Files
SingularityViewer/indra/llmath/llquaternion.h
2011-05-18 14:36:05 -05:00

595 lines
18 KiB
C++

/**
* @file llquaternion.h
* @brief LLQuaternion class header file.
*
* $LicenseInfo:firstyear=2000&license=viewergpl$
*
* Copyright (c) 2000-2009, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#ifndef LLQUATERNION_H
#define LLQUATERNION_H
#include <iostream>
#ifndef LLMATH_H //enforce specific include order to avoid tangling inline dependencies
#error "Please include llmath.h first."
#endif
class LLVector4;
class LLVector3;
class LLVector3d;
class LLMatrix4;
class LLMatrix3;
// NOTA BENE: Quaternion code is written assuming Unit Quaternions!!!!
// Moreover, it is written assuming that all vectors and matricies
// passed as arguments are normalized and unitary respectively.
// VERY VERY VERY VERY BAD THINGS will happen if these assumptions fail.
static const U32 LENGTHOFQUAT = 4;
class LLQuaternion
{
public:
F32 mQ[LENGTHOFQUAT];
static const LLQuaternion DEFAULT;
LLQuaternion(); // Initializes Quaternion to (0,0,0,1)
explicit LLQuaternion(const LLMatrix4 &mat); // Initializes Quaternion from Matrix4
explicit LLQuaternion(const LLMatrix3 &mat); // Initializes Quaternion from Matrix3
LLQuaternion(F32 x, F32 y, F32 z, F32 w); // Initializes Quaternion to normalize(x, y, z, w)
LLQuaternion(F32 angle, const LLVector4 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec)
LLQuaternion(F32 angle, const LLVector3 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec)
LLQuaternion(const F32 *q); // Initializes Quaternion to normalize(x, y, z, w)
LLQuaternion(const LLVector3 &x_axis,
const LLVector3 &y_axis,
const LLVector3 &z_axis); // Initializes Quaternion from Matrix3 = [x_axis ; y_axis ; z_axis]
BOOL isIdentity() const;
BOOL isNotIdentity() const;
BOOL isFinite() const; // checks to see if all values of LLQuaternion are finite
void quantize16(F32 lower, F32 upper); // changes the vector to reflect quatization
void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization
void loadIdentity(); // Loads the quaternion that represents the identity rotation
const LLQuaternion& set(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normalize(x, y, z, w)
const LLQuaternion& set(const LLQuaternion &quat); // Copies Quaternion
const LLQuaternion& set(const F32 *q); // Sets Quaternion to normalize(quat[VX], quat[VY], quat[VZ], quat[VW])
const LLQuaternion& set(const LLMatrix3 &mat); // Sets Quaternion to mat2quat(mat)
const LLQuaternion& set(const LLMatrix4 &mat); // Sets Quaternion to mat2quat(mat)
const LLQuaternion& setAngleAxis(F32 angle, F32 x, F32 y, F32 z); // Sets Quaternion to axis_angle2quat(angle, x, y, z)
const LLQuaternion& setAngleAxis(F32 angle, const LLVector3 &vec); // Sets Quaternion to axis_angle2quat(angle, vec)
const LLQuaternion& setAngleAxis(F32 angle, const LLVector4 &vec); // Sets Quaternion to axis_angle2quat(angle, vec)
const LLQuaternion& setEulerAngles(F32 roll, F32 pitch, F32 yaw); // Sets Quaternion to euler2quat(pitch, yaw, roll)
const LLQuaternion& setQuatInit(F32 x, F32 y, F32 z, F32 w); // deprecated
const LLQuaternion& setQuat(const LLQuaternion &quat); // deprecated
const LLQuaternion& setQuat(const F32 *q); // deprecated
const LLQuaternion& setQuat(const LLMatrix3 &mat); // deprecated
const LLQuaternion& setQuat(const LLMatrix4 &mat); // deprecated
const LLQuaternion& setQuat(F32 angle, F32 x, F32 y, F32 z); // deprecated
const LLQuaternion& setQuat(F32 angle, const LLVector3 &vec); // deprecated
const LLQuaternion& setQuat(F32 angle, const LLVector4 &vec); // deprecated
const LLQuaternion& setQuat(F32 roll, F32 pitch, F32 yaw); // deprecated
LLMatrix4 getMatrix4(void) const; // Returns the Matrix4 equivalent of Quaternion
LLMatrix3 getMatrix3(void) const; // Returns the Matrix3 equivalent of Quaternion
void getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const; // returns rotation in radians about axis x,y,z
void getAngleAxis(F32* angle, LLVector3 &vec) const;
void getEulerAngles(F32 *roll, F32* pitch, F32 *yaw) const;
F32 normalize(); // Normalizes Quaternion and returns magnitude
F32 normQuat(); // deprecated
const LLQuaternion& conjugate(void); // Conjugates Quaternion and returns result
const LLQuaternion& conjQuat(void); // deprecated
// Other useful methods
const LLQuaternion& transpose(); // transpose (same as conjugate)
const LLQuaternion& transQuat(); // deprecated
void shortestArc(const LLVector3 &a, const LLVector3 &b); // shortest rotation from a to b
const LLQuaternion& constrain(F32 radians); // constrains rotation to a cone angle specified in radians
// Standard operators
friend std::ostream& operator<<(std::ostream &s, const LLQuaternion &a); // Prints a
friend LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b); // Addition
friend LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b); // Subtraction
friend LLQuaternion operator-(const LLQuaternion &a); // Negation
friend LLQuaternion operator*(F32 a, const LLQuaternion &q); // Scale
friend LLQuaternion operator*(const LLQuaternion &q, F32 b); // Scale
friend LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b); // Returns a * b
friend LLQuaternion operator~(const LLQuaternion &a); // Returns a* (Conjugate of a)
bool operator==(const LLQuaternion &b) const; // Returns a == b
bool operator!=(const LLQuaternion &b) const; // Returns a != b
friend const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b); // Returns a * b
friend LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot); // Rotates a by rot
friend LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot); // Rotates a by rot
friend LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot); // Rotates a by rot
// Non-standard operators
friend F32 dot(const LLQuaternion &a, const LLQuaternion &b);
friend LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from p to q
friend LLQuaternion lerp(F32 t, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from identity to q
friend LLQuaternion slerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // spherical linear interpolation from p to q
friend LLQuaternion slerp(F32 t, const LLQuaternion &q); // spherical linear interpolation from identity to q
friend LLQuaternion nlerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // normalized linear interpolation from p to q
friend LLQuaternion nlerp(F32 t, const LLQuaternion &q); // normalized linear interpolation from p to q
LLVector3 packToVector3() const; // Saves space by using the fact that our quaternions are normalized
void unpackFromVector3(const LLVector3& vec); // Saves space by using the fact that our quaternions are normalized
enum Order {
XYZ = 0,
YZX = 1,
ZXY = 2,
XZY = 3,
YXZ = 4,
ZYX = 5
};
// Creates a quaternions from maya's rotation representation,
// which is 3 rotations (in DEGREES) in the specified order
friend LLQuaternion mayaQ(F32 x, F32 y, F32 z, Order order);
// Conversions between Order and strings like "xyz" or "ZYX"
friend const char *OrderToString( const Order order );
friend Order StringToOrder( const char *str );
static BOOL parseQuat(const std::string& buf, LLQuaternion* value);
// For debugging, only
//static U32 mMultCount;
};
// checker
inline BOOL LLQuaternion::isFinite() const
{
return (llfinite(mQ[VX]) && llfinite(mQ[VY]) && llfinite(mQ[VZ]) && llfinite(mQ[VS]));
}
inline BOOL LLQuaternion::isIdentity() const
{
return
( mQ[VX] == 0.f ) &&
( mQ[VY] == 0.f ) &&
( mQ[VZ] == 0.f ) &&
( mQ[VS] == 1.f );
}
inline BOOL LLQuaternion::isNotIdentity() const
{
return
( mQ[VX] != 0.f ) ||
( mQ[VY] != 0.f ) ||
( mQ[VZ] != 0.f ) ||
( mQ[VS] != 1.f );
}
inline LLQuaternion::LLQuaternion(void)
{
mQ[VX] = 0.f;
mQ[VY] = 0.f;
mQ[VZ] = 0.f;
mQ[VS] = 1.f;
}
inline LLQuaternion::LLQuaternion(F32 x, F32 y, F32 z, F32 w)
{
mQ[VX] = x;
mQ[VY] = y;
mQ[VZ] = z;
mQ[VS] = w;
//RN: don't normalize this case as its used mainly for temporaries during calculations
//normalize();
/*
F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
mag -= 1.f;
mag = fabs(mag);
llassert(mag < 10.f*FP_MAG_THRESHOLD);
*/
}
inline LLQuaternion::LLQuaternion(const F32 *q)
{
mQ[VX] = q[VX];
mQ[VY] = q[VY];
mQ[VZ] = q[VZ];
mQ[VS] = q[VW];
normalize();
/*
F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
mag -= 1.f;
mag = fabs(mag);
llassert(mag < FP_MAG_THRESHOLD);
*/
}
inline void LLQuaternion::loadIdentity()
{
mQ[VX] = 0.0f;
mQ[VY] = 0.0f;
mQ[VZ] = 0.0f;
mQ[VW] = 1.0f;
}
inline const LLQuaternion& LLQuaternion::set(F32 x, F32 y, F32 z, F32 w)
{
mQ[VX] = x;
mQ[VY] = y;
mQ[VZ] = z;
mQ[VS] = w;
normalize();
return (*this);
}
inline const LLQuaternion& LLQuaternion::set(const LLQuaternion &quat)
{
mQ[VX] = quat.mQ[VX];
mQ[VY] = quat.mQ[VY];
mQ[VZ] = quat.mQ[VZ];
mQ[VW] = quat.mQ[VW];
normalize();
return (*this);
}
inline const LLQuaternion& LLQuaternion::set(const F32 *q)
{
mQ[VX] = q[VX];
mQ[VY] = q[VY];
mQ[VZ] = q[VZ];
mQ[VS] = q[VW];
normalize();
return (*this);
}
// deprecated
inline const LLQuaternion& LLQuaternion::setQuatInit(F32 x, F32 y, F32 z, F32 w)
{
mQ[VX] = x;
mQ[VY] = y;
mQ[VZ] = z;
mQ[VS] = w;
normalize();
return (*this);
}
// deprecated
inline const LLQuaternion& LLQuaternion::setQuat(const LLQuaternion &quat)
{
mQ[VX] = quat.mQ[VX];
mQ[VY] = quat.mQ[VY];
mQ[VZ] = quat.mQ[VZ];
mQ[VW] = quat.mQ[VW];
normalize();
return (*this);
}
// deprecated
inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q)
{
mQ[VX] = q[VX];
mQ[VY] = q[VY];
mQ[VZ] = q[VZ];
mQ[VS] = q[VW];
normalize();
return (*this);
}
// There may be a cheaper way that avoids the sqrt.
// Does sin_a = VX*VX + VY*VY + VZ*VZ?
// Copied from Matrix and Quaternion FAQ 1.12
inline void LLQuaternion::getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const
{
F32 cos_a = mQ[VW];
if (cos_a > 1.0f) cos_a = 1.0f;
if (cos_a < -1.0f) cos_a = -1.0f;
F32 sin_a = (F32) sqrt( 1.0f - cos_a * cos_a );
if ( fabs( sin_a ) < 0.0005f )
sin_a = 1.0f;
else
sin_a = 1.f/sin_a;
F32 temp_angle = 2.0f * (F32) acos( cos_a );
if (temp_angle > F_PI)
{
// The (angle,axis) pair should never have angles outside [PI, -PI]
// since we want the _shortest_ (angle,axis) solution.
// Since acos is defined for [0, PI], and we multiply by 2.0, we
// can push the angle outside the acceptible range.
// When this happens we set the angle to the other portion of a
// full 2PI rotation, and negate the axis, which reverses the
// direction of the rotation (by the right-hand rule).
*angle = 2.f * F_PI - temp_angle;
*x = - mQ[VX] * sin_a;
*y = - mQ[VY] * sin_a;
*z = - mQ[VZ] * sin_a;
}
else
{
*angle = temp_angle;
*x = mQ[VX] * sin_a;
*y = mQ[VY] * sin_a;
*z = mQ[VZ] * sin_a;
}
}
inline const LLQuaternion& LLQuaternion::conjugate()
{
mQ[VX] *= -1.f;
mQ[VY] *= -1.f;
mQ[VZ] *= -1.f;
return (*this);
}
inline const LLQuaternion& LLQuaternion::conjQuat()
{
mQ[VX] *= -1.f;
mQ[VY] *= -1.f;
mQ[VZ] *= -1.f;
return (*this);
}
// Transpose
inline const LLQuaternion& LLQuaternion::transpose()
{
mQ[VX] *= -1.f;
mQ[VY] *= -1.f;
mQ[VZ] *= -1.f;
return (*this);
}
// deprecated
inline const LLQuaternion& LLQuaternion::transQuat()
{
mQ[VX] *= -1.f;
mQ[VY] *= -1.f;
mQ[VZ] *= -1.f;
return (*this);
}
inline LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b)
{
return LLQuaternion(
a.mQ[VX] + b.mQ[VX],
a.mQ[VY] + b.mQ[VY],
a.mQ[VZ] + b.mQ[VZ],
a.mQ[VW] + b.mQ[VW] );
}
inline LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b)
{
return LLQuaternion(
a.mQ[VX] - b.mQ[VX],
a.mQ[VY] - b.mQ[VY],
a.mQ[VZ] - b.mQ[VZ],
a.mQ[VW] - b.mQ[VW] );
}
inline LLQuaternion operator-(const LLQuaternion &a)
{
return LLQuaternion(
-a.mQ[VX],
-a.mQ[VY],
-a.mQ[VZ],
-a.mQ[VW] );
}
inline LLQuaternion operator*(F32 a, const LLQuaternion &q)
{
return LLQuaternion(
a * q.mQ[VX],
a * q.mQ[VY],
a * q.mQ[VZ],
a * q.mQ[VW] );
}
inline LLQuaternion operator*(const LLQuaternion &q, F32 a)
{
return LLQuaternion(
a * q.mQ[VX],
a * q.mQ[VY],
a * q.mQ[VZ],
a * q.mQ[VW] );
}
inline LLQuaternion operator~(const LLQuaternion &a)
{
LLQuaternion q(a);
q.conjQuat();
return q;
}
inline bool LLQuaternion::operator==(const LLQuaternion &b) const
{
return ( (mQ[VX] == b.mQ[VX])
&&(mQ[VY] == b.mQ[VY])
&&(mQ[VZ] == b.mQ[VZ])
&&(mQ[VS] == b.mQ[VS]));
}
inline bool LLQuaternion::operator!=(const LLQuaternion &b) const
{
return ( (mQ[VX] != b.mQ[VX])
||(mQ[VY] != b.mQ[VY])
||(mQ[VZ] != b.mQ[VZ])
||(mQ[VS] != b.mQ[VS]));
}
inline const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b)
{
#if 1
LLQuaternion q(
b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1],
b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2],
b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0],
b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2]
);
a = q;
#else
a = a * b;
#endif
return a;
}
const F32 ONE_PART_IN_A_MILLION = 0.000001f;
inline F32 LLQuaternion::normalize()
{
F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
if (mag > FP_MAG_THRESHOLD)
{
// Floating point error can prevent some quaternions from achieving
// exact unity length. When trying to renormalize such quaternions we
// can oscillate between multiple quantized states. To prevent such
// drifts we only renomalize if the length is far enough from unity.
if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION)
{
F32 oomag = 1.f/mag;
mQ[VX] *= oomag;
mQ[VY] *= oomag;
mQ[VZ] *= oomag;
mQ[VS] *= oomag;
}
}
else
{
// we were given a very bad quaternion so we set it to identity
mQ[VX] = 0.f;
mQ[VY] = 0.f;
mQ[VZ] = 0.f;
mQ[VS] = 1.f;
}
return mag;
}
// deprecated
inline F32 LLQuaternion::normQuat()
{
F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]);
if (mag > FP_MAG_THRESHOLD)
{
if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION)
{
// only renormalize if length not close enough to 1.0 already
F32 oomag = 1.f/mag;
mQ[VX] *= oomag;
mQ[VY] *= oomag;
mQ[VZ] *= oomag;
mQ[VS] *= oomag;
}
}
else
{
mQ[VX] = 0.f;
mQ[VY] = 0.f;
mQ[VZ] = 0.f;
mQ[VS] = 1.f;
}
return mag;
}
LLQuaternion::Order StringToOrder( const char *str );
// Some notes about Quaternions
// What is a Quaternion?
// ---------------------
// A quaternion is a point in 4-dimensional complex space.
// Q = { Qx, Qy, Qz, Qw }
//
//
// Why Quaternions?
// ----------------
// The set of quaternions that make up the the 4-D unit sphere
// can be mapped to the set of all rotations in 3-D space. Sometimes
// it is easier to describe/manipulate rotations in quaternion space
// than rotation-matrix space.
//
//
// How Quaternions?
// ----------------
// In order to take advantage of quaternions we need to know how to
// go from rotation-matricies to quaternions and back. We also have
// to agree what variety of rotations we're generating.
//
// Consider the equation... v' = v * R
//
// There are two ways to think about rotations of vectors.
// 1) v' is the same vector in a different reference frame
// 2) v' is a new vector in the same reference frame
//
// bookmark -- which way are we using?
//
//
// Quaternion from Angle-Axis:
// ---------------------------
// Suppose we wanted to represent a rotation of some angle (theta)
// about some axis ({Ax, Ay, Az})...
//
// axis of rotation = {Ax, Ay, Az}
// angle_of_rotation = theta
//
// s = sin(0.5 * theta)
// c = cos(0.5 * theta)
// Q = { s * Ax, s * Ay, s * Az, c }
//
//
// 3x3 Matrix from Quaternion
// --------------------------
//
// | |
// | 1 - 2 * (y^2 + z^2) 2 * (x * y + z * w) 2 * (y * w - x * z) |
// | |
// M = | 2 * (x * y - z * w) 1 - 2 * (x^2 + z^2) 2 * (y * z + x * w) |
// | |
// | 2 * (x * z + y * w) 2 * (y * z - x * w) 1 - 2 * (x^2 + y^2) |
// | |
#endif