Files
SingularityViewer/indra/llmath/v3math.cpp
2011-05-18 14:36:05 -05:00

378 lines
8.9 KiB
C++

/**
* @file v3math.cpp
* @brief LLVector3 class implementation.
*
* $LicenseInfo:firstyear=2000&license=viewergpl$
*
* Copyright (c) 2000-2009, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "v3math.h"
//#include "vmath.h"
#include "v2math.h"
#include "v4math.h"
#include "m4math.h"
#include "m3math.h"
#include "llquaternion.h"
#include "llquantize.h"
#include "v3dmath.h"
// LLVector3
// WARNING: Don't use these for global const definitions!
// For example:
// const LLQuaternion(0.5f * F_PI, LLVector3::zero);
// at the top of a *.cpp file might not give you what you think.
const LLVector3 LLVector3::zero(0,0,0);
const LLVector3 LLVector3::x_axis(1.f, 0, 0);
const LLVector3 LLVector3::y_axis(0, 1.f, 0);
const LLVector3 LLVector3::z_axis(0, 0, 1.f);
const LLVector3 LLVector3::x_axis_neg(-1.f, 0, 0);
const LLVector3 LLVector3::y_axis_neg(0, -1.f, 0);
const LLVector3 LLVector3::z_axis_neg(0, 0, -1.f);
const LLVector3 LLVector3::all_one(1.f,1.f,1.f);
// Clamps each values to range (min,max).
// Returns TRUE if data changed.
BOOL LLVector3::clamp(F32 min, F32 max)
{
BOOL ret = FALSE;
if (mV[0] < min) { mV[0] = min; ret = TRUE; }
if (mV[1] < min) { mV[1] = min; ret = TRUE; }
if (mV[2] < min) { mV[2] = min; ret = TRUE; }
if (mV[0] > max) { mV[0] = max; ret = TRUE; }
if (mV[1] > max) { mV[1] = max; ret = TRUE; }
if (mV[2] > max) { mV[2] = max; ret = TRUE; }
return ret;
}
// Clamps length to an upper limit.
// Returns TRUE if the data changed
BOOL LLVector3::clampLength( F32 length_limit )
{
BOOL changed = FALSE;
F32 len = length();
if (llfinite(len))
{
if ( len > length_limit)
{
normalize();
if (length_limit < 0.f)
{
length_limit = 0.f;
}
mV[0] *= length_limit;
mV[1] *= length_limit;
mV[2] *= length_limit;
changed = TRUE;
}
}
else
{ // this vector may still be salvagable
F32 max_abs_component = 0.f;
for (S32 i = 0; i < 3; ++i)
{
F32 abs_component = fabs(mV[i]);
if (llfinite(abs_component))
{
if (abs_component > max_abs_component)
{
max_abs_component = abs_component;
}
}
else
{
// no it can't be salvaged --> clear it
clear();
changed = TRUE;
break;
}
}
if (!changed)
{
// yes it can be salvaged -->
// bring the components down before we normalize
mV[0] /= max_abs_component;
mV[1] /= max_abs_component;
mV[2] /= max_abs_component;
normalize();
if (length_limit < 0.f)
{
length_limit = 0.f;
}
mV[0] *= length_limit;
mV[1] *= length_limit;
mV[2] *= length_limit;
}
}
return changed;
}
BOOL LLVector3::clamp(const LLVector3 &min_vec, const LLVector3 &max_vec)
{
BOOL ret = FALSE;
if (mV[0] < min_vec[0]) { mV[0] = min_vec[0]; ret = TRUE; }
if (mV[1] < min_vec[1]) { mV[1] = min_vec[1]; ret = TRUE; }
if (mV[2] < min_vec[2]) { mV[2] = min_vec[2]; ret = TRUE; }
if (mV[0] > max_vec[0]) { mV[0] = max_vec[0]; ret = TRUE; }
if (mV[1] > max_vec[1]) { mV[1] = max_vec[1]; ret = TRUE; }
if (mV[2] > max_vec[2]) { mV[2] = max_vec[2]; ret = TRUE; }
return ret;
}
// Sets all values to absolute value of their original values
// Returns TRUE if data changed
BOOL LLVector3::abs()
{
BOOL ret = FALSE;
if (mV[0] < 0.f) { mV[0] = -mV[0]; ret = TRUE; }
if (mV[1] < 0.f) { mV[1] = -mV[1]; ret = TRUE; }
if (mV[2] < 0.f) { mV[2] = -mV[2]; ret = TRUE; }
return ret;
}
// Quatizations
void LLVector3::quantize16(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz)
{
F32 x = mV[VX];
F32 y = mV[VY];
F32 z = mV[VZ];
x = U16_to_F32(F32_to_U16(x, lowerxy, upperxy), lowerxy, upperxy);
y = U16_to_F32(F32_to_U16(y, lowerxy, upperxy), lowerxy, upperxy);
z = U16_to_F32(F32_to_U16(z, lowerz, upperz), lowerz, upperz);
mV[VX] = x;
mV[VY] = y;
mV[VZ] = z;
}
void LLVector3::quantize8(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz)
{
mV[VX] = U8_to_F32(F32_to_U8(mV[VX], lowerxy, upperxy), lowerxy, upperxy);;
mV[VY] = U8_to_F32(F32_to_U8(mV[VY], lowerxy, upperxy), lowerxy, upperxy);
mV[VZ] = U8_to_F32(F32_to_U8(mV[VZ], lowerz, upperz), lowerz, upperz);
}
void LLVector3::snap(S32 sig_digits)
{
mV[VX] = snap_to_sig_figs(mV[VX], sig_digits);
mV[VY] = snap_to_sig_figs(mV[VY], sig_digits);
mV[VZ] = snap_to_sig_figs(mV[VZ], sig_digits);
}
const LLVector3& LLVector3::rotVec(const LLMatrix3 &mat)
{
*this = *this * mat;
return *this;
}
const LLVector3& LLVector3::rotVec(const LLQuaternion &q)
{
*this = *this * q;
return *this;
}
const LLVector3& LLVector3::transVec(const LLMatrix4& mat)
{
setVec(
mV[VX] * mat.mMatrix[VX][VX] +
mV[VY] * mat.mMatrix[VX][VY] +
mV[VZ] * mat.mMatrix[VX][VZ] +
mat.mMatrix[VX][VW],
mV[VX] * mat.mMatrix[VY][VX] +
mV[VY] * mat.mMatrix[VY][VY] +
mV[VZ] * mat.mMatrix[VY][VZ] +
mat.mMatrix[VY][VW],
mV[VX] * mat.mMatrix[VZ][VX] +
mV[VY] * mat.mMatrix[VZ][VY] +
mV[VZ] * mat.mMatrix[VZ][VZ] +
mat.mMatrix[VZ][VW]);
return *this;
}
const LLVector3& LLVector3::rotVec(F32 angle, const LLVector3 &vec)
{
if ( !vec.isExactlyZero() && angle )
{
*this = *this * LLQuaternion(angle, vec);
}
return *this;
}
const LLVector3& LLVector3::rotVec(F32 angle, F32 x, F32 y, F32 z)
{
LLVector3 vec(x, y, z);
if ( !vec.isExactlyZero() && angle )
{
*this = *this * LLQuaternion(angle, vec);
}
return *this;
}
const LLVector3& LLVector3::scaleVec(const LLVector3& vec)
{
mV[VX] *= vec.mV[VX];
mV[VY] *= vec.mV[VY];
mV[VZ] *= vec.mV[VZ];
return *this;
}
LLVector3 LLVector3::scaledVec(const LLVector3& vec) const
{
LLVector3 ret = LLVector3(*this);
ret.scaleVec(vec);
return ret;
}
const LLVector3& LLVector3::set(const LLVector3d &vec)
{
mV[0] = (F32)vec.mdV[0];
mV[1] = (F32)vec.mdV[1];
mV[2] = (F32)vec.mdV[2];
return (*this);
}
const LLVector3& LLVector3::set(const LLVector4 &vec)
{
mV[0] = vec.mV[0];
mV[1] = vec.mV[1];
mV[2] = vec.mV[2];
return (*this);
}
const LLVector3& LLVector3::setVec(const LLVector3d &vec)
{
mV[0] = (F32)vec.mdV[0];
mV[1] = (F32)vec.mdV[1];
mV[2] = (F32)vec.mdV[2];
return (*this);
}
const LLVector3& LLVector3::setVec(const LLVector4 &vec)
{
mV[0] = vec.mV[0];
mV[1] = vec.mV[1];
mV[2] = vec.mV[2];
return (*this);
}
LLVector3::LLVector3(const LLVector2 &vec)
{
mV[VX] = (F32)vec.mV[VX];
mV[VY] = (F32)vec.mV[VY];
mV[VZ] = 0;
}
LLVector3::LLVector3(const LLVector3d &vec)
{
mV[VX] = (F32)vec.mdV[VX];
mV[VY] = (F32)vec.mdV[VY];
mV[VZ] = (F32)vec.mdV[VZ];
}
LLVector3::LLVector3(const LLVector4 &vec)
{
mV[VX] = (F32)vec.mV[VX];
mV[VY] = (F32)vec.mV[VY];
mV[VZ] = (F32)vec.mV[VZ];
}
LLVector3::LLVector3(const LLSD& sd)
{
setValue(sd);
}
LLSD LLVector3::getValue() const
{
LLSD ret;
ret[0] = mV[0];
ret[1] = mV[1];
ret[2] = mV[2];
return ret;
}
void LLVector3::setValue(const LLSD& sd)
{
mV[0] = (F32) sd[0].asReal();
mV[1] = (F32) sd[1].asReal();
mV[2] = (F32) sd[2].asReal();
}
const LLVector3& operator*=(LLVector3 &a, const LLQuaternion &rot)
{
const F32 rw = - rot.mQ[VX] * a.mV[VX] - rot.mQ[VY] * a.mV[VY] - rot.mQ[VZ] * a.mV[VZ];
const F32 rx = rot.mQ[VW] * a.mV[VX] + rot.mQ[VY] * a.mV[VZ] - rot.mQ[VZ] * a.mV[VY];
const F32 ry = rot.mQ[VW] * a.mV[VY] + rot.mQ[VZ] * a.mV[VX] - rot.mQ[VX] * a.mV[VZ];
const F32 rz = rot.mQ[VW] * a.mV[VZ] + rot.mQ[VX] * a.mV[VY] - rot.mQ[VY] * a.mV[VX];
a.mV[VX] = - rw * rot.mQ[VX] + rx * rot.mQ[VW] - ry * rot.mQ[VZ] + rz * rot.mQ[VY];
a.mV[VY] = - rw * rot.mQ[VY] + ry * rot.mQ[VW] - rz * rot.mQ[VX] + rx * rot.mQ[VZ];
a.mV[VZ] = - rw * rot.mQ[VZ] + rz * rot.mQ[VW] - rx * rot.mQ[VY] + ry * rot.mQ[VX];
return a;
}
// static
BOOL LLVector3::parseVector3(const std::string& buf, LLVector3* value)
{
if( buf.empty() || value == NULL)
{
return FALSE;
}
LLVector3 v;
S32 count = sscanf( buf.c_str(), "%f %f %f", v.mV + 0, v.mV + 1, v.mV + 2 );
if( 3 == count )
{
value->setVec( v );
return TRUE;
}
return FALSE;
}