563 lines
14 KiB
C++
563 lines
14 KiB
C++
/**
|
|
* @file llmath.h
|
|
* @brief Useful math constants and macros.
|
|
*
|
|
* $LicenseInfo:firstyear=2000&license=viewerlgpl$
|
|
* Second Life Viewer Source Code
|
|
* Copyright (C) 2010, Linden Research, Inc.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation;
|
|
* version 2.1 of the License only.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
|
|
* $/LicenseInfo$
|
|
*/
|
|
|
|
#ifndef LLMATH_H
|
|
#define LLMATH_H
|
|
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <vector>
|
|
#include <limits>
|
|
#include "lldefs.h"
|
|
//#include "llstl.h" // *TODO: Remove when LLString is gone
|
|
//#include "llstring.h" // *TODO: Remove when LLString is gone
|
|
// lltut.h uses is_approx_equal_fraction(). This was moved to its own header
|
|
// file in llcommon so we can use lltut.h for llcommon tests without making
|
|
// llcommon depend on llmath.
|
|
#include "is_approx_equal_fraction.h"
|
|
|
|
// work around for Windows & older gcc non-standard function names.
|
|
#if LL_WINDOWS
|
|
#include <float.h>
|
|
#define llisnan(val) _isnan(val)
|
|
#define llfinite(val) _finite(val)
|
|
#elif (LL_LINUX && __GNUC__ <= 2)
|
|
#define llisnan(val) isnan(val)
|
|
#define llfinite(val) isfinite(val)
|
|
#elif LL_SOLARIS
|
|
#define llisnan(val) isnan(val)
|
|
#define llfinite(val) (val <= std::numeric_limits<double>::max())
|
|
#else
|
|
#define llisnan(val) std::isnan(val)
|
|
#define llfinite(val) std::isfinite(val)
|
|
#endif
|
|
|
|
// Single Precision Floating Point Routines
|
|
// (There used to be more defined here, but they appeared to be redundant and
|
|
// were breaking some other includes. Removed by Falcon, reviewed by Andrew, 11/25/09)
|
|
/*#ifndef tanf
|
|
#define tanf(x) ((F32)tan((F64)(x)))
|
|
#endif*/
|
|
|
|
const F32 GRAVITY = -9.8f;
|
|
|
|
// mathematical constants
|
|
const F32 F_PI = 3.1415926535897932384626433832795f;
|
|
const F32 F_TWO_PI = 6.283185307179586476925286766559f;
|
|
const F32 F_PI_BY_TWO = 1.5707963267948966192313216916398f;
|
|
const F32 F_SQRT_TWO_PI = 2.506628274631000502415765284811f;
|
|
const F32 F_E = 2.71828182845904523536f;
|
|
const F32 F_SQRT2 = 1.4142135623730950488016887242097f;
|
|
const F32 F_SQRT3 = 1.73205080756888288657986402541f;
|
|
const F32 OO_SQRT2 = 0.7071067811865475244008443621049f;
|
|
const F32 OO_SQRT3 = 0.577350269189625764509f;
|
|
const F32 DEG_TO_RAD = 0.017453292519943295769236907684886f;
|
|
const F32 RAD_TO_DEG = 57.295779513082320876798154814105f;
|
|
const F32 F_APPROXIMATELY_ZERO = 0.00001f;
|
|
const F32 F_LN10 = 2.3025850929940456840179914546844f;
|
|
const F32 OO_LN10 = 0.4342944819032518276511289189166f;
|
|
const F32 F_LN2 = 0.69314718056f;
|
|
const F32 OO_LN2 = 1.4426950408889634073599246810019f;
|
|
|
|
const F32 F_ALMOST_ZERO = 0.0001f;
|
|
const F32 F_ALMOST_ONE = 1.0f - F_ALMOST_ZERO;
|
|
|
|
const F32 GIMBAL_THRESHOLD = 0.000436f; // sets the gimballock threshold 0.025 away from +/-90 degrees
|
|
// formula: GIMBAL_THRESHOLD = sin(DEG_TO_RAD * gimbal_threshold_angle);
|
|
|
|
// BUG: Eliminate in favor of F_APPROXIMATELY_ZERO above?
|
|
const F32 FP_MAG_THRESHOLD = 0.0000001f;
|
|
|
|
// TODO: Replace with logic like is_approx_equal
|
|
inline bool is_approx_zero( F32 f ) { return (-F_APPROXIMATELY_ZERO < f) && (f < F_APPROXIMATELY_ZERO); }
|
|
|
|
// These functions work by interpreting sign+exp+mantissa as an unsigned
|
|
// integer.
|
|
// For example:
|
|
// x = <sign>1 <exponent>00000010 <mantissa>00000000000000000000000
|
|
// y = <sign>1 <exponent>00000001 <mantissa>11111111111111111111111
|
|
//
|
|
// interpreted as ints =
|
|
// x = 10000001000000000000000000000000
|
|
// y = 10000000111111111111111111111111
|
|
// which is clearly a different of 1 in the least significant bit
|
|
// Values with the same exponent can be trivially shown to work.
|
|
//
|
|
// WARNING: Denormals of opposite sign do not work
|
|
// x = <sign>1 <exponent>00000000 <mantissa>00000000000000000000001
|
|
// y = <sign>0 <exponent>00000000 <mantissa>00000000000000000000001
|
|
// Although these values differ by 2 in the LSB, the sign bit makes
|
|
// the int comparison fail.
|
|
//
|
|
// WARNING: NaNs can compare equal
|
|
// There is no special treatment of exceptional values like NaNs
|
|
//
|
|
// WARNING: Infinity is comparable with F32_MAX and negative
|
|
// infinity is comparable with F32_MIN
|
|
|
|
// handles negative and positive zeros
|
|
inline bool is_zero(F32 x)
|
|
{
|
|
return (*(U32*)(&x) & 0x7fffffff) == 0;
|
|
}
|
|
|
|
inline bool is_approx_equal(F32 x, F32 y)
|
|
{
|
|
const S32 COMPARE_MANTISSA_UP_TO_BIT = 0x02;
|
|
return (std::abs((S32) ((U32&)x - (U32&)y) ) < COMPARE_MANTISSA_UP_TO_BIT);
|
|
}
|
|
|
|
inline bool is_approx_equal(F64 x, F64 y)
|
|
{
|
|
const S64 COMPARE_MANTISSA_UP_TO_BIT = 0x02;
|
|
return (std::abs((S32) ((U64&)x - (U64&)y) ) < COMPARE_MANTISSA_UP_TO_BIT);
|
|
}
|
|
|
|
inline S32 llabs(const S32 a)
|
|
{
|
|
return S32(std::labs(a));
|
|
}
|
|
|
|
inline F32 llabs(const F32 a)
|
|
{
|
|
return F32(std::fabs(a));
|
|
}
|
|
|
|
inline F64 llabs(const F64 a)
|
|
{
|
|
return F64(std::fabs(a));
|
|
}
|
|
|
|
inline S32 lltrunc( F32 f )
|
|
{
|
|
#if LL_WINDOWS && !defined( __INTEL_COMPILER ) && !defined(_WIN64)
|
|
// Avoids changing the floating point control word.
|
|
// Add or subtract 0.5 - epsilon and then round
|
|
const static U32 zpfp[] = { 0xBEFFFFFF, 0x3EFFFFFF };
|
|
S32 result;
|
|
__asm {
|
|
fld f
|
|
mov eax, f
|
|
shr eax, 29
|
|
and eax, 4
|
|
fadd dword ptr [zpfp + eax]
|
|
fistp result
|
|
}
|
|
return result;
|
|
#else
|
|
return (S32)f;
|
|
#endif
|
|
}
|
|
|
|
inline S32 lltrunc( F64 f )
|
|
{
|
|
return (S32)f;
|
|
}
|
|
|
|
inline S32 llfloor( F32 f )
|
|
{
|
|
#if LL_WINDOWS && !defined( __INTEL_COMPILER ) && !defined(_WIN64)
|
|
// Avoids changing the floating point control word.
|
|
// Accurate (unlike Stereopsis version) for all values between S32_MIN and S32_MAX and slightly faster than Stereopsis version.
|
|
// Add -(0.5 - epsilon) and then round
|
|
const U32 zpfp = 0xBEFFFFFF;
|
|
S32 result;
|
|
__asm {
|
|
fld f
|
|
fadd dword ptr [zpfp]
|
|
fistp result
|
|
}
|
|
return result;
|
|
#else
|
|
return (S32)floor(f);
|
|
#endif
|
|
}
|
|
|
|
|
|
inline S32 llceil( F32 f )
|
|
{
|
|
// This could probably be optimized, but this works.
|
|
return (S32)ceil(f);
|
|
}
|
|
|
|
|
|
#ifndef BOGUS_ROUND
|
|
// Use this round. Does an arithmetic round (0.5 always rounds up)
|
|
inline S32 llround(const F32 val)
|
|
{
|
|
return llfloor(val + 0.5f);
|
|
}
|
|
|
|
#else // BOGUS_ROUND
|
|
// Old llround implementation - does banker's round (toward nearest even in the case of a 0.5.
|
|
// Not using this because we don't have a consistent implementation on both platforms, use
|
|
// llfloor(val + 0.5f), which is consistent on all platforms.
|
|
inline S32 llround(const F32 val)
|
|
{
|
|
#if LL_WINDOWS
|
|
// Note: assumes that the floating point control word is set to rounding mode (the default)
|
|
S32 ret_val;
|
|
_asm fld val
|
|
_asm fistp ret_val;
|
|
return ret_val;
|
|
#elif LL_LINUX
|
|
// Note: assumes that the floating point control word is set
|
|
// to rounding mode (the default)
|
|
S32 ret_val;
|
|
__asm__ __volatile__( "flds %1 \n\t"
|
|
"fistpl %0 \n\t"
|
|
: "=m" (ret_val)
|
|
: "m" (val) );
|
|
return ret_val;
|
|
#else
|
|
return llfloor(val + 0.5f);
|
|
#endif
|
|
}
|
|
|
|
// A fast arithmentic round on intel, from Laurent de Soras http://ldesoras.free.fr
|
|
inline int round_int(double x)
|
|
{
|
|
const float round_to_nearest = 0.5f;
|
|
int i;
|
|
__asm
|
|
{
|
|
fld x
|
|
fadd st, st (0)
|
|
fadd round_to_nearest
|
|
fistp i
|
|
sar i, 1
|
|
}
|
|
return (i);
|
|
}
|
|
#endif // BOGUS_ROUND
|
|
|
|
inline F32 llround( F32 val, F32 nearest )
|
|
{
|
|
return F32(floor(val * (1.0f / nearest) + 0.5f)) * nearest;
|
|
}
|
|
|
|
inline F64 llround( F64 val, F64 nearest )
|
|
{
|
|
return F64(floor(val * (1.0 / nearest) + 0.5)) * nearest;
|
|
}
|
|
|
|
// these provide minimum peak error
|
|
//
|
|
// avg error = -0.013049
|
|
// peak error = -31.4 dB
|
|
// RMS error = -28.1 dB
|
|
|
|
const F32 FAST_MAG_ALPHA = 0.960433870103f;
|
|
const F32 FAST_MAG_BETA = 0.397824734759f;
|
|
|
|
// these provide minimum RMS error
|
|
//
|
|
// avg error = 0.000003
|
|
// peak error = -32.6 dB
|
|
// RMS error = -25.7 dB
|
|
//
|
|
//const F32 FAST_MAG_ALPHA = 0.948059448969f;
|
|
//const F32 FAST_MAG_BETA = 0.392699081699f;
|
|
|
|
inline F32 fastMagnitude(F32 a, F32 b)
|
|
{
|
|
a = (a > 0) ? a : -a;
|
|
b = (b > 0) ? b : -b;
|
|
return(FAST_MAG_ALPHA * llmax(a,b) + FAST_MAG_BETA * llmin(a,b));
|
|
}
|
|
|
|
|
|
|
|
////////////////////
|
|
//
|
|
// Fast F32/S32 conversions
|
|
//
|
|
// Culled from www.stereopsis.com/FPU.html
|
|
|
|
const F64 LL_DOUBLE_TO_FIX_MAGIC = 68719476736.0*1.5; //2^36 * 1.5, (52-_shiftamt=36) uses limited precisicion to floor
|
|
const S32 LL_SHIFT_AMOUNT = 16; //16.16 fixed point representation,
|
|
|
|
// Endian dependent code
|
|
#ifdef LL_LITTLE_ENDIAN
|
|
#define LL_EXP_INDEX 1
|
|
#define LL_MAN_INDEX 0
|
|
#else
|
|
#define LL_EXP_INDEX 0
|
|
#define LL_MAN_INDEX 1
|
|
#endif
|
|
|
|
/* Deprecated: use llround(), lltrunc(), or llfloor() instead
|
|
// ================================================================================================
|
|
// Real2Int
|
|
// ================================================================================================
|
|
inline S32 F64toS32(F64 val)
|
|
{
|
|
val = val + LL_DOUBLE_TO_FIX_MAGIC;
|
|
return ((S32*)&val)[LL_MAN_INDEX] >> LL_SHIFT_AMOUNT;
|
|
}
|
|
|
|
// ================================================================================================
|
|
// Real2Int
|
|
// ================================================================================================
|
|
inline S32 F32toS32(F32 val)
|
|
{
|
|
return F64toS32 ((F64)val);
|
|
}
|
|
*/
|
|
|
|
////////////////////////////////////////////////
|
|
//
|
|
// Fast exp and log
|
|
//
|
|
|
|
// Implementation of fast exp() approximation (from a paper by Nicol N. Schraudolph
|
|
// http://www.inf.ethz.ch/~schraudo/pubs/exp.pdf
|
|
static union
|
|
{
|
|
double d;
|
|
struct
|
|
{
|
|
#ifdef LL_LITTLE_ENDIAN
|
|
S32 j, i;
|
|
#else
|
|
S32 i, j;
|
|
#endif
|
|
} n;
|
|
} LLECO; // not sure what the name means
|
|
|
|
#define LL_EXP_A (1048576 * OO_LN2) // use 1512775 for integer
|
|
#define LL_EXP_C (60801) // this value of C good for -4 < y < 4
|
|
|
|
#define LL_FAST_EXP(y) (LLECO.n.i = llround(F32(LL_EXP_A*(y))) + (1072693248 - LL_EXP_C), LLECO.d)
|
|
|
|
|
|
|
|
inline F32 llfastpow(const F32 x, const F32 y)
|
|
{
|
|
return (F32)(LL_FAST_EXP(y * log(x)));
|
|
}
|
|
|
|
|
|
inline F32 snap_to_sig_figs(F32 foo, S32 sig_figs)
|
|
{
|
|
// compute the power of ten
|
|
F32 bar = 1.f;
|
|
for (S32 i = 0; i < sig_figs; i++)
|
|
{
|
|
bar *= 10.f;
|
|
}
|
|
|
|
//F32 new_foo = (F32)llround(foo * bar);
|
|
// the llround() implementation sucks. Don't us it.
|
|
|
|
F32 sign = (foo > 0.f) ? 1.f : -1.f;
|
|
F32 new_foo = F32( S64(foo * bar + sign * 0.5f));
|
|
new_foo /= bar;
|
|
|
|
return new_foo;
|
|
}
|
|
|
|
inline F32 lerp(F32 a, F32 b, F32 u)
|
|
{
|
|
return a + ((b - a) * u);
|
|
}
|
|
|
|
inline F32 lerp2d(F32 x00, F32 x01, F32 x10, F32 x11, F32 u, F32 v)
|
|
{
|
|
F32 a = x00 + (x01-x00)*u;
|
|
F32 b = x10 + (x11-x10)*u;
|
|
F32 r = a + (b-a)*v;
|
|
return r;
|
|
}
|
|
|
|
inline F32 ramp(F32 x, F32 a, F32 b)
|
|
{
|
|
return (a == b) ? 0.0f : ((a - x) / (a - b));
|
|
}
|
|
|
|
inline F32 rescale(F32 x, F32 x1, F32 x2, F32 y1, F32 y2)
|
|
{
|
|
return lerp(y1, y2, ramp(x, x1, x2));
|
|
}
|
|
|
|
inline F32 clamp_rescale(F32 x, F32 x1, F32 x2, F32 y1, F32 y2)
|
|
{
|
|
if (y1 < y2)
|
|
{
|
|
return llclamp(rescale(x,x1,x2,y1,y2),y1,y2);
|
|
}
|
|
else
|
|
{
|
|
return llclamp(rescale(x,x1,x2,y1,y2),y2,y1);
|
|
}
|
|
}
|
|
|
|
|
|
inline F32 cubic_step( F32 x, F32 x0, F32 x1, F32 s0, F32 s1 )
|
|
{
|
|
if (x <= x0)
|
|
return s0;
|
|
|
|
if (x >= x1)
|
|
return s1;
|
|
|
|
F32 f = (x - x0) / (x1 - x0);
|
|
|
|
return s0 + (s1 - s0) * (f * f) * (3.0f - 2.0f * f);
|
|
}
|
|
|
|
inline F32 cubic_step( F32 x )
|
|
{
|
|
x = llclampf(x);
|
|
|
|
return (x * x) * (3.0f - 2.0f * x);
|
|
}
|
|
|
|
inline F32 quadratic_step( F32 x, F32 x0, F32 x1, F32 s0, F32 s1 )
|
|
{
|
|
if (x <= x0)
|
|
return s0;
|
|
|
|
if (x >= x1)
|
|
return s1;
|
|
|
|
F32 f = (x - x0) / (x1 - x0);
|
|
F32 f_squared = f * f;
|
|
|
|
return (s0 * (1.f - f_squared)) + ((s1 - s0) * f_squared);
|
|
}
|
|
|
|
inline F32 llsimple_angle(F32 angle)
|
|
{
|
|
while(angle <= -F_PI)
|
|
angle += F_TWO_PI;
|
|
while(angle > F_PI)
|
|
angle -= F_TWO_PI;
|
|
return angle;
|
|
}
|
|
|
|
//SDK - Renamed this to get_lower_power_two, since this is what this actually does.
|
|
inline U32 get_lower_power_two(U32 val, U32 max_power_two)
|
|
{
|
|
if(!max_power_two)
|
|
{
|
|
max_power_two = 1 << 31 ;
|
|
}
|
|
if(max_power_two & (max_power_two - 1))
|
|
{
|
|
return 0 ;
|
|
}
|
|
|
|
for(; val < max_power_two ; max_power_two >>= 1) ;
|
|
|
|
return max_power_two ;
|
|
}
|
|
|
|
// calculate next highest power of two, limited by max_power_two
|
|
// This is taken from a brilliant little code snipped on http://acius2.blogspot.com/2007/11/calculating-next-power-of-2.html
|
|
// Basically we convert the binary to a solid string of 1's with the same
|
|
// number of digits, then add one. We subtract 1 initially to handle
|
|
// the case where the number passed in is actually a power of two.
|
|
// WARNING: this only works with 32 bit ints.
|
|
inline U32 get_next_power_two(U32 val, U32 max_power_two)
|
|
{
|
|
if(!max_power_two)
|
|
{
|
|
max_power_two = 1 << 31 ;
|
|
}
|
|
|
|
if(val >= max_power_two)
|
|
{
|
|
return max_power_two;
|
|
}
|
|
|
|
val--;
|
|
val = (val >> 1) | val;
|
|
val = (val >> 2) | val;
|
|
val = (val >> 4) | val;
|
|
val = (val >> 8) | val;
|
|
val = (val >> 16) | val;
|
|
val++;
|
|
|
|
return val;
|
|
}
|
|
|
|
//get the gaussian value given the linear distance from axis x and guassian value o
|
|
inline F32 llgaussian(F32 x, F32 o)
|
|
{
|
|
return 1.f/(F_SQRT_TWO_PI*o)*powf(F_E, -(x*x)/(2*o*o));
|
|
}
|
|
|
|
//helper function for removing outliers
|
|
template <class VEC_TYPE>
|
|
inline void ll_remove_outliers(std::vector<VEC_TYPE>& data, F32 k)
|
|
{
|
|
if (data.size() < 100)
|
|
{ //not enough samples
|
|
return;
|
|
}
|
|
|
|
VEC_TYPE Q1 = data[data.size()/4];
|
|
VEC_TYPE Q3 = data[data.size()-data.size()/4-1];
|
|
|
|
if ((F32)(Q3-Q1) < 1.f)
|
|
{
|
|
// not enough variation to detect outliers
|
|
return;
|
|
}
|
|
|
|
|
|
VEC_TYPE min = (VEC_TYPE) ((F32) Q1-k * (F32) (Q3-Q1));
|
|
VEC_TYPE max = (VEC_TYPE) ((F32) Q3+k * (F32) (Q3-Q1));
|
|
|
|
U32 i = 0;
|
|
while (i < data.size() && data[i] < min)
|
|
{
|
|
i++;
|
|
}
|
|
|
|
S32 j = (S32)data.size()-1;
|
|
while (j > 0 && data[j] > max)
|
|
{
|
|
j--;
|
|
}
|
|
|
|
if (j < (S32)data.size()-1)
|
|
{
|
|
data.erase(data.begin()+j, data.end());
|
|
}
|
|
|
|
if (i > 0)
|
|
{
|
|
data.erase(data.begin(), data.begin()+i);
|
|
}
|
|
}
|
|
|
|
// Include simd math header
|
|
#include "llsimdmath.h"
|
|
|
|
#endif
|