595 lines
18 KiB
C++
595 lines
18 KiB
C++
/**
|
|
* @file llquaternion.h
|
|
* @brief LLQuaternion class header file.
|
|
*
|
|
* $LicenseInfo:firstyear=2000&license=viewergpl$
|
|
*
|
|
* Copyright (c) 2000-2009, Linden Research, Inc.
|
|
*
|
|
* Second Life Viewer Source Code
|
|
* The source code in this file ("Source Code") is provided by Linden Lab
|
|
* to you under the terms of the GNU General Public License, version 2.0
|
|
* ("GPL"), unless you have obtained a separate licensing agreement
|
|
* ("Other License"), formally executed by you and Linden Lab. Terms of
|
|
* the GPL can be found in doc/GPL-license.txt in this distribution, or
|
|
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
|
|
*
|
|
* There are special exceptions to the terms and conditions of the GPL as
|
|
* it is applied to this Source Code. View the full text of the exception
|
|
* in the file doc/FLOSS-exception.txt in this software distribution, or
|
|
* online at
|
|
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
|
|
*
|
|
* By copying, modifying or distributing this software, you acknowledge
|
|
* that you have read and understood your obligations described above,
|
|
* and agree to abide by those obligations.
|
|
*
|
|
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
|
|
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
|
|
* COMPLETENESS OR PERFORMANCE.
|
|
* $/LicenseInfo$
|
|
*/
|
|
|
|
#ifndef LLQUATERNION_H
|
|
#define LLQUATERNION_H
|
|
|
|
#include <iostream>
|
|
|
|
#ifndef LLMATH_H //enforce specific include order to avoid tangling inline dependencies
|
|
#error "Please include llmath.h first."
|
|
#endif
|
|
|
|
class LLVector4;
|
|
class LLVector3;
|
|
class LLVector3d;
|
|
class LLMatrix4;
|
|
class LLMatrix3;
|
|
|
|
// NOTA BENE: Quaternion code is written assuming Unit Quaternions!!!!
|
|
// Moreover, it is written assuming that all vectors and matricies
|
|
// passed as arguments are normalized and unitary respectively.
|
|
// VERY VERY VERY VERY BAD THINGS will happen if these assumptions fail.
|
|
|
|
static const U32 LENGTHOFQUAT = 4;
|
|
|
|
class LLQuaternion
|
|
{
|
|
public:
|
|
F32 mQ[LENGTHOFQUAT];
|
|
|
|
static const LLQuaternion DEFAULT;
|
|
|
|
LLQuaternion(); // Initializes Quaternion to (0,0,0,1)
|
|
explicit LLQuaternion(const LLMatrix4 &mat); // Initializes Quaternion from Matrix4
|
|
explicit LLQuaternion(const LLMatrix3 &mat); // Initializes Quaternion from Matrix3
|
|
LLQuaternion(F32 x, F32 y, F32 z, F32 w); // Initializes Quaternion to normalize(x, y, z, w)
|
|
LLQuaternion(F32 angle, const LLVector4 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec)
|
|
LLQuaternion(F32 angle, const LLVector3 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec)
|
|
LLQuaternion(const F32 *q); // Initializes Quaternion to normalize(x, y, z, w)
|
|
LLQuaternion(const LLVector3 &x_axis,
|
|
const LLVector3 &y_axis,
|
|
const LLVector3 &z_axis); // Initializes Quaternion from Matrix3 = [x_axis ; y_axis ; z_axis]
|
|
|
|
BOOL isIdentity() const;
|
|
BOOL isNotIdentity() const;
|
|
BOOL isFinite() const; // checks to see if all values of LLQuaternion are finite
|
|
void quantize16(F32 lower, F32 upper); // changes the vector to reflect quatization
|
|
void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization
|
|
void loadIdentity(); // Loads the quaternion that represents the identity rotation
|
|
|
|
const LLQuaternion& set(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normalize(x, y, z, w)
|
|
const LLQuaternion& set(const LLQuaternion &quat); // Copies Quaternion
|
|
const LLQuaternion& set(const F32 *q); // Sets Quaternion to normalize(quat[VX], quat[VY], quat[VZ], quat[VW])
|
|
const LLQuaternion& set(const LLMatrix3 &mat); // Sets Quaternion to mat2quat(mat)
|
|
const LLQuaternion& set(const LLMatrix4 &mat); // Sets Quaternion to mat2quat(mat)
|
|
|
|
const LLQuaternion& setAngleAxis(F32 angle, F32 x, F32 y, F32 z); // Sets Quaternion to axis_angle2quat(angle, x, y, z)
|
|
const LLQuaternion& setAngleAxis(F32 angle, const LLVector3 &vec); // Sets Quaternion to axis_angle2quat(angle, vec)
|
|
const LLQuaternion& setAngleAxis(F32 angle, const LLVector4 &vec); // Sets Quaternion to axis_angle2quat(angle, vec)
|
|
const LLQuaternion& setEulerAngles(F32 roll, F32 pitch, F32 yaw); // Sets Quaternion to euler2quat(pitch, yaw, roll)
|
|
|
|
const LLQuaternion& setQuatInit(F32 x, F32 y, F32 z, F32 w); // deprecated
|
|
const LLQuaternion& setQuat(const LLQuaternion &quat); // deprecated
|
|
const LLQuaternion& setQuat(const F32 *q); // deprecated
|
|
const LLQuaternion& setQuat(const LLMatrix3 &mat); // deprecated
|
|
const LLQuaternion& setQuat(const LLMatrix4 &mat); // deprecated
|
|
const LLQuaternion& setQuat(F32 angle, F32 x, F32 y, F32 z); // deprecated
|
|
const LLQuaternion& setQuat(F32 angle, const LLVector3 &vec); // deprecated
|
|
const LLQuaternion& setQuat(F32 angle, const LLVector4 &vec); // deprecated
|
|
const LLQuaternion& setQuat(F32 roll, F32 pitch, F32 yaw); // deprecated
|
|
|
|
LLMatrix4 getMatrix4(void) const; // Returns the Matrix4 equivalent of Quaternion
|
|
LLMatrix3 getMatrix3(void) const; // Returns the Matrix3 equivalent of Quaternion
|
|
void getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const; // returns rotation in radians about axis x,y,z
|
|
void getAngleAxis(F32* angle, LLVector3 &vec) const;
|
|
void getEulerAngles(F32 *roll, F32* pitch, F32 *yaw) const;
|
|
|
|
F32 normalize(); // Normalizes Quaternion and returns magnitude
|
|
F32 normQuat(); // deprecated
|
|
|
|
const LLQuaternion& conjugate(void); // Conjugates Quaternion and returns result
|
|
const LLQuaternion& conjQuat(void); // deprecated
|
|
|
|
// Other useful methods
|
|
const LLQuaternion& transpose(); // transpose (same as conjugate)
|
|
const LLQuaternion& transQuat(); // deprecated
|
|
|
|
void shortestArc(const LLVector3 &a, const LLVector3 &b); // shortest rotation from a to b
|
|
const LLQuaternion& constrain(F32 radians); // constrains rotation to a cone angle specified in radians
|
|
|
|
// Standard operators
|
|
friend std::ostream& operator<<(std::ostream &s, const LLQuaternion &a); // Prints a
|
|
friend LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b); // Addition
|
|
friend LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b); // Subtraction
|
|
friend LLQuaternion operator-(const LLQuaternion &a); // Negation
|
|
friend LLQuaternion operator*(F32 a, const LLQuaternion &q); // Scale
|
|
friend LLQuaternion operator*(const LLQuaternion &q, F32 b); // Scale
|
|
friend LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b); // Returns a * b
|
|
friend LLQuaternion operator~(const LLQuaternion &a); // Returns a* (Conjugate of a)
|
|
bool operator==(const LLQuaternion &b) const; // Returns a == b
|
|
bool operator!=(const LLQuaternion &b) const; // Returns a != b
|
|
|
|
friend const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b); // Returns a * b
|
|
|
|
friend LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot); // Rotates a by rot
|
|
friend LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot); // Rotates a by rot
|
|
friend LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot); // Rotates a by rot
|
|
|
|
// Non-standard operators
|
|
friend F32 dot(const LLQuaternion &a, const LLQuaternion &b);
|
|
friend LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from p to q
|
|
friend LLQuaternion lerp(F32 t, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from identity to q
|
|
friend LLQuaternion slerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // spherical linear interpolation from p to q
|
|
friend LLQuaternion slerp(F32 t, const LLQuaternion &q); // spherical linear interpolation from identity to q
|
|
friend LLQuaternion nlerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // normalized linear interpolation from p to q
|
|
friend LLQuaternion nlerp(F32 t, const LLQuaternion &q); // normalized linear interpolation from p to q
|
|
|
|
LLVector3 packToVector3() const; // Saves space by using the fact that our quaternions are normalized
|
|
void unpackFromVector3(const LLVector3& vec); // Saves space by using the fact that our quaternions are normalized
|
|
|
|
enum Order {
|
|
XYZ = 0,
|
|
YZX = 1,
|
|
ZXY = 2,
|
|
XZY = 3,
|
|
YXZ = 4,
|
|
ZYX = 5
|
|
};
|
|
// Creates a quaternions from maya's rotation representation,
|
|
// which is 3 rotations (in DEGREES) in the specified order
|
|
friend LLQuaternion mayaQ(F32 x, F32 y, F32 z, Order order);
|
|
|
|
// Conversions between Order and strings like "xyz" or "ZYX"
|
|
friend const char *OrderToString( const Order order );
|
|
friend Order StringToOrder( const char *str );
|
|
|
|
static BOOL parseQuat(const std::string& buf, LLQuaternion* value);
|
|
|
|
// For debugging, only
|
|
//static U32 mMultCount;
|
|
};
|
|
|
|
// checker
|
|
inline BOOL LLQuaternion::isFinite() const
|
|
{
|
|
return (llfinite(mQ[VX]) && llfinite(mQ[VY]) && llfinite(mQ[VZ]) && llfinite(mQ[VS]));
|
|
}
|
|
|
|
inline BOOL LLQuaternion::isIdentity() const
|
|
{
|
|
return
|
|
( mQ[VX] == 0.f ) &&
|
|
( mQ[VY] == 0.f ) &&
|
|
( mQ[VZ] == 0.f ) &&
|
|
( mQ[VS] == 1.f );
|
|
}
|
|
|
|
inline BOOL LLQuaternion::isNotIdentity() const
|
|
{
|
|
return
|
|
( mQ[VX] != 0.f ) ||
|
|
( mQ[VY] != 0.f ) ||
|
|
( mQ[VZ] != 0.f ) ||
|
|
( mQ[VS] != 1.f );
|
|
}
|
|
|
|
|
|
|
|
inline LLQuaternion::LLQuaternion(void)
|
|
{
|
|
mQ[VX] = 0.f;
|
|
mQ[VY] = 0.f;
|
|
mQ[VZ] = 0.f;
|
|
mQ[VS] = 1.f;
|
|
}
|
|
|
|
inline LLQuaternion::LLQuaternion(F32 x, F32 y, F32 z, F32 w)
|
|
{
|
|
mQ[VX] = x;
|
|
mQ[VY] = y;
|
|
mQ[VZ] = z;
|
|
mQ[VS] = w;
|
|
|
|
//RN: don't normalize this case as its used mainly for temporaries during calculations
|
|
//normalize();
|
|
/*
|
|
F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
|
|
mag -= 1.f;
|
|
mag = fabs(mag);
|
|
llassert(mag < 10.f*FP_MAG_THRESHOLD);
|
|
*/
|
|
}
|
|
|
|
inline LLQuaternion::LLQuaternion(const F32 *q)
|
|
{
|
|
mQ[VX] = q[VX];
|
|
mQ[VY] = q[VY];
|
|
mQ[VZ] = q[VZ];
|
|
mQ[VS] = q[VW];
|
|
|
|
normalize();
|
|
/*
|
|
F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
|
|
mag -= 1.f;
|
|
mag = fabs(mag);
|
|
llassert(mag < FP_MAG_THRESHOLD);
|
|
*/
|
|
}
|
|
|
|
|
|
inline void LLQuaternion::loadIdentity()
|
|
{
|
|
mQ[VX] = 0.0f;
|
|
mQ[VY] = 0.0f;
|
|
mQ[VZ] = 0.0f;
|
|
mQ[VW] = 1.0f;
|
|
}
|
|
|
|
|
|
inline const LLQuaternion& LLQuaternion::set(F32 x, F32 y, F32 z, F32 w)
|
|
{
|
|
mQ[VX] = x;
|
|
mQ[VY] = y;
|
|
mQ[VZ] = z;
|
|
mQ[VS] = w;
|
|
normalize();
|
|
return (*this);
|
|
}
|
|
|
|
inline const LLQuaternion& LLQuaternion::set(const LLQuaternion &quat)
|
|
{
|
|
mQ[VX] = quat.mQ[VX];
|
|
mQ[VY] = quat.mQ[VY];
|
|
mQ[VZ] = quat.mQ[VZ];
|
|
mQ[VW] = quat.mQ[VW];
|
|
normalize();
|
|
return (*this);
|
|
}
|
|
|
|
inline const LLQuaternion& LLQuaternion::set(const F32 *q)
|
|
{
|
|
mQ[VX] = q[VX];
|
|
mQ[VY] = q[VY];
|
|
mQ[VZ] = q[VZ];
|
|
mQ[VS] = q[VW];
|
|
normalize();
|
|
return (*this);
|
|
}
|
|
|
|
|
|
// deprecated
|
|
inline const LLQuaternion& LLQuaternion::setQuatInit(F32 x, F32 y, F32 z, F32 w)
|
|
{
|
|
mQ[VX] = x;
|
|
mQ[VY] = y;
|
|
mQ[VZ] = z;
|
|
mQ[VS] = w;
|
|
normalize();
|
|
return (*this);
|
|
}
|
|
|
|
// deprecated
|
|
inline const LLQuaternion& LLQuaternion::setQuat(const LLQuaternion &quat)
|
|
{
|
|
mQ[VX] = quat.mQ[VX];
|
|
mQ[VY] = quat.mQ[VY];
|
|
mQ[VZ] = quat.mQ[VZ];
|
|
mQ[VW] = quat.mQ[VW];
|
|
normalize();
|
|
return (*this);
|
|
}
|
|
|
|
// deprecated
|
|
inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q)
|
|
{
|
|
mQ[VX] = q[VX];
|
|
mQ[VY] = q[VY];
|
|
mQ[VZ] = q[VZ];
|
|
mQ[VS] = q[VW];
|
|
normalize();
|
|
return (*this);
|
|
}
|
|
|
|
// There may be a cheaper way that avoids the sqrt.
|
|
// Does sin_a = VX*VX + VY*VY + VZ*VZ?
|
|
// Copied from Matrix and Quaternion FAQ 1.12
|
|
inline void LLQuaternion::getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const
|
|
{
|
|
F32 cos_a = mQ[VW];
|
|
if (cos_a > 1.0f) cos_a = 1.0f;
|
|
if (cos_a < -1.0f) cos_a = -1.0f;
|
|
|
|
F32 sin_a = (F32) sqrt( 1.0f - cos_a * cos_a );
|
|
|
|
if ( fabs( sin_a ) < 0.0005f )
|
|
sin_a = 1.0f;
|
|
else
|
|
sin_a = 1.f/sin_a;
|
|
|
|
F32 temp_angle = 2.0f * (F32) acos( cos_a );
|
|
if (temp_angle > F_PI)
|
|
{
|
|
// The (angle,axis) pair should never have angles outside [PI, -PI]
|
|
// since we want the _shortest_ (angle,axis) solution.
|
|
// Since acos is defined for [0, PI], and we multiply by 2.0, we
|
|
// can push the angle outside the acceptible range.
|
|
// When this happens we set the angle to the other portion of a
|
|
// full 2PI rotation, and negate the axis, which reverses the
|
|
// direction of the rotation (by the right-hand rule).
|
|
*angle = 2.f * F_PI - temp_angle;
|
|
*x = - mQ[VX] * sin_a;
|
|
*y = - mQ[VY] * sin_a;
|
|
*z = - mQ[VZ] * sin_a;
|
|
}
|
|
else
|
|
{
|
|
*angle = temp_angle;
|
|
*x = mQ[VX] * sin_a;
|
|
*y = mQ[VY] * sin_a;
|
|
*z = mQ[VZ] * sin_a;
|
|
}
|
|
}
|
|
|
|
inline const LLQuaternion& LLQuaternion::conjugate()
|
|
{
|
|
mQ[VX] *= -1.f;
|
|
mQ[VY] *= -1.f;
|
|
mQ[VZ] *= -1.f;
|
|
return (*this);
|
|
}
|
|
|
|
inline const LLQuaternion& LLQuaternion::conjQuat()
|
|
{
|
|
mQ[VX] *= -1.f;
|
|
mQ[VY] *= -1.f;
|
|
mQ[VZ] *= -1.f;
|
|
return (*this);
|
|
}
|
|
|
|
// Transpose
|
|
inline const LLQuaternion& LLQuaternion::transpose()
|
|
{
|
|
mQ[VX] *= -1.f;
|
|
mQ[VY] *= -1.f;
|
|
mQ[VZ] *= -1.f;
|
|
return (*this);
|
|
}
|
|
|
|
// deprecated
|
|
inline const LLQuaternion& LLQuaternion::transQuat()
|
|
{
|
|
mQ[VX] *= -1.f;
|
|
mQ[VY] *= -1.f;
|
|
mQ[VZ] *= -1.f;
|
|
return (*this);
|
|
}
|
|
|
|
|
|
inline LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b)
|
|
{
|
|
return LLQuaternion(
|
|
a.mQ[VX] + b.mQ[VX],
|
|
a.mQ[VY] + b.mQ[VY],
|
|
a.mQ[VZ] + b.mQ[VZ],
|
|
a.mQ[VW] + b.mQ[VW] );
|
|
}
|
|
|
|
|
|
inline LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b)
|
|
{
|
|
return LLQuaternion(
|
|
a.mQ[VX] - b.mQ[VX],
|
|
a.mQ[VY] - b.mQ[VY],
|
|
a.mQ[VZ] - b.mQ[VZ],
|
|
a.mQ[VW] - b.mQ[VW] );
|
|
}
|
|
|
|
|
|
inline LLQuaternion operator-(const LLQuaternion &a)
|
|
{
|
|
return LLQuaternion(
|
|
-a.mQ[VX],
|
|
-a.mQ[VY],
|
|
-a.mQ[VZ],
|
|
-a.mQ[VW] );
|
|
}
|
|
|
|
|
|
inline LLQuaternion operator*(F32 a, const LLQuaternion &q)
|
|
{
|
|
return LLQuaternion(
|
|
a * q.mQ[VX],
|
|
a * q.mQ[VY],
|
|
a * q.mQ[VZ],
|
|
a * q.mQ[VW] );
|
|
}
|
|
|
|
|
|
inline LLQuaternion operator*(const LLQuaternion &q, F32 a)
|
|
{
|
|
return LLQuaternion(
|
|
a * q.mQ[VX],
|
|
a * q.mQ[VY],
|
|
a * q.mQ[VZ],
|
|
a * q.mQ[VW] );
|
|
}
|
|
|
|
inline LLQuaternion operator~(const LLQuaternion &a)
|
|
{
|
|
LLQuaternion q(a);
|
|
q.conjQuat();
|
|
return q;
|
|
}
|
|
|
|
inline bool LLQuaternion::operator==(const LLQuaternion &b) const
|
|
{
|
|
return ( (mQ[VX] == b.mQ[VX])
|
|
&&(mQ[VY] == b.mQ[VY])
|
|
&&(mQ[VZ] == b.mQ[VZ])
|
|
&&(mQ[VS] == b.mQ[VS]));
|
|
}
|
|
|
|
inline bool LLQuaternion::operator!=(const LLQuaternion &b) const
|
|
{
|
|
return ( (mQ[VX] != b.mQ[VX])
|
|
||(mQ[VY] != b.mQ[VY])
|
|
||(mQ[VZ] != b.mQ[VZ])
|
|
||(mQ[VS] != b.mQ[VS]));
|
|
}
|
|
|
|
inline const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b)
|
|
{
|
|
#if 1
|
|
LLQuaternion q(
|
|
b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1],
|
|
b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2],
|
|
b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0],
|
|
b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2]
|
|
);
|
|
a = q;
|
|
#else
|
|
a = a * b;
|
|
#endif
|
|
return a;
|
|
}
|
|
|
|
const F32 ONE_PART_IN_A_MILLION = 0.000001f;
|
|
|
|
inline F32 LLQuaternion::normalize()
|
|
{
|
|
F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
|
|
|
|
if (mag > FP_MAG_THRESHOLD)
|
|
{
|
|
// Floating point error can prevent some quaternions from achieving
|
|
// exact unity length. When trying to renormalize such quaternions we
|
|
// can oscillate between multiple quantized states. To prevent such
|
|
// drifts we only renomalize if the length is far enough from unity.
|
|
if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION)
|
|
{
|
|
F32 oomag = 1.f/mag;
|
|
mQ[VX] *= oomag;
|
|
mQ[VY] *= oomag;
|
|
mQ[VZ] *= oomag;
|
|
mQ[VS] *= oomag;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// we were given a very bad quaternion so we set it to identity
|
|
mQ[VX] = 0.f;
|
|
mQ[VY] = 0.f;
|
|
mQ[VZ] = 0.f;
|
|
mQ[VS] = 1.f;
|
|
}
|
|
|
|
return mag;
|
|
}
|
|
|
|
// deprecated
|
|
inline F32 LLQuaternion::normQuat()
|
|
{
|
|
F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
|
|
|
|
if (mag > FP_MAG_THRESHOLD)
|
|
{
|
|
if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION)
|
|
{
|
|
// only renormalize if length not close enough to 1.0 already
|
|
F32 oomag = 1.f/mag;
|
|
mQ[VX] *= oomag;
|
|
mQ[VY] *= oomag;
|
|
mQ[VZ] *= oomag;
|
|
mQ[VS] *= oomag;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mQ[VX] = 0.f;
|
|
mQ[VY] = 0.f;
|
|
mQ[VZ] = 0.f;
|
|
mQ[VS] = 1.f;
|
|
}
|
|
|
|
return mag;
|
|
}
|
|
|
|
LLQuaternion::Order StringToOrder( const char *str );
|
|
|
|
// Some notes about Quaternions
|
|
|
|
// What is a Quaternion?
|
|
// ---------------------
|
|
// A quaternion is a point in 4-dimensional complex space.
|
|
// Q = { Qx, Qy, Qz, Qw }
|
|
//
|
|
//
|
|
// Why Quaternions?
|
|
// ----------------
|
|
// The set of quaternions that make up the the 4-D unit sphere
|
|
// can be mapped to the set of all rotations in 3-D space. Sometimes
|
|
// it is easier to describe/manipulate rotations in quaternion space
|
|
// than rotation-matrix space.
|
|
//
|
|
//
|
|
// How Quaternions?
|
|
// ----------------
|
|
// In order to take advantage of quaternions we need to know how to
|
|
// go from rotation-matricies to quaternions and back. We also have
|
|
// to agree what variety of rotations we're generating.
|
|
//
|
|
// Consider the equation... v' = v * R
|
|
//
|
|
// There are two ways to think about rotations of vectors.
|
|
// 1) v' is the same vector in a different reference frame
|
|
// 2) v' is a new vector in the same reference frame
|
|
//
|
|
// bookmark -- which way are we using?
|
|
//
|
|
//
|
|
// Quaternion from Angle-Axis:
|
|
// ---------------------------
|
|
// Suppose we wanted to represent a rotation of some angle (theta)
|
|
// about some axis ({Ax, Ay, Az})...
|
|
//
|
|
// axis of rotation = {Ax, Ay, Az}
|
|
// angle_of_rotation = theta
|
|
//
|
|
// s = sin(0.5 * theta)
|
|
// c = cos(0.5 * theta)
|
|
// Q = { s * Ax, s * Ay, s * Az, c }
|
|
//
|
|
//
|
|
// 3x3 Matrix from Quaternion
|
|
// --------------------------
|
|
//
|
|
// | |
|
|
// | 1 - 2 * (y^2 + z^2) 2 * (x * y + z * w) 2 * (y * w - x * z) |
|
|
// | |
|
|
// M = | 2 * (x * y - z * w) 1 - 2 * (x^2 + z^2) 2 * (y * z + x * w) |
|
|
// | |
|
|
// | 2 * (x * z + y * w) 2 * (y * z - x * w) 1 - 2 * (x^2 + y^2) |
|
|
// | |
|
|
|
|
#endif
|