water: " << bordering_hole <<
"; number of regions bordering Edge water: " << bordering_edge << llendl;
llinfos << "Coastline count (height, count): ";
bool first = true;
for (std::map<S32, int>::iterator iter = water_height_counts.begin(); iter != water_height_counts.end(); ++iter)
{
if (!first) llcont << ", ";
llcont << "(" << (iter->first / 100.f) << ", " << iter->second << ")";
first = false;
}
llcont << llendl;
llinfos << "Water height used for Hole and Edge water objects: " << water_height << llendl;
// Update all Region water objects.
for (region_list_t::iterator iter = mRegionList.begin(); iter != mRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
LLVOWater* waterp = regionp->getLand().getWaterObj();
if (waterp)
{
gObjectList.updateActive(waterp);
}
}
// Clean up all existing Hole water objects.
for (std::list<LLVOWater*>::iterator iter = mHoleWaterObjects.begin();
iter != mHoleWaterObjects.end(); ++iter)
{
LLVOWater* waterp = *iter;
gObjectList.killObject(waterp);
}
mHoleWaterObjects.clear();
// Let the Edge and Hole water boxes be 1024 meter high so that they
// are never too small to be drawn (A LL_VO_*_WATER box has water
// rendered on it's bottom surface only), and put their bottom at
// the current regions water height.
F32 const box_height = 1024;
F32 const water_center_z = water_height + box_height / 2;
// Create new Hole water objects within 'range' where there is no region.
for (S32 x = min_x; x <= max_x; x += rwidth)
{
for (S32 y = min_y; y <= max_y; y += rwidth)
{
U64 region_handle = to_region_handle(x, y);
if (!getRegionFromHandle(region_handle))
{
LLVOWater* waterp = (LLVOWater*)gObjectList.createObjectViewer(LLViewerObject::LL_VO_VOID_WATER, gAgent.getRegion());
waterp->setUseTexture(FALSE);
waterp->setPositionGlobal(LLVector3d(x + rwidth / 2, y + rwidth / 2, water_center_z));
waterp->setScale(LLVector3((F32)rwidth, (F32)rwidth, box_height));
gPipeline.createObject(waterp);
mHoleWaterObjects.push_back(waterp);
}
}
}
// Center of the region.
S32 const center_x = region_x + rwidth / 2;
S32 const center_y = region_y + rwidth / 2;
// Width of the area with Hole water objects.
S32 const width = rwidth + 2 * range;
S32 const horizon_extend = 2048 + 512 - range; // Legacy value.
// The overlap is needed to get rid of sky pixels being visible between the
// Edge and Hole water object at greater distances (due to floating point
// round off errors).
S32 const edge_hole_overlap = 1; // Twice the actual overlap.
for (S32 dir = 0; dir < 8; ++dir)
{
// Size of the Edge water objects.
S32 const dim_x = (gDirAxes[dir][0] == 0) ? width : (horizon_extend + edge_hole_overlap);
S32 const dim_y = (gDirAxes[dir][1] == 0) ? width : (horizon_extend + edge_hole_overlap);
// And their position.
S32 const water_center_x = center_x + (width + horizon_extend) / 2 * gDirAxes[dir][0];
S32 const water_center_y = center_y + (width + horizon_extend) / 2 * gDirAxes[dir][1];
LLVOWater* waterp = mEdgeWaterObjects[dir];
if (!waterp || waterp->isDead())
{
// The edge water objects can be dead because they're attached to the region that the
// agent was in when they were originally created.
mEdgeWaterObjects[dir] = (LLVOWater *)gObjectList.createObjectViewer(LLViewerObject::LL_VO_VOID_WATER, gAgent.getRegion());
waterp = mEdgeWaterObjects[dir];
waterp->setUseTexture(FALSE);
waterp->setIsEdgePatch(TRUE); // Mark that this is edge water and not hole water.
gPipeline.createObject(waterp);
}
waterp->setRegion(gAgent.getRegion());
LLVector3d water_pos(water_center_x, water_center_y, water_center_z);
LLVector3 water_scale((F32) dim_x, (F32) dim_y, box_height);
waterp->setPositionGlobal(water_pos);
waterp->setScale(water_scale);
gObjectList.updateActive(waterp);
}
}
void LLWorld::shiftRegions(const LLVector3& offset)
{
for (region_list_t::const_iterator i = getRegionList().begin(); i != getRegionList().end(); ++i)
{
LLViewerRegion* region = *i;
region->updateRenderMatrix();
}
LLViewerPartSim::getInstance()->shift(offset);
}
LLViewerImage* LLWorld::getDefaultWaterTexture()
{
return mDefaultWaterTexturep;
}
void LLWorld::setSpaceTimeUSec(const U64 space_time_usec)
{
mSpaceTimeUSec = space_time_usec;
}
U64 LLWorld::getSpaceTimeUSec() const
{
return mSpaceTimeUSec;
}
void LLWorld::requestCacheMisses()
{
for (region_list_t::iterator iter = mRegionList.begin();
iter != mRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
regionp->requestCacheMisses();
}
}
void LLWorld::getInfo(LLSD& info)
{
LLSD region_info;
for (region_list_t::iterator iter = mRegionList.begin();
iter != mRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
regionp->getInfo(region_info);
info["World"].append(region_info);
}
}
void LLWorld::disconnectRegions()
{
LLMessageSystem* msg = gMessageSystem;
for (region_list_t::iterator iter = mRegionList.begin();
iter != mRegionList.end(); ++iter)
{
LLViewerRegion* regionp = *iter;
if (regionp == gAgent.getRegion())
{
// Skip the main agent
continue;
}
llinfos << "Sending AgentQuitCopy to: " << regionp->getHost() << llendl;
msg->newMessageFast(_PREHASH_AgentQuitCopy);
msg->nextBlockFast(_PREHASH_AgentData);
msg->addUUIDFast(_PREHASH_AgentID, gAgent.getID());
msg->addUUIDFast(_PREHASH_SessionID, gAgent.getSessionID());
msg->nextBlockFast(_PREHASH_FuseBlock);
msg->addU32Fast(_PREHASH_ViewerCircuitCode, gMessageSystem->mOurCircuitCode);
msg->sendMessage(regionp->getHost());
}
}
void process_enable_simulator(LLMessageSystem *msg, void **user_data)
{
// enable the appropriate circuit for this simulator and
// add its values into the gSimulator structure
U64 handle;
U32 ip_u32;
U16 port;
msg->getU64Fast(_PREHASH_SimulatorInfo, _PREHASH_Handle, handle);
msg->getIPAddrFast(_PREHASH_SimulatorInfo, _PREHASH_IP, ip_u32);
msg->getIPPortFast(_PREHASH_SimulatorInfo, _PREHASH_Port, port);
// which simulator should we modify?
LLHost sim(ip_u32, port);
// Viewer trusts the simulator.
msg->enableCircuit(sim, TRUE);
LLWorld::getInstance()->addRegion(handle, sim);
// give the simulator a message it can use to get ip and port
llinfos << "simulator_enable() Enabling " << sim << " with code " << msg->getOurCircuitCode() << llendl;
msg->newMessageFast(_PREHASH_UseCircuitCode);
msg->nextBlockFast(_PREHASH_CircuitCode);
msg->addU32Fast(_PREHASH_Code, msg->getOurCircuitCode());
msg->addUUIDFast(_PREHASH_SessionID, gAgent.getSessionID());
msg->addUUIDFast(_PREHASH_ID, gAgent.getID());
msg->sendReliable(sim);
}
class LLEstablishAgentCommunication : public LLHTTPNode
{
LOG_CLASS(LLEstablishAgentCommunication);
public:
virtual void describe(Description& desc) const
{
desc.shortInfo("seed capability info for a region");
desc.postAPI();
desc.input(
"{ seed-capability: ..., sim-ip: ..., sim-port }");
desc.source(__FILE__, __LINE__);
}
virtual void post(ResponsePtr response, const LLSD& context, const LLSD& input) const
{
if (!input["body"].has("agent-id") ||
!input["body"].has("sim-ip-and-port") ||
!input["body"].has("seed-capability"))
{
llwarns << "invalid parameters" << llendl;
return;
}
LLHost sim(input["body"]["sim-ip-and-port"].asString());
LLViewerRegion* regionp = LLWorld::getInstance()->getRegion(sim);
if (!regionp)
{
llwarns << "Got EstablishAgentCommunication for unknown region "
<< sim << llendl;
return;
}
regionp->setSeedCapability(input["body"]["seed-capability"]);
}
};
// disable the circuit to this simulator
// Called in response to "DisableSimulator" message.
void process_disable_simulator(LLMessageSystem *mesgsys, void **user_data)
{
LLHost host = mesgsys->getSender();
//llinfos << "Disabling simulator with message from " << host << llendl;
LLWorld::getInstance()->removeRegion(host);
mesgsys->disableCircuit(host);
}
void process_region_handshake(LLMessageSystem* msg, void** user_data)
{
LLHost host = msg->getSender();
LLViewerRegion* regionp = LLWorld::getInstance()->getRegion(host);
if (!regionp)
{
llwarns << "Got region handshake for unknown region "
<< host << llendl;
return;
}
regionp->unpackRegionHandshake();
}
void send_agent_pause()
{
// *NOTE:Mani Pausing the mainloop timeout. Otherwise a long modal event may cause
// the thread monitor to timeout.
LLAppViewer::instance()->pauseMainloopTimeout();
// Note: used to check for LLWorld initialization before it became a singleton.
// Rather than just remove this check I'm changing it to assure that the message
// system has been initialized. -MG
if (!gMessageSystem)
{
return;
}
gMessageSystem->newMessageFast(_PREHASH_AgentPause);
gMessageSystem->nextBlockFast(_PREHASH_AgentData);
gMessageSystem->addUUIDFast(_PREHASH_AgentID, gAgentID);
gMessageSystem->addUUIDFast(_PREHASH_SessionID, gAgentSessionID);
gAgentPauseSerialNum++;
gMessageSystem->addU32Fast(_PREHASH_SerialNum, gAgentPauseSerialNum);
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* regionp = *iter;
gMessageSystem->sendReliable(regionp->getHost());
}
gObjectList.mWasPaused = TRUE;
}
void send_agent_resume()
{
// Note: used to check for LLWorld initialization before it became a singleton.
// Rather than just remove this check I'm changing it to assure that the message
// system has been initialized. -MG
if (!gMessageSystem)
{
return;
}
gMessageSystem->newMessageFast(_PREHASH_AgentResume);
gMessageSystem->nextBlockFast(_PREHASH_AgentData);
gMessageSystem->addUUIDFast(_PREHASH_AgentID, gAgentID);
gMessageSystem->addUUIDFast(_PREHASH_SessionID, gAgentSessionID);
gAgentPauseSerialNum++;
gMessageSystem->addU32Fast(_PREHASH_SerialNum, gAgentPauseSerialNum);
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* regionp = *iter;
gMessageSystem->sendReliable(regionp->getHost());
}
// Reset the FPS counter to avoid an invalid fps
LLViewerStats::getInstance()->mFPSStat.start();
LLAppViewer::instance()->resumeMainloopTimeout();
}
static LLVector3d unpackLocalToGlobalPosition(U32 compact_local, const LLVector3d& region_origin)
{
LLVector3d pos_global;
LLVector3 pos_local;
U8 bits;
bits = compact_local & 0xFF;
pos_local.mV[VZ] = F32(bits) * 4.f;
compact_local >>= 8;
bits = compact_local & 0xFF;
pos_local.mV[VY] = (F32)bits;
compact_local >>= 8;
bits = compact_local & 0xFF;
pos_local.mV[VX] = (F32)bits;
pos_global.setVec( pos_local );
pos_global += region_origin;
return pos_global;
}
void LLWorld::getAvatars(std::vector<LLUUID>* avatar_ids, std::vector<LLVector3d>* positions, const LLVector3d& relative_to, F32 radius) const
{
if(avatar_ids != NULL)
{
avatar_ids->clear();
}
if(positions != NULL)
{
positions->clear();
}
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* regionp = *iter;
const LLVector3d& origin_global = regionp->getOriginGlobal();
S32 count = regionp->mMapAvatars.count();
for (S32 i = 0; i < count; i++)
{
LLVector3d pos_global = unpackLocalToGlobalPosition(regionp->mMapAvatars.get(i), origin_global);
if(dist_vec(pos_global, relative_to) <= radius)
{
if(positions != NULL)
{
positions->push_back(pos_global);
}
if(avatar_ids != NULL)
{
avatar_ids->push_back(regionp->mMapAvatarIDs.get(i));
}
}
}
}
}
LLHTTPRegistration<LLEstablishAgentCommunication>
gHTTPRegistrationEstablishAgentCommunication(
"/message/EstablishAgentCommunication");