Files
SingularityViewer/indra/llmath/llvolume.cpp
2012-05-21 20:23:42 -05:00

7584 lines
174 KiB
C++

/**
* @file llvolume.cpp
*
* $LicenseInfo:firstyear=2002&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llmemory.h"
#include "llmath.h"
#include <set>
#include "llerror.h"
#include "llmemtype.h"
#include "llvolumemgr.h"
#include "v2math.h"
#include "v3math.h"
#include "v4math.h"
#include "m4math.h"
#include "m3math.h"
#include "llmatrix3a.h"
#include "lloctree.h"
#include "lldarray.h"
#include "llvolume.h"
#include "llvolumeoctree.h"
#include "llstl.h"
#include "llsdserialize.h"
#include "llvector4a.h"
#include "llmatrix4a.h"
#include "lltimer.h"
#define DEBUG_SILHOUETTE_BINORMALS 0
#define DEBUG_SILHOUETTE_NORMALS 0 // TomY: Use this to display normals using the silhouette
#define DEBUG_SILHOUETTE_EDGE_MAP 0 // DaveP: Use this to display edge map using the silhouette
const F32 CUT_MIN = 0.f;
const F32 CUT_MAX = 1.f;
const F32 MIN_CUT_DELTA = 0.02f;
const F32 HOLLOW_MIN = 0.f;
const F32 HOLLOW_MAX = 0.99f;
const F32 HOLLOW_MAX_SQUARE = 0.7f;
const F32 TWIST_MIN = -1.f;
const F32 TWIST_MAX = 1.f;
const F32 RATIO_MIN = 0.f;
const F32 RATIO_MAX = 2.f; // Tom Y: Inverted sense here: 0 = top taper, 2 = bottom taper
const F32 HOLE_X_MIN= 0.01f;
const F32 HOLE_X_MAX= 1.0f;
const F32 HOLE_Y_MIN= 0.01f;
const F32 HOLE_Y_MAX= 0.5f;
const F32 SHEAR_MIN = -0.5f;
const F32 SHEAR_MAX = 0.5f;
const F32 REV_MIN = 1.f;
const F32 REV_MAX = 4.f;
const F32 TAPER_MIN = -1.f;
const F32 TAPER_MAX = 1.f;
const F32 SKEW_MIN = -0.95f;
const F32 SKEW_MAX = 0.95f;
const F32 SCULPT_MIN_AREA = 0.002f;
const S32 SCULPT_MIN_AREA_DETAIL = 1;
extern BOOL gDebugGL;
void assert_aligned(void* ptr, uintptr_t alignment)
{
#if 0
uintptr_t t = (uintptr_t) ptr;
if (t%alignment != 0)
{
llerrs << "Alignment check failed." << llendl;
}
#endif
}
BOOL check_same_clock_dir( const LLVector3& pt1, const LLVector3& pt2, const LLVector3& pt3, const LLVector3& norm)
{
LLVector3 test = (pt2-pt1)%(pt3-pt2);
//answer
if(test * norm < 0)
{
return FALSE;
}
else
{
return TRUE;
}
}
BOOL LLLineSegmentBoxIntersect(const LLVector3& start, const LLVector3& end, const LLVector3& center, const LLVector3& size)
{
return LLLineSegmentBoxIntersect(start.mV, end.mV, center.mV, size.mV);
}
BOOL LLLineSegmentBoxIntersect(const F32* start, const F32* end, const F32* center, const F32* size)
{
F32 fAWdU[3];
F32 dir[3];
F32 diff[3];
for (U32 i = 0; i < 3; i++)
{
dir[i] = 0.5f * (end[i] - start[i]);
diff[i] = (0.5f * (end[i] + start[i])) - center[i];
fAWdU[i] = fabsf(dir[i]);
if(fabsf(diff[i])>size[i] + fAWdU[i]) return false;
}
float f;
f = dir[1] * diff[2] - dir[2] * diff[1]; if(fabsf(f)>size[1]*fAWdU[2] + size[2]*fAWdU[1]) return false;
f = dir[2] * diff[0] - dir[0] * diff[2]; if(fabsf(f)>size[0]*fAWdU[2] + size[2]*fAWdU[0]) return false;
f = dir[0] * diff[1] - dir[1] * diff[0]; if(fabsf(f)>size[0]*fAWdU[1] + size[1]*fAWdU[0]) return false;
return true;
}
// intersect test between triangle vert0, vert1, vert2 and a ray from orig in direction dir.
// returns TRUE if intersecting and returns barycentric coordinates in intersection_a, intersection_b,
// and returns the intersection point along dir in intersection_t.
// Moller-Trumbore algorithm
BOOL LLTriangleRayIntersect(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir,
F32& intersection_a, F32& intersection_b, F32& intersection_t)
{
/* find vectors for two edges sharing vert0 */
LLVector4a edge1;
edge1.setSub(vert1, vert0);
LLVector4a edge2;
edge2.setSub(vert2, vert0);
/* begin calculating determinant - also used to calculate U parameter */
LLVector4a pvec;
pvec.setCross3(dir, edge2);
/* if determinant is near zero, ray lies in plane of triangle */
LLVector4a det;
det.setAllDot3(edge1, pvec);
if (det.greaterEqual(LLVector4a::getEpsilon()).getGatheredBits() & 0x7)
{
/* calculate distance from vert0 to ray origin */
LLVector4a tvec;
tvec.setSub(orig, vert0);
/* calculate U parameter and test bounds */
LLVector4a u;
u.setAllDot3(tvec,pvec);
if ((u.greaterEqual(LLVector4a::getZero()).getGatheredBits() & 0x7) &&
(u.lessEqual(det).getGatheredBits() & 0x7))
{
/* prepare to test V parameter */
LLVector4a qvec;
qvec.setCross3(tvec, edge1);
/* calculate V parameter and test bounds */
LLVector4a v;
v.setAllDot3(dir, qvec);
//if (!(v < 0.f || u + v > det))
LLVector4a sum_uv;
sum_uv.setAdd(u, v);
S32 v_gequal = v.greaterEqual(LLVector4a::getZero()).getGatheredBits() & 0x7;
S32 sum_lequal = sum_uv.lessEqual(det).getGatheredBits() & 0x7;
if (v_gequal && sum_lequal)
{
/* calculate t, scale parameters, ray intersects triangle */
LLVector4a t;
t.setAllDot3(edge2,qvec);
t.div(det);
u.div(det);
v.div(det);
intersection_a = u[0];
intersection_b = v[0];
intersection_t = t[0];
return TRUE;
}
}
}
return FALSE;
}
BOOL LLTriangleRayIntersectTwoSided(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir,
F32& intersection_a, F32& intersection_b, F32& intersection_t)
{
F32 u, v, t;
/* find vectors for two edges sharing vert0 */
LLVector4a edge1;
edge1.setSub(vert1, vert0);
LLVector4a edge2;
edge2.setSub(vert2, vert0);
/* begin calculating determinant - also used to calculate U parameter */
LLVector4a pvec;
pvec.setCross3(dir, edge2);
/* if determinant is near zero, ray lies in plane of triangle */
F32 det = edge1.dot3(pvec).getF32();
if (det > -F_APPROXIMATELY_ZERO && det < F_APPROXIMATELY_ZERO)
{
return FALSE;
}
F32 inv_det = 1.f / det;
/* calculate distance from vert0 to ray origin */
LLVector4a tvec;
tvec.setSub(orig, vert0);
/* calculate U parameter and test bounds */
u = (tvec.dot3(pvec).getF32()) * inv_det;
if (u < 0.f || u > 1.f)
{
return FALSE;
}
/* prepare to test V parameter */
tvec.sub(edge1);
/* calculate V parameter and test bounds */
v = (dir.dot3(tvec).getF32()) * inv_det;
if (v < 0.f || u + v > 1.f)
{
return FALSE;
}
/* calculate t, ray intersects triangle */
t = (edge2.dot3(tvec).getF32()) * inv_det;
intersection_a = u;
intersection_b = v;
intersection_t = t;
return TRUE;
}
//helper for non-aligned vectors
BOOL LLTriangleRayIntersect(const LLVector3& vert0, const LLVector3& vert1, const LLVector3& vert2, const LLVector3& orig, const LLVector3& dir,
F32& intersection_a, F32& intersection_b, F32& intersection_t, BOOL two_sided)
{
LLVector4a vert0a, vert1a, vert2a, origa, dira;
vert0a.load3(vert0.mV);
vert1a.load3(vert1.mV);
vert2a.load3(vert2.mV);
origa.load3(orig.mV);
dira.load3(dir.mV);
if (two_sided)
{
return LLTriangleRayIntersectTwoSided(vert0a, vert1a, vert2a, origa, dira,
intersection_a, intersection_b, intersection_t);
}
else
{
return LLTriangleRayIntersect(vert0a, vert1a, vert2a, origa, dira,
intersection_a, intersection_b, intersection_t);
}
}
class LLVolumeOctreeRebound : public LLOctreeTravelerDepthFirst<LLVolumeTriangle>
{
public:
const LLVolumeFace* mFace;
LLVolumeOctreeRebound(const LLVolumeFace* face)
{
mFace = face;
}
virtual void visit(const LLOctreeNode<LLVolumeTriangle>* branch)
{ //this is a depth first traversal, so it's safe to assum all children have complete
//bounding data
LLVolumeOctreeListener* node = (LLVolumeOctreeListener*) branch->getListener(0);
LLVector4a& min = node->mExtents[0];
LLVector4a& max = node->mExtents[1];
if (!branch->getData().empty())
{ //node has data, find AABB that binds data set
const LLVolumeTriangle* tri = *(branch->getData().begin());
//initialize min/max to first available vertex
min = *(tri->mV[0]);
max = *(tri->mV[0]);
for (LLOctreeNode<LLVolumeTriangle>::const_element_iter iter =
branch->getData().begin(); iter != branch->getData().end(); ++iter)
{ //for each triangle in node
//stretch by triangles in node
tri = *iter;
min.setMin(min, *tri->mV[0]);
min.setMin(min, *tri->mV[1]);
min.setMin(min, *tri->mV[2]);
max.setMax(max, *tri->mV[0]);
max.setMax(max, *tri->mV[1]);
max.setMax(max, *tri->mV[2]);
}
}
else if (!branch->getChildren().empty())
{ //no data, but child nodes exist
LLVolumeOctreeListener* child = (LLVolumeOctreeListener*) branch->getChild(0)->getListener(0);
//initialize min/max to extents of first child
min = child->mExtents[0];
max = child->mExtents[1];
}
else
{
llerrs << "Empty leaf" << llendl;
}
for (U32 i = 0; i < branch->getChildCount(); ++i)
{ //stretch by child extents
LLVolumeOctreeListener* child = (LLVolumeOctreeListener*) branch->getChild(i)->getListener(0);
min.setMin(min, child->mExtents[0]);
max.setMax(max, child->mExtents[1]);
}
node->mBounds[0].setAdd(min, max);
node->mBounds[0].mul(0.5f);
node->mBounds[1].setSub(max,min);
node->mBounds[1].mul(0.5f);
}
};
//-------------------------------------------------------------------
// statics
//-------------------------------------------------------------------
//----------------------------------------------------
LLProfile::Face* LLProfile::addCap(S16 faceID)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
Face *face = vector_append(mFaces, 1);
face->mIndex = 0;
face->mCount = mTotal;
face->mScaleU= 1.0f;
face->mCap = TRUE;
face->mFaceID = faceID;
return face;
}
LLProfile::Face* LLProfile::addFace(S32 i, S32 count, F32 scaleU, S16 faceID, BOOL flat)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
Face *face = vector_append(mFaces, 1);
face->mIndex = i;
face->mCount = count;
face->mScaleU= scaleU;
face->mFlat = flat;
face->mCap = FALSE;
face->mFaceID = faceID;
return face;
}
//static
S32 LLProfile::getNumNGonPoints(const LLProfileParams& params, S32 sides, F32 offset, F32 bevel, F32 ang_scale, S32 split)
{ // this is basically LLProfile::genNGon stripped down to only the operations that influence the number of points
LLMemType m1(LLMemType::MTYPE_VOLUME);
S32 np = 0;
// Generate an n-sided "circular" path.
// 0 is (1,0), and we go counter-clockwise along a circular path from there.
F32 t, t_step, t_first, t_fraction;
F32 begin = params.getBegin();
F32 end = params.getEnd();
t_step = 1.0f / sides;
t_first = floor(begin * sides) / (F32)sides;
// pt1 is the first point on the fractional face.
// Starting t and ang values for the first face
t = t_first;
// Increment to the next point.
// pt2 is the end point on the fractional face
t += t_step;
t_fraction = (begin - t_first)*sides;
// Only use if it's not almost exactly on an edge.
if (t_fraction < 0.9999f)
{
np++;
}
// There's lots of potential here for floating point error to generate unneeded extra points - DJS 04/05/02
while (t < end)
{
// Iterate through all the integer steps of t.
np++;
t += t_step;
}
t_fraction = (end - (t - t_step))*sides;
// Find the fraction that we need to add to the end point.
t_fraction = (end - (t - t_step))*sides;
if (t_fraction > 0.0001f)
{
np++;
}
// If we're sliced, the profile is open.
if ((end - begin)*ang_scale < 0.99f)
{
if (params.getHollow() <= 0)
{
// put center point if not hollow.
np++;
}
}
return np;
}
// What is the bevel parameter used for? - DJS 04/05/02
// Bevel parameter is currently unused but presumedly would support
// filleted and chamfered corners
void LLProfile::genNGon(const LLProfileParams& params, S32 sides, F32 offset, F32 bevel, F32 ang_scale, S32 split)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
// Generate an n-sided "circular" path.
// 0 is (1,0), and we go counter-clockwise along a circular path from there.
const F32 tableScale[] = { 1, 1, 1, 0.5f, 0.707107f, 0.53f, 0.525f, 0.5f };
F32 scale = 0.5f;
F32 t, t_step, t_first, t_fraction, ang, ang_step;
LLVector3 pt1,pt2;
F32 begin = params.getBegin();
F32 end = params.getEnd();
t_step = 1.0f / sides;
ang_step = 2.0f*F_PI*t_step*ang_scale;
// Scale to have size "match" scale. Compensates to get object to generally fill bounding box.
S32 total_sides = llround(sides / ang_scale); // Total number of sides all around
if (total_sides < 8)
{
scale = tableScale[total_sides];
}
t_first = floor(begin * sides) / (F32)sides;
// pt1 is the first point on the fractional face.
// Starting t and ang values for the first face
t = t_first;
ang = 2.0f*F_PI*(t*ang_scale + offset);
pt1.setVec(cos(ang)*scale,sin(ang)*scale, t);
// Increment to the next point.
// pt2 is the end point on the fractional face
t += t_step;
ang += ang_step;
pt2.setVec(cos(ang)*scale,sin(ang)*scale,t);
t_fraction = (begin - t_first)*sides;
// Only use if it's not almost exactly on an edge.
if (t_fraction < 0.9999f)
{
LLVector3 new_pt = lerp(pt1, pt2, t_fraction);
mProfile.push_back(new_pt);
}
// There's lots of potential here for floating point error to generate unneeded extra points - DJS 04/05/02
while (t < end)
{
// Iterate through all the integer steps of t.
pt1.setVec(cos(ang)*scale,sin(ang)*scale,t);
if (mProfile.size() > 0) {
LLVector3 p = mProfile[mProfile.size()-1];
for (S32 i = 0; i < split && mProfile.size() > 0; i++) {
mProfile.push_back(p+(pt1-p) * 1.0f/(float)(split+1) * (float)(i+1));
}
}
mProfile.push_back(pt1);
t += t_step;
ang += ang_step;
}
t_fraction = (end - (t - t_step))*sides;
// pt1 is the first point on the fractional face
// pt2 is the end point on the fractional face
pt2.setVec(cos(ang)*scale,sin(ang)*scale,t);
// Find the fraction that we need to add to the end point.
t_fraction = (end - (t - t_step))*sides;
if (t_fraction > 0.0001f)
{
LLVector3 new_pt = lerp(pt1, pt2, t_fraction);
if (mProfile.size() > 0) {
LLVector3 p = mProfile[mProfile.size()-1];
for (S32 i = 0; i < split && mProfile.size() > 0; i++) {
mProfile.push_back(p+(new_pt-p) * 1.0f/(float)(split+1) * (float)(i+1));
}
}
mProfile.push_back(new_pt);
}
// If we're sliced, the profile is open.
if ((end - begin)*ang_scale < 0.99f)
{
if ((end - begin)*ang_scale > 0.5f)
{
mConcave = TRUE;
}
else
{
mConcave = FALSE;
}
mOpen = TRUE;
if (params.getHollow() <= 0)
{
// put center point if not hollow.
mProfile.push_back(LLVector3(0,0,0));
}
}
else
{
// The profile isn't open.
mOpen = FALSE;
mConcave = FALSE;
}
mTotal = mProfile.size();
}
void LLProfile::genNormals(const LLProfileParams& params)
{
S32 count = mProfile.size();
S32 outer_count;
if (mTotalOut)
{
outer_count = mTotalOut;
}
else
{
outer_count = mTotal / 2;
}
mEdgeNormals.resize(count * 2);
mEdgeCenters.resize(count * 2);
mNormals.resize(count);
LLVector2 pt0,pt1;
BOOL hollow = (params.getHollow() > 0);
S32 i0, i1, i2, i3, i4;
// Parametrically generate normal
for (i2 = 0; i2 < count; i2++)
{
mNormals[i2].mV[0] = mProfile[i2].mV[0];
mNormals[i2].mV[1] = mProfile[i2].mV[1];
if (hollow && (i2 >= outer_count))
{
mNormals[i2] *= -1.f;
}
if (mNormals[i2].magVec() < 0.001)
{
// Special case for point at center, get adjacent points.
i1 = (i2 - 1) >= 0 ? i2 - 1 : count - 1;
i0 = (i1 - 1) >= 0 ? i1 - 1 : count - 1;
i3 = (i2 + 1) < count ? i2 + 1 : 0;
i4 = (i3 + 1) < count ? i3 + 1 : 0;
pt0.setVec(mProfile[i1].mV[VX] + mProfile[i1].mV[VX] - mProfile[i0].mV[VX],
mProfile[i1].mV[VY] + mProfile[i1].mV[VY] - mProfile[i0].mV[VY]);
pt1.setVec(mProfile[i3].mV[VX] + mProfile[i3].mV[VX] - mProfile[i4].mV[VX],
mProfile[i3].mV[VY] + mProfile[i3].mV[VY] - mProfile[i4].mV[VY]);
mNormals[i2] = pt0 + pt1;
mNormals[i2] *= 0.5f;
}
mNormals[i2].normVec();
}
S32 num_normal_sets = isConcave() ? 2 : 1;
for (S32 normal_set = 0; normal_set < num_normal_sets; normal_set++)
{
S32 point_num;
for (point_num = 0; point_num < mTotal; point_num++)
{
LLVector3 point_1 = mProfile[point_num];
point_1.mV[VZ] = 0.f;
LLVector3 point_2;
if (isConcave() && normal_set == 0 && point_num == (mTotal - 1) / 2)
{
point_2 = mProfile[mTotal - 1];
}
else if (isConcave() && normal_set == 1 && point_num == mTotal - 1)
{
point_2 = mProfile[(mTotal - 1) / 2];
}
else
{
LLVector3 delta_pos;
S32 neighbor_point = (point_num + 1) % mTotal;
while(delta_pos.magVecSquared() < 0.01f * 0.01f)
{
point_2 = mProfile[neighbor_point];
delta_pos = point_2 - point_1;
neighbor_point = (neighbor_point + 1) % mTotal;
if (neighbor_point == point_num)
{
break;
}
}
}
point_2.mV[VZ] = 0.f;
LLVector3 face_normal = (point_2 - point_1) % LLVector3::z_axis;
face_normal.normVec();
mEdgeNormals[normal_set * count + point_num] = face_normal;
mEdgeCenters[normal_set * count + point_num] = lerp(point_1, point_2, 0.5f);
}
}
}
// Hollow is percent of the original bounding box, not of this particular
// profile's geometry. Thus, a swept triangle needs lower hollow values than
// a swept square.
LLProfile::Face* LLProfile::addHole(const LLProfileParams& params, BOOL flat, F32 sides, F32 offset, F32 box_hollow, F32 ang_scale, S32 split)
{
// Note that addHole will NOT work for non-"circular" profiles, if we ever decide to use them.
// Total add has number of vertices on outside.
mTotalOut = mTotal;
// Why is the "bevel" parameter -1? DJS 04/05/02
genNGon(params, llfloor(sides),offset,-1, ang_scale, split);
Face *face = addFace(mTotalOut, mTotal-mTotalOut,0,LL_FACE_INNER_SIDE, flat);
std::vector<LLVector3> pt;
pt.resize(mTotal) ;
for (S32 i=mTotalOut;i<mTotal;i++)
{
pt[i] = mProfile[i] * box_hollow;
}
S32 j=mTotal-1;
for (S32 i=mTotalOut;i<mTotal;i++)
{
mProfile[i] = pt[j--];
}
for (S32 i=0;i<(S32)mFaces.size();i++)
{
if (mFaces[i].mCap)
{
mFaces[i].mCount *= 2;
}
}
return face;
}
//static
S32 LLProfile::getNumPoints(const LLProfileParams& params, BOOL path_open,F32 detail, S32 split,
BOOL is_sculpted, S32 sculpt_size)
{ // this is basically LLProfile::generate stripped down to only operations that influence the number of points
LLMemType m1(LLMemType::MTYPE_VOLUME);
if (detail < MIN_LOD)
{
detail = MIN_LOD;
}
// Generate the face data
F32 hollow = params.getHollow();
S32 np = 0;
switch (params.getCurveType() & LL_PCODE_PROFILE_MASK)
{
case LL_PCODE_PROFILE_SQUARE:
{
np = getNumNGonPoints(params, 4,-0.375, 0, 1, split);
if (hollow)
{
np *= 2;
}
}
break;
case LL_PCODE_PROFILE_ISOTRI:
case LL_PCODE_PROFILE_RIGHTTRI:
case LL_PCODE_PROFILE_EQUALTRI:
{
np = getNumNGonPoints(params, 3,0, 0, 1, split);
if (hollow)
{
np *= 2;
}
}
break;
case LL_PCODE_PROFILE_CIRCLE:
{
// If this has a square hollow, we should adjust the
// number of faces a bit so that the geometry lines up.
U8 hole_type=0;
F32 circle_detail = MIN_DETAIL_FACES * detail;
if (hollow)
{
hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK;
if (hole_type == LL_PCODE_HOLE_SQUARE)
{
// Snap to the next multiple of four sides,
// so that corners line up.
circle_detail = llceil(circle_detail / 4.0f) * 4.0f;
}
}
S32 sides = (S32)circle_detail;
if (is_sculpted)
sides = sculpt_size;
np = getNumNGonPoints(params, sides);
if (hollow)
{
np *= 2;
}
}
break;
case LL_PCODE_PROFILE_CIRCLE_HALF:
{
// If this has a square hollow, we should adjust the
// number of faces a bit so that the geometry lines up.
U8 hole_type=0;
// Number of faces is cut in half because it's only a half-circle.
F32 circle_detail = MIN_DETAIL_FACES * detail * 0.5f;
if (hollow)
{
hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK;
if (hole_type == LL_PCODE_HOLE_SQUARE)
{
// Snap to the next multiple of four sides (div 2),
// so that corners line up.
circle_detail = llceil(circle_detail / 2.0f) * 2.0f;
}
}
np = getNumNGonPoints(params, llfloor(circle_detail), 0.5f, 0.f, 0.5f);
if (hollow)
{
np *= 2;
}
// Special case for openness of sphere
if ((params.getEnd() - params.getBegin()) < 1.f)
{
}
else if (!hollow)
{
np++;
}
}
break;
default:
break;
};
return np;
}
BOOL LLProfile::generate(const LLProfileParams& params, BOOL path_open,F32 detail, S32 split,
BOOL is_sculpted, S32 sculpt_size)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
if ((!mDirty) && (!is_sculpted))
{
return FALSE;
}
mDirty = FALSE;
if (detail < MIN_LOD)
{
llinfos << "Generating profile with LOD < MIN_LOD. CLAMPING" << llendl;
detail = MIN_LOD;
}
mProfile.clear();
mFaces.clear();
// Generate the face data
S32 i;
F32 begin = params.getBegin();
F32 end = params.getEnd();
F32 hollow = params.getHollow();
// Quick validation to eliminate some server crashes.
if (begin > end - 0.01f)
{
llwarns << "LLProfile::generate() assertion failed (begin >= end)" << llendl;
return FALSE;
}
S32 face_num = 0;
switch (params.getCurveType() & LL_PCODE_PROFILE_MASK)
{
case LL_PCODE_PROFILE_SQUARE:
{
genNGon(params, 4,-0.375, 0, 1, split);
if (path_open)
{
addCap (LL_FACE_PATH_BEGIN);
}
for (i = llfloor(begin * 4.f); i < llfloor(end * 4.f + .999f); i++)
{
addFace((face_num++) * (split +1), split+2, 1, LL_FACE_OUTER_SIDE_0 << i, TRUE);
}
for (i = 0; i <(S32) mProfile.size(); i++)
{
// Scale by 4 to generate proper tex coords.
mProfile[i].mV[2] *= 4.f;
}
if (hollow)
{
switch (params.getCurveType() & LL_PCODE_HOLE_MASK)
{
case LL_PCODE_HOLE_TRIANGLE:
// This offset is not correct, but we can't change it now... DK 11/17/04
addHole(params, TRUE, 3, -0.375f, hollow, 1.f, split);
break;
case LL_PCODE_HOLE_CIRCLE:
// TODO: Compute actual detail levels for cubes
addHole(params, FALSE, MIN_DETAIL_FACES * detail, -0.375f, hollow, 1.f);
break;
case LL_PCODE_HOLE_SAME:
case LL_PCODE_HOLE_SQUARE:
default:
addHole(params, TRUE, 4, -0.375f, hollow, 1.f, split);
break;
}
}
if (path_open) {
mFaces[0].mCount = mTotal;
}
}
break;
case LL_PCODE_PROFILE_ISOTRI:
case LL_PCODE_PROFILE_RIGHTTRI:
case LL_PCODE_PROFILE_EQUALTRI:
{
genNGon(params, 3,0, 0, 1, split);
for (i = 0; i <(S32) mProfile.size(); i++)
{
// Scale by 3 to generate proper tex coords.
mProfile[i].mV[2] *= 3.f;
}
if (path_open)
{
addCap(LL_FACE_PATH_BEGIN);
}
for (i = llfloor(begin * 3.f); i < llfloor(end * 3.f + .999f); i++)
{
addFace((face_num++) * (split +1), split+2, 1, LL_FACE_OUTER_SIDE_0 << i, TRUE);
}
if (hollow)
{
// Swept triangles need smaller hollowness values,
// because the triangle doesn't fill the bounding box.
F32 triangle_hollow = hollow / 2.f;
switch (params.getCurveType() & LL_PCODE_HOLE_MASK)
{
case LL_PCODE_HOLE_CIRCLE:
// TODO: Actually generate level of detail for triangles
addHole(params, FALSE, MIN_DETAIL_FACES * detail, 0, triangle_hollow, 1.f);
break;
case LL_PCODE_HOLE_SQUARE:
addHole(params, TRUE, 4, 0, triangle_hollow, 1.f, split);
break;
case LL_PCODE_HOLE_SAME:
case LL_PCODE_HOLE_TRIANGLE:
default:
addHole(params, TRUE, 3, 0, triangle_hollow, 1.f, split);
break;
}
}
}
break;
case LL_PCODE_PROFILE_CIRCLE:
{
// If this has a square hollow, we should adjust the
// number of faces a bit so that the geometry lines up.
U8 hole_type=0;
F32 circle_detail = MIN_DETAIL_FACES * detail;
if (hollow)
{
hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK;
if (hole_type == LL_PCODE_HOLE_SQUARE)
{
// Snap to the next multiple of four sides,
// so that corners line up.
circle_detail = llceil(circle_detail / 4.0f) * 4.0f;
}
}
S32 sides = (S32)circle_detail;
if (is_sculpted)
sides = sculpt_size;
genNGon(params, sides);
if (path_open)
{
addCap (LL_FACE_PATH_BEGIN);
}
if (mOpen && !hollow)
{
addFace(0,mTotal-1,0,LL_FACE_OUTER_SIDE_0, FALSE);
}
else
{
addFace(0,mTotal,0,LL_FACE_OUTER_SIDE_0, FALSE);
}
if (hollow)
{
switch (hole_type)
{
case LL_PCODE_HOLE_SQUARE:
addHole(params, TRUE, 4, 0, hollow, 1.f, split);
break;
case LL_PCODE_HOLE_TRIANGLE:
addHole(params, TRUE, 3, 0, hollow, 1.f, split);
break;
case LL_PCODE_HOLE_CIRCLE:
case LL_PCODE_HOLE_SAME:
default:
addHole(params, FALSE, circle_detail, 0, hollow, 1.f);
break;
}
}
}
break;
case LL_PCODE_PROFILE_CIRCLE_HALF:
{
// If this has a square hollow, we should adjust the
// number of faces a bit so that the geometry lines up.
U8 hole_type=0;
// Number of faces is cut in half because it's only a half-circle.
F32 circle_detail = MIN_DETAIL_FACES * detail * 0.5f;
if (hollow)
{
hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK;
if (hole_type == LL_PCODE_HOLE_SQUARE)
{
// Snap to the next multiple of four sides (div 2),
// so that corners line up.
circle_detail = llceil(circle_detail / 2.0f) * 2.0f;
}
}
genNGon(params, llfloor(circle_detail), 0.5f, 0.f, 0.5f);
if (path_open)
{
addCap(LL_FACE_PATH_BEGIN);
}
if (mOpen && !params.getHollow())
{
addFace(0,mTotal-1,0,LL_FACE_OUTER_SIDE_0, FALSE);
}
else
{
addFace(0,mTotal,0,LL_FACE_OUTER_SIDE_0, FALSE);
}
if (hollow)
{
switch (hole_type)
{
case LL_PCODE_HOLE_SQUARE:
addHole(params, TRUE, 2, 0.5f, hollow, 0.5f, split);
break;
case LL_PCODE_HOLE_TRIANGLE:
addHole(params, TRUE, 3, 0.5f, hollow, 0.5f, split);
break;
case LL_PCODE_HOLE_CIRCLE:
case LL_PCODE_HOLE_SAME:
default:
addHole(params, FALSE, circle_detail, 0.5f, hollow, 0.5f);
break;
}
}
// Special case for openness of sphere
if ((params.getEnd() - params.getBegin()) < 1.f)
{
mOpen = TRUE;
}
else if (!hollow)
{
mOpen = FALSE;
mProfile.push_back(mProfile[0]);
mTotal++;
}
}
break;
default:
llerrs << "Unknown profile: getCurveType()=" << params.getCurveType() << llendl;
break;
};
if (path_open)
{
addCap(LL_FACE_PATH_END); // bottom
}
if ( mOpen) // interior edge caps
{
addFace(mTotal-1, 2,0.5,LL_FACE_PROFILE_BEGIN, TRUE);
if (hollow)
{
addFace(mTotalOut-1, 2,0.5,LL_FACE_PROFILE_END, TRUE);
}
else
{
addFace(mTotal-2, 2,0.5,LL_FACE_PROFILE_END, TRUE);
}
}
//genNormals(params);
return TRUE;
}
BOOL LLProfileParams::importFile(LLFILE *fp)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
const S32 BUFSIZE = 16384;
char buffer[BUFSIZE]; /* Flawfinder: ignore */
// *NOTE: changing the size or type of these buffers will require
// changing the sscanf below.
char keyword[256]; /* Flawfinder: ignore */
char valuestr[256]; /* Flawfinder: ignore */
keyword[0] = 0;
valuestr[0] = 0;
F32 tempF32;
U32 tempU32;
while (!feof(fp))
{
if (fgets(buffer, BUFSIZE, fp) == NULL)
{
buffer[0] = '\0';
}
sscanf( /* Flawfinder: ignore */
buffer,
" %255s %255s",
keyword, valuestr);
if (!strcmp("{", keyword))
{
continue;
}
if (!strcmp("}",keyword))
{
break;
}
else if (!strcmp("curve", keyword))
{
sscanf(valuestr,"%d",&tempU32);
setCurveType((U8) tempU32);
}
else if (!strcmp("begin",keyword))
{
sscanf(valuestr,"%g",&tempF32);
setBegin(tempF32);
}
else if (!strcmp("end",keyword))
{
sscanf(valuestr,"%g",&tempF32);
setEnd(tempF32);
}
else if (!strcmp("hollow",keyword))
{
sscanf(valuestr,"%g",&tempF32);
setHollow(tempF32);
}
else
{
llwarns << "unknown keyword " << keyword << " in profile import" << llendl;
}
}
return TRUE;
}
BOOL LLProfileParams::exportFile(LLFILE *fp) const
{
fprintf(fp,"\t\tprofile 0\n");
fprintf(fp,"\t\t{\n");
fprintf(fp,"\t\t\tcurve\t%d\n", getCurveType());
fprintf(fp,"\t\t\tbegin\t%g\n", getBegin());
fprintf(fp,"\t\t\tend\t%g\n", getEnd());
fprintf(fp,"\t\t\thollow\t%g\n", getHollow());
fprintf(fp, "\t\t}\n");
return TRUE;
}
BOOL LLProfileParams::importLegacyStream(std::istream& input_stream)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
const S32 BUFSIZE = 16384;
char buffer[BUFSIZE]; /* Flawfinder: ignore */
// *NOTE: changing the size or type of these buffers will require
// changing the sscanf below.
char keyword[256]; /* Flawfinder: ignore */
char valuestr[256]; /* Flawfinder: ignore */
keyword[0] = 0;
valuestr[0] = 0;
F32 tempF32;
U32 tempU32;
while (input_stream.good())
{
input_stream.getline(buffer, BUFSIZE);
sscanf( /* Flawfinder: ignore */
buffer,
" %255s %255s",
keyword,
valuestr);
if (!strcmp("{", keyword))
{
continue;
}
if (!strcmp("}",keyword))
{
break;
}
else if (!strcmp("curve", keyword))
{
sscanf(valuestr,"%d",&tempU32);
setCurveType((U8) tempU32);
}
else if (!strcmp("begin",keyword))
{
sscanf(valuestr,"%g",&tempF32);
setBegin(tempF32);
}
else if (!strcmp("end",keyword))
{
sscanf(valuestr,"%g",&tempF32);
setEnd(tempF32);
}
else if (!strcmp("hollow",keyword))
{
sscanf(valuestr,"%g",&tempF32);
setHollow(tempF32);
}
else
{
llwarns << "unknown keyword " << keyword << " in profile import" << llendl;
}
}
return TRUE;
}
BOOL LLProfileParams::exportLegacyStream(std::ostream& output_stream) const
{
output_stream <<"\t\tprofile 0\n";
output_stream <<"\t\t{\n";
output_stream <<"\t\t\tcurve\t" << (S32) getCurveType() << "\n";
output_stream <<"\t\t\tbegin\t" << getBegin() << "\n";
output_stream <<"\t\t\tend\t" << getEnd() << "\n";
output_stream <<"\t\t\thollow\t" << getHollow() << "\n";
output_stream << "\t\t}\n";
return TRUE;
}
LLSD LLProfileParams::asLLSD() const
{
LLSD sd;
sd["curve"] = getCurveType();
sd["begin"] = getBegin();
sd["end"] = getEnd();
sd["hollow"] = getHollow();
return sd;
}
bool LLProfileParams::fromLLSD(LLSD& sd)
{
setCurveType(sd["curve"].asInteger());
setBegin((F32)sd["begin"].asReal());
setEnd((F32)sd["end"].asReal());
setHollow((F32)sd["hollow"].asReal());
return true;
}
void LLProfileParams::copyParams(const LLProfileParams &params)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
setCurveType(params.getCurveType());
setBegin(params.getBegin());
setEnd(params.getEnd());
setHollow(params.getHollow());
}
LLPath::~LLPath()
{
}
S32 LLPath::getNumNGonPoints(const LLPathParams& params, S32 sides, F32 startOff, F32 end_scale, F32 twist_scale)
{ //this is basically LLPath::genNGon stripped down to only operations that influence the number of points added
S32 ret = 0;
F32 step= 1.0f / sides;
F32 t = params.getBegin();
ret = 1;
t+=step;
// Snap to a quantized parameter, so that cut does not
// affect most sample points.
t = ((S32)(t * sides)) / (F32)sides;
// Run through the non-cut dependent points.
while (t < params.getEnd())
{
ret++;
t+=step;
}
ret++;
return ret;
}
void LLPath::genNGon(const LLPathParams& params, S32 sides, F32 startOff, F32 end_scale, F32 twist_scale)
{
// Generates a circular path, starting at (1, 0, 0), counterclockwise along the xz plane.
const F32 tableScale[] = { 1, 1, 1, 0.5f, 0.707107f, 0.53f, 0.525f, 0.5f };
F32 revolutions = params.getRevolutions();
F32 skew = params.getSkew();
F32 skew_mag = fabs(skew);
F32 hole_x = params.getScaleX() * (1.0f - skew_mag);
F32 hole_y = params.getScaleY();
// Calculate taper begin/end for x,y (Negative means taper the beginning)
F32 taper_x_begin = 1.0f;
F32 taper_x_end = 1.0f - params.getTaperX();
F32 taper_y_begin = 1.0f;
F32 taper_y_end = 1.0f - params.getTaperY();
if ( taper_x_end > 1.0f )
{
// Flip tapering.
taper_x_begin = 2.0f - taper_x_end;
taper_x_end = 1.0f;
}
if ( taper_y_end > 1.0f )
{
// Flip tapering.
taper_y_begin = 2.0f - taper_y_end;
taper_y_end = 1.0f;
}
// For spheres, the radius is usually zero.
F32 radius_start = 0.5f;
if (sides < 8)
{
radius_start = tableScale[sides];
}
// Scale the radius to take the hole size into account.
radius_start *= 1.0f - hole_y;
// Now check the radius offset to calculate the start,end radius. (Negative means
// decrease the start radius instead).
F32 radius_end = radius_start;
F32 radius_offset = params.getRadiusOffset();
if (radius_offset < 0.f)
{
radius_start *= 1.f + radius_offset;
}
else
{
radius_end *= 1.f - radius_offset;
}
// Is the path NOT a closed loop?
mOpen = ( (params.getEnd()*end_scale - params.getBegin() < 1.0f) ||
(skew_mag > 0.001f) ||
(fabs(taper_x_end - taper_x_begin) > 0.001f) ||
(fabs(taper_y_end - taper_y_begin) > 0.001f) ||
(fabs(radius_end - radius_start) > 0.001f) );
F32 ang, c, s;
LLQuaternion twist, qang;
PathPt *pt;
LLVector3 path_axis (1.f, 0.f, 0.f);
//LLVector3 twist_axis(0.f, 0.f, 1.f);
F32 twist_begin = params.getTwistBegin() * twist_scale;
F32 twist_end = params.getTwist() * twist_scale;
// We run through this once before the main loop, to make sure
// the path begins at the correct cut.
F32 step= 1.0f / sides;
F32 t = params.getBegin();
pt = vector_append(mPath, 1);
ang = 2.0f*F_PI*revolutions * t;
s = sin(ang)*lerp(radius_start, radius_end, t);
c = cos(ang)*lerp(radius_start, radius_end, t);
pt->mPos.setVec(0 + lerp(0,params.getShear().mV[0],s)
+ lerp(-skew ,skew, t) * 0.5f,
c + lerp(0,params.getShear().mV[1],s),
s);
pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t);
pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t);
pt->mTexT = t;
// Twist rotates the path along the x,y plane (I think) - DJS 04/05/02
twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1);
// Rotate the point around the circle's center.
qang.setQuat (ang,path_axis);
pt->mRot = twist * qang;
t+=step;
// Snap to a quantized parameter, so that cut does not
// affect most sample points.
t = ((S32)(t * sides)) / (F32)sides;
// Run through the non-cut dependent points.
while (t < params.getEnd())
{
pt = vector_append(mPath, 1);
ang = 2.0f*F_PI*revolutions * t;
c = cos(ang)*lerp(radius_start, radius_end, t);
s = sin(ang)*lerp(radius_start, radius_end, t);
pt->mPos.setVec(0 + lerp(0,params.getShear().mV[0],s)
+ lerp(-skew ,skew, t) * 0.5f,
c + lerp(0,params.getShear().mV[1],s),
s);
pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t);
pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t);
pt->mTexT = t;
// Twist rotates the path along the x,y plane (I think) - DJS 04/05/02
twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1);
// Rotate the point around the circle's center.
qang.setQuat (ang,path_axis);
pt->mRot = twist * qang;
t+=step;
}
// Make one final pass for the end cut.
t = params.getEnd();
pt = vector_append(mPath, 1);
ang = 2.0f*F_PI*revolutions * t;
c = cos(ang)*lerp(radius_start, radius_end, t);
s = sin(ang)*lerp(radius_start, radius_end, t);
pt->mPos.setVec(0 + lerp(0,params.getShear().mV[0],s)
+ lerp(-skew ,skew, t) * 0.5f,
c + lerp(0,params.getShear().mV[1],s),
s);
pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t);
pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t);
pt->mTexT = t;
// Twist rotates the path along the x,y plane (I think) - DJS 04/05/02
twist.setQuat (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1);
// Rotate the point around the circle's center.
qang.setQuat (ang,path_axis);
pt->mRot = twist * qang;
mTotal = mPath.size();
}
const LLVector2 LLPathParams::getBeginScale() const
{
LLVector2 begin_scale(1.f, 1.f);
if (getScaleX() > 1)
{
begin_scale.mV[0] = 2-getScaleX();
}
if (getScaleY() > 1)
{
begin_scale.mV[1] = 2-getScaleY();
}
return begin_scale;
}
const LLVector2 LLPathParams::getEndScale() const
{
LLVector2 end_scale(1.f, 1.f);
if (getScaleX() < 1)
{
end_scale.mV[0] = getScaleX();
}
if (getScaleY() < 1)
{
end_scale.mV[1] = getScaleY();
}
return end_scale;
}
S32 LLPath::getNumPoints(const LLPathParams& params, F32 detail)
{ // this is basically LLPath::generate stripped down to only the operations that influence the number of points
LLMemType m1(LLMemType::MTYPE_VOLUME);
if (detail < MIN_LOD)
{
detail = MIN_LOD;
}
S32 np = 2; // hardcode for line
// Is this 0xf0 mask really necessary? DK 03/02/05
switch (params.getCurveType() & 0xf0)
{
default:
case LL_PCODE_PATH_LINE:
{
// Take the begin/end twist into account for detail.
np = llfloor(fabs(params.getTwistBegin() - params.getTwist()) * 3.5f * (detail-0.5f)) + 2;
}
break;
case LL_PCODE_PATH_CIRCLE:
{
// Increase the detail as the revolutions and twist increase.
F32 twist_mag = fabs(params.getTwistBegin() - params.getTwist());
S32 sides = (S32)llfloor(llfloor((MIN_DETAIL_FACES * detail + twist_mag * 3.5f * (detail-0.5f))) * params.getRevolutions());
np = sides;
}
break;
case LL_PCODE_PATH_CIRCLE2:
{
//genNGon(params, llfloor(MIN_DETAIL_FACES * detail), 4.f, 0.f);
np = getNumNGonPoints(params, llfloor(MIN_DETAIL_FACES * detail));
}
break;
case LL_PCODE_PATH_TEST:
np = 5;
break;
};
return np;
}
BOOL LLPath::generate(const LLPathParams& params, F32 detail, S32 split,
BOOL is_sculpted, S32 sculpt_size)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
if ((!mDirty) && (!is_sculpted))
{
return FALSE;
}
if (detail < MIN_LOD)
{
llinfos << "Generating path with LOD < MIN! Clamping to 1" << llendl;
detail = MIN_LOD;
}
mDirty = FALSE;
S32 np = 2; // hardcode for line
mPath.clear();
mOpen = TRUE;
// Is this 0xf0 mask really necessary? DK 03/02/05
switch (params.getCurveType() & 0xf0)
{
default:
case LL_PCODE_PATH_LINE:
{
// Take the begin/end twist into account for detail.
np = llfloor(fabs(params.getTwistBegin() - params.getTwist()) * 3.5f * (detail-0.5f)) + 2;
if (np < split+2)
{
np = split+2;
}
mStep = 1.0f / (np-1);
mPath.resize(np);
LLVector2 start_scale = params.getBeginScale();
LLVector2 end_scale = params.getEndScale();
for (S32 i=0;i<np;i++)
{
F32 t = lerp(params.getBegin(),params.getEnd(),(F32)i * mStep);
mPath[i].mPos.setVec(lerp(0,params.getShear().mV[0],t),
lerp(0,params.getShear().mV[1],t),
t - 0.5f);
mPath[i].mRot.setQuat(lerp(F_PI * params.getTwistBegin(),F_PI * params.getTwist(),t),0,0,1);
mPath[i].mScale.mV[0] = lerp(start_scale.mV[0],end_scale.mV[0],t);
mPath[i].mScale.mV[1] = lerp(start_scale.mV[1],end_scale.mV[1],t);
mPath[i].mTexT = t;
}
}
break;
case LL_PCODE_PATH_CIRCLE:
{
// Increase the detail as the revolutions and twist increase.
F32 twist_mag = fabs(params.getTwistBegin() - params.getTwist());
S32 sides = (S32)llfloor(llfloor((MIN_DETAIL_FACES * detail + twist_mag * 3.5f * (detail-0.5f))) * params.getRevolutions());
if (is_sculpted)
sides = sculpt_size;
genNGon(params, sides);
}
break;
case LL_PCODE_PATH_CIRCLE2:
{
if (params.getEnd() - params.getBegin() >= 0.99f &&
params.getScaleX() >= .99f)
{
mOpen = FALSE;
}
//genNGon(params, llfloor(MIN_DETAIL_FACES * detail), 4.f, 0.f);
genNGon(params, llfloor(MIN_DETAIL_FACES * detail));
F32 t = 0.f;
F32 tStep = 1.0f / mPath.size();
F32 toggle = 0.5f;
for (S32 i=0;i<(S32)mPath.size();i++)
{
mPath[i].mPos.mV[0] = toggle;
if (toggle == 0.5f)
toggle = -0.5f;
else
toggle = 0.5f;
t += tStep;
}
}
break;
case LL_PCODE_PATH_TEST:
np = 5;
mStep = 1.0f / (np-1);
mPath.resize(np);
for (S32 i=0;i<np;i++)
{
F32 t = (F32)i * mStep;
mPath[i].mPos.setVec(0,
lerp(0, -sin(F_PI*params.getTwist()*t)*0.5f,t),
lerp(-0.5, cos(F_PI*params.getTwist()*t)*0.5f,t));
mPath[i].mScale.mV[0] = lerp(1,params.getScale().mV[0],t);
mPath[i].mScale.mV[1] = lerp(1,params.getScale().mV[1],t);
mPath[i].mTexT = t;
mPath[i].mRot.setQuat(F_PI * params.getTwist() * t,1,0,0);
}
break;
};
if (params.getTwist() != params.getTwistBegin()) mOpen = TRUE;
//if ((int(fabsf(params.getTwist() - params.getTwistBegin())*100))%100 != 0) {
// mOpen = TRUE;
//}
return TRUE;
}
BOOL LLDynamicPath::generate(const LLPathParams& params, F32 detail, S32 split,
BOOL is_sculpted, S32 sculpt_size)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
mOpen = TRUE; // Draw end caps
if (getPathLength() == 0)
{
// Path hasn't been generated yet.
// Some algorithms later assume at least TWO path points.
resizePath(2);
for (U32 i = 0; i < 2; i++)
{
mPath[i].mPos.setVec(0, 0, 0);
mPath[i].mRot.setQuat(0, 0, 0);
mPath[i].mScale.setVec(1, 1);
mPath[i].mTexT = 0;
}
}
return TRUE;
}
BOOL LLPathParams::importFile(LLFILE *fp)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
const S32 BUFSIZE = 16384;
char buffer[BUFSIZE]; /* Flawfinder: ignore */
// *NOTE: changing the size or type of these buffers will require
// changing the sscanf below.
char keyword[256]; /* Flawfinder: ignore */
char valuestr[256]; /* Flawfinder: ignore */
keyword[0] = 0;
valuestr[0] = 0;
F32 tempF32;
F32 x, y;
U32 tempU32;
while (!feof(fp))
{
if (fgets(buffer, BUFSIZE, fp) == NULL)
{
buffer[0] = '\0';
}
sscanf( /* Flawfinder: ignore */
buffer,
" %255s %255s",
keyword, valuestr);
if (!strcmp("{", keyword))
{
continue;
}
if (!strcmp("}",keyword))
{
break;
}
else if (!strcmp("curve", keyword))
{
sscanf(valuestr,"%d",&tempU32);
setCurveType((U8) tempU32);
}
else if (!strcmp("begin",keyword))
{
sscanf(valuestr,"%g",&tempF32);
setBegin(tempF32);
}
else if (!strcmp("end",keyword))
{
sscanf(valuestr,"%g",&tempF32);
setEnd(tempF32);
}
else if (!strcmp("scale",keyword))
{
// Legacy for one dimensional scale per path
sscanf(valuestr,"%g",&tempF32);
setScale(tempF32, tempF32);
}
else if (!strcmp("scale_x", keyword))
{
sscanf(valuestr, "%g", &x);
setScaleX(x);
}
else if (!strcmp("scale_y", keyword))
{
sscanf(valuestr, "%g", &y);
setScaleY(y);
}
else if (!strcmp("shear_x", keyword))
{
sscanf(valuestr, "%g", &x);
setShearX(x);
}
else if (!strcmp("shear_y", keyword))
{
sscanf(valuestr, "%g", &y);
setShearY(y);
}
else if (!strcmp("twist",keyword))
{
sscanf(valuestr,"%g",&tempF32);
setTwist(tempF32);
}
else if (!strcmp("twist_begin", keyword))
{
sscanf(valuestr, "%g", &y);
setTwistBegin(y);
}
else if (!strcmp("radius_offset", keyword))
{
sscanf(valuestr, "%g", &y);
setRadiusOffset(y);
}
else if (!strcmp("taper_x", keyword))
{
sscanf(valuestr, "%g", &y);
setTaperX(y);
}
else if (!strcmp("taper_y", keyword))
{
sscanf(valuestr, "%g", &y);
setTaperY(y);
}
else if (!strcmp("revolutions", keyword))
{
sscanf(valuestr, "%g", &y);
setRevolutions(y);
}
else if (!strcmp("skew", keyword))
{
sscanf(valuestr, "%g", &y);
setSkew(y);
}
else
{
llwarns << "unknown keyword " << " in path import" << llendl;
}
}
return TRUE;
}
BOOL LLPathParams::exportFile(LLFILE *fp) const
{
fprintf(fp, "\t\tpath 0\n");
fprintf(fp, "\t\t{\n");
fprintf(fp, "\t\t\tcurve\t%d\n", getCurveType());
fprintf(fp, "\t\t\tbegin\t%g\n", getBegin());
fprintf(fp, "\t\t\tend\t%g\n", getEnd());
fprintf(fp, "\t\t\tscale_x\t%g\n", getScaleX() );
fprintf(fp, "\t\t\tscale_y\t%g\n", getScaleY() );
fprintf(fp, "\t\t\tshear_x\t%g\n", getShearX() );
fprintf(fp, "\t\t\tshear_y\t%g\n", getShearY() );
fprintf(fp,"\t\t\ttwist\t%g\n", getTwist());
fprintf(fp,"\t\t\ttwist_begin\t%g\n", getTwistBegin());
fprintf(fp,"\t\t\tradius_offset\t%g\n", getRadiusOffset());
fprintf(fp,"\t\t\ttaper_x\t%g\n", getTaperX());
fprintf(fp,"\t\t\ttaper_y\t%g\n", getTaperY());
fprintf(fp,"\t\t\trevolutions\t%g\n", getRevolutions());
fprintf(fp,"\t\t\tskew\t%g\n", getSkew());
fprintf(fp, "\t\t}\n");
return TRUE;
}
BOOL LLPathParams::importLegacyStream(std::istream& input_stream)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
const S32 BUFSIZE = 16384;
char buffer[BUFSIZE]; /* Flawfinder: ignore */
// *NOTE: changing the size or type of these buffers will require
// changing the sscanf below.
char keyword[256]; /* Flawfinder: ignore */
char valuestr[256]; /* Flawfinder: ignore */
keyword[0] = 0;
valuestr[0] = 0;
F32 tempF32;
F32 x, y;
U32 tempU32;
while (input_stream.good())
{
input_stream.getline(buffer, BUFSIZE);
sscanf( /* Flawfinder: ignore */
buffer,
" %255s %255s",
keyword, valuestr);
if (!strcmp("{", keyword))
{
continue;
}
if (!strcmp("}",keyword))
{
break;
}
else if (!strcmp("curve", keyword))
{
sscanf(valuestr,"%d",&tempU32);
setCurveType((U8) tempU32);
}
else if (!strcmp("begin",keyword))
{
sscanf(valuestr,"%g",&tempF32);
setBegin(tempF32);
}
else if (!strcmp("end",keyword))
{
sscanf(valuestr,"%g",&tempF32);
setEnd(tempF32);
}
else if (!strcmp("scale",keyword))
{
// Legacy for one dimensional scale per path
sscanf(valuestr,"%g",&tempF32);
setScale(tempF32, tempF32);
}
else if (!strcmp("scale_x", keyword))
{
sscanf(valuestr, "%g", &x);
setScaleX(x);
}
else if (!strcmp("scale_y", keyword))
{
sscanf(valuestr, "%g", &y);
setScaleY(y);
}
else if (!strcmp("shear_x", keyword))
{
sscanf(valuestr, "%g", &x);
setShearX(x);
}
else if (!strcmp("shear_y", keyword))
{
sscanf(valuestr, "%g", &y);
setShearY(y);
}
else if (!strcmp("twist",keyword))
{
sscanf(valuestr,"%g",&tempF32);
setTwist(tempF32);
}
else if (!strcmp("twist_begin", keyword))
{
sscanf(valuestr, "%g", &y);
setTwistBegin(y);
}
else if (!strcmp("radius_offset", keyword))
{
sscanf(valuestr, "%g", &y);
setRadiusOffset(y);
}
else if (!strcmp("taper_x", keyword))
{
sscanf(valuestr, "%g", &y);
setTaperX(y);
}
else if (!strcmp("taper_y", keyword))
{
sscanf(valuestr, "%g", &y);
setTaperY(y);
}
else if (!strcmp("revolutions", keyword))
{
sscanf(valuestr, "%g", &y);
setRevolutions(y);
}
else if (!strcmp("skew", keyword))
{
sscanf(valuestr, "%g", &y);
setSkew(y);
}
else
{
llwarns << "unknown keyword " << " in path import" << llendl;
}
}
return TRUE;
}
BOOL LLPathParams::exportLegacyStream(std::ostream& output_stream) const
{
output_stream << "\t\tpath 0\n";
output_stream << "\t\t{\n";
output_stream << "\t\t\tcurve\t" << (S32) getCurveType() << "\n";
output_stream << "\t\t\tbegin\t" << getBegin() << "\n";
output_stream << "\t\t\tend\t" << getEnd() << "\n";
output_stream << "\t\t\tscale_x\t" << getScaleX() << "\n";
output_stream << "\t\t\tscale_y\t" << getScaleY() << "\n";
output_stream << "\t\t\tshear_x\t" << getShearX() << "\n";
output_stream << "\t\t\tshear_y\t" << getShearY() << "\n";
output_stream <<"\t\t\ttwist\t" << getTwist() << "\n";
output_stream <<"\t\t\ttwist_begin\t" << getTwistBegin() << "\n";
output_stream <<"\t\t\tradius_offset\t" << getRadiusOffset() << "\n";
output_stream <<"\t\t\ttaper_x\t" << getTaperX() << "\n";
output_stream <<"\t\t\ttaper_y\t" << getTaperY() << "\n";
output_stream <<"\t\t\trevolutions\t" << getRevolutions() << "\n";
output_stream <<"\t\t\tskew\t" << getSkew() << "\n";
output_stream << "\t\t}\n";
return TRUE;
}
LLSD LLPathParams::asLLSD() const
{
LLSD sd = LLSD();
sd["curve"] = getCurveType();
sd["begin"] = getBegin();
sd["end"] = getEnd();
sd["scale_x"] = getScaleX();
sd["scale_y"] = getScaleY();
sd["shear_x"] = getShearX();
sd["shear_y"] = getShearY();
sd["twist"] = getTwist();
sd["twist_begin"] = getTwistBegin();
sd["radius_offset"] = getRadiusOffset();
sd["taper_x"] = getTaperX();
sd["taper_y"] = getTaperY();
sd["revolutions"] = getRevolutions();
sd["skew"] = getSkew();
return sd;
}
bool LLPathParams::fromLLSD(LLSD& sd)
{
setCurveType(sd["curve"].asInteger());
setBegin((F32)sd["begin"].asReal());
setEnd((F32)sd["end"].asReal());
setScaleX((F32)sd["scale_x"].asReal());
setScaleY((F32)sd["scale_y"].asReal());
setShearX((F32)sd["shear_x"].asReal());
setShearY((F32)sd["shear_y"].asReal());
setTwist((F32)sd["twist"].asReal());
setTwistBegin((F32)sd["twist_begin"].asReal());
setRadiusOffset((F32)sd["radius_offset"].asReal());
setTaperX((F32)sd["taper_x"].asReal());
setTaperY((F32)sd["taper_y"].asReal());
setRevolutions((F32)sd["revolutions"].asReal());
setSkew((F32)sd["skew"].asReal());
return true;
}
void LLPathParams::copyParams(const LLPathParams &params)
{
setCurveType(params.getCurveType());
setBegin(params.getBegin());
setEnd(params.getEnd());
setScale(params.getScaleX(), params.getScaleY() );
setShear(params.getShearX(), params.getShearY() );
setTwist(params.getTwist());
setTwistBegin(params.getTwistBegin());
setRadiusOffset(params.getRadiusOffset());
setTaper( params.getTaperX(), params.getTaperY() );
setRevolutions(params.getRevolutions());
setSkew(params.getSkew());
}
S32 profile_delete_lock = 1 ;
LLProfile::~LLProfile()
{
if(profile_delete_lock)
{
llerrs << "LLProfile should not be deleted here!" << llendl ;
}
}
S32 LLVolume::sNumMeshPoints = 0;
LLVolume::LLVolume(const LLVolumeParams &params, const F32 detail, const BOOL generate_single_face, const BOOL is_unique)
: mParams(params)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
mUnique = is_unique;
mFaceMask = 0x0;
mDetail = detail;
mSculptLevel = -2;
mSurfaceArea = 1.f; //only calculated for sculpts, defaults to 1 for all other prims
mIsMeshAssetLoaded = FALSE;
mLODScaleBias.setVec(1,1,1);
mHullPoints = NULL;
mHullIndices = NULL;
mNumHullPoints = 0;
mNumHullIndices = 0;
// set defaults
if (mParams.getPathParams().getCurveType() == LL_PCODE_PATH_FLEXIBLE)
{
mPathp = new LLDynamicPath();
}
else
{
mPathp = new LLPath();
}
mProfilep = new LLProfile();
mGenerateSingleFace = generate_single_face;
generate();
if (mParams.getSculptID().isNull() && mParams.getSculptType() == LL_SCULPT_TYPE_NONE || mParams.getSculptType() == LL_SCULPT_TYPE_MESH)
{
createVolumeFaces();
}
}
void LLVolume::resizePath(S32 length)
{
mPathp->resizePath(length);
mVolumeFaces.clear();
}
void LLVolume::regen()
{
generate();
createVolumeFaces();
}
void LLVolume::genBinormals(S32 face)
{
mVolumeFaces[face].createBinormals();
}
LLVolume::~LLVolume()
{
sNumMeshPoints -= mMesh.size();
delete mPathp;
profile_delete_lock = 0 ;
delete mProfilep;
profile_delete_lock = 1 ;
mPathp = NULL;
mProfilep = NULL;
mVolumeFaces.clear();
ll_aligned_free_16(mHullPoints);
mHullPoints = NULL;
ll_aligned_free_16(mHullIndices);
mHullIndices = NULL;
}
BOOL LLVolume::generate()
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
llassert_always(mProfilep);
//Added 10.03.05 Dave Parks
// Split is a parameter to LLProfile::generate that tesselates edges on the profile
// to prevent lighting and texture interpolation errors on triangles that are
// stretched due to twisting or scaling on the path.
S32 split = (S32) ((mDetail)*0.66f);
if (mParams.getPathParams().getCurveType() == LL_PCODE_PATH_LINE &&
(mParams.getPathParams().getScale().mV[0] != 1.0f ||
mParams.getPathParams().getScale().mV[1] != 1.0f) &&
(mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_SQUARE ||
mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_ISOTRI ||
mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_EQUALTRI ||
mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_RIGHTTRI))
{
split = 0;
}
mLODScaleBias.setVec(0.5f, 0.5f, 0.5f);
F32 profile_detail = mDetail;
F32 path_detail = mDetail;
U8 path_type = mParams.getPathParams().getCurveType();
U8 profile_type = mParams.getProfileParams().getCurveType();
if (path_type == LL_PCODE_PATH_LINE && profile_type == LL_PCODE_PROFILE_CIRCLE)
{ //cylinders don't care about Z-Axis
mLODScaleBias.setVec(0.6f, 0.6f, 0.0f);
}
else if (path_type == LL_PCODE_PATH_CIRCLE)
{
mLODScaleBias.setVec(0.6f, 0.6f, 0.6f);
}
// ********************************************************************
//debug info, to be removed
if((U32)(mPathp->mPath.size() * mProfilep->mProfile.size()) > (1u << 20))
{
llinfos << "sizeS: " << mPathp->mPath.size() << " sizeT: " << mProfilep->mProfile.size() << llendl ;
llinfos << "path_detail : " << path_detail << " split: " << split << " profile_detail: " << profile_detail << llendl ;
llinfos << mParams << llendl ;
llinfos << "more info to check if mProfilep is deleted or not." << llendl ;
llinfos << mProfilep->mNormals.size() << " : " << mProfilep->mFaces.size() << " : " << mProfilep->mEdgeNormals.size() << " : " << mProfilep->mEdgeCenters.size() << llendl ;
llerrs << "LLVolume corrupted!" << llendl ;
}
// ********************************************************************
BOOL regenPath = mPathp->generate(mParams.getPathParams(), path_detail, split);
BOOL regenProf = mProfilep->generate(mParams.getProfileParams(), mPathp->isOpen(),profile_detail, split);
if (regenPath || regenProf )
{
S32 sizeS = mPathp->mPath.size();
S32 sizeT = mProfilep->mProfile.size();
// ********************************************************************
//debug info, to be removed
if((U32)(sizeS * sizeT) > (1u << 20))
{
llinfos << "regenPath: " << (S32)regenPath << " regenProf: " << (S32)regenProf << llendl ;
llinfos << "sizeS: " << sizeS << " sizeT: " << sizeT << llendl ;
llinfos << "path_detail : " << path_detail << " split: " << split << " profile_detail: " << profile_detail << llendl ;
llinfos << mParams << llendl ;
llinfos << "more info to check if mProfilep is deleted or not." << llendl ;
llinfos << mProfilep->mNormals.size() << " : " << mProfilep->mFaces.size() << " : " << mProfilep->mEdgeNormals.size() << " : " << mProfilep->mEdgeCenters.size() << llendl ;
llerrs << "LLVolume corrupted!" << llendl ;
}
// ********************************************************************
sNumMeshPoints -= mMesh.size();
mMesh.resize(sizeT * sizeS);
sNumMeshPoints += mMesh.size();
//generate vertex positions
// Run along the path.
for (S32 s = 0; s < sizeS; ++s)
{
LLVector2 scale = mPathp->mPath[s].mScale;
LLQuaternion rot = mPathp->mPath[s].mRot;
// Run along the profile.
for (S32 t = 0; t < sizeT; ++t)
{
S32 m = s*sizeT + t;
Point& pt = mMesh[m];
pt.mPos.mV[0] = mProfilep->mProfile[t].mV[0] * scale.mV[0];
pt.mPos.mV[1] = mProfilep->mProfile[t].mV[1] * scale.mV[1];
pt.mPos.mV[2] = 0.0f;
pt.mPos = pt.mPos * rot;
pt.mPos += mPathp->mPath[s].mPos;
}
}
for (std::vector<LLProfile::Face>::iterator iter = mProfilep->mFaces.begin();
iter != mProfilep->mFaces.end(); ++iter)
{
LLFaceID id = iter->mFaceID;
mFaceMask |= id;
}
return TRUE;
}
return FALSE;
}
void LLVolumeFace::VertexData::init()
{
if (!mData)
{
mData = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*2);
}
}
LLVolumeFace::VertexData::VertexData()
{
mData = NULL;
init();
}
LLVolumeFace::VertexData::VertexData(const VertexData& rhs)
{
mData = NULL;
*this = rhs;
}
const LLVolumeFace::VertexData& LLVolumeFace::VertexData::operator=(const LLVolumeFace::VertexData& rhs)
{
if (this != &rhs)
{
init();
LLVector4a::memcpyNonAliased16((F32*) mData, (F32*) rhs.mData, 2*sizeof(LLVector4a));
mTexCoord = rhs.mTexCoord;
}
return *this;
}
LLVolumeFace::VertexData::~VertexData()
{
ll_aligned_free_16(mData);
mData = NULL;
}
LLVector4a& LLVolumeFace::VertexData::getPosition()
{
return mData[POSITION];
}
LLVector4a& LLVolumeFace::VertexData::getNormal()
{
return mData[NORMAL];
}
const LLVector4a& LLVolumeFace::VertexData::getPosition() const
{
return mData[POSITION];
}
const LLVector4a& LLVolumeFace::VertexData::getNormal() const
{
return mData[NORMAL];
}
void LLVolumeFace::VertexData::setPosition(const LLVector4a& pos)
{
mData[POSITION] = pos;
}
void LLVolumeFace::VertexData::setNormal(const LLVector4a& norm)
{
mData[NORMAL] = norm;
}
bool LLVolumeFace::VertexData::operator<(const LLVolumeFace::VertexData& rhs)const
{
const F32* lp = this->getPosition().getF32ptr();
const F32* rp = rhs.getPosition().getF32ptr();
if (lp[0] != rp[0])
{
return lp[0] < rp[0];
}
if (rp[1] != lp[1])
{
return lp[1] < rp[1];
}
if (rp[2] != lp[2])
{
return lp[2] < rp[2];
}
lp = getNormal().getF32ptr();
rp = rhs.getNormal().getF32ptr();
if (lp[0] != rp[0])
{
return lp[0] < rp[0];
}
if (rp[1] != lp[1])
{
return lp[1] < rp[1];
}
if (rp[2] != lp[2])
{
return lp[2] < rp[2];
}
if (mTexCoord.mV[0] != rhs.mTexCoord.mV[0])
{
return mTexCoord.mV[0] < rhs.mTexCoord.mV[0];
}
return mTexCoord.mV[1] < rhs.mTexCoord.mV[1];
}
bool LLVolumeFace::VertexData::operator==(const LLVolumeFace::VertexData& rhs)const
{
return mData[POSITION].equals3(rhs.getPosition()) &&
mData[NORMAL].equals3(rhs.getNormal()) &&
mTexCoord == rhs.mTexCoord;
}
bool LLVolumeFace::VertexData::compareNormal(const LLVolumeFace::VertexData& rhs, F32 angle_cutoff) const
{
bool retval = false;
const F32 epsilon = 0.00001f;
if (rhs.mData[POSITION].equals3(mData[POSITION], epsilon) &&
fabs(rhs.mTexCoord[0]-mTexCoord[0]) < epsilon &&
fabs(rhs.mTexCoord[1]-mTexCoord[1]) < epsilon)
{
if (angle_cutoff > 1.f)
{
retval = (mData[NORMAL].equals3(rhs.mData[NORMAL], epsilon));
}
else
{
F32 cur_angle = rhs.mData[NORMAL].dot3(mData[NORMAL]).getF32();
retval = cur_angle > angle_cutoff;
}
}
return retval;
}
bool LLVolume::unpackVolumeFaces(std::istream& is, S32 size)
{
//input stream is now pointing at a zlib compressed block of LLSD
//decompress block
LLSD mdl;
if (!unzip_llsd(mdl, is, size))
{
LL_DEBUGS("MeshStreaming") << "Failed to unzip LLSD blob for LoD, will probably fetch from sim again." << llendl;
return false;
}
{
U32 face_count = mdl.size();
if (face_count == 0)
{ //no faces unpacked, treat as failed decode
llwarns << "found no faces!" << llendl;
return false;
}
mVolumeFaces.resize(face_count);
for (U32 i = 0; i < face_count; ++i)
{
LLVolumeFace& face = mVolumeFaces[i];
if (mdl[i].has("NoGeometry"))
{ //face has no geometry, continue
face.resizeIndices(3);
face.resizeVertices(1);
memset(face.mPositions, 0, sizeof(LLVector4a));
memset(face.mNormals, 0, sizeof(LLVector4a));
memset(face.mTexCoords, 0, sizeof(LLVector2));
memset(face.mIndices, 0, sizeof(U16)*3);
continue;
}
LLSD::Binary pos = mdl[i]["Position"];
LLSD::Binary norm = mdl[i]["Normal"];
LLSD::Binary tc = mdl[i]["TexCoord0"];
LLSD::Binary idx = mdl[i]["TriangleList"];
//copy out indices
face.resizeIndices(idx.size()/2);
if (idx.empty() || face.mNumIndices < 3)
{ //why is there an empty index list?
llwarns <<"Empty face present!" << llendl;
continue;
}
U16* indices = (U16*) &(idx[0]);
U32 count = idx.size()/2;
for (U32 j = 0; j < count; ++j)
{
face.mIndices[j] = indices[j];
}
//copy out vertices
U32 num_verts = pos.size()/(3*2);
face.resizeVertices(num_verts);
LLVector3 minp;
LLVector3 maxp;
LLVector2 min_tc;
LLVector2 max_tc;
minp.setValue(mdl[i]["PositionDomain"]["Min"]);
maxp.setValue(mdl[i]["PositionDomain"]["Max"]);
LLVector4a min_pos, max_pos;
min_pos.load3(minp.mV);
max_pos.load3(maxp.mV);
min_tc.setValue(mdl[i]["TexCoord0Domain"]["Min"]);
max_tc.setValue(mdl[i]["TexCoord0Domain"]["Max"]);
LLVector4a pos_range;
pos_range.setSub(max_pos, min_pos);
LLVector2 tc_range2 = max_tc - min_tc;
LLVector4a tc_range;
tc_range.set(tc_range2[0], tc_range2[1], tc_range2[0], tc_range2[1]);
LLVector4a min_tc4(min_tc[0], min_tc[1], min_tc[0], min_tc[1]);
LLVector4a* pos_out = face.mPositions;
LLVector4a* norm_out = face.mNormals;
LLVector4a* tc_out = (LLVector4a*) face.mTexCoords;
{
U16* v = (U16*) &(pos[0]);
for (U32 j = 0; j < num_verts; ++j)
{
pos_out->set((F32) v[0], (F32) v[1], (F32) v[2]);
pos_out->div(65535.f);
pos_out->mul(pos_range);
pos_out->add(min_pos);
pos_out++;
v += 3;
}
}
{
if (!norm.empty())
{
U16* n = (U16*) &(norm[0]);
for (U32 j = 0; j < num_verts; ++j)
{
norm_out->set((F32) n[0], (F32) n[1], (F32) n[2]);
norm_out->div(65535.f);
norm_out->mul(2.f);
norm_out->sub(1.f);
norm_out++;
n += 3;
}
}
else
{
memset(norm_out, 0, sizeof(LLVector4a)*num_verts);
}
}
{
if (!tc.empty())
{
U16* t = (U16*) &(tc[0]);
for (U32 j = 0; j < num_verts; j+=2)
{
if (j < num_verts-1)
{
tc_out->set((F32) t[0], (F32) t[1], (F32) t[2], (F32) t[3]);
}
else
{
tc_out->set((F32) t[0], (F32) t[1], 0.f, 0.f);
}
t += 4;
tc_out->div(65535.f);
tc_out->mul(tc_range);
tc_out->add(min_tc4);
tc_out++;
}
}
else
{
memset(tc_out, 0, sizeof(LLVector2)*num_verts);
}
}
if (mdl[i].has("Weights"))
{
face.allocateWeights(num_verts);
LLSD::Binary weights = mdl[i]["Weights"];
U32 idx = 0;
U32 cur_vertex = 0;
while (idx < weights.size() && cur_vertex < num_verts)
{
const U8 END_INFLUENCES = 0xFF;
U8 joint = weights[idx++];
U32 cur_influence = 0;
LLVector4 wght(0,0,0,0);
while (joint != END_INFLUENCES && idx < weights.size())
{
U16 influence = weights[idx++];
influence |= ((U16) weights[idx++] << 8);
F32 w = llclamp((F32) influence / 65535.f, 0.f, 0.99999f);
wght.mV[cur_influence++] = (F32) joint + w;
if (cur_influence >= 4)
{
joint = END_INFLUENCES;
}
else
{
joint = weights[idx++];
}
}
face.mWeights[cur_vertex].loadua(wght.mV);
cur_vertex++;
}
if (cur_vertex != num_verts || idx != weights.size())
{
llwarns << "Vertex weight count does not match vertex count!" << llendl;
}
}
// modifier flags?
bool do_mirror = (mParams.getSculptType() & LL_SCULPT_FLAG_MIRROR);
bool do_invert = (mParams.getSculptType() &LL_SCULPT_FLAG_INVERT);
// translate to actions:
bool do_reflect_x = false;
bool do_reverse_triangles = false;
bool do_invert_normals = false;
if (do_mirror)
{
do_reflect_x = true;
do_reverse_triangles = !do_reverse_triangles;
}
if (do_invert)
{
do_invert_normals = true;
do_reverse_triangles = !do_reverse_triangles;
}
// now do the work
if (do_reflect_x)
{
LLVector4a* p = (LLVector4a*) face.mPositions;
LLVector4a* n = (LLVector4a*) face.mNormals;
for (S32 i = 0; i < face.mNumVertices; i++)
{
p[i].mul(-1.0f);
n[i].mul(-1.0f);
}
}
if (do_invert_normals)
{
LLVector4a* n = (LLVector4a*) face.mNormals;
for (S32 i = 0; i < face.mNumVertices; i++)
{
n[i].mul(-1.0f);
}
}
if (do_reverse_triangles)
{
for (U32 j = 0; j < (U32)face.mNumIndices; j += 3)
{
// swap the 2nd and 3rd index
S32 swap = face.mIndices[j+1];
face.mIndices[j+1] = face.mIndices[j+2];
face.mIndices[j+2] = swap;
}
}
//calculate bounding box
LLVector4a& min = face.mExtents[0];
LLVector4a& max = face.mExtents[1];
if (face.mNumVertices < 3)
{ //empty face, use a dummy 1cm (at 1m scale) bounding box
min.splat(-0.005f);
max.splat(0.005f);
}
else
{
min = max = face.mPositions[0];
for (S32 i = 1; i < face.mNumVertices; ++i)
{
min.setMin(min, face.mPositions[i]);
max.setMax(max, face.mPositions[i]);
}
if (face.mTexCoords)
{
LLVector2& min_tc = face.mTexCoordExtents[0];
LLVector2& max_tc = face.mTexCoordExtents[1];
min_tc = face.mTexCoords[0];
max_tc = face.mTexCoords[0];
for (U32 j = 1; j < (U32)face.mNumVertices; ++j)
{
update_min_max(min_tc, max_tc, face.mTexCoords[j]);
}
}
else
{
face.mTexCoordExtents[0].set(0,0);
face.mTexCoordExtents[1].set(1,1);
}
}
}
}
mSculptLevel = 0; // success!
cacheOptimize();
return true;
}
BOOL LLVolume::isMeshAssetLoaded()
{
return mIsMeshAssetLoaded;
}
void LLVolume::setMeshAssetLoaded(BOOL loaded)
{
mIsMeshAssetLoaded = loaded;
}
void LLVolume::copyVolumeFaces(const LLVolume* volume)
{
mVolumeFaces = volume->mVolumeFaces;
mSculptLevel = 0;
}
void LLVolume::cacheOptimize()
{
for (S32 i = 0; i < (S32)mVolumeFaces.size(); ++i)
{
mVolumeFaces[i].cacheOptimize();
}
}
S32 LLVolume::getNumFaces() const
{
return mIsMeshAssetLoaded ? getNumVolumeFaces() : (S32)mProfilep->mFaces.size();
}
void LLVolume::createVolumeFaces()
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
if (mGenerateSingleFace)
{
// do nothing
}
else
{
S32 num_faces = getNumFaces();
BOOL partial_build = TRUE;
if (num_faces != mVolumeFaces.size())
{
partial_build = FALSE;
mVolumeFaces.resize(num_faces);
}
// Initialize volume faces with parameter data
for (S32 i = 0; i < (S32)mVolumeFaces.size(); i++)
{
LLVolumeFace& vf = mVolumeFaces[i];
LLProfile::Face& face = mProfilep->mFaces[i];
vf.mBeginS = face.mIndex;
vf.mNumS = face.mCount;
if (vf.mNumS < 0)
{
llerrs << "Volume face corruption detected." << llendl;
}
vf.mBeginT = 0;
vf.mNumT= getPath().mPath.size();
vf.mID = i;
// Set the type mask bits correctly
if (mParams.getProfileParams().getHollow() > 0)
{
vf.mTypeMask |= LLVolumeFace::HOLLOW_MASK;
}
if (mProfilep->isOpen())
{
vf.mTypeMask |= LLVolumeFace::OPEN_MASK;
}
if (face.mCap)
{
vf.mTypeMask |= LLVolumeFace::CAP_MASK;
if (face.mFaceID == LL_FACE_PATH_BEGIN)
{
vf.mTypeMask |= LLVolumeFace::TOP_MASK;
}
else
{
llassert(face.mFaceID == LL_FACE_PATH_END);
vf.mTypeMask |= LLVolumeFace::BOTTOM_MASK;
}
}
else if (face.mFaceID & (LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END))
{
vf.mTypeMask |= LLVolumeFace::FLAT_MASK | LLVolumeFace::END_MASK;
}
else
{
vf.mTypeMask |= LLVolumeFace::SIDE_MASK;
if (face.mFlat)
{
vf.mTypeMask |= LLVolumeFace::FLAT_MASK;
}
if (face.mFaceID & LL_FACE_INNER_SIDE)
{
vf.mTypeMask |= LLVolumeFace::INNER_MASK;
if (face.mFlat && vf.mNumS > 2)
{ //flat inner faces have to copy vert normals
vf.mNumS = vf.mNumS*2;
if (vf.mNumS < 0)
{
llerrs << "Volume face corruption detected." << llendl;
}
}
}
else
{
vf.mTypeMask |= LLVolumeFace::OUTER_MASK;
}
}
}
for (face_list_t::iterator iter = mVolumeFaces.begin();
iter != mVolumeFaces.end(); ++iter)
{
(*iter).create(this, partial_build);
}
}
}
inline LLVector3 sculpt_rgb_to_vector(U8 r, U8 g, U8 b)
{
// maps RGB values to vector values [0..255] -> [-0.5..0.5]
LLVector3 value;
value.mV[VX] = r / 255.f - 0.5f;
value.mV[VY] = g / 255.f - 0.5f;
value.mV[VZ] = b / 255.f - 0.5f;
return value;
}
inline U32 sculpt_xy_to_index(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components)
{
U32 index = (x + y * sculpt_width) * sculpt_components;
return index;
}
inline U32 sculpt_st_to_index(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components)
{
U32 x = (U32) ((F32)s/(size_s) * (F32) sculpt_width);
U32 y = (U32) ((F32)t/(size_t) * (F32) sculpt_height);
return sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components);
}
inline LLVector3 sculpt_index_to_vector(U32 index, const U8* sculpt_data)
{
LLVector3 v = sculpt_rgb_to_vector(sculpt_data[index], sculpt_data[index+1], sculpt_data[index+2]);
return v;
}
inline LLVector3 sculpt_st_to_vector(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data)
{
U32 index = sculpt_st_to_index(s, t, size_s, size_t, sculpt_width, sculpt_height, sculpt_components);
return sculpt_index_to_vector(index, sculpt_data);
}
inline LLVector3 sculpt_xy_to_vector(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data)
{
U32 index = sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components);
return sculpt_index_to_vector(index, sculpt_data);
}
F32 LLVolume::sculptGetSurfaceArea()
{
// test to see if image has enough variation to create non-degenerate geometry
F32 area = 0;
S32 sizeS = mPathp->mPath.size();
S32 sizeT = mProfilep->mProfile.size();
for (S32 s = 0; s < sizeS-1; s++)
{
for (S32 t = 0; t < sizeT-1; t++)
{
// get four corners of quad
LLVector3 p1 = mMesh[(s )*sizeT + (t )].mPos;
LLVector3 p2 = mMesh[(s+1)*sizeT + (t )].mPos;
LLVector3 p3 = mMesh[(s )*sizeT + (t+1)].mPos;
LLVector3 p4 = mMesh[(s+1)*sizeT + (t+1)].mPos;
// compute the area of the quad by taking the length of the cross product of the two triangles
LLVector3 cross1 = (p1 - p2) % (p1 - p3);
LLVector3 cross2 = (p4 - p2) % (p4 - p3);
area += (cross1.magVec() + cross2.magVec()) / 2.f;
}
}
return area;
}
// create placeholder shape
void LLVolume::sculptGeneratePlaceholder()
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
S32 sizeS = mPathp->mPath.size();
S32 sizeT = mProfilep->mProfile.size();
S32 line = 0;
// for now, this is a sphere.
for (S32 s = 0; s < sizeS; s++)
{
for (S32 t = 0; t < sizeT; t++)
{
S32 i = t + line;
Point& pt = mMesh[i];
F32 u = (F32)s/(sizeS-1);
F32 v = (F32)t/(sizeT-1);
const F32 RADIUS = (F32) 0.3;
pt.mPos.mV[0] = (F32)(sin(F_PI * v) * cos(2.0 * F_PI * u) * RADIUS);
pt.mPos.mV[1] = (F32)(sin(F_PI * v) * sin(2.0 * F_PI * u) * RADIUS);
pt.mPos.mV[2] = (F32)(cos(F_PI * v) * RADIUS);
}
line += sizeT;
}
}
// create the vertices from the map
void LLVolume::sculptGenerateMapVertices(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, U8 sculpt_type)
{
U8 sculpt_stitching = sculpt_type & LL_SCULPT_TYPE_MASK;
BOOL sculpt_invert = sculpt_type & LL_SCULPT_FLAG_INVERT;
BOOL sculpt_mirror = sculpt_type & LL_SCULPT_FLAG_MIRROR;
BOOL reverse_horizontal = (sculpt_invert ? !sculpt_mirror : sculpt_mirror); // XOR
LLMemType m1(LLMemType::MTYPE_VOLUME);
S32 sizeS = mPathp->mPath.size();
S32 sizeT = mProfilep->mProfile.size();
S32 line = 0;
for (S32 s = 0; s < sizeS; s++)
{
// Run along the profile.
for (S32 t = 0; t < sizeT; t++)
{
S32 i = t + line;
Point& pt = mMesh[i];
S32 reversed_t = t;
if (reverse_horizontal)
{
reversed_t = sizeT - t - 1;
}
U32 x = (U32) ((F32)reversed_t/(sizeT-1) * (F32) sculpt_width);
U32 y = (U32) ((F32)s/(sizeS-1) * (F32) sculpt_height);
if (y == 0) // top row stitching
{
// pinch?
if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE)
{
x = sculpt_width / 2;
}
}
if (y == sculpt_height) // bottom row stitching
{
// wrap?
if (sculpt_stitching == LL_SCULPT_TYPE_TORUS)
{
y = 0;
}
else
{
y = sculpt_height - 1;
}
// pinch?
if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE)
{
x = sculpt_width / 2;
}
}
if (x == sculpt_width) // side stitching
{
// wrap?
if ((sculpt_stitching == LL_SCULPT_TYPE_SPHERE) ||
(sculpt_stitching == LL_SCULPT_TYPE_TORUS) ||
(sculpt_stitching == LL_SCULPT_TYPE_CYLINDER))
{
x = 0;
}
else
{
x = sculpt_width - 1;
}
}
pt.mPos = sculpt_xy_to_vector(x, y, sculpt_width, sculpt_height, sculpt_components, sculpt_data);
if (sculpt_mirror)
{
pt.mPos.mV[VX] *= -1.f;
}
}
line += sizeT;
}
}
const S32 SCULPT_REZ_1 = 6; // changed from 4 to 6 - 6 looks round whereas 4 looks square
const S32 SCULPT_REZ_2 = 8;
const S32 SCULPT_REZ_3 = 16;
const S32 SCULPT_REZ_4 = 32;
S32 sculpt_sides(F32 detail)
{
// detail is usually one of: 1, 1.5, 2.5, 4.0.
if (detail <= 1.0)
{
return SCULPT_REZ_1;
}
if (detail <= 2.0)
{
return SCULPT_REZ_2;
}
if (detail <= 3.0)
{
return SCULPT_REZ_3;
}
else
{
return SCULPT_REZ_4;
}
}
// determine the number of vertices in both s and t direction for this sculpt
void sculpt_calc_mesh_resolution(U16 width, U16 height, U8 type, F32 detail, S32& s, S32& t)
{
// this code has the following properties:
// 1) the aspect ratio of the mesh is as close as possible to the ratio of the map
// while still using all available verts
// 2) the mesh cannot have more verts than is allowed by LOD
// 3) the mesh cannot have more verts than is allowed by the map
S32 max_vertices_lod = (S32)pow((double)sculpt_sides(detail), 2.0);
S32 max_vertices_map = width * height / 4;
S32 vertices;
if (max_vertices_map > 0)
vertices = llmin(max_vertices_lod, max_vertices_map);
else
vertices = max_vertices_lod;
F32 ratio;
if ((width == 0) || (height == 0))
ratio = 1.f;
else
ratio = (F32) width / (F32) height;
s = (S32)(F32) sqrt(((F32)vertices / ratio));
s = llmax(s, 4); // no degenerate sizes, please
t = vertices / s;
t = llmax(t, 4); // no degenerate sizes, please
s = vertices / t;
}
// sculpt replaces generate() for sculpted surfaces
void LLVolume::sculpt(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, S32 sculpt_level)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
U8 sculpt_type = mParams.getSculptType();
BOOL data_is_empty = FALSE;
if (sculpt_width == 0 || sculpt_height == 0 || sculpt_components < 3 || sculpt_data == NULL)
{
sculpt_level = -1;
data_is_empty = TRUE;
}
S32 requested_sizeS = 0;
S32 requested_sizeT = 0;
// create oblong sculpties with high LOD always
F32 sculpt_detail = mDetail;
if (sculpt_width != sculpt_height && sculpt_detail < 4.0)
{
sculpt_detail = 4.0;
}
sculpt_calc_mesh_resolution(sculpt_width, sculpt_height, sculpt_type, sculpt_detail, requested_sizeS, requested_sizeT);
mPathp->generate(mParams.getPathParams(), sculpt_detail, 0, TRUE, requested_sizeS);
mProfilep->generate(mParams.getProfileParams(), mPathp->isOpen(), sculpt_detail, 0, TRUE, requested_sizeT);
S32 sizeS = mPathp->mPath.size(); // we requested a specific size, now see what we really got
S32 sizeT = mProfilep->mProfile.size(); // we requested a specific size, now see what we really got
// weird crash bug - DEV-11158 - trying to collect more data:
if ((sizeS == 0) || (sizeT == 0))
{
llwarns << "sculpt bad mesh size " << sizeS << " " << sizeT << llendl;
}
sNumMeshPoints -= mMesh.size();
mMesh.resize(sizeS * sizeT);
sNumMeshPoints += mMesh.size();
//generate vertex positions
if (!data_is_empty)
{
sculptGenerateMapVertices(sculpt_width, sculpt_height, sculpt_components, sculpt_data, sculpt_type);
// don't test lowest LOD to support legacy content DEV-33670
if (mDetail > SCULPT_MIN_AREA_DETAIL)
{
F32 area = sculptGetSurfaceArea();
mSurfaceArea = area;
const F32 SCULPT_MAX_AREA = 384.f;
if (area < SCULPT_MIN_AREA || area > SCULPT_MAX_AREA)
{
data_is_empty = TRUE;
}
}
}
if (data_is_empty)
{
sculptGeneratePlaceholder();
}
for (S32 i = 0; i < (S32)mProfilep->mFaces.size(); i++)
{
mFaceMask |= mProfilep->mFaces[i].mFaceID;
}
mSculptLevel = sculpt_level;
// Delete any existing faces so that they get regenerated
mVolumeFaces.clear();
createVolumeFaces();
}
BOOL LLVolume::isCap(S32 face)
{
return mProfilep->mFaces[face].mCap;
}
BOOL LLVolume::isFlat(S32 face)
{
return mProfilep->mFaces[face].mFlat;
}
bool LLVolumeParams::isSculpt() const
{
return mSculptID.notNull();
}
bool LLVolumeParams::isMeshSculpt() const
{
return isSculpt() && ((mSculptType & LL_SCULPT_TYPE_MASK) == LL_SCULPT_TYPE_MESH);
}
bool LLVolumeParams::operator==(const LLVolumeParams &params) const
{
return ( (getPathParams() == params.getPathParams()) &&
(getProfileParams() == params.getProfileParams()) &&
(mSculptID == params.mSculptID) &&
(mSculptType == params.mSculptType) );
}
bool LLVolumeParams::operator!=(const LLVolumeParams &params) const
{
return ( (getPathParams() != params.getPathParams()) ||
(getProfileParams() != params.getProfileParams()) ||
(mSculptID != params.mSculptID) ||
(mSculptType != params.mSculptType) );
}
bool LLVolumeParams::operator<(const LLVolumeParams &params) const
{
if( getPathParams() != params.getPathParams() )
{
return getPathParams() < params.getPathParams();
}
if (getProfileParams() != params.getProfileParams())
{
return getProfileParams() < params.getProfileParams();
}
if (mSculptID != params.mSculptID)
{
return mSculptID < params.mSculptID;
}
return mSculptType < params.mSculptType;
}
void LLVolumeParams::copyParams(const LLVolumeParams &params)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
mProfileParams.copyParams(params.mProfileParams);
mPathParams.copyParams(params.mPathParams);
mSculptID = params.getSculptID();
mSculptType = params.getSculptType();
}
// Less restricitve approx 0 for volumes
const F32 APPROXIMATELY_ZERO = 0.001f;
bool approx_zero( F32 f, F32 tolerance = APPROXIMATELY_ZERO)
{
return (f >= -tolerance) && (f <= tolerance);
}
// return true if in range (or nearly so)
static bool limit_range(F32& v, F32 min, F32 max, F32 tolerance = APPROXIMATELY_ZERO)
{
F32 min_delta = v - min;
if (min_delta < 0.f)
{
v = min;
if (!approx_zero(min_delta, tolerance))
return false;
}
F32 max_delta = max - v;
if (max_delta < 0.f)
{
v = max;
if (!approx_zero(max_delta, tolerance))
return false;
}
return true;
}
bool LLVolumeParams::setBeginAndEndS(const F32 b, const F32 e)
{
bool valid = true;
// First, clamp to valid ranges.
F32 begin = b;
valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA);
F32 end = e;
if (end >= .0149f && end < MIN_CUT_DELTA) end = MIN_CUT_DELTA; // eliminate warning for common rounding error
valid &= limit_range(end, MIN_CUT_DELTA, 1.f);
valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f);
// Now set them.
mProfileParams.setBegin(begin);
mProfileParams.setEnd(end);
return valid;
}
bool LLVolumeParams::setBeginAndEndT(const F32 b, const F32 e)
{
bool valid = true;
// First, clamp to valid ranges.
F32 begin = b;
valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA);
F32 end = e;
valid &= limit_range(end, MIN_CUT_DELTA, 1.f);
valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f);
// Now set them.
mPathParams.setBegin(begin);
mPathParams.setEnd(end);
return valid;
}
bool LLVolumeParams::setHollow(const F32 h)
{
// Validate the hollow based on path and profile.
U8 profile = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
U8 hole_type = mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK;
F32 max_hollow = HOLLOW_MAX;
// Only square holes have trouble.
if (LL_PCODE_HOLE_SQUARE == hole_type)
{
switch(profile)
{
case LL_PCODE_PROFILE_CIRCLE:
case LL_PCODE_PROFILE_CIRCLE_HALF:
case LL_PCODE_PROFILE_EQUALTRI:
max_hollow = HOLLOW_MAX_SQUARE;
}
}
F32 hollow = h;
bool valid = limit_range(hollow, HOLLOW_MIN, max_hollow);
mProfileParams.setHollow(hollow);
return valid;
}
bool LLVolumeParams::setTwistBegin(const F32 b)
{
F32 twist_begin = b;
bool valid = limit_range(twist_begin, TWIST_MIN, TWIST_MAX);
mPathParams.setTwistBegin(twist_begin);
return valid;
}
bool LLVolumeParams::setTwistEnd(const F32 e)
{
F32 twist_end = e;
bool valid = limit_range(twist_end, TWIST_MIN, TWIST_MAX);
mPathParams.setTwistEnd(twist_end);
return valid;
}
bool LLVolumeParams::setRatio(const F32 x, const F32 y)
{
F32 min_x = RATIO_MIN;
F32 max_x = RATIO_MAX;
F32 min_y = RATIO_MIN;
F32 max_y = RATIO_MAX;
// If this is a circular path (and not a sphere) then 'ratio' is actually hole size.
U8 path_type = mPathParams.getCurveType();
U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
if ( LL_PCODE_PATH_CIRCLE == path_type &&
LL_PCODE_PROFILE_CIRCLE_HALF != profile_type)
{
// Holes are more restricted...
min_x = HOLE_X_MIN;
max_x = HOLE_X_MAX;
min_y = HOLE_Y_MIN;
max_y = HOLE_Y_MAX;
}
F32 ratio_x = x;
bool valid = limit_range(ratio_x, min_x, max_x);
F32 ratio_y = y;
valid &= limit_range(ratio_y, min_y, max_y);
mPathParams.setScale(ratio_x, ratio_y);
return valid;
}
bool LLVolumeParams::setShear(const F32 x, const F32 y)
{
F32 shear_x = x;
bool valid = limit_range(shear_x, SHEAR_MIN, SHEAR_MAX);
F32 shear_y = y;
valid &= limit_range(shear_y, SHEAR_MIN, SHEAR_MAX);
mPathParams.setShear(shear_x, shear_y);
return valid;
}
bool LLVolumeParams::setTaperX(const F32 v)
{
F32 taper = v;
bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX);
mPathParams.setTaperX(taper);
return valid;
}
bool LLVolumeParams::setTaperY(const F32 v)
{
F32 taper = v;
bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX);
mPathParams.setTaperY(taper);
return valid;
}
bool LLVolumeParams::setRevolutions(const F32 r)
{
F32 revolutions = r;
bool valid = limit_range(revolutions, REV_MIN, REV_MAX);
mPathParams.setRevolutions(revolutions);
return valid;
}
bool LLVolumeParams::setRadiusOffset(const F32 offset)
{
bool valid = true;
// If this is a sphere, just set it to 0 and get out.
U8 path_type = mPathParams.getCurveType();
U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type ||
LL_PCODE_PATH_CIRCLE != path_type )
{
mPathParams.setRadiusOffset(0.f);
return true;
}
// Limit radius offset, based on taper and hole size y.
F32 radius_offset = offset;
F32 taper_y = getTaperY();
F32 radius_mag = fabs(radius_offset);
F32 hole_y_mag = fabs(getRatioY());
F32 taper_y_mag = fabs(taper_y);
// Check to see if the taper effects us.
if ( (radius_offset > 0.f && taper_y < 0.f) ||
(radius_offset < 0.f && taper_y > 0.f) )
{
// The taper does not help increase the radius offset range.
taper_y_mag = 0.f;
}
F32 max_radius_mag = 1.f - hole_y_mag * (1.f - taper_y_mag) / (1.f - hole_y_mag);
// Enforce the maximum magnitude.
F32 delta = max_radius_mag - radius_mag;
if (delta < 0.f)
{
// Check radius offset sign.
if (radius_offset < 0.f)
{
radius_offset = -max_radius_mag;
}
else
{
radius_offset = max_radius_mag;
}
valid = approx_zero(delta, .1f);
}
mPathParams.setRadiusOffset(radius_offset);
return valid;
}
bool LLVolumeParams::setSkew(const F32 skew_value)
{
bool valid = true;
// Check the skew value against the revolutions.
F32 skew = llclamp(skew_value, SKEW_MIN, SKEW_MAX);
F32 skew_mag = fabs(skew);
F32 revolutions = getRevolutions();
F32 scale_x = getRatioX();
F32 min_skew_mag = 1.0f - 1.0f / (revolutions * scale_x + 1.0f);
// Discontinuity; A revolution of 1 allows skews below 0.5.
if ( fabs(revolutions - 1.0f) < 0.001)
min_skew_mag = 0.0f;
// Clip skew.
F32 delta = skew_mag - min_skew_mag;
if (delta < 0.f)
{
// Check skew sign.
if (skew < 0.0f)
{
skew = -min_skew_mag;
}
else
{
skew = min_skew_mag;
}
valid = approx_zero(delta, .01f);
}
mPathParams.setSkew(skew);
return valid;
}
bool LLVolumeParams::setSculptID(const LLUUID sculpt_id, U8 sculpt_type)
{
mSculptID = sculpt_id;
mSculptType = sculpt_type;
return true;
}
bool LLVolumeParams::setType(U8 profile, U8 path)
{
bool result = true;
// First, check profile and path for validity.
U8 profile_type = profile & LL_PCODE_PROFILE_MASK;
U8 hole_type = (profile & LL_PCODE_HOLE_MASK) >> 4;
U8 path_type = path >> 4;
if (profile_type > LL_PCODE_PROFILE_MAX)
{
// Bad profile. Make it square.
profile = LL_PCODE_PROFILE_SQUARE;
result = false;
llwarns << "LLVolumeParams::setType changing bad profile type (" << profile_type
<< ") to be LL_PCODE_PROFILE_SQUARE" << llendl;
}
else if (hole_type > LL_PCODE_HOLE_MAX)
{
// Bad hole. Make it the same.
profile = profile_type;
result = false;
llwarns << "LLVolumeParams::setType changing bad hole type (" << hole_type
<< ") to be LL_PCODE_HOLE_SAME" << llendl;
}
if (path_type < LL_PCODE_PATH_MIN ||
path_type > LL_PCODE_PATH_MAX)
{
// Bad path. Make it linear.
result = false;
llwarns << "LLVolumeParams::setType changing bad path (" << path
<< ") to be LL_PCODE_PATH_LINE" << llendl;
path = LL_PCODE_PATH_LINE;
}
mProfileParams.setCurveType(profile);
mPathParams.setCurveType(path);
return result;
}
// static
bool LLVolumeParams::validate(U8 prof_curve, F32 prof_begin, F32 prof_end, F32 hollow,
U8 path_curve, F32 path_begin, F32 path_end,
F32 scx, F32 scy, F32 shx, F32 shy,
F32 twistend, F32 twistbegin, F32 radiusoffset,
F32 tx, F32 ty, F32 revolutions, F32 skew)
{
LLVolumeParams test_params;
if (!test_params.setType (prof_curve, path_curve))
{
return false;
}
if (!test_params.setBeginAndEndS (prof_begin, prof_end))
{
return false;
}
if (!test_params.setBeginAndEndT (path_begin, path_end))
{
return false;
}
if (!test_params.setHollow (hollow))
{
return false;
}
if (!test_params.setTwistBegin (twistbegin))
{
return false;
}
if (!test_params.setTwistEnd (twistend))
{
return false;
}
if (!test_params.setRatio (scx, scy))
{
return false;
}
if (!test_params.setShear (shx, shy))
{
return false;
}
if (!test_params.setTaper (tx, ty))
{
return false;
}
if (!test_params.setRevolutions (revolutions))
{
return false;
}
if (!test_params.setRadiusOffset (radiusoffset))
{
return false;
}
if (!test_params.setSkew (skew))
{
return false;
}
return true;
}
S32 *LLVolume::getTriangleIndices(U32 &num_indices) const
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
S32 expected_num_triangle_indices = getNumTriangleIndices();
if (expected_num_triangle_indices > MAX_VOLUME_TRIANGLE_INDICES)
{
// we don't allow LLVolumes with this many vertices
llwarns << "Couldn't allocate triangle indices" << llendl;
num_indices = 0;
return NULL;
}
S32* index = new S32[expected_num_triangle_indices];
S32 count = 0;
// Let's do this totally diffently, as we don't care about faces...
// Counter-clockwise triangles are forward facing...
BOOL open = getProfile().isOpen();
BOOL hollow = (mParams.getProfileParams().getHollow() > 0);
BOOL path_open = getPath().isOpen();
S32 size_s, size_s_out, size_t;
S32 s, t, i;
size_s = getProfile().getTotal();
size_s_out = getProfile().getTotalOut();
size_t = getPath().mPath.size();
// NOTE -- if the construction of the triangles below ever changes
// then getNumTriangleIndices() method may also have to be updated.
if (open) /* Flawfinder: ignore */
{
if (hollow)
{
// Open hollow -- much like the closed solid, except we
// we need to stitch up the gap between s=0 and s=size_s-1
for (t = 0; t < size_t - 1; t++)
{
// The outer face, first cut, and inner face
for (s = 0; s < size_s - 1; s++)
{
i = s + t*size_s;
index[count++] = i; // x,y
index[count++] = i + 1; // x+1,y
index[count++] = i + size_s; // x,y+1
index[count++] = i + size_s; // x,y+1
index[count++] = i + 1; // x+1,y
index[count++] = i + size_s + 1; // x+1,y+1
}
// The other cut face
index[count++] = s + t*size_s; // x,y
index[count++] = 0 + t*size_s; // x+1,y
index[count++] = s + (t+1)*size_s; // x,y+1
index[count++] = s + (t+1)*size_s; // x,y+1
index[count++] = 0 + t*size_s; // x+1,y
index[count++] = 0 + (t+1)*size_s; // x+1,y+1
}
// Do the top and bottom caps, if necessary
if (path_open)
{
// Top cap
S32 pt1 = 0;
S32 pt2 = size_s-1;
S32 i = (size_t - 1)*size_s;
while (pt2 - pt1 > 1)
{
// Use the profile points instead of the mesh, since you want
// the un-transformed profile distances.
LLVector3 p1 = getProfile().mProfile[pt1];
LLVector3 p2 = getProfile().mProfile[pt2];
LLVector3 pa = getProfile().mProfile[pt1+1];
LLVector3 pb = getProfile().mProfile[pt2-1];
p1.mV[VZ] = 0.f;
p2.mV[VZ] = 0.f;
pa.mV[VZ] = 0.f;
pb.mV[VZ] = 0.f;
// Use area of triangle to determine backfacing
F32 area_1a2, area_1ba, area_21b, area_2ab;
area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
(pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
(p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
(pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
(pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
(p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
(pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
BOOL use_tri1a2 = TRUE;
BOOL tri_1a2 = TRUE;
BOOL tri_21b = TRUE;
if (area_1a2 < 0)
{
tri_1a2 = FALSE;
}
if (area_2ab < 0)
{
// Can't use, because it contains point b
tri_1a2 = FALSE;
}
if (area_21b < 0)
{
tri_21b = FALSE;
}
if (area_1ba < 0)
{
// Can't use, because it contains point b
tri_21b = FALSE;
}
if (!tri_1a2)
{
use_tri1a2 = FALSE;
}
else if (!tri_21b)
{
use_tri1a2 = TRUE;
}
else
{
LLVector3 d1 = p1 - pa;
LLVector3 d2 = p2 - pb;
if (d1.magVecSquared() < d2.magVecSquared())
{
use_tri1a2 = TRUE;
}
else
{
use_tri1a2 = FALSE;
}
}
if (use_tri1a2)
{
index[count++] = pt1 + i;
index[count++] = pt1 + 1 + i;
index[count++] = pt2 + i;
pt1++;
}
else
{
index[count++] = pt1 + i;
index[count++] = pt2 - 1 + i;
index[count++] = pt2 + i;
pt2--;
}
}
// Bottom cap
pt1 = 0;
pt2 = size_s-1;
while (pt2 - pt1 > 1)
{
// Use the profile points instead of the mesh, since you want
// the un-transformed profile distances.
LLVector3 p1 = getProfile().mProfile[pt1];
LLVector3 p2 = getProfile().mProfile[pt2];
LLVector3 pa = getProfile().mProfile[pt1+1];
LLVector3 pb = getProfile().mProfile[pt2-1];
p1.mV[VZ] = 0.f;
p2.mV[VZ] = 0.f;
pa.mV[VZ] = 0.f;
pb.mV[VZ] = 0.f;
// Use area of triangle to determine backfacing
F32 area_1a2, area_1ba, area_21b, area_2ab;
area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
(pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
(p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
(pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
(pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
(p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
(pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
BOOL use_tri1a2 = TRUE;
BOOL tri_1a2 = TRUE;
BOOL tri_21b = TRUE;
if (area_1a2 < 0)
{
tri_1a2 = FALSE;
}
if (area_2ab < 0)
{
// Can't use, because it contains point b
tri_1a2 = FALSE;
}
if (area_21b < 0)
{
tri_21b = FALSE;
}
if (area_1ba < 0)
{
// Can't use, because it contains point b
tri_21b = FALSE;
}
if (!tri_1a2)
{
use_tri1a2 = FALSE;
}
else if (!tri_21b)
{
use_tri1a2 = TRUE;
}
else
{
LLVector3 d1 = p1 - pa;
LLVector3 d2 = p2 - pb;
if (d1.magVecSquared() < d2.magVecSquared())
{
use_tri1a2 = TRUE;
}
else
{
use_tri1a2 = FALSE;
}
}
if (use_tri1a2)
{
index[count++] = pt1;
index[count++] = pt2;
index[count++] = pt1 + 1;
pt1++;
}
else
{
index[count++] = pt1;
index[count++] = pt2;
index[count++] = pt2 - 1;
pt2--;
}
}
}
}
else
{
// Open solid
for (t = 0; t < size_t - 1; t++)
{
// Outer face + 1 cut face
for (s = 0; s < size_s - 1; s++)
{
i = s + t*size_s;
index[count++] = i; // x,y
index[count++] = i + 1; // x+1,y
index[count++] = i + size_s; // x,y+1
index[count++] = i + size_s; // x,y+1
index[count++] = i + 1; // x+1,y
index[count++] = i + size_s + 1; // x+1,y+1
}
// The other cut face
index[count++] = (size_s - 1) + (t*size_s); // x,y
index[count++] = 0 + t*size_s; // x+1,y
index[count++] = (size_s - 1) + (t+1)*size_s; // x,y+1
index[count++] = (size_s - 1) + (t+1)*size_s; // x,y+1
index[count++] = 0 + (t*size_s); // x+1,y
index[count++] = 0 + (t+1)*size_s; // x+1,y+1
}
// Do the top and bottom caps, if necessary
if (path_open)
{
for (s = 0; s < size_s - 2; s++)
{
index[count++] = s+1;
index[count++] = s;
index[count++] = size_s - 1;
}
// We've got a top cap
S32 offset = (size_t - 1)*size_s;
for (s = 0; s < size_s - 2; s++)
{
// Inverted ordering from bottom cap.
index[count++] = offset + size_s - 1;
index[count++] = offset + s;
index[count++] = offset + s + 1;
}
}
}
}
else if (hollow)
{
// Closed hollow
// Outer face
for (t = 0; t < size_t - 1; t++)
{
for (s = 0; s < size_s_out - 1; s++)
{
i = s + t*size_s;
index[count++] = i; // x,y
index[count++] = i + 1; // x+1,y
index[count++] = i + size_s; // x,y+1
index[count++] = i + size_s; // x,y+1
index[count++] = i + 1; // x+1,y
index[count++] = i + 1 + size_s; // x+1,y+1
}
}
// Inner face
// Invert facing from outer face
for (t = 0; t < size_t - 1; t++)
{
for (s = size_s_out; s < size_s - 1; s++)
{
i = s + t*size_s;
index[count++] = i; // x,y
index[count++] = i + 1; // x+1,y
index[count++] = i + size_s; // x,y+1
index[count++] = i + size_s; // x,y+1
index[count++] = i + 1; // x+1,y
index[count++] = i + 1 + size_s; // x+1,y+1
}
}
// Do the top and bottom caps, if necessary
if (path_open)
{
// Top cap
S32 pt1 = 0;
S32 pt2 = size_s-1;
S32 i = (size_t - 1)*size_s;
while (pt2 - pt1 > 1)
{
// Use the profile points instead of the mesh, since you want
// the un-transformed profile distances.
LLVector3 p1 = getProfile().mProfile[pt1];
LLVector3 p2 = getProfile().mProfile[pt2];
LLVector3 pa = getProfile().mProfile[pt1+1];
LLVector3 pb = getProfile().mProfile[pt2-1];
p1.mV[VZ] = 0.f;
p2.mV[VZ] = 0.f;
pa.mV[VZ] = 0.f;
pb.mV[VZ] = 0.f;
// Use area of triangle to determine backfacing
F32 area_1a2, area_1ba, area_21b, area_2ab;
area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
(pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
(p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
(pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
(pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
(p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
(pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
BOOL use_tri1a2 = TRUE;
BOOL tri_1a2 = TRUE;
BOOL tri_21b = TRUE;
if (area_1a2 < 0)
{
tri_1a2 = FALSE;
}
if (area_2ab < 0)
{
// Can't use, because it contains point b
tri_1a2 = FALSE;
}
if (area_21b < 0)
{
tri_21b = FALSE;
}
if (area_1ba < 0)
{
// Can't use, because it contains point b
tri_21b = FALSE;
}
if (!tri_1a2)
{
use_tri1a2 = FALSE;
}
else if (!tri_21b)
{
use_tri1a2 = TRUE;
}
else
{
LLVector3 d1 = p1 - pa;
LLVector3 d2 = p2 - pb;
if (d1.magVecSquared() < d2.magVecSquared())
{
use_tri1a2 = TRUE;
}
else
{
use_tri1a2 = FALSE;
}
}
if (use_tri1a2)
{
index[count++] = pt1 + i;
index[count++] = pt1 + 1 + i;
index[count++] = pt2 + i;
pt1++;
}
else
{
index[count++] = pt1 + i;
index[count++] = pt2 - 1 + i;
index[count++] = pt2 + i;
pt2--;
}
}
// Bottom cap
pt1 = 0;
pt2 = size_s-1;
while (pt2 - pt1 > 1)
{
// Use the profile points instead of the mesh, since you want
// the un-transformed profile distances.
LLVector3 p1 = getProfile().mProfile[pt1];
LLVector3 p2 = getProfile().mProfile[pt2];
LLVector3 pa = getProfile().mProfile[pt1+1];
LLVector3 pb = getProfile().mProfile[pt2-1];
p1.mV[VZ] = 0.f;
p2.mV[VZ] = 0.f;
pa.mV[VZ] = 0.f;
pb.mV[VZ] = 0.f;
// Use area of triangle to determine backfacing
F32 area_1a2, area_1ba, area_21b, area_2ab;
area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
(pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
(p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
(pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
(pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
(p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
(pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
BOOL use_tri1a2 = TRUE;
BOOL tri_1a2 = TRUE;
BOOL tri_21b = TRUE;
if (area_1a2 < 0)
{
tri_1a2 = FALSE;
}
if (area_2ab < 0)
{
// Can't use, because it contains point b
tri_1a2 = FALSE;
}
if (area_21b < 0)
{
tri_21b = FALSE;
}
if (area_1ba < 0)
{
// Can't use, because it contains point b
tri_21b = FALSE;
}
if (!tri_1a2)
{
use_tri1a2 = FALSE;
}
else if (!tri_21b)
{
use_tri1a2 = TRUE;
}
else
{
LLVector3 d1 = p1 - pa;
LLVector3 d2 = p2 - pb;
if (d1.magVecSquared() < d2.magVecSquared())
{
use_tri1a2 = TRUE;
}
else
{
use_tri1a2 = FALSE;
}
}
if (use_tri1a2)
{
index[count++] = pt1;
index[count++] = pt2;
index[count++] = pt1 + 1;
pt1++;
}
else
{
index[count++] = pt1;
index[count++] = pt2;
index[count++] = pt2 - 1;
pt2--;
}
}
}
}
else
{
// Closed solid. Easy case.
for (t = 0; t < size_t - 1; t++)
{
for (s = 0; s < size_s - 1; s++)
{
// Should wrap properly, but for now...
i = s + t*size_s;
index[count++] = i; // x,y
index[count++] = i + 1; // x+1,y
index[count++] = i + size_s; // x,y+1
index[count++] = i + size_s; // x,y+1
index[count++] = i + 1; // x+1,y
index[count++] = i + size_s + 1; // x+1,y+1
}
}
// Do the top and bottom caps, if necessary
if (path_open)
{
// bottom cap
for (s = 1; s < size_s - 2; s++)
{
index[count++] = s+1;
index[count++] = s;
index[count++] = 0;
}
// top cap
S32 offset = (size_t - 1)*size_s;
for (s = 1; s < size_s - 2; s++)
{
// Inverted ordering from bottom cap.
index[count++] = offset;
index[count++] = offset + s;
index[count++] = offset + s + 1;
}
}
}
#ifdef LL_DEBUG
// assert that we computed the correct number of indices
if (count != expected_num_triangle_indices )
{
llerrs << "bad index count prediciton:"
<< " expected=" << expected_num_triangle_indices
<< " actual=" << count << llendl;
}
#endif
#if 0
// verify that each index does not point beyond the size of the mesh
S32 num_vertices = mMesh.size();
for (i = 0; i < count; i+=3)
{
llinfos << index[i] << ":" << index[i+1] << ":" << index[i+2] << llendl;
llassert(index[i] < num_vertices);
llassert(index[i+1] < num_vertices);
llassert(index[i+2] < num_vertices);
}
#endif
num_indices = count;
return index;
}
void LLVolume::getLoDTriangleCounts(const LLVolumeParams& params, S32* counts)
{ //attempt to approximate the number of triangles that will result from generating a volume LoD set for the
//supplied LLVolumeParams -- inaccurate, but a close enough approximation for determining streaming cost
F32 detail[] = {1.f, 1.5f, 2.5f, 4.f};
for (S32 i = 0; i < 4; i++)
{
S32 count = 0;
S32 path_points = LLPath::getNumPoints(params.getPathParams(), detail[i]);
S32 profile_points = LLProfile::getNumPoints(params.getProfileParams(), false, detail[i]);
count = (profile_points-1)*2*(path_points-1);
count += profile_points*2;
counts[i] = count;
}
}
S32 LLVolume::getNumTriangleIndices() const
{
BOOL profile_open = getProfile().isOpen();
BOOL hollow = (mParams.getProfileParams().getHollow() > 0);
BOOL path_open = getPath().isOpen();
S32 size_s, size_s_out, size_t;
size_s = getProfile().getTotal();
size_s_out = getProfile().getTotalOut();
size_t = getPath().mPath.size();
S32 count = 0;
if (profile_open) /* Flawfinder: ignore */
{
if (hollow)
{
// Open hollow -- much like the closed solid, except we
// we need to stitch up the gap between s=0 and s=size_s-1
count = (size_t - 1) * (((size_s -1) * 6) + 6);
}
else
{
count = (size_t - 1) * (((size_s -1) * 6) + 6);
}
}
else if (hollow)
{
// Closed hollow
// Outer face
count = (size_t - 1) * (size_s_out - 1) * 6;
// Inner face
count += (size_t - 1) * ((size_s - 1) - size_s_out) * 6;
}
else
{
// Closed solid. Easy case.
count = (size_t - 1) * (size_s - 1) * 6;
}
if (path_open)
{
S32 cap_triangle_count = size_s - 3;
if ( profile_open
|| hollow )
{
cap_triangle_count = size_s - 2;
}
if ( cap_triangle_count > 0 )
{
// top and bottom caps
count += cap_triangle_count * 2 * 3;
}
}
return count;
}
S32 LLVolume::getNumTriangles(S32* vcount) const
{
U32 triangle_count = 0;
U32 vertex_count = 0;
for (S32 i = 0; i < getNumVolumeFaces(); ++i)
{
const LLVolumeFace& face = getVolumeFace(i);
triangle_count += face.mNumIndices/3;
vertex_count += face.mNumVertices;
}
if (vcount)
{
*vcount = vertex_count;
}
return triangle_count;
}
//-----------------------------------------------------------------------------
// generateSilhouetteVertices()
//-----------------------------------------------------------------------------
void LLVolume::generateSilhouetteVertices(std::vector<LLVector3> &vertices,
std::vector<LLVector3> &normals,
const LLVector3& obj_cam_vec_in,
const LLMatrix4& mat_in,
const LLMatrix3& norm_mat_in,
S32 face_mask)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
LLMatrix4a mat;
mat.loadu(mat_in);
LLMatrix4a norm_mat;
norm_mat.loadu(norm_mat_in);
LLVector4a obj_cam_vec;
obj_cam_vec.load3(obj_cam_vec_in.mV);
vertices.clear();
normals.clear();
if ((mParams.getSculptType() & LL_SCULPT_TYPE_MASK) == LL_SCULPT_TYPE_MESH)
{
return;
}
S32 cur_index = 0;
//for each face
for (face_list_t::iterator iter = mVolumeFaces.begin();
iter != mVolumeFaces.end(); ++iter)
{
const LLVolumeFace& face = *iter;
if (!(face_mask & (0x1 << cur_index++)) ||
face.mNumIndices == 0 || face.mEdge.empty())
{
continue;
}
if (face.mTypeMask & (LLVolumeFace::CAP_MASK)) {
}
else {
//==============================================
//DEBUG draw edge map instead of silhouette edge
//==============================================
#if DEBUG_SILHOUETTE_EDGE_MAP
//for each triangle
U32 count = face.mNumIndices;
for (U32 j = 0; j < count/3; j++) {
//get vertices
S32 v1 = face.mIndices[j*3+0];
S32 v2 = face.mIndices[j*3+1];
S32 v3 = face.mIndices[j*3+2];
//get current face center
LLVector3 cCenter = (face.mVertices[v1].getPosition() +
face.mVertices[v2].getPosition() +
face.mVertices[v3].getPosition()) / 3.0f;
//for each edge
for (S32 k = 0; k < 3; k++) {
S32 nIndex = face.mEdge[j*3+k];
if (nIndex <= -1) {
continue;
}
if (nIndex >= (S32) count/3) {
continue;
}
//get neighbor vertices
v1 = face.mIndices[nIndex*3+0];
v2 = face.mIndices[nIndex*3+1];
v3 = face.mIndices[nIndex*3+2];
//get neighbor face center
LLVector3 nCenter = (face.mVertices[v1].getPosition() +
face.mVertices[v2].getPosition() +
face.mVertices[v3].getPosition()) / 3.0f;
//draw line
vertices.push_back(cCenter);
vertices.push_back(nCenter);
normals.push_back(LLVector3(1,1,1));
normals.push_back(LLVector3(1,1,1));
segments.push_back(vertices.size());
}
}
continue;
//==============================================
//DEBUG
//==============================================
//==============================================
//DEBUG draw normals instead of silhouette edge
//==============================================
#elif DEBUG_SILHOUETTE_NORMALS
//for each vertex
for (U32 j = 0; j < face.mNumVertices; j++) {
vertices.push_back(face.mVertices[j].getPosition());
vertices.push_back(face.mVertices[j].getPosition() + face.mVertices[j].getNormal()*0.1f);
normals.push_back(LLVector3(0,0,1));
normals.push_back(LLVector3(0,0,1));
#if DEBUG_SILHOUETTE_BINORMALS
vertices.push_back(face.mVertices[j].getPosition());
vertices.push_back(face.mVertices[j].getPosition() + face.mVertices[j].mBinormal*0.1f);
normals.push_back(LLVector3(0,0,1));
normals.push_back(LLVector3(0,0,1));
#endif
}
continue;
#else
//==============================================
//DEBUG
//==============================================
static const U8 AWAY = 0x01,
TOWARDS = 0x02;
//for each triangle
std::vector<U8> fFacing;
vector_append(fFacing, face.mNumIndices/3);
LLVector4a* v = (LLVector4a*) face.mPositions;
LLVector4a* n = (LLVector4a*) face.mNormals;
for (U32 j = 0; j < (U32)face.mNumIndices/3; j++)
{
//approximate normal
S32 v1 = face.mIndices[j*3+0];
S32 v2 = face.mIndices[j*3+1];
S32 v3 = face.mIndices[j*3+2];
LLVector4a c1,c2;
c1.setSub(v[v1], v[v2]);
c2.setSub(v[v2], v[v3]);
LLVector4a norm;
norm.setCross3(c1, c2);
if (norm.dot3(norm) < 0.00000001f)
{
fFacing[j] = AWAY | TOWARDS;
}
else
{
//get view vector
LLVector4a view;
view.setSub(obj_cam_vec, v[v1]);
bool away = view.dot3(norm) > 0.0f;
if (away)
{
fFacing[j] = AWAY;
}
else
{
fFacing[j] = TOWARDS;
}
}
}
//for each triangle
for (U32 j = 0; j < (U32)face.mNumIndices/3; j++)
{
if (fFacing[j] == (AWAY | TOWARDS))
{ //this is a degenerate triangle
//take neighbor facing (degenerate faces get facing of one of their neighbors)
// *FIX IF NEEDED: this does not deal with neighboring degenerate faces
for (S32 k = 0; k < 3; k++)
{
S32 index = face.mEdge[j*3+k];
if (index != -1)
{
fFacing[j] = fFacing[index];
break;
}
}
continue; //skip degenerate face
}
//for each edge
for (S32 k = 0; k < 3; k++) {
S32 index = face.mEdge[j*3+k];
if (index != -1 && fFacing[index] == (AWAY | TOWARDS)) {
//our neighbor is degenerate, make him face our direction
fFacing[face.mEdge[j*3+k]] = fFacing[j];
continue;
}
if (index == -1 || //edge has no neighbor, MUST be a silhouette edge
(fFacing[index] & fFacing[j]) == 0) { //we found a silhouette edge
S32 v1 = face.mIndices[j*3+k];
S32 v2 = face.mIndices[j*3+((k+1)%3)];
LLVector4a t;
mat.affineTransform(v[v1], t);
vertices.push_back(LLVector3(t[0], t[1], t[2]));
norm_mat.rotate(n[v1], t);
t.normalize3fast();
normals.push_back(LLVector3(t[0], t[1], t[2]));
mat.affineTransform(v[v2], t);
vertices.push_back(LLVector3(t[0], t[1], t[2]));
norm_mat.rotate(n[v2], t);
t.normalize3fast();
normals.push_back(LLVector3(t[0], t[1], t[2]));
}
}
}
#endif
}
}
}
S32 LLVolume::lineSegmentIntersect(const LLVector3& start, const LLVector3& end,
S32 face,
LLVector3* intersection,LLVector2* tex_coord, LLVector3* normal, LLVector3* bi_normal)
{
LLVector4a starta, enda;
starta.load3(start.mV);
enda.load3(end.mV);
return lineSegmentIntersect(starta, enda, face, intersection, tex_coord, normal, bi_normal);
}
S32 LLVolume::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end,
S32 face,
LLVector3* intersection,LLVector2* tex_coord, LLVector3* normal, LLVector3* bi_normal)
{
S32 hit_face = -1;
S32 start_face;
S32 end_face;
if (face == -1) // ALL_SIDES
{
start_face = 0;
end_face = getNumVolumeFaces() - 1;
}
else
{
start_face = face;
end_face = face;
}
LLVector4a dir;
dir.setSub(end, start);
F32 closest_t = 2.f; // must be larger than 1
end_face = llmin(end_face, getNumVolumeFaces()-1);
for (S32 i = start_face; i <= end_face; i++)
{
LLVolumeFace &face = mVolumeFaces[i];
LLVector4a box_center;
box_center.setAdd(face.mExtents[0], face.mExtents[1]);
box_center.mul(0.5f);
LLVector4a box_size;
box_size.setSub(face.mExtents[1], face.mExtents[0]);
if (LLLineSegmentBoxIntersect(start, end, box_center, box_size))
{
if (bi_normal != NULL) // if the caller wants binormals, we may need to generate them
{
genBinormals(i);
}
if (isUnique())
{ //don't bother with an octree for flexi volumes
U32 tri_count = face.mNumIndices/3;
for (U32 j = 0; j < tri_count; ++j)
{
U16 idx0 = face.mIndices[j*3+0];
U16 idx1 = face.mIndices[j*3+1];
U16 idx2 = face.mIndices[j*3+2];
const LLVector4a& v0 = face.mPositions[idx0];
const LLVector4a& v1 = face.mPositions[idx1];
const LLVector4a& v2 = face.mPositions[idx2];
F32 a,b,t;
if (LLTriangleRayIntersect(v0, v1, v2,
start, dir, a, b, t))
{
if ((t >= 0.f) && // if hit is after start
(t <= 1.f) && // and before end
(t < closest_t)) // and this hit is closer
{
closest_t = t;
hit_face = i;
if (intersection != NULL)
{
LLVector4a intersect = dir;
intersect.mul(closest_t);
intersect.add(start);
intersection->set(intersect.getF32ptr());
}
if (tex_coord != NULL)
{
LLVector2* tc = (LLVector2*) face.mTexCoords;
*tex_coord = ((1.f - a - b) * tc[idx0] +
a * tc[idx1] +
b * tc[idx2]);
}
if (normal!= NULL)
{
LLVector4* norm = (LLVector4*) face.mNormals;
*normal = ((1.f - a - b) * LLVector3(norm[idx0]) +
a * LLVector3(norm[idx1]) +
b * LLVector3(norm[idx2]));
}
if (bi_normal != NULL)
{
LLVector4* binormal = (LLVector4*) face.mBinormals;
*bi_normal = ((1.f - a - b) * LLVector3(binormal[idx0]) +
a * LLVector3(binormal[idx1]) +
b * LLVector3(binormal[idx2]));
}
}
}
}
}
else
{
if (!face.mOctree)
{
face.createOctree();
}
LLOctreeTriangleRayIntersect intersect(start, dir, &face, &closest_t, intersection, tex_coord, normal, bi_normal);
intersect.traverse(face.mOctree);
if (intersect.mHitFace)
{
hit_face = i;
}
}
}
}
return hit_face;
}
class LLVertexIndexPair
{
public:
LLVertexIndexPair(const LLVector3 &vertex, const S32 index);
LLVector3 mVertex;
S32 mIndex;
};
LLVertexIndexPair::LLVertexIndexPair(const LLVector3 &vertex, const S32 index)
{
mVertex = vertex;
mIndex = index;
}
const F32 VERTEX_SLOP = 0.00001f;
const F32 VERTEX_SLOP_SQRD = VERTEX_SLOP * VERTEX_SLOP;
struct lessVertex
{
bool operator()(const LLVertexIndexPair *a, const LLVertexIndexPair *b)
{
const F32 slop = VERTEX_SLOP;
if (a->mVertex.mV[0] + slop < b->mVertex.mV[0])
{
return TRUE;
}
else if (a->mVertex.mV[0] - slop > b->mVertex.mV[0])
{
return FALSE;
}
if (a->mVertex.mV[1] + slop < b->mVertex.mV[1])
{
return TRUE;
}
else if (a->mVertex.mV[1] - slop > b->mVertex.mV[1])
{
return FALSE;
}
if (a->mVertex.mV[2] + slop < b->mVertex.mV[2])
{
return TRUE;
}
else if (a->mVertex.mV[2] - slop > b->mVertex.mV[2])
{
return FALSE;
}
return FALSE;
}
};
struct lessTriangle
{
bool operator()(const S32 *a, const S32 *b)
{
if (*a < *b)
{
return TRUE;
}
else if (*a > *b)
{
return FALSE;
}
if (*(a+1) < *(b+1))
{
return TRUE;
}
else if (*(a+1) > *(b+1))
{
return FALSE;
}
if (*(a+2) < *(b+2))
{
return TRUE;
}
else if (*(a+2) > *(b+2))
{
return FALSE;
}
return FALSE;
}
};
BOOL equalTriangle(const S32 *a, const S32 *b)
{
if ((*a == *b) && (*(a+1) == *(b+1)) && (*(a+2) == *(b+2)))
{
return TRUE;
}
return FALSE;
}
BOOL LLVolume::cleanupTriangleData( const S32 num_input_vertices,
const std::vector<Point>& input_vertices,
const S32 num_input_triangles,
S32 *input_triangles,
S32 &num_output_vertices,
LLVector3 **output_vertices,
S32 &num_output_triangles,
S32 **output_triangles)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
/* Testing: avoid any cleanup
static BOOL skip_cleanup = TRUE;
if ( skip_cleanup )
{
num_output_vertices = num_input_vertices;
num_output_triangles = num_input_triangles;
*output_vertices = new LLVector3[num_input_vertices];
for (S32 index = 0; index < num_input_vertices; index++)
{
(*output_vertices)[index] = input_vertices[index].mPos;
}
*output_triangles = new S32[num_input_triangles*3];
memcpy(*output_triangles, input_triangles, 3*num_input_triangles*sizeof(S32)); // Flawfinder: ignore
return TRUE;
}
*/
// Here's how we do this:
// Create a structure which contains the original vertex index and the
// LLVector3 data.
// "Sort" the data by the vectors
// Create an array the size of the old vertex list, with a mapping of
// old indices to new indices.
// Go through triangles, shift so the lowest index is first
// Sort triangles by first index
// Remove duplicate triangles
// Allocate and pack new triangle data.
//LLTimer cleanupTimer;
//llinfos << "In vertices: " << num_input_vertices << llendl;
//llinfos << "In triangles: " << num_input_triangles << llendl;
S32 i;
typedef std::multiset<LLVertexIndexPair*, lessVertex> vertex_set_t;
vertex_set_t vertex_list;
LLVertexIndexPair *pairp = NULL;
for (i = 0; i < num_input_vertices; i++)
{
LLVertexIndexPair *new_pairp = new LLVertexIndexPair(input_vertices[i].mPos, i);
vertex_list.insert(new_pairp);
}
// Generate the vertex mapping and the list of vertices without
// duplicates. This will crash if there are no vertices.
llassert(num_input_vertices > 0); // check for no vertices!
S32 *vertex_mapping = new S32[num_input_vertices];
LLVector3 *new_vertices = new LLVector3[num_input_vertices];
LLVertexIndexPair *prev_pairp = NULL;
S32 new_num_vertices;
new_num_vertices = 0;
for (vertex_set_t::iterator iter = vertex_list.begin(),
end = vertex_list.end();
iter != end; iter++)
{
pairp = *iter;
if (!prev_pairp || ((pairp->mVertex - prev_pairp->mVertex).magVecSquared() >= VERTEX_SLOP_SQRD))
{
new_vertices[new_num_vertices] = pairp->mVertex;
//llinfos << "Added vertex " << new_num_vertices << " : " << pairp->mVertex << llendl;
new_num_vertices++;
// Update the previous
prev_pairp = pairp;
}
else
{
//llinfos << "Removed duplicate vertex " << pairp->mVertex << ", distance magVecSquared() is " << (pairp->mVertex - prev_pairp->mVertex).magVecSquared() << llendl;
}
vertex_mapping[pairp->mIndex] = new_num_vertices - 1;
}
// Iterate through triangles and remove degenerates, re-ordering vertices
// along the way.
S32 *new_triangles = new S32[num_input_triangles * 3];
S32 new_num_triangles = 0;
for (i = 0; i < num_input_triangles; i++)
{
S32 v1 = i*3;
S32 v2 = v1 + 1;
S32 v3 = v1 + 2;
//llinfos << "Checking triangle " << input_triangles[v1] << ":" << input_triangles[v2] << ":" << input_triangles[v3] << llendl;
input_triangles[v1] = vertex_mapping[input_triangles[v1]];
input_triangles[v2] = vertex_mapping[input_triangles[v2]];
input_triangles[v3] = vertex_mapping[input_triangles[v3]];
if ((input_triangles[v1] == input_triangles[v2])
|| (input_triangles[v1] == input_triangles[v3])
|| (input_triangles[v2] == input_triangles[v3]))
{
//llinfos << "Removing degenerate triangle " << input_triangles[v1] << ":" << input_triangles[v2] << ":" << input_triangles[v3] << llendl;
// Degenerate triangle, skip
continue;
}
if (input_triangles[v1] < input_triangles[v2])
{
if (input_triangles[v1] < input_triangles[v3])
{
// (0 < 1) && (0 < 2)
new_triangles[new_num_triangles*3] = input_triangles[v1];
new_triangles[new_num_triangles*3+1] = input_triangles[v2];
new_triangles[new_num_triangles*3+2] = input_triangles[v3];
}
else
{
// (0 < 1) && (2 < 0)
new_triangles[new_num_triangles*3] = input_triangles[v3];
new_triangles[new_num_triangles*3+1] = input_triangles[v1];
new_triangles[new_num_triangles*3+2] = input_triangles[v2];
}
}
else if (input_triangles[v2] < input_triangles[v3])
{
// (1 < 0) && (1 < 2)
new_triangles[new_num_triangles*3] = input_triangles[v2];
new_triangles[new_num_triangles*3+1] = input_triangles[v3];
new_triangles[new_num_triangles*3+2] = input_triangles[v1];
}
else
{
// (1 < 0) && (2 < 1)
new_triangles[new_num_triangles*3] = input_triangles[v3];
new_triangles[new_num_triangles*3+1] = input_triangles[v1];
new_triangles[new_num_triangles*3+2] = input_triangles[v2];
}
new_num_triangles++;
}
if (new_num_triangles == 0)
{
llwarns << "Created volume object with 0 faces." << llendl;
delete[] new_triangles;
delete[] vertex_mapping;
delete[] new_vertices;
return FALSE;
}
typedef std::set<S32*, lessTriangle> triangle_set_t;
triangle_set_t triangle_list;
for (i = 0; i < new_num_triangles; i++)
{
triangle_list.insert(&new_triangles[i*3]);
}
// Sort through the triangle list, and delete duplicates
S32 *prevp = NULL;
S32 *curp = NULL;
S32 *sorted_tris = new S32[new_num_triangles*3];
S32 cur_tri = 0;
for (triangle_set_t::iterator iter = triangle_list.begin(),
end = triangle_list.end();
iter != end; iter++)
{
curp = *iter;
if (!prevp || !equalTriangle(prevp, curp))
{
//llinfos << "Added triangle " << *curp << ":" << *(curp+1) << ":" << *(curp+2) << llendl;
sorted_tris[cur_tri*3] = *curp;
sorted_tris[cur_tri*3+1] = *(curp+1);
sorted_tris[cur_tri*3+2] = *(curp+2);
cur_tri++;
prevp = curp;
}
else
{
//llinfos << "Skipped triangle " << *curp << ":" << *(curp+1) << ":" << *(curp+2) << llendl;
}
}
*output_vertices = new LLVector3[new_num_vertices];
num_output_vertices = new_num_vertices;
for (i = 0; i < new_num_vertices; i++)
{
(*output_vertices)[i] = new_vertices[i];
}
*output_triangles = new S32[cur_tri*3];
num_output_triangles = cur_tri;
memcpy(*output_triangles, sorted_tris, 3*cur_tri*sizeof(S32)); /* Flawfinder: ignore */
/*
llinfos << "Out vertices: " << num_output_vertices << llendl;
llinfos << "Out triangles: " << num_output_triangles << llendl;
for (i = 0; i < num_output_vertices; i++)
{
llinfos << i << ":" << (*output_vertices)[i] << llendl;
}
for (i = 0; i < num_output_triangles; i++)
{
llinfos << i << ":" << (*output_triangles)[i*3] << ":" << (*output_triangles)[i*3+1] << ":" << (*output_triangles)[i*3+2] << llendl;
}
*/
//llinfos << "Out vertices: " << num_output_vertices << llendl;
//llinfos << "Out triangles: " << num_output_triangles << llendl;
delete[] vertex_mapping;
vertex_mapping = NULL;
delete[] new_vertices;
new_vertices = NULL;
delete[] new_triangles;
new_triangles = NULL;
delete[] sorted_tris;
sorted_tris = NULL;
triangle_list.clear();
std::for_each(vertex_list.begin(), vertex_list.end(), DeletePointer());
vertex_list.clear();
return TRUE;
}
BOOL LLVolumeParams::importFile(LLFILE *fp)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
//llinfos << "importing volume" << llendl;
const S32 BUFSIZE = 16384;
char buffer[BUFSIZE]; /* Flawfinder: ignore */
// *NOTE: changing the size or type of this buffer will require
// changing the sscanf below.
char keyword[256]; /* Flawfinder: ignore */
keyword[0] = 0;
while (!feof(fp))
{
if (fgets(buffer, BUFSIZE, fp) == NULL)
{
buffer[0] = '\0';
}
sscanf(buffer, " %255s", keyword); /* Flawfinder: ignore */
if (!strcmp("{", keyword))
{
continue;
}
if (!strcmp("}",keyword))
{
break;
}
else if (!strcmp("profile", keyword))
{
mProfileParams.importFile(fp);
}
else if (!strcmp("path",keyword))
{
mPathParams.importFile(fp);
}
else
{
llwarns << "unknown keyword " << keyword << " in volume import" << llendl;
}
}
return TRUE;
}
BOOL LLVolumeParams::exportFile(LLFILE *fp) const
{
fprintf(fp,"\tshape 0\n");
fprintf(fp,"\t{\n");
mPathParams.exportFile(fp);
mProfileParams.exportFile(fp);
fprintf(fp, "\t}\n");
return TRUE;
}
BOOL LLVolumeParams::importLegacyStream(std::istream& input_stream)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
//llinfos << "importing volume" << llendl;
const S32 BUFSIZE = 16384;
// *NOTE: changing the size or type of this buffer will require
// changing the sscanf below.
char buffer[BUFSIZE]; /* Flawfinder: ignore */
char keyword[256]; /* Flawfinder: ignore */
keyword[0] = 0;
while (input_stream.good())
{
input_stream.getline(buffer, BUFSIZE);
sscanf(buffer, " %255s", keyword);
if (!strcmp("{", keyword))
{
continue;
}
if (!strcmp("}",keyword))
{
break;
}
else if (!strcmp("profile", keyword))
{
mProfileParams.importLegacyStream(input_stream);
}
else if (!strcmp("path",keyword))
{
mPathParams.importLegacyStream(input_stream);
}
else
{
llwarns << "unknown keyword " << keyword << " in volume import" << llendl;
}
}
return TRUE;
}
BOOL LLVolumeParams::exportLegacyStream(std::ostream& output_stream) const
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
output_stream <<"\tshape 0\n";
output_stream <<"\t{\n";
mPathParams.exportLegacyStream(output_stream);
mProfileParams.exportLegacyStream(output_stream);
output_stream << "\t}\n";
return TRUE;
}
LLSD LLVolumeParams::sculptAsLLSD() const
{
LLSD sd = LLSD();
sd["id"] = getSculptID();
sd["type"] = getSculptType();
return sd;
}
bool LLVolumeParams::sculptFromLLSD(LLSD& sd)
{
setSculptID(sd["id"].asUUID(), (U8)sd["type"].asInteger());
return true;
}
LLSD LLVolumeParams::asLLSD() const
{
LLSD sd = LLSD();
sd["path"] = mPathParams;
sd["profile"] = mProfileParams;
sd["sculpt"] = sculptAsLLSD();
return sd;
}
bool LLVolumeParams::fromLLSD(LLSD& sd)
{
mPathParams.fromLLSD(sd["path"]);
mProfileParams.fromLLSD(sd["profile"]);
sculptFromLLSD(sd["sculpt"]);
return true;
}
void LLVolumeParams::reduceS(F32 begin, F32 end)
{
begin = llclampf(begin);
end = llclampf(end);
if (begin > end)
{
F32 temp = begin;
begin = end;
end = temp;
}
F32 a = mProfileParams.getBegin();
F32 b = mProfileParams.getEnd();
mProfileParams.setBegin(a + begin * (b - a));
mProfileParams.setEnd(a + end * (b - a));
}
void LLVolumeParams::reduceT(F32 begin, F32 end)
{
begin = llclampf(begin);
end = llclampf(end);
if (begin > end)
{
F32 temp = begin;
begin = end;
end = temp;
}
F32 a = mPathParams.getBegin();
F32 b = mPathParams.getEnd();
mPathParams.setBegin(a + begin * (b - a));
mPathParams.setEnd(a + end * (b - a));
}
const F32 MIN_CONCAVE_PROFILE_WEDGE = 0.125f; // 1/8 unity
const F32 MIN_CONCAVE_PATH_WEDGE = 0.111111f; // 1/9 unity
// returns TRUE if the shape can be approximated with a convex shape
// for collison purposes
BOOL LLVolumeParams::isConvex() const
{
if (!getSculptID().isNull())
{
// can't determine, be safe and say no:
return FALSE;
}
F32 path_length = mPathParams.getEnd() - mPathParams.getBegin();
F32 hollow = mProfileParams.getHollow();
U8 path_type = mPathParams.getCurveType();
if ( path_length > MIN_CONCAVE_PATH_WEDGE
&& ( mPathParams.getTwist() != mPathParams.getTwistBegin()
|| (hollow > 0.f
&& LL_PCODE_PATH_LINE != path_type) ) )
{
// twist along a "not too short" path is concave
return FALSE;
}
F32 profile_length = mProfileParams.getEnd() - mProfileParams.getBegin();
BOOL same_hole = hollow == 0.f
|| (mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK) == LL_PCODE_HOLE_SAME;
F32 min_profile_wedge = MIN_CONCAVE_PROFILE_WEDGE;
U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type )
{
// it is a sphere and spheres get twice the minimum profile wedge
min_profile_wedge = 2.f * MIN_CONCAVE_PROFILE_WEDGE;
}
BOOL convex_profile = ( ( profile_length == 1.f
|| profile_length <= 0.5f )
&& hollow == 0.f ) // trivially convex
|| ( profile_length <= min_profile_wedge
&& same_hole ); // effectvely convex (even when hollow)
if (!convex_profile)
{
// profile is concave
return FALSE;
}
if ( LL_PCODE_PATH_LINE == path_type )
{
// straight paths with convex profile
return TRUE;
}
BOOL concave_path = (path_length < 1.0f) && (path_length > 0.5f);
if (concave_path)
{
return FALSE;
}
// we're left with spheres, toroids and tubes
if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type )
{
// at this stage all spheres must be convex
return TRUE;
}
// it's a toroid or tube
if ( path_length <= MIN_CONCAVE_PATH_WEDGE )
{
// effectively convex
return TRUE;
}
return FALSE;
}
// debug
void LLVolumeParams::setCube()
{
mProfileParams.setCurveType(LL_PCODE_PROFILE_SQUARE);
mProfileParams.setBegin(0.f);
mProfileParams.setEnd(1.f);
mProfileParams.setHollow(0.f);
mPathParams.setBegin(0.f);
mPathParams.setEnd(1.f);
mPathParams.setScale(1.f, 1.f);
mPathParams.setShear(0.f, 0.f);
mPathParams.setCurveType(LL_PCODE_PATH_LINE);
mPathParams.setTwistBegin(0.f);
mPathParams.setTwistEnd(0.f);
mPathParams.setRadiusOffset(0.f);
mPathParams.setTaper(0.f, 0.f);
mPathParams.setRevolutions(0.f);
mPathParams.setSkew(0.f);
}
LLFaceID LLVolume::generateFaceMask()
{
LLFaceID new_mask = 0x0000;
switch(mParams.getProfileParams().getCurveType() & LL_PCODE_PROFILE_MASK)
{
case LL_PCODE_PROFILE_CIRCLE:
case LL_PCODE_PROFILE_CIRCLE_HALF:
new_mask |= LL_FACE_OUTER_SIDE_0;
break;
case LL_PCODE_PROFILE_SQUARE:
{
for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 4.f); side < llceil(mParams.getProfileParams().getEnd() * 4.f); side++)
{
new_mask |= LL_FACE_OUTER_SIDE_0 << side;
}
}
break;
case LL_PCODE_PROFILE_ISOTRI:
case LL_PCODE_PROFILE_EQUALTRI:
case LL_PCODE_PROFILE_RIGHTTRI:
{
for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 3.f); side < llceil(mParams.getProfileParams().getEnd() * 3.f); side++)
{
new_mask |= LL_FACE_OUTER_SIDE_0 << side;
}
}
break;
default:
llerrs << "Unknown profile!" << llendl;
break;
}
// handle hollow objects
if (mParams.getProfileParams().getHollow() > 0)
{
new_mask |= LL_FACE_INNER_SIDE;
}
// handle open profile curves
if (mProfilep->isOpen())
{
new_mask |= LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END;
}
// handle open path curves
if (mPathp->isOpen())
{
new_mask |= LL_FACE_PATH_BEGIN | LL_FACE_PATH_END;
}
return new_mask;
}
BOOL LLVolume::isFaceMaskValid(LLFaceID face_mask)
{
LLFaceID test_mask = 0;
for(S32 i = 0; i < getNumFaces(); i++)
{
test_mask |= mProfilep->mFaces[i].mFaceID;
}
return test_mask == face_mask;
}
BOOL LLVolume::isConvex() const
{
// mParams.isConvex() may return FALSE even though the final
// geometry is actually convex due to LOD approximations.
// TODO -- provide LLPath and LLProfile with isConvex() methods
// that correctly determine convexity. -- Leviathan
return mParams.isConvex();
}
std::ostream& operator<<(std::ostream &s, const LLProfileParams &profile_params)
{
s << "{type=" << (U32) profile_params.mCurveType;
s << ", begin=" << profile_params.mBegin;
s << ", end=" << profile_params.mEnd;
s << ", hollow=" << profile_params.mHollow;
s << "}";
return s;
}
std::ostream& operator<<(std::ostream &s, const LLPathParams &path_params)
{
s << "{type=" << (U32) path_params.mCurveType;
s << ", begin=" << path_params.mBegin;
s << ", end=" << path_params.mEnd;
s << ", twist=" << path_params.mTwistEnd;
s << ", scale=" << path_params.mScale;
s << ", shear=" << path_params.mShear;
s << ", twist_begin=" << path_params.mTwistBegin;
s << ", radius_offset=" << path_params.mRadiusOffset;
s << ", taper=" << path_params.mTaper;
s << ", revolutions=" << path_params.mRevolutions;
s << ", skew=" << path_params.mSkew;
s << "}";
return s;
}
std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params)
{
s << "{profileparams = " << volume_params.mProfileParams;
s << ", pathparams = " << volume_params.mPathParams;
s << "}";
return s;
}
std::ostream& operator<<(std::ostream &s, const LLProfile &profile)
{
s << " {open=" << (U32) profile.mOpen;
s << ", dirty=" << profile.mDirty;
s << ", totalout=" << profile.mTotalOut;
s << ", total=" << profile.mTotal;
s << "}";
return s;
}
std::ostream& operator<<(std::ostream &s, const LLPath &path)
{
s << "{open=" << (U32) path.mOpen;
s << ", dirty=" << path.mDirty;
s << ", step=" << path.mStep;
s << ", total=" << path.mTotal;
s << "}";
return s;
}
std::ostream& operator<<(std::ostream &s, const LLVolume &volume)
{
s << "{params = " << volume.getParams();
s << ", path = " << *volume.mPathp;
s << ", profile = " << *volume.mProfilep;
s << "}";
return s;
}
std::ostream& operator<<(std::ostream &s, const LLVolume *volumep)
{
s << "{params = " << volumep->getParams();
s << ", path = " << *(volumep->mPathp);
s << ", profile = " << *(volumep->mProfilep);
s << "}";
return s;
}
LLVolumeFace::LLVolumeFace() :
mID(0),
mTypeMask(0),
mBeginS(0),
mBeginT(0),
mNumS(0),
mNumT(0),
mNumVertices(0),
mNumIndices(0),
mPositions(NULL),
mNormals(NULL),
mBinormals(NULL),
mTexCoords(NULL),
mIndices(NULL),
mWeights(NULL),
mOctree(NULL)
{
mExtents = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*3);
mExtents[0].splat(-0.5f);
mExtents[1].splat(0.5f);
mCenter = mExtents+2;
}
LLVolumeFace::LLVolumeFace(const LLVolumeFace& src)
: mID(0),
mTypeMask(0),
mBeginS(0),
mBeginT(0),
mNumS(0),
mNumT(0),
mNumVertices(0),
mNumIndices(0),
mPositions(NULL),
mNormals(NULL),
mBinormals(NULL),
mTexCoords(NULL),
mIndices(NULL),
mWeights(NULL),
mOctree(NULL)
{
mExtents = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*3);
mCenter = mExtents+2;
*this = src;
}
LLVolumeFace& LLVolumeFace::operator=(const LLVolumeFace& src)
{
if (&src == this)
{ //self assignment, do nothing
return *this;
}
mID = src.mID;
mTypeMask = src.mTypeMask;
mBeginS = src.mBeginS;
mBeginT = src.mBeginT;
mNumS = src.mNumS;
mNumT = src.mNumT;
mExtents[0] = src.mExtents[0];
mExtents[1] = src.mExtents[1];
*mCenter = *src.mCenter;
mNumVertices = 0;
mNumIndices = 0;
freeData();
LLVector4a::memcpyNonAliased16((F32*) mExtents, (F32*) src.mExtents, 3*sizeof(LLVector4a));
resizeVertices(src.mNumVertices);
resizeIndices(src.mNumIndices);
if (mNumVertices)
{
S32 vert_size = mNumVertices*sizeof(LLVector4a);
S32 tc_size = (mNumVertices*sizeof(LLVector2)+0xF) & ~0xF;
LLVector4a::memcpyNonAliased16((F32*) mPositions, (F32*) src.mPositions, vert_size);
LLVector4a::memcpyNonAliased16((F32*) mNormals, (F32*) src.mNormals, vert_size);
if(src.mTexCoords)
{
LLVector4a::memcpyNonAliased16((F32*) mTexCoords, (F32*) src.mTexCoords, tc_size);
}
else
{
ll_aligned_free_16(mTexCoords) ;
mTexCoords = NULL ;
}
if (src.mBinormals)
{
allocateBinormals(src.mNumVertices);
LLVector4a::memcpyNonAliased16((F32*) mBinormals, (F32*) src.mBinormals, vert_size);
}
else
{
ll_aligned_free_16(mBinormals);
mBinormals = NULL;
}
if (src.mWeights)
{
allocateWeights(src.mNumVertices);
LLVector4a::memcpyNonAliased16((F32*) mWeights, (F32*) src.mWeights, vert_size);
}
else
{
ll_aligned_free_16(mWeights);
mWeights = NULL;
}
}
if (mNumIndices)
{
S32 idx_size = (mNumIndices*sizeof(U16)+0xF) & ~0xF;
LLVector4a::memcpyNonAliased16((F32*) mIndices, (F32*) src.mIndices, idx_size);
}
//delete
return *this;
}
LLVolumeFace::~LLVolumeFace()
{
ll_aligned_free_16(mExtents);
mExtents = NULL;
freeData();
}
void LLVolumeFace::freeData()
{
ll_aligned_free_16(mPositions);
mPositions = NULL;
ll_aligned_free_16( mNormals);
mNormals = NULL;
ll_aligned_free_16(mTexCoords);
mTexCoords = NULL;
ll_aligned_free_16(mIndices);
mIndices = NULL;
ll_aligned_free_16(mBinormals);
mBinormals = NULL;
ll_aligned_free_16(mWeights);
mWeights = NULL;
delete mOctree;
mOctree = NULL;
}
BOOL LLVolumeFace::create(LLVolume* volume, BOOL partial_build)
{
//tree for this face is no longer valid
delete mOctree;
mOctree = NULL;
BOOL ret = FALSE ;
if (mTypeMask & CAP_MASK)
{
ret = createCap(volume, partial_build);
}
else if ((mTypeMask & END_MASK) || (mTypeMask & SIDE_MASK))
{
ret = createSide(volume, partial_build);
}
else
{
llerrs << "Unknown/uninitialized face type!" << llendl;
}
//update the range of the texture coordinates
if(ret)
{
mTexCoordExtents[0].setVec(1.f, 1.f) ;
mTexCoordExtents[1].setVec(0.f, 0.f) ;
for(U32 i = 0 ; i < (U32)mNumVertices ; i++)
{
if(mTexCoordExtents[0].mV[0] > mTexCoords[i].mV[0])
{
mTexCoordExtents[0].mV[0] = mTexCoords[i].mV[0] ;
}
if(mTexCoordExtents[1].mV[0] < mTexCoords[i].mV[0])
{
mTexCoordExtents[1].mV[0] = mTexCoords[i].mV[0] ;
}
if(mTexCoordExtents[0].mV[1] > mTexCoords[i].mV[1])
{
mTexCoordExtents[0].mV[1] = mTexCoords[i].mV[1] ;
}
if(mTexCoordExtents[1].mV[1] < mTexCoords[i].mV[1])
{
mTexCoordExtents[1].mV[1] = mTexCoords[i].mV[1] ;
}
}
mTexCoordExtents[0].mV[0] = llmax(0.f, mTexCoordExtents[0].mV[0]) ;
mTexCoordExtents[0].mV[1] = llmax(0.f, mTexCoordExtents[0].mV[1]) ;
mTexCoordExtents[1].mV[0] = llmin(1.f, mTexCoordExtents[1].mV[0]) ;
mTexCoordExtents[1].mV[1] = llmin(1.f, mTexCoordExtents[1].mV[1]) ;
}
return ret ;
}
void LLVolumeFace::getVertexData(U16 index, LLVolumeFace::VertexData& cv)
{
cv.setPosition(mPositions[index]);
if (mNormals)
{
cv.setNormal(mNormals[index]);
}
else
{
cv.getNormal().clear();
}
if (mTexCoords)
{
cv.mTexCoord = mTexCoords[index];
}
else
{
cv.mTexCoord.clear();
}
}
bool LLVolumeFace::VertexMapData::operator==(const LLVolumeFace::VertexData& rhs) const
{
return getPosition().equals3(rhs.getPosition()) &&
mTexCoord == rhs.mTexCoord &&
getNormal().equals3(rhs.getNormal());
}
bool LLVolumeFace::VertexMapData::ComparePosition::operator()(const LLVector3& a, const LLVector3& b) const
{
if (a.mV[0] != b.mV[0])
{
return a.mV[0] < b.mV[0];
}
if (a.mV[1] != b.mV[1])
{
return a.mV[1] < b.mV[1];
}
return a.mV[2] < b.mV[2];
}
void LLVolumeFace::optimize(F32 angle_cutoff)
{
LLVolumeFace new_face;
//map of points to vector of vertices at that point
std::map<U64, std::vector<VertexMapData> > point_map;
LLVector4a range;
range.setSub(mExtents[1],mExtents[0]);
//remove redundant vertices
for (U32 i = 0; i < (U32)mNumIndices; ++i)
{
U16 index = mIndices[i];
LLVolumeFace::VertexData cv;
getVertexData(index, cv);
BOOL found = FALSE;
LLVector4a pos;
pos.setSub(mPositions[index], mExtents[0]);
pos.div(range);
U64 pos64 = 0;
pos64 = (U16) (pos[0]*65535);
pos64 = pos64 | (((U64) (pos[1]*65535)) << 16);
pos64 = pos64 | (((U64) (pos[2]*65535)) << 32);
std::map<U64, std::vector<VertexMapData> >::iterator point_iter = point_map.find(pos64);
if (point_iter != point_map.end())
{ //duplicate point might exist
for (U32 j = 0; j < point_iter->second.size(); ++j)
{
LLVolumeFace::VertexData& tv = (point_iter->second)[j];
if (tv.compareNormal(cv, angle_cutoff))
{
found = TRUE;
new_face.pushIndex((point_iter->second)[j].mIndex);
break;
}
}
}
if (!found)
{
new_face.pushVertex(cv);
U16 index = (U16) new_face.mNumVertices-1;
new_face.pushIndex(index);
VertexMapData d;
d.setPosition(cv.getPosition());
d.mTexCoord = cv.mTexCoord;
d.setNormal(cv.getNormal());
d.mIndex = index;
if (point_iter != point_map.end())
{
point_iter->second.push_back(d);
}
else
{
point_map[pos64].push_back(d);
}
}
}
llassert(new_face.mNumIndices == mNumIndices);
llassert(new_face.mNumVertices <= mNumVertices);
if (angle_cutoff > 1.f && !mNormals)
{
ll_aligned_free_16(new_face.mNormals);
new_face.mNormals = NULL;
}
if (!mTexCoords)
{
ll_aligned_free_16(new_face.mTexCoords);
new_face.mTexCoords = NULL;
}
swapData(new_face);
}
class LLVCacheTriangleData;
class LLVCacheVertexData
{
public:
S32 mIdx;
S32 mCacheTag;
F32 mScore;
U32 mActiveTriangles;
std::vector<LLVCacheTriangleData*> mTriangles;
LLVCacheVertexData()
{
mCacheTag = -1;
mScore = 0.f;
mActiveTriangles = 0;
mIdx = -1;
}
};
class LLVCacheTriangleData
{
public:
bool mActive;
F32 mScore;
LLVCacheVertexData* mVertex[3];
LLVCacheTriangleData()
{
mActive = true;
mScore = 0.f;
mVertex[0] = mVertex[1] = mVertex[2] = NULL;
}
void complete()
{
mActive = false;
for (S32 i = 0; i < 3; ++i)
{
if (mVertex[i])
{
llassert_always(mVertex[i]->mActiveTriangles > 0);
mVertex[i]->mActiveTriangles--;
}
}
}
bool operator<(const LLVCacheTriangleData& rhs) const
{ //highest score first
return rhs.mScore < mScore;
}
};
const F32 FindVertexScore_CacheDecayPower = 1.5f;
const F32 FindVertexScore_LastTriScore = 0.75f;
const F32 FindVertexScore_ValenceBoostScale = 2.0f;
const F32 FindVertexScore_ValenceBoostPower = 0.5f;
const U32 MaxSizeVertexCache = 32;
F32 find_vertex_score(LLVCacheVertexData& data)
{
if (data.mActiveTriangles == 0)
{ //no triangle references this vertex
return -1.f;
}
F32 score = 0.f;
S32 cache_idx = data.mCacheTag;
if (cache_idx < 0)
{
//not in cache
}
else
{
if (cache_idx < 3)
{ //vertex was in the last triangle
score = FindVertexScore_LastTriScore;
}
else
{ //more points for being higher in the cache
F32 scaler = 1.f/(MaxSizeVertexCache-3);
score = 1.f-((cache_idx-3)*scaler);
score = powf(score, FindVertexScore_CacheDecayPower);
}
}
//bonus points for having low valence
F32 valence_boost = powf((F32)data.mActiveTriangles, -FindVertexScore_ValenceBoostPower);
score += FindVertexScore_ValenceBoostScale * valence_boost;
return score;
}
class LLVCacheFIFO
{
public:
LLVCacheVertexData* mCache[MaxSizeVertexCache];
U32 mMisses;
LLVCacheFIFO()
{
mMisses = 0;
for (U32 i = 0; i < MaxSizeVertexCache; ++i)
{
mCache[i] = NULL;
}
}
void addVertex(LLVCacheVertexData* data)
{
if (data->mCacheTag == -1)
{
mMisses++;
S32 end = MaxSizeVertexCache-1;
if (mCache[end])
{
mCache[end]->mCacheTag = -1;
}
for (S32 i = end; i > 0; --i)
{
mCache[i] = mCache[i-1];
if (mCache[i])
{
mCache[i]->mCacheTag = i;
}
}
mCache[0] = data;
data->mCacheTag = 0;
}
}
};
class LLVCacheLRU
{
public:
LLVCacheVertexData* mCache[MaxSizeVertexCache+3];
LLVCacheTriangleData* mBestTriangle;
U32 mMisses;
LLVCacheLRU()
{
for (U32 i = 0; i < MaxSizeVertexCache+3; ++i)
{
mCache[i] = NULL;
}
mBestTriangle = NULL;
mMisses = 0;
}
void addVertex(LLVCacheVertexData* data)
{
S32 end = MaxSizeVertexCache+2;
if (data->mCacheTag != -1)
{ //just moving a vertex to the front of the cache
end = data->mCacheTag;
}
else
{
mMisses++;
if (mCache[end])
{ //adding a new vertex, vertex at end of cache falls off
mCache[end]->mCacheTag = -1;
}
}
for (S32 i = end; i > 0; --i)
{ //adjust cache pointers and tags
mCache[i] = mCache[i-1];
if (mCache[i])
{
mCache[i]->mCacheTag = i;
}
}
mCache[0] = data;
mCache[0]->mCacheTag = 0;
}
void addTriangle(LLVCacheTriangleData* data)
{
addVertex(data->mVertex[0]);
addVertex(data->mVertex[1]);
addVertex(data->mVertex[2]);
}
void updateScores()
{
for (U32 i = MaxSizeVertexCache; i < MaxSizeVertexCache+3; ++i)
{ //trailing 3 vertices aren't actually in the cache for scoring purposes
if (mCache[i])
{
mCache[i]->mCacheTag = -1;
}
}
for (U32 i = 0; i < MaxSizeVertexCache; ++i)
{ //update scores of vertices in cache
if (mCache[i])
{
mCache[i]->mScore = find_vertex_score(*(mCache[i]));
llassert_always(mCache[i]->mCacheTag == i);
}
}
mBestTriangle = NULL;
//update triangle scores
for (U32 i = 0; i < MaxSizeVertexCache+3; ++i)
{
if (mCache[i])
{
for (U32 j = 0; j < mCache[i]->mTriangles.size(); ++j)
{
LLVCacheTriangleData* tri = mCache[i]->mTriangles[j];
if (tri->mActive)
{
tri->mScore = tri->mVertex[0]->mScore;
tri->mScore += tri->mVertex[1]->mScore;
tri->mScore += tri->mVertex[2]->mScore;
if (!mBestTriangle || mBestTriangle->mScore < tri->mScore)
{
mBestTriangle = tri;
}
}
}
}
}
//knock trailing 3 vertices off the cache
for (U32 i = MaxSizeVertexCache; i < MaxSizeVertexCache+3; ++i)
{
if (mCache[i])
{
llassert_always(mCache[i]->mCacheTag == -1);
mCache[i] = NULL;
}
}
}
};
void LLVolumeFace::cacheOptimize()
{ //optimize for vertex cache according to Forsyth method:
// http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html
LLVCacheLRU cache;
if (mNumVertices < 3)
{ //nothing to do
return;
}
//mapping of vertices to triangles and indices
std::vector<LLVCacheVertexData> vertex_data;
//mapping of triangles do vertices
std::vector<LLVCacheTriangleData> triangle_data;
triangle_data.resize(mNumIndices/3);
vertex_data.resize(mNumVertices);
for (U32 i = 0; i < (U32)mNumIndices; i++)
{ //populate vertex data and triangle data arrays
U16 idx = mIndices[i];
U32 tri_idx = i/3;
vertex_data[idx].mTriangles.push_back(&(triangle_data[tri_idx]));
vertex_data[idx].mIdx = idx;
triangle_data[tri_idx].mVertex[i%3] = &(vertex_data[idx]);
}
/*F32 pre_acmr = 1.f;
//measure cache misses from before rebuild
{
LLVCacheFIFO test_cache;
for (U32 i = 0; i < mNumIndices; ++i)
{
test_cache.addVertex(&vertex_data[mIndices[i]]);
}
for (U32 i = 0; i < mNumVertices; i++)
{
vertex_data[i].mCacheTag = -1;
}
pre_acmr = (F32) test_cache.mMisses/(mNumIndices/3);
}*/
for (U32 i = 0; i < (U32)mNumVertices; i++)
{ //initialize score values (no cache -- might try a fifo cache here)
vertex_data[i].mScore = find_vertex_score(vertex_data[i]);
vertex_data[i].mActiveTriangles = vertex_data[i].mTriangles.size();
for (U32 j = 0; j < vertex_data[i].mTriangles.size(); ++j)
{
vertex_data[i].mTriangles[j]->mScore += vertex_data[i].mScore;
}
}
//sort triangle data by score
std::sort(triangle_data.begin(), triangle_data.end());
std::vector<U16> new_indices;
LLVCacheTriangleData* tri;
//prime pump by adding first triangle to cache;
tri = &(triangle_data[0]);
cache.addTriangle(tri);
new_indices.push_back(tri->mVertex[0]->mIdx);
new_indices.push_back(tri->mVertex[1]->mIdx);
new_indices.push_back(tri->mVertex[2]->mIdx);
tri->complete();
U32 breaks = 0;
for (U32 i = 1; i < (U32)mNumIndices/3; ++i)
{
cache.updateScores();
tri = cache.mBestTriangle;
if (!tri)
{
breaks++;
for (U32 j = 0; j < triangle_data.size(); ++j)
{
if (triangle_data[j].mActive)
{
tri = &(triangle_data[j]);
break;
}
}
}
cache.addTriangle(tri);
new_indices.push_back(tri->mVertex[0]->mIdx);
new_indices.push_back(tri->mVertex[1]->mIdx);
new_indices.push_back(tri->mVertex[2]->mIdx);
tri->complete();
}
for (U32 i = 0; i < (U32)mNumIndices; ++i)
{
mIndices[i] = new_indices[i];
}
/*F32 post_acmr = 1.f;
//measure cache misses from after rebuild
{
LLVCacheFIFO test_cache;
for (U32 i = 0; i < mNumVertices; i++)
{
vertex_data[i].mCacheTag = -1;
}
for (U32 i = 0; i < mNumIndices; ++i)
{
test_cache.addVertex(&vertex_data[mIndices[i]]);
}
post_acmr = (F32) test_cache.mMisses/(mNumIndices/3);
}*/
//optimize for pre-TnL cache
//allocate space for new buffer
S32 num_verts = mNumVertices;
LLVector4a* pos = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
LLVector4a* norm = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
S32 size = ((num_verts*sizeof(LLVector2)) + 0xF) & ~0xF;
LLVector2* tc = (LLVector2*) ll_aligned_malloc_16(size);
LLVector4a* wght = NULL;
if (mWeights)
{
wght = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
}
LLVector4a* binorm = NULL;
if (mBinormals)
{
binorm = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
}
//allocate mapping of old indices to new indices
std::vector<S32> new_idx;
new_idx.resize(mNumVertices, -1);
S32 cur_idx = 0;
for (U32 i = 0; i < (U32)mNumIndices; ++i)
{
U16 idx = mIndices[i];
if (new_idx[idx] == -1)
{ //this vertex hasn't been added yet
new_idx[idx] = cur_idx;
//copy vertex data
pos[cur_idx] = mPositions[idx];
norm[cur_idx] = mNormals[idx];
tc[cur_idx] = mTexCoords[idx];
if (mWeights)
{
wght[cur_idx] = mWeights[idx];
}
if (mBinormals)
{
binorm[cur_idx] = mBinormals[idx];
}
cur_idx++;
}
}
for (U32 i = 0; i < (U32)mNumIndices; ++i)
{
mIndices[i] = new_idx[mIndices[i]];
}
ll_aligned_free_16(mPositions);
ll_aligned_free_16(mNormals);
ll_aligned_free_16(mTexCoords);
ll_aligned_free_16(mWeights);
ll_aligned_free_16(mBinormals);
mPositions = pos;
mNormals = norm;
mTexCoords = tc;
mWeights = wght;
mBinormals = binorm;
//std::string result = llformat("ACMR pre/post: %.3f/%.3f -- %d triangles %d breaks", pre_acmr, post_acmr, mNumIndices/3, breaks);
//llinfos << result << llendl;
}
void LLVolumeFace::createOctree(F32 scaler, const LLVector4a& center, const LLVector4a& size)
{
if (mOctree)
{
return;
}
mOctree = new LLOctreeRoot<LLVolumeTriangle>(center, size, NULL);
new LLVolumeOctreeListener(mOctree);
for (U32 i = 0; i < (U32)mNumIndices; i+= 3)
{ //for each triangle
LLPointer<LLVolumeTriangle> tri = new LLVolumeTriangle();
const LLVector4a& v0 = mPositions[mIndices[i]];
const LLVector4a& v1 = mPositions[mIndices[i+1]];
const LLVector4a& v2 = mPositions[mIndices[i+2]];
//store pointers to vertex data
tri->mV[0] = &v0;
tri->mV[1] = &v1;
tri->mV[2] = &v2;
//store indices
tri->mIndex[0] = mIndices[i];
tri->mIndex[1] = mIndices[i+1];
tri->mIndex[2] = mIndices[i+2];
//get minimum point
LLVector4a min = v0;
min.setMin(min, v1);
min.setMin(min, v2);
//get maximum point
LLVector4a max = v0;
max.setMax(max, v1);
max.setMax(max, v2);
//compute center
LLVector4a center;
center.setAdd(min, max);
center.mul(0.5f);
tri->mPositionGroup = center;
//compute "radius"
LLVector4a size;
size.setSub(max,min);
tri->mRadius = size.getLength3().getF32() * scaler;
//insert
mOctree->insert(tri);
}
//remove unneeded octree layers
while (!mOctree->balance()) { }
//calculate AABB for each node
LLVolumeOctreeRebound rebound(this);
rebound.traverse(mOctree);
if (gDebugGL)
{
LLVolumeOctreeValidate validate;
validate.traverse(mOctree);
}
}
void LLVolumeFace::swapData(LLVolumeFace& rhs)
{
llswap(rhs.mPositions, mPositions);
llswap(rhs.mNormals, mNormals);
llswap(rhs.mBinormals, mBinormals);
llswap(rhs.mTexCoords, mTexCoords);
llswap(rhs.mIndices,mIndices);
llswap(rhs.mNumVertices, mNumVertices);
llswap(rhs.mNumIndices, mNumIndices);
}
void LerpPlanarVertex(LLVolumeFace::VertexData& v0,
LLVolumeFace::VertexData& v1,
LLVolumeFace::VertexData& v2,
LLVolumeFace::VertexData& vout,
F32 coef01,
F32 coef02)
{
LLVector4a lhs;
lhs.setSub(v1.getPosition(), v0.getPosition());
lhs.mul(coef01);
LLVector4a rhs;
rhs.setSub(v2.getPosition(), v0.getPosition());
rhs.mul(coef02);
rhs.add(lhs);
rhs.add(v0.getPosition());
vout.setPosition(rhs);
vout.mTexCoord = v0.mTexCoord + ((v1.mTexCoord-v0.mTexCoord)*coef01)+((v2.mTexCoord-v0.mTexCoord)*coef02);
vout.setNormal(v0.getNormal());
}
BOOL LLVolumeFace::createUnCutCubeCap(LLVolume* volume, BOOL partial_build)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
const std::vector<LLVolume::Point>& mesh = volume->getMesh();
const std::vector<LLVector3>& profile = volume->getProfile().mProfile;
S32 max_s = volume->getProfile().getTotal();
S32 max_t = volume->getPath().mPath.size();
// S32 i;
S32 num_vertices = 0, num_indices = 0;
S32 grid_size = (profile.size()-1)/4;
S32 quad_count = (grid_size * grid_size);
num_vertices = (grid_size+1)*(grid_size+1);
num_indices = quad_count * 4;
LLVector4a& min = mExtents[0];
LLVector4a& max = mExtents[1];
S32 offset = 0;
if (mTypeMask & TOP_MASK)
{
offset = (max_t-1) * max_s;
}
else
{
offset = mBeginS;
}
{
VertexData corners[4];
VertexData baseVert;
for(S32 t = 0; t < 4; t++)
{
corners[t].getPosition().load3( mesh[offset + (grid_size*t)].mPos.mV);
corners[t].mTexCoord.mV[0] = profile[grid_size*t].mV[0]+0.5f;
corners[t].mTexCoord.mV[1] = 0.5f - profile[grid_size*t].mV[1];
}
{
LLVector4a lhs;
lhs.setSub(corners[1].getPosition(), corners[0].getPosition());
LLVector4a rhs;
rhs.setSub(corners[2].getPosition(), corners[1].getPosition());
baseVert.getNormal().setCross3(lhs, rhs);
baseVert.getNormal().normalize3fast();
}
if(!(mTypeMask & TOP_MASK))
{
baseVert.getNormal().mul(-1.0f);
}
else
{
//Swap the UVs on the U(X) axis for top face
LLVector2 swap;
swap = corners[0].mTexCoord;
corners[0].mTexCoord=corners[3].mTexCoord;
corners[3].mTexCoord=swap;
swap = corners[1].mTexCoord;
corners[1].mTexCoord=corners[2].mTexCoord;
corners[2].mTexCoord=swap;
}
LLVector4a binormal;
calc_binormal_from_triangle( binormal,
corners[0].getPosition(), corners[0].mTexCoord,
corners[1].getPosition(), corners[1].mTexCoord,
corners[2].getPosition(), corners[2].mTexCoord);
binormal.normalize3fast();
S32 size = (grid_size+1)*(grid_size+1);
resizeVertices(size);
allocateBinormals(size);
LLVector4a* pos = (LLVector4a*) mPositions;
LLVector4a* norm = (LLVector4a*) mNormals;
LLVector4a* binorm = (LLVector4a*) mBinormals;
LLVector2* tc = (LLVector2*) mTexCoords;
for(int gx = 0;gx<grid_size+1;gx++)
{
for(int gy = 0;gy<grid_size+1;gy++)
{
VertexData newVert;
LerpPlanarVertex(
corners[0],
corners[1],
corners[3],
newVert,
(F32)gx/(F32)grid_size,
(F32)gy/(F32)grid_size);
*pos++ = newVert.getPosition();
*norm++ = baseVert.getNormal();
*tc++ = newVert.mTexCoord;
*binorm++ = binormal;
if (gx == 0 && gy == 0)
{
min = newVert.getPosition();
max = min;
}
else
{
min.setMin(min, newVert.getPosition());
max.setMax(max, newVert.getPosition());
}
}
}
mCenter->setAdd(min, max);
mCenter->mul(0.5f);
}
if (!partial_build)
{
resizeIndices(grid_size*grid_size*6);
U16* out = mIndices;
S32 idxs[] = {0,1,(grid_size+1)+1,(grid_size+1)+1,(grid_size+1),0};
for(S32 gx = 0;gx<grid_size;gx++)
{
for(S32 gy = 0;gy<grid_size;gy++)
{
if (mTypeMask & TOP_MASK)
{
for(S32 i=5;i>=0;i--)
{
*out++ = ((gy*(grid_size+1))+gx+idxs[i]);
}
}
else
{
for(S32 i=0;i<6;i++)
{
*out++ = ((gy*(grid_size+1))+gx+idxs[i]);
}
}
}
}
}
return TRUE;
}
BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
if (!(mTypeMask & HOLLOW_MASK) &&
!(mTypeMask & OPEN_MASK) &&
((volume->getParams().getPathParams().getBegin()==0.0f)&&
(volume->getParams().getPathParams().getEnd()==1.0f))&&
(volume->getParams().getProfileParams().getCurveType()==LL_PCODE_PROFILE_SQUARE &&
volume->getParams().getPathParams().getCurveType()==LL_PCODE_PATH_LINE)
){
return createUnCutCubeCap(volume, partial_build);
}
S32 num_vertices = 0, num_indices = 0;
const std::vector<LLVolume::Point>& mesh = volume->getMesh();
const std::vector<LLVector3>& profile = volume->getProfile().mProfile;
// All types of caps have the same number of vertices and indices
num_vertices = profile.size();
num_indices = (profile.size() - 2)*3;
if (!(mTypeMask & HOLLOW_MASK) && !(mTypeMask & OPEN_MASK))
{
resizeVertices(num_vertices+1);
allocateBinormals(num_vertices+1);
if (!partial_build)
{
resizeIndices(num_indices+3);
}
}
else
{
resizeVertices(num_vertices);
allocateBinormals(num_vertices);
if (!partial_build)
{
resizeIndices(num_indices);
}
}
S32 max_s = volume->getProfile().getTotal();
S32 max_t = volume->getPath().mPath.size();
mCenter->clear();
S32 offset = 0;
if (mTypeMask & TOP_MASK)
{
offset = (max_t-1) * max_s;
}
else
{
offset = mBeginS;
}
// Figure out the normal, assume all caps are flat faces.
// Cross product to get normals.
LLVector2 cuv;
LLVector2 min_uv, max_uv;
LLVector4a& min = mExtents[0];
LLVector4a& max = mExtents[1];
LLVector2* tc = (LLVector2*) mTexCoords;
LLVector4a* pos = (LLVector4a*) mPositions;
LLVector4a* norm = (LLVector4a*) mNormals;
LLVector4a* binorm = (LLVector4a*) mBinormals;
// Copy the vertices into the array
for (S32 i = 0; i < num_vertices; i++)
{
if (mTypeMask & TOP_MASK)
{
tc[i].mV[0] = profile[i].mV[0]+0.5f;
tc[i].mV[1] = profile[i].mV[1]+0.5f;
}
else
{
// Mirror for underside.
tc[i].mV[0] = profile[i].mV[0]+0.5f;
tc[i].mV[1] = 0.5f - profile[i].mV[1];
}
pos[i].load3(mesh[i + offset].mPos.mV);
if (i == 0)
{
max = pos[i];
min = max;
min_uv = max_uv = tc[i];
}
else
{
update_min_max(min,max,pos[i]);
update_min_max(min_uv, max_uv, tc[i]);
}
}
mCenter->setAdd(min, max);
mCenter->mul(0.5f);
cuv = (min_uv + max_uv)*0.5f;
LLVector4a binormal;
calc_binormal_from_triangle(binormal,
*mCenter, cuv,
pos[0], tc[0],
pos[1], tc[1]);
binormal.normalize3fast();
LLVector4a normal;
LLVector4a d0, d1;
d0.setSub(*mCenter, pos[0]);
d1.setSub(*mCenter, pos[1]);
if (mTypeMask & TOP_MASK)
{
normal.setCross3(d0, d1);
}
else
{
normal.setCross3(d1, d0);
}
normal.normalize3fast();
VertexData vd;
vd.setPosition(*mCenter);
vd.mTexCoord = cuv;
if (!(mTypeMask & HOLLOW_MASK) && !(mTypeMask & OPEN_MASK))
{
pos[num_vertices] = *mCenter;
tc[num_vertices] = cuv;
num_vertices++;
}
for (S32 i = 0; i < num_vertices; i++)
{
binorm[i].load4a(binormal.getF32ptr());
norm[i].load4a(normal.getF32ptr());
}
if (partial_build)
{
return TRUE;
}
if (mTypeMask & HOLLOW_MASK)
{
if (mTypeMask & TOP_MASK)
{
// HOLLOW TOP
// Does it matter if it's open or closed? - djs
S32 pt1 = 0, pt2 = num_vertices - 1;
S32 i = 0;
while (pt2 - pt1 > 1)
{
// Use the profile points instead of the mesh, since you want
// the un-transformed profile distances.
LLVector3 p1 = profile[pt1];
LLVector3 p2 = profile[pt2];
LLVector3 pa = profile[pt1+1];
LLVector3 pb = profile[pt2-1];
p1.mV[VZ] = 0.f;
p2.mV[VZ] = 0.f;
pa.mV[VZ] = 0.f;
pb.mV[VZ] = 0.f;
// Use area of triangle to determine backfacing
F32 area_1a2, area_1ba, area_21b, area_2ab;
area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
(pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
(p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
(pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
(pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
(p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
(pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
BOOL use_tri1a2 = TRUE;
BOOL tri_1a2 = TRUE;
BOOL tri_21b = TRUE;
if (area_1a2 < 0)
{
tri_1a2 = FALSE;
}
if (area_2ab < 0)
{
// Can't use, because it contains point b
tri_1a2 = FALSE;
}
if (area_21b < 0)
{
tri_21b = FALSE;
}
if (area_1ba < 0)
{
// Can't use, because it contains point b
tri_21b = FALSE;
}
if (!tri_1a2)
{
use_tri1a2 = FALSE;
}
else if (!tri_21b)
{
use_tri1a2 = TRUE;
}
else
{
LLVector3 d1 = p1 - pa;
LLVector3 d2 = p2 - pb;
if (d1.magVecSquared() < d2.magVecSquared())
{
use_tri1a2 = TRUE;
}
else
{
use_tri1a2 = FALSE;
}
}
if (use_tri1a2)
{
mIndices[i++] = pt1;
mIndices[i++] = pt1 + 1;
mIndices[i++] = pt2;
pt1++;
}
else
{
mIndices[i++] = pt1;
mIndices[i++] = pt2 - 1;
mIndices[i++] = pt2;
pt2--;
}
}
}
else
{
// HOLLOW BOTTOM
// Does it matter if it's open or closed? - djs
llassert(mTypeMask & BOTTOM_MASK);
S32 pt1 = 0, pt2 = num_vertices - 1;
S32 i = 0;
while (pt2 - pt1 > 1)
{
// Use the profile points instead of the mesh, since you want
// the un-transformed profile distances.
LLVector3 p1 = profile[pt1];
LLVector3 p2 = profile[pt2];
LLVector3 pa = profile[pt1+1];
LLVector3 pb = profile[pt2-1];
p1.mV[VZ] = 0.f;
p2.mV[VZ] = 0.f;
pa.mV[VZ] = 0.f;
pb.mV[VZ] = 0.f;
// Use area of triangle to determine backfacing
F32 area_1a2, area_1ba, area_21b, area_2ab;
area_1a2 = (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
(pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
(p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);
area_1ba = (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
(pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
(pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);
area_21b = (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
(p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
area_2ab = (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
(pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);
BOOL use_tri1a2 = TRUE;
BOOL tri_1a2 = TRUE;
BOOL tri_21b = TRUE;
if (area_1a2 < 0)
{
tri_1a2 = FALSE;
}
if (area_2ab < 0)
{
// Can't use, because it contains point b
tri_1a2 = FALSE;
}
if (area_21b < 0)
{
tri_21b = FALSE;
}
if (area_1ba < 0)
{
// Can't use, because it contains point b
tri_21b = FALSE;
}
if (!tri_1a2)
{
use_tri1a2 = FALSE;
}
else if (!tri_21b)
{
use_tri1a2 = TRUE;
}
else
{
LLVector3 d1 = p1 - pa;
LLVector3 d2 = p2 - pb;
if (d1.magVecSquared() < d2.magVecSquared())
{
use_tri1a2 = TRUE;
}
else
{
use_tri1a2 = FALSE;
}
}
// Flipped backfacing from top
if (use_tri1a2)
{
mIndices[i++] = pt1;
mIndices[i++] = pt2;
mIndices[i++] = pt1 + 1;
pt1++;
}
else
{
mIndices[i++] = pt1;
mIndices[i++] = pt2;
mIndices[i++] = pt2 - 1;
pt2--;
}
}
}
}
else
{
// Not hollow, generate the triangle fan.
U16 v1 = 2;
U16 v2 = 1;
if (mTypeMask & TOP_MASK)
{
v1 = 1;
v2 = 2;
}
for (S32 i = 0; i < (num_vertices - 2); i++)
{
mIndices[3*i] = num_vertices - 1;
mIndices[3*i+v1] = i;
mIndices[3*i+v2] = i + 1;
}
}
return TRUE;
}
void LLVolumeFace::createBinormals()
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
if (!mBinormals)
{
allocateBinormals(mNumVertices);
//generate binormals
LLVector4a* pos = mPositions;
LLVector2* tc = (LLVector2*) mTexCoords;
LLVector4a* binorm = (LLVector4a*) mBinormals;
LLVector4a* end = mBinormals+mNumVertices;
while (binorm < end)
{
(*binorm++).clear();
}
binorm = mBinormals;
for (U32 i = 0; i < (U32)mNumIndices/3; i++)
{ //for each triangle
const U16& i0 = mIndices[i*3+0];
const U16& i1 = mIndices[i*3+1];
const U16& i2 = mIndices[i*3+2];
//calculate binormal
LLVector4a binormal;
calc_binormal_from_triangle(binormal,
pos[i0], tc[i0],
pos[i1], tc[i1],
pos[i2], tc[i2]);
//add triangle normal to vertices
binorm[i0].add(binormal);
binorm[i1].add(binormal);
binorm[i2].add(binormal);
//even out quad contributions
if (i % 2 == 0)
{
binorm[i2].add(binormal);
}
else
{
binorm[i1].add(binormal);
}
}
//normalize binormals
for (U32 i = 0; i < (U32)mNumVertices; i++)
{
binorm[i].normalize3fast();
//bump map/planar projection code requires normals to be normalized
mNormals[i].normalize3fast();
}
}
}
void LLVolumeFace::resizeVertices(S32 num_verts)
{
ll_aligned_free_16(mPositions);
ll_aligned_free_16(mNormals);
ll_aligned_free_16(mBinormals);
ll_aligned_free_16(mTexCoords);
mBinormals = NULL;
if (num_verts)
{
mPositions = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
assert_aligned(mPositions, 16);
mNormals = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
assert_aligned(mNormals, 16);
//pad texture coordinate block end to allow for QWORD reads
S32 size = ((num_verts*sizeof(LLVector2)) + 0xF) & ~0xF;
mTexCoords = (LLVector2*) ll_aligned_malloc_16(size);
assert_aligned(mTexCoords, 16);
}
else
{
mPositions = NULL;
mNormals = NULL;
mTexCoords = NULL;
}
mNumVertices = num_verts;
}
void LLVolumeFace::pushVertex(const LLVolumeFace::VertexData& cv)
{
pushVertex(cv.getPosition(), cv.getNormal(), cv.mTexCoord);
}
void LLVolumeFace::pushVertex(const LLVector4a& pos, const LLVector4a& norm, const LLVector2& tc)
{
S32 new_verts = mNumVertices+1;
S32 new_size = new_verts*16;
// S32 old_size = mNumVertices*16;
//positions
mPositions = (LLVector4a*) realloc(mPositions, new_size);
//normals
mNormals = (LLVector4a*) realloc(mNormals, new_size);
//tex coords
new_size = ((new_verts*8)+0xF) & ~0xF;
mTexCoords = (LLVector2*) realloc(mTexCoords, new_size);
//just clear binormals
ll_aligned_free_16(mBinormals);
mBinormals = NULL;
mPositions[mNumVertices] = pos;
mNormals[mNumVertices] = norm;
mTexCoords[mNumVertices] = tc;
mNumVertices++;
}
void LLVolumeFace::allocateBinormals(S32 num_verts)
{
ll_aligned_free_16(mBinormals);
mBinormals = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
}
void LLVolumeFace::allocateWeights(S32 num_verts)
{
ll_aligned_free_16(mWeights);
mWeights = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
}
void LLVolumeFace::resizeIndices(S32 num_indices)
{
ll_aligned_free_16(mIndices);
if (num_indices)
{
//pad index block end to allow for QWORD reads
S32 size = ((num_indices*sizeof(U16)) + 0xF) & ~0xF;
mIndices = (U16*) ll_aligned_malloc_16(size);
}
else
{
mIndices = NULL;
}
mNumIndices = num_indices;
}
void LLVolumeFace::pushIndex(const U16& idx)
{
S32 new_count = mNumIndices + 1;
S32 new_size = ((new_count*2)+0xF) & ~0xF;
S32 old_size = ((mNumIndices*2)+0xF) & ~0xF;
if (new_size != old_size)
{
mIndices = (U16*) realloc(mIndices, new_size);
}
mIndices[mNumIndices++] = idx;
}
void LLVolumeFace::fillFromLegacyData(std::vector<LLVolumeFace::VertexData>& v, std::vector<U16>& idx)
{
resizeVertices(v.size());
resizeIndices(idx.size());
for (U32 i = 0; i < v.size(); ++i)
{
mPositions[i] = v[i].getPosition();
mNormals[i] = v[i].getNormal();
mTexCoords[i] = v[i].mTexCoord;
}
for (U32 i = 0; i < idx.size(); ++i)
{
mIndices[i] = idx[i];
}
}
void LLVolumeFace::appendFace(const LLVolumeFace& face, LLMatrix4& mat_in, LLMatrix4& norm_mat_in)
{
U16 offset = mNumVertices;
S32 new_count = face.mNumVertices + mNumVertices;
if (new_count > 65536)
{
llerrs << "Cannot append face -- 16-bit overflow will occur." << llendl;
}
if (face.mNumVertices == 0)
{
llerrs << "Cannot append empty face." << llendl;
}
//allocate new buffer space
mPositions = (LLVector4a*) realloc(mPositions, new_count*sizeof(LLVector4a));
assert_aligned(mPositions, 16);
mNormals = (LLVector4a*) realloc(mNormals, new_count*sizeof(LLVector4a));
assert_aligned(mNormals, 16);
mTexCoords = (LLVector2*) realloc(mTexCoords, (new_count*sizeof(LLVector2)+0xF) & ~0xF);
assert_aligned(mTexCoords, 16);
mNumVertices = new_count;
//get destination address of appended face
LLVector4a* dst_pos = mPositions+offset;
LLVector2* dst_tc = mTexCoords+offset;
LLVector4a* dst_norm = mNormals+offset;
//get source addresses of appended face
const LLVector4a* src_pos = face.mPositions;
const LLVector2* src_tc = face.mTexCoords;
const LLVector4a* src_norm = face.mNormals;
//load aligned matrices
LLMatrix4a mat, norm_mat;
mat.loadu(mat_in);
norm_mat.loadu(norm_mat_in);
for (U32 i = 0; i < (U32)face.mNumVertices; ++i)
{
//transform appended face position and store
mat.affineTransform(src_pos[i], dst_pos[i]);
//transform appended face normal and store
norm_mat.rotate(src_norm[i], dst_norm[i]);
dst_norm[i].normalize3fast();
//copy appended face texture coordinate
dst_tc[i] = src_tc[i];
if (offset == 0 && i == 0)
{ //initialize bounding box
mExtents[0] = mExtents[1] = dst_pos[i];
}
else
{
//stretch bounding box
update_min_max(mExtents[0], mExtents[1], dst_pos[i]);
}
}
new_count = mNumIndices + face.mNumIndices;
//allocate new index buffer
mIndices = (U16*) realloc(mIndices, (new_count*sizeof(U16)+0xF) & ~0xF);
//get destination address into new index buffer
U16* dst_idx = mIndices+mNumIndices;
mNumIndices = new_count;
for (U32 i = 0; i < (U32)face.mNumIndices; ++i)
{ //copy indices, offsetting by old vertex count
dst_idx[i] = face.mIndices[i]+offset;
}
}
BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build)
{
LLMemType m1(LLMemType::MTYPE_VOLUME);
BOOL flat = mTypeMask & FLAT_MASK;
U8 sculpt_type = volume->getParams().getSculptType();
U8 sculpt_stitching = sculpt_type & LL_SCULPT_TYPE_MASK;
BOOL sculpt_invert = sculpt_type & LL_SCULPT_FLAG_INVERT;
BOOL sculpt_mirror = sculpt_type & LL_SCULPT_FLAG_MIRROR;
BOOL sculpt_reverse_horizontal = (sculpt_invert ? !sculpt_mirror : sculpt_mirror); // XOR
S32 num_vertices, num_indices;
const std::vector<LLVolume::Point>& mesh = volume->getMesh();
const std::vector<LLVector3>& profile = volume->getProfile().mProfile;
const std::vector<LLPath::PathPt>& path_data = volume->getPath().mPath;
S32 max_s = volume->getProfile().getTotal();
S32 s, t, i;
F32 ss, tt;
num_vertices = mNumS*mNumT;
num_indices = (mNumS-1)*(mNumT-1)*6;
if (!partial_build)
{
resizeVertices(num_vertices);
resizeIndices(num_indices);
if (!volume->isMeshAssetLoaded())
{
mEdge.resize(num_indices);
}
}
LLVector4a* pos = (LLVector4a*) mPositions;
LLVector4a* norm = (LLVector4a*) mNormals;
LLVector2* tc = (LLVector2*) mTexCoords;
S32 begin_stex = llfloor( profile[mBeginS].mV[2] );
S32 num_s = ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2) ? mNumS/2 : mNumS;
S32 cur_vertex = 0;
// Copy the vertices into the array
for (t = mBeginT; t < mBeginT + mNumT; t++)
{
tt = path_data[t].mTexT;
for (s = 0; s < num_s; s++)
{
if (mTypeMask & END_MASK)
{
if (s)
{
ss = 1.f;
}
else
{
ss = 0.f;
}
}
else
{
// Get s value for tex-coord.
if (!flat)
{
ss = profile[mBeginS + s].mV[2];
}
else
{
ss = profile[mBeginS + s].mV[2] - begin_stex;
}
}
if (sculpt_reverse_horizontal)
{
ss = 1.f - ss;
}
// Check to see if this triangle wraps around the array.
if (mBeginS + s >= max_s)
{
// We're wrapping
i = mBeginS + s + max_s*(t-1);
}
else
{
i = mBeginS + s + max_s*t;
}
pos[cur_vertex].load3(mesh[i].mPos.mV);
tc[cur_vertex] = LLVector2(ss,tt);
norm[cur_vertex].clear();
cur_vertex++;
if ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2 && s > 0)
{
pos[cur_vertex].load3(mesh[i].mPos.mV);
tc[cur_vertex] = LLVector2(ss,tt);
norm[cur_vertex].clear();
cur_vertex++;
}
}
if ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2)
{
if (mTypeMask & OPEN_MASK)
{
s = num_s-1;
}
else
{
s = 0;
}
i = mBeginS + s + max_s*t;
ss = profile[mBeginS + s].mV[2] - begin_stex;
pos[cur_vertex].load3(mesh[i].mPos.mV);
tc[cur_vertex] = LLVector2(ss,tt);
norm[cur_vertex].clear();
cur_vertex++;
}
}
//get bounding box for this side
LLVector4a& face_min = mExtents[0];
LLVector4a& face_max = mExtents[1];
mCenter->clear();
face_min = face_max = pos[0];
for (U32 i = 1; i < (U32)mNumVertices; ++i)
{
update_min_max(face_min, face_max, pos[i]);
}
mCenter->setAdd(face_min, face_max);
mCenter->mul(0.5f);
S32 cur_index = 0;
S32 cur_edge = 0;
BOOL flat_face = mTypeMask & FLAT_MASK;
if (!partial_build)
{
// Now we generate the indices.
for (t = 0; t < (mNumT-1); t++)
{
for (s = 0; s < (mNumS-1); s++)
{
mIndices[cur_index++] = s + mNumS*t; //bottom left
mIndices[cur_index++] = s+1 + mNumS*(t+1); //top right
mIndices[cur_index++] = s + mNumS*(t+1); //top left
mIndices[cur_index++] = s + mNumS*t; //bottom left
mIndices[cur_index++] = s+1 + mNumS*t; //bottom right
mIndices[cur_index++] = s+1 + mNumS*(t+1); //top right
mEdge[cur_edge++] = (mNumS-1)*2*t+s*2+1; //bottom left/top right neighbor face
if (t < mNumT-2) { //top right/top left neighbor face
mEdge[cur_edge++] = (mNumS-1)*2*(t+1)+s*2+1;
}
else if (mNumT <= 3 || volume->getPath().isOpen() == TRUE) { //no neighbor
mEdge[cur_edge++] = -1;
}
else { //wrap on T
mEdge[cur_edge++] = s*2+1;
}
if (s > 0) { //top left/bottom left neighbor face
mEdge[cur_edge++] = (mNumS-1)*2*t+s*2-1;
}
else if (flat_face || volume->getProfile().isOpen() == TRUE) { //no neighbor
mEdge[cur_edge++] = -1;
}
else { //wrap on S
mEdge[cur_edge++] = (mNumS-1)*2*t+(mNumS-2)*2+1;
}
if (t > 0) { //bottom left/bottom right neighbor face
mEdge[cur_edge++] = (mNumS-1)*2*(t-1)+s*2;
}
else if (mNumT <= 3 || volume->getPath().isOpen() == TRUE) { //no neighbor
mEdge[cur_edge++] = -1;
}
else { //wrap on T
mEdge[cur_edge++] = (mNumS-1)*2*(mNumT-2)+s*2;
}
if (s < mNumS-2) { //bottom right/top right neighbor face
mEdge[cur_edge++] = (mNumS-1)*2*t+(s+1)*2;
}
else if (flat_face || volume->getProfile().isOpen() == TRUE) { //no neighbor
mEdge[cur_edge++] = -1;
}
else { //wrap on S
mEdge[cur_edge++] = (mNumS-1)*2*t;
}
mEdge[cur_edge++] = (mNumS-1)*2*t+s*2; //top right/bottom left neighbor face
}
}
}
//clear normals
for (U32 i = 0; i < (U32)mNumVertices; i++)
{
mNormals[i].clear();
}
//generate normals
for (U32 i = 0; i < (U32)mNumIndices/3; i++) //for each triangle
{
const U16* idx = &(mIndices[i*3]);
LLVector4a* v[] =
{ pos+idx[0], pos+idx[1], pos+idx[2] };
LLVector4a* n[] =
{ norm+idx[0], norm+idx[1], norm+idx[2] };
//calculate triangle normal
LLVector4a a, b, c;
a.setSub(*v[0], *v[1]);
b.setSub(*v[0], *v[2]);
c.setCross3(a,b);
n[0]->add(c);
n[1]->add(c);
n[2]->add(c);
//even out quad contributions
n[i%2+1]->add(c);
}
// adjust normals based on wrapping and stitching
LLVector4a top;
top.setSub(pos[0], pos[mNumS*(mNumT-2)]);
BOOL s_bottom_converges = (top.dot3(top) < 0.000001f);
top.setSub(pos[mNumS-1], pos[mNumS*(mNumT-2)+mNumS-1]);
BOOL s_top_converges = (top.dot3(top) < 0.000001f);
if (sculpt_stitching == LL_SCULPT_TYPE_NONE) // logic for non-sculpt volumes
{
if (volume->getPath().isOpen() == FALSE)
{ //wrap normals on T
for (S32 i = 0; i < mNumS; i++)
{
LLVector4a n;
n.setAdd(norm[i], norm[mNumS*(mNumT-1)+i]);
norm[i] = n;
norm[mNumS*(mNumT-1)+i] = n;
}
}
if ((volume->getProfile().isOpen() == FALSE) && !(s_bottom_converges))
{ //wrap normals on S
for (S32 i = 0; i < mNumT; i++)
{
LLVector4a n;
n.setAdd(norm[mNumS*i], norm[mNumS*i+mNumS-1]);
norm[mNumS * i] = n;
norm[mNumS * i+mNumS-1] = n;
}
}
if (volume->getPathType() == LL_PCODE_PATH_CIRCLE &&
((volume->getProfileType() & LL_PCODE_PROFILE_MASK) == LL_PCODE_PROFILE_CIRCLE_HALF))
{
if (s_bottom_converges)
{ //all lower S have same normal
for (S32 i = 0; i < mNumT; i++)
{
norm[mNumS*i].set(1,0,0);
}
}
if (s_top_converges)
{ //all upper S have same normal
for (S32 i = 0; i < mNumT; i++)
{
norm[mNumS*i+mNumS-1].set(-1,0,0);
}
}
}
}
else // logic for sculpt volumes
{
BOOL average_poles = FALSE;
BOOL wrap_s = FALSE;
BOOL wrap_t = FALSE;
if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE)
average_poles = TRUE;
if ((sculpt_stitching == LL_SCULPT_TYPE_SPHERE) ||
(sculpt_stitching == LL_SCULPT_TYPE_TORUS) ||
(sculpt_stitching == LL_SCULPT_TYPE_CYLINDER))
wrap_s = TRUE;
if (sculpt_stitching == LL_SCULPT_TYPE_TORUS)
wrap_t = TRUE;
if (average_poles)
{
// average normals for north pole
LLVector4a average;
average.clear();
for (S32 i = 0; i < mNumS; i++)
{
average.add(norm[i]);
}
// set average
for (S32 i = 0; i < mNumS; i++)
{
norm[i] = average;
}
// average normals for south pole
average.clear();
for (S32 i = 0; i < mNumS; i++)
{
average.add(norm[i + mNumS * (mNumT - 1)]);
}
// set average
for (S32 i = 0; i < mNumS; i++)
{
norm[i + mNumS * (mNumT - 1)] = average;
}
}
if (wrap_s)
{
for (S32 i = 0; i < mNumT; i++)
{
LLVector4a n;
n.setAdd(norm[mNumS*i], norm[mNumS*i+mNumS-1]);
norm[mNumS * i] = n;
norm[mNumS * i+mNumS-1] = n;
}
}
if (wrap_t)
{
for (S32 i = 0; i < mNumS; i++)
{
LLVector4a n;
n.setAdd(norm[i], norm[mNumS*(mNumT-1)+i]);
norm[i] = n;
norm[mNumS*(mNumT-1)+i] = n;
}
}
}
return TRUE;
}
// Finds binormal based on three vertices with texture coordinates.
// Fills in dummy values if the triangle has degenerate texture coordinates.
void calc_binormal_from_triangle(LLVector4a& binormal,
const LLVector4a& pos0,
const LLVector2& tex0,
const LLVector4a& pos1,
const LLVector2& tex1,
const LLVector4a& pos2,
const LLVector2& tex2)
{
LLVector4a rx0( pos0[VX], tex0.mV[VX], tex0.mV[VY] );
LLVector4a rx1( pos1[VX], tex1.mV[VX], tex1.mV[VY] );
LLVector4a rx2( pos2[VX], tex2.mV[VX], tex2.mV[VY] );
LLVector4a ry0( pos0[VY], tex0.mV[VX], tex0.mV[VY] );
LLVector4a ry1( pos1[VY], tex1.mV[VX], tex1.mV[VY] );
LLVector4a ry2( pos2[VY], tex2.mV[VX], tex2.mV[VY] );
LLVector4a rz0( pos0[VZ], tex0.mV[VX], tex0.mV[VY] );
LLVector4a rz1( pos1[VZ], tex1.mV[VX], tex1.mV[VY] );
LLVector4a rz2( pos2[VZ], tex2.mV[VX], tex2.mV[VY] );
LLVector4a lhs, rhs;
LLVector4a r0;
lhs.setSub(rx0, rx1); rhs.setSub(rx0, rx2);
r0.setCross3(lhs, rhs);
LLVector4a r1;
lhs.setSub(ry0, ry1); rhs.setSub(ry0, ry2);
r1.setCross3(lhs, rhs);
LLVector4a r2;
lhs.setSub(rz0, rz1); rhs.setSub(rz0, rz2);
r2.setCross3(lhs, rhs);
if( r0[VX] && r1[VX] && r2[VX] )
{
binormal.set(
-r0[VZ] / r0[VX],
-r1[VZ] / r1[VX],
-r2[VZ] / r2[VX]);
// binormal.normVec();
}
else
{
binormal.set( 0, 1 , 0 );
}
}