Files
SingularityViewer/indra/llmessage/llthrottle.cpp
Siana Gearz 8b6f462d13 Wholesale update of llmessage to V3.2
Note that this removes message logger for now.
2012-03-06 07:31:15 +01:00

586 lines
15 KiB
C++

/**
* @file llthrottle.cpp
* @brief LLThrottle class used for network bandwidth control.
*
* $LicenseInfo:firstyear=2001&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llthrottle.h"
#include "llmath.h"
#include "lldatapacker.h"
#include "message.h"
LLThrottle::LLThrottle(const F32 rate)
{
mRate = rate;
mAvailable = 0.f;
mLookaheadSecs = 0.25f;
mLastSendTime = LLMessageSystem::getMessageTimeSeconds(TRUE);
}
void LLThrottle::setRate(const F32 rate)
{
// Need to accumulate available bits when adjusting the rate.
mAvailable = getAvailable();
mLastSendTime = LLMessageSystem::getMessageTimeSeconds();
mRate = rate;
}
F32 LLThrottle::getAvailable()
{
// use a temporary bits_available
// since we don't want to change mBitsAvailable every time
F32 elapsed_time = (F32)(LLMessageSystem::getMessageTimeSeconds() - mLastSendTime);
return mAvailable + (mRate * elapsed_time);
}
BOOL LLThrottle::checkOverflow(const F32 amount)
{
BOOL retval = TRUE;
F32 lookahead_amount = mRate * mLookaheadSecs;
// use a temporary bits_available
// since we don't want to change mBitsAvailable every time
F32 elapsed_time = (F32)(LLMessageSystem::getMessageTimeSeconds() - mLastSendTime);
F32 amount_available = mAvailable + (mRate * elapsed_time);
if ((amount_available >= lookahead_amount) || (amount_available > amount))
{
// ...enough space to send this message
// Also do if > lookahead so we can use if amount > capped amount.
retval = FALSE;
}
return retval;
}
BOOL LLThrottle::throttleOverflow(const F32 amount)
{
F32 elapsed_time;
F32 lookahead_amount;
BOOL retval = TRUE;
lookahead_amount = mRate * mLookaheadSecs;
F64 mt_sec = LLMessageSystem::getMessageTimeSeconds();
elapsed_time = (F32)(mt_sec - mLastSendTime);
mLastSendTime = mt_sec;
mAvailable += mRate * elapsed_time;
if (mAvailable >= lookahead_amount)
{
// ...channel completely open, so allow send regardless
// of size. This allows sends on very low BPS channels.
mAvailable = lookahead_amount;
retval = FALSE;
}
else if (mAvailable > amount)
{
// ...enough space to send this message
retval = FALSE;
}
// We actually already sent the bits.
mAvailable -= amount;
// What if bitsavailable goes negative?
// That's OK, because it means someone is banging on the channel,
// so we need some time to recover.
return retval;
}
const F32 THROTTLE_LOOKAHEAD_TIME = 1.f; // seconds
// Make sure that we don't set above these
// values, even if the client asks to be set
// higher
// Note that these values are replicated on the
// client side to set max bandwidth throttling there,
// in llviewerthrottle.cpp. These values are the sum
// of the top two tiers of bandwidth there.
F32 gThrottleMaximumBPS[TC_EOF] =
{
150000.f, // TC_RESEND
170000.f, // TC_LAND
34000.f, // TC_WIND
34000.f, // TC_CLOUD
446000.f, // TC_TASK
446000.f, // TC_TEXTURE
220000.f, // TC_ASSET
};
// Start low until viewer informs us of capability
// Asset and resend get high values, since they
// aren't used JUST by the viewer necessarily.
// This is a HACK and should be dealt with more properly on
// circuit creation.
F32 gThrottleDefaultBPS[TC_EOF] =
{
100000.f, // TC_RESEND
4000.f, // TC_LAND
4000.f, // TC_WIND
4000.f, // TC_CLOUD
4000.f, // TC_TASK
4000.f, // TC_TEXTURE
100000.f, // TC_ASSET
};
// Don't throttle down lower than this
// This potentially wastes 50 kbps, but usually
// wont.
F32 gThrottleMinimumBPS[TC_EOF] =
{
10000.f, // TC_RESEND
10000.f, // TC_LAND
4000.f, // TC_WIND
4000.f, // TC_CLOUD
20000.f, // TC_TASK
10000.f, // TC_TEXTURE
10000.f, // TC_ASSET
};
const char* THROTTLE_NAMES[TC_EOF] =
{
"Resend ",
"Land ",
"Wind ",
"Cloud ",
"Task ",
"Texture",
"Asset "
};
LLThrottleGroup::LLThrottleGroup()
{
S32 i;
for (i = 0; i < TC_EOF; i++)
{
mThrottleTotal[i] = gThrottleDefaultBPS[i];
mNominalBPS[i] = gThrottleDefaultBPS[i];
}
resetDynamicAdjust();
}
void LLThrottleGroup::packThrottle(LLDataPacker &dp) const
{
S32 i;
for (i = 0; i < TC_EOF; i++)
{
dp.packF32(mThrottleTotal[i], "Throttle");
}
}
void LLThrottleGroup::unpackThrottle(LLDataPacker &dp)
{
S32 i;
for (i = 0; i < TC_EOF; i++)
{
F32 temp_throttle;
dp.unpackF32(temp_throttle, "Throttle");
temp_throttle = llclamp(temp_throttle, 0.f, 2250000.f);
mThrottleTotal[i] = temp_throttle;
if(mThrottleTotal[i] > gThrottleMaximumBPS[i])
{
mThrottleTotal[i] = gThrottleMaximumBPS[i];
}
}
}
// Call this whenever mNominalBPS changes. Need to reset
// the measurement systems. In the future, we should look
// into NOT resetting the system.
void LLThrottleGroup::resetDynamicAdjust()
{
F64 mt_sec = LLMessageSystem::getMessageTimeSeconds();
S32 i;
for (i = 0; i < TC_EOF; i++)
{
mCurrentBPS[i] = mNominalBPS[i];
mBitsAvailable[i] = mNominalBPS[i] * THROTTLE_LOOKAHEAD_TIME;
mLastSendTime[i] = mt_sec;
mBitsSentThisPeriod[i] = 0;
mBitsSentHistory[i] = 0;
}
mDynamicAdjustTime = mt_sec;
}
BOOL LLThrottleGroup::setNominalBPS(F32* throttle_vec)
{
BOOL changed = FALSE;
S32 i;
for (i = 0; i < TC_EOF; i++)
{
if (mNominalBPS[i] != throttle_vec[i])
{
changed = TRUE;
mNominalBPS[i] = throttle_vec[i];
}
}
// If we changed the nominal settings, reset the dynamic
// adjustment subsystem.
if (changed)
{
resetDynamicAdjust();
}
return changed;
}
// Return bits available in the channel
S32 LLThrottleGroup::getAvailable(S32 throttle_cat)
{
S32 retval = 0;
F32 category_bps = mCurrentBPS[throttle_cat];
F32 lookahead_bits = category_bps * THROTTLE_LOOKAHEAD_TIME;
// use a temporary bits_available
// since we don't want to change mBitsAvailable every time
F32 elapsed_time = (F32)(LLMessageSystem::getMessageTimeSeconds() - mLastSendTime[throttle_cat]);
F32 bits_available = mBitsAvailable[throttle_cat] + (category_bps * elapsed_time);
if (bits_available >= lookahead_bits)
{
retval = (S32) gThrottleMaximumBPS[throttle_cat];
}
else
{
retval = (S32) bits_available;
}
return retval;
}
BOOL LLThrottleGroup::checkOverflow(S32 throttle_cat, F32 bits)
{
BOOL retval = TRUE;
F32 category_bps = mCurrentBPS[throttle_cat];
F32 lookahead_bits = category_bps * THROTTLE_LOOKAHEAD_TIME;
// use a temporary bits_available
// since we don't want to change mBitsAvailable every time
F32 elapsed_time = (F32)(LLMessageSystem::getMessageTimeSeconds() - mLastSendTime[throttle_cat]);
F32 bits_available = mBitsAvailable[throttle_cat] + (category_bps * elapsed_time);
if (bits_available >= lookahead_bits)
{
// ...channel completely open, so allow send regardless
// of size. This allows sends on very low BPS channels.
mBitsAvailable[throttle_cat] = lookahead_bits;
retval = FALSE;
}
else if ( bits_available > bits )
{
// ...enough space to send this message
retval = FALSE;
}
return retval;
}
BOOL LLThrottleGroup::throttleOverflow(S32 throttle_cat, F32 bits)
{
F32 elapsed_time;
F32 category_bps;
F32 lookahead_bits;
BOOL retval = TRUE;
category_bps = mCurrentBPS[throttle_cat];
lookahead_bits = category_bps * THROTTLE_LOOKAHEAD_TIME;
F64 mt_sec = LLMessageSystem::getMessageTimeSeconds();
elapsed_time = (F32)(mt_sec - mLastSendTime[throttle_cat]);
mLastSendTime[throttle_cat] = mt_sec;
mBitsAvailable[throttle_cat] += category_bps * elapsed_time;
if (mBitsAvailable[throttle_cat] >= lookahead_bits)
{
// ...channel completely open, so allow send regardless
// of size. This allows sends on very low BPS channels.
mBitsAvailable[throttle_cat] = lookahead_bits;
retval = FALSE;
}
else if ( mBitsAvailable[throttle_cat] > bits )
{
// ...enough space to send this message
retval = FALSE;
}
// We actually already sent the bits.
mBitsAvailable[throttle_cat] -= bits;
mBitsSentThisPeriod[throttle_cat] += bits;
// What if bitsavailable goes negative?
// That's OK, because it means someone is banging on the channel,
// so we need some time to recover.
return retval;
}
BOOL LLThrottleGroup::dynamicAdjust()
{
const F32 DYNAMIC_ADJUST_TIME = 1.0f; // seconds
const F32 CURRENT_PERIOD_WEIGHT = .25f; // how much weight to give to last period while determining BPS utilization
const F32 BUSY_PERCENT = 0.75f; // if use more than this fraction of BPS, you are busy
const F32 IDLE_PERCENT = 0.70f; // if use less than this fraction, you are "idle"
const F32 TRANSFER_PERCENT = 0.90f; // how much unused bandwidth to take away each adjustment
const F32 RECOVER_PERCENT = 0.25f; // how much to give back during recovery phase
S32 i;
F64 mt_sec = LLMessageSystem::getMessageTimeSeconds();
// Only dynamically adjust every few seconds
if ((mt_sec - mDynamicAdjustTime) < DYNAMIC_ADJUST_TIME)
{
return FALSE;
}
mDynamicAdjustTime = mt_sec;
S32 total = 0;
// Update historical information
for (i = 0; i < TC_EOF; i++)
{
if (mBitsSentHistory[i] == 0)
{
// first run, just copy current period
mBitsSentHistory[i] = mBitsSentThisPeriod[i];
}
else
{
// have some history, so weight accordingly
mBitsSentHistory[i] = (1.f - CURRENT_PERIOD_WEIGHT) * mBitsSentHistory[i]
+ CURRENT_PERIOD_WEIGHT * mBitsSentThisPeriod[i];
}
mBitsSentThisPeriod[i] = 0;
total += llround(mBitsSentHistory[i]);
}
// Look for busy channels
// TODO: Fold into loop above.
BOOL channels_busy = FALSE;
F32 busy_nominal_sum = 0;
BOOL channel_busy[TC_EOF];
BOOL channel_idle[TC_EOF];
BOOL channel_over_nominal[TC_EOF];
for (i = 0; i < TC_EOF; i++)
{
// Is this a busy channel?
if (mBitsSentHistory[i] >= BUSY_PERCENT * DYNAMIC_ADJUST_TIME * mCurrentBPS[i])
{
// this channel is busy
channels_busy = TRUE;
busy_nominal_sum += mNominalBPS[i]; // use for allocation of pooled idle bandwidth
channel_busy[i] = TRUE;
}
else
{
channel_busy[i] = FALSE;
}
// Is this an idle channel?
if ((mBitsSentHistory[i] < IDLE_PERCENT * DYNAMIC_ADJUST_TIME * mCurrentBPS[i]) &&
(mBitsAvailable[i] > 0))
{
channel_idle[i] = TRUE;
}
else
{
channel_idle[i] = FALSE;
}
// Is this an overpumped channel?
if (mCurrentBPS[i] > mNominalBPS[i])
{
channel_over_nominal[i] = TRUE;
}
else
{
channel_over_nominal[i] = FALSE;
}
//if (total)
//{
// llinfos << i << ": B" << channel_busy[i] << " I" << channel_idle[i] << " N" << channel_over_nominal[i];
// llcont << " Nom: " << mNominalBPS[i] << " Cur: " << mCurrentBPS[i] << " BS: " << mBitsSentHistory[i] << llendl;
//}
}
if (channels_busy)
{
// Some channels are busy. Let's see if we can get them some bandwidth.
F32 used_bps;
F32 avail_bps;
F32 transfer_bps;
F32 pool_bps = 0;
for (i = 0; i < TC_EOF; i++)
{
if (channel_idle[i] || channel_over_nominal[i] )
{
// Either channel i is idle, or has been overpumped.
// Therefore it's a candidate to give up some bandwidth.
// Figure out how much bandwidth it has been using, and how
// much is available to steal.
used_bps = mBitsSentHistory[i] / DYNAMIC_ADJUST_TIME;
// CRO make sure to keep a minimum amount of throttle available
// CRO NB: channels set to < MINIMUM_BPS will never give up bps,
// which is correct I think
if (used_bps < gThrottleMinimumBPS[i])
{
used_bps = gThrottleMinimumBPS[i];
}
if (channel_over_nominal[i])
{
F32 unused_current = mCurrentBPS[i] - used_bps;
avail_bps = llmax(mCurrentBPS[i] - mNominalBPS[i], unused_current);
}
else
{
avail_bps = mCurrentBPS[i] - used_bps;
}
//llinfos << i << " avail " << avail_bps << llendl;
// Historically, a channel could have used more than its current share,
// even if it's idle right now.
// Make sure we don't steal too much.
if (avail_bps < 0)
{
continue;
}
// Transfer some bandwidth from this channel into the global pool.
transfer_bps = avail_bps * TRANSFER_PERCENT;
mCurrentBPS[i] -= transfer_bps;
pool_bps += transfer_bps;
}
}
//llinfos << "Pool BPS: " << pool_bps << llendl;
// Now redistribute the bandwidth to busy channels.
F32 unused_bps = 0.f;
for (i = 0; i < TC_EOF; i++)
{
if (channel_busy[i])
{
F32 add_amount = pool_bps * (mNominalBPS[i] / busy_nominal_sum);
//llinfos << "Busy " << i << " gets " << pool_bps << llendl;
mCurrentBPS[i] += add_amount;
// CRO: make sure this doesn't get too huge
// JC - Actually, need to let mCurrentBPS go less than nominal, otherwise
// you aren't allowing bandwidth to actually be moved from one channel
// to another.
// *TODO: If clamping high end, would be good to re-
// allocate to other channels in the above code.
const F32 MAX_BPS = 4 * mNominalBPS[i];
if (mCurrentBPS[i] > MAX_BPS)
{
F32 overage = mCurrentBPS[i] - MAX_BPS;
mCurrentBPS[i] -= overage;
unused_bps += overage;
}
// Paranoia
if (mCurrentBPS[i] < gThrottleMinimumBPS[i])
{
mCurrentBPS[i] = gThrottleMinimumBPS[i];
}
}
}
// For fun, add the overage back in to objects
if (unused_bps > 0.f)
{
mCurrentBPS[TC_TASK] += unused_bps;
}
}
else
{
// No one is busy.
// Make the channel allocations seek toward nominal.
// Look for overpumped channels
F32 starved_nominal_sum = 0;
F32 avail_bps = 0;
F32 transfer_bps = 0;
F32 pool_bps = 0;
for (i = 0; i < TC_EOF; i++)
{
if (mCurrentBPS[i] > mNominalBPS[i])
{
avail_bps = (mCurrentBPS[i] - mNominalBPS[i]);
transfer_bps = avail_bps * RECOVER_PERCENT;
mCurrentBPS[i] -= transfer_bps;
pool_bps += transfer_bps;
}
}
// Evenly distribute bandwidth to channels currently
// using less than nominal.
for (i = 0; i < TC_EOF; i++)
{
if (mCurrentBPS[i] < mNominalBPS[i])
{
// We're going to weight allocations by nominal BPS.
starved_nominal_sum += mNominalBPS[i];
}
}
for (i = 0; i < TC_EOF; i++)
{
if (mCurrentBPS[i] < mNominalBPS[i])
{
// Distribute bandwidth according to nominal allocation ratios.
mCurrentBPS[i] += pool_bps * (mNominalBPS[i] / starved_nominal_sum);
}
}
}
return TRUE;
}