839 lines
20 KiB
C++
839 lines
20 KiB
C++
/**
|
|
* @file llvowlsky.cpp
|
|
* @brief LLVOWLSky class implementation
|
|
*
|
|
* $LicenseInfo:firstyear=2007&license=viewergpl$
|
|
*
|
|
* Copyright (c) 2007-2009, Linden Research, Inc.
|
|
*
|
|
* Second Life Viewer Source Code
|
|
* The source code in this file ("Source Code") is provided by Linden Lab
|
|
* to you under the terms of the GNU General Public License, version 2.0
|
|
* ("GPL"), unless you have obtained a separate licensing agreement
|
|
* ("Other License"), formally executed by you and Linden Lab. Terms of
|
|
* the GPL can be found in doc/GPL-license.txt in this distribution, or
|
|
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
|
|
*
|
|
* There are special exceptions to the terms and conditions of the GPL as
|
|
* it is applied to this Source Code. View the full text of the exception
|
|
* in the file doc/FLOSS-exception.txt in this software distribution, or
|
|
* online at
|
|
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
|
|
*
|
|
* By copying, modifying or distributing this software, you acknowledge
|
|
* that you have read and understood your obligations described above,
|
|
* and agree to abide by those obligations.
|
|
*
|
|
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
|
|
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
|
|
* COMPLETENESS OR PERFORMANCE.
|
|
* $/LicenseInfo$
|
|
*/
|
|
|
|
#include "llviewerprecompiledheaders.h"
|
|
|
|
#include "pipeline.h"
|
|
|
|
#include "llvowlsky.h"
|
|
#include "llsky.h"
|
|
#include "lldrawpoolwlsky.h"
|
|
#include "llface.h"
|
|
#include "llwlparammanager.h"
|
|
#include "llviewercontrol.h"
|
|
|
|
#define DOME_SLICES 1
|
|
const F32 LLVOWLSky::DISTANCE_TO_STARS = (HORIZON_DIST - 10.f)*0.25f;
|
|
|
|
const U32 LLVOWLSky::MIN_SKY_DETAIL = 3;
|
|
const U32 LLVOWLSky::MAX_SKY_DETAIL = 180;
|
|
|
|
inline U32 LLVOWLSky::getNumStacks(void)
|
|
{
|
|
return llmin(MAX_SKY_DETAIL, llmax(MIN_SKY_DETAIL, gSavedSettings.getU32("WLSkyDetail")));
|
|
}
|
|
|
|
inline U32 LLVOWLSky::getNumSlices(void)
|
|
{
|
|
return 2 * llmin(MAX_SKY_DETAIL, llmax(MIN_SKY_DETAIL, gSavedSettings.getU32("WLSkyDetail")));
|
|
}
|
|
|
|
inline U32 LLVOWLSky::getFanNumVerts(void)
|
|
{
|
|
return getNumSlices() + 1;
|
|
}
|
|
|
|
inline U32 LLVOWLSky::getFanNumIndices(void)
|
|
{
|
|
return getNumSlices() * 3;
|
|
}
|
|
|
|
inline U32 LLVOWLSky::getStripsNumVerts(void)
|
|
{
|
|
return (getNumStacks() - 1) * getNumSlices();
|
|
}
|
|
|
|
inline U32 LLVOWLSky::getStripsNumIndices(void)
|
|
{
|
|
return 2 * ((getNumStacks() - 2) * (getNumSlices() + 1)) + 1 ;
|
|
}
|
|
|
|
inline U32 LLVOWLSky::getStarsNumVerts(void)
|
|
{
|
|
return 1000;
|
|
}
|
|
|
|
inline U32 LLVOWLSky::getStarsNumIndices(void)
|
|
{
|
|
return 1000;
|
|
}
|
|
|
|
LLVOWLSky::LLVOWLSky(const LLUUID &id, const LLPCode pcode, LLViewerRegion *regionp)
|
|
: LLStaticViewerObject(id, pcode, regionp, TRUE)
|
|
{
|
|
initStars();
|
|
}
|
|
|
|
void LLVOWLSky::initSunDirection(LLVector3 const & sun_direction,
|
|
LLVector3 const & sun_angular_velocity)
|
|
{
|
|
}
|
|
|
|
void LLVOWLSky::idleUpdate(LLAgent &agent, LLWorld &world, const F64 &time)
|
|
{
|
|
|
|
}
|
|
|
|
BOOL LLVOWLSky::isActive(void) const
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
LLDrawable * LLVOWLSky::createDrawable(LLPipeline * pipeline)
|
|
{
|
|
pipeline->allocDrawable(this);
|
|
|
|
//LLDrawPoolWLSky *poolp = static_cast<LLDrawPoolWLSky *>(
|
|
gPipeline.getPool(LLDrawPool::POOL_WL_SKY);
|
|
|
|
mDrawable->setRenderType(LLPipeline::RENDER_TYPE_WL_SKY);
|
|
|
|
return mDrawable;
|
|
}
|
|
|
|
inline F32 LLVOWLSky::calcPhi(U32 i)
|
|
{
|
|
// i should range from [0..SKY_STACKS] so t will range from [0.f .. 1.f]
|
|
F32 t = float(i) / float(getNumStacks());
|
|
|
|
// ^4 the parameter of the tesselation to bias things toward 0 (the dome's apex)
|
|
t = t*t*t*t;
|
|
|
|
// invert and square the parameter of the tesselation to bias things toward 1 (the horizon)
|
|
t = 1.f - t;
|
|
t = t*t;
|
|
t = 1.f - t;
|
|
|
|
return (F_PI / 8.f) * t;
|
|
}
|
|
|
|
#if !DOME_SLICES
|
|
static const F32 Q = (1.f + sqrtf(5.f))/2.f; //golden ratio
|
|
|
|
//icosahedron verts (based on asset b0c7b76e-28c6-1f87-a1de-752d5e3cd264, contact Runitai Linden for a copy)
|
|
static const LLVector3 icosahedron_vert[] =
|
|
{
|
|
LLVector3(0,1.f,Q),
|
|
LLVector3(0,-1.f,Q),
|
|
LLVector3(0,-1.f,-Q),
|
|
LLVector3(0,1.f,-Q),
|
|
|
|
LLVector3(Q,0,1.f),
|
|
LLVector3(-Q,0,1.f),
|
|
LLVector3(-Q,0,-1.f),
|
|
LLVector3(Q,0,-1.f),
|
|
|
|
LLVector3(1,-Q,0.f),
|
|
LLVector3(-1,-Q,0.f),
|
|
LLVector3(-1,Q,0.f),
|
|
LLVector3(1,Q,0.f),
|
|
};
|
|
|
|
//indices
|
|
static const U32 icosahedron_ind[] =
|
|
{
|
|
5,0,1,
|
|
10,0,5,
|
|
5,1,9,
|
|
10,5,6,
|
|
6,5,9,
|
|
11,0,10,
|
|
3,11,10,
|
|
3,10,6,
|
|
3,6,2,
|
|
7,3,2,
|
|
8,7,2,
|
|
4,7,8,
|
|
1,4,8,
|
|
9,8,2,
|
|
9,2,6,
|
|
11,3,7,
|
|
4,0,11,
|
|
4,11,7,
|
|
1,0,4,
|
|
1,8,9,
|
|
};
|
|
|
|
|
|
//split every triangle in LLVertexBuffer into even fourths (assumes index triangle lists)
|
|
void subdivide(LLVertexBuffer& in, LLVertexBuffer* ret)
|
|
{
|
|
S32 tri_in = in.getNumIndices()/3;
|
|
|
|
ret->allocateBuffer(tri_in*4*3, tri_in*4*3, TRUE);
|
|
|
|
LLStrider<LLVector3> vin, vout;
|
|
LLStrider<U16> indin, indout;
|
|
|
|
ret->getVertexStrider(vout);
|
|
in.getVertexStrider(vin);
|
|
|
|
ret->getIndexStrider(indout);
|
|
in.getIndexStrider(indin);
|
|
|
|
|
|
for (S32 i = 0; i < tri_in; i++)
|
|
{
|
|
LLVector3 v0 = vin[*indin++];
|
|
LLVector3 v1 = vin[*indin++];
|
|
LLVector3 v2 = vin[*indin++];
|
|
|
|
LLVector3 v3 = (v0 + v1) * 0.5f;
|
|
LLVector3 v4 = (v1 + v2) * 0.5f;
|
|
LLVector3 v5 = (v2 + v0) * 0.5f;
|
|
|
|
*vout++ = v0;
|
|
*vout++ = v3;
|
|
*vout++ = v5;
|
|
|
|
*vout++ = v3;
|
|
*vout++ = v4;
|
|
*vout++ = v5;
|
|
|
|
*vout++ = v3;
|
|
*vout++ = v1;
|
|
*vout++ = v4;
|
|
|
|
*vout++ = v5;
|
|
*vout++ = v4;
|
|
*vout++ = v2;
|
|
}
|
|
|
|
for (S32 i = 0; i < ret->getNumIndices(); i++)
|
|
{
|
|
*indout++ = i;
|
|
}
|
|
|
|
}
|
|
|
|
void chop(LLVertexBuffer& in, LLVertexBuffer* out)
|
|
{
|
|
//chop off all triangles below horizon
|
|
F32 d = LLWLParamManager::sParamMgr->getDomeOffset() * LLWLParamManager::sParamMgr->getDomeRadius();
|
|
|
|
std::vector<LLVector3> vert;
|
|
|
|
LLStrider<LLVector3> vin;
|
|
LLStrider<U16> index;
|
|
|
|
in.getVertexStrider(vin);
|
|
in.getIndexStrider(index);
|
|
|
|
U32 tri_count = in.getNumIndices()/3;
|
|
for (U32 i = 0; i < tri_count; i++)
|
|
{
|
|
LLVector3 &v1 = vin[index[i*3+0]];
|
|
LLVector3 &v2 = vin[index[i*3+1]];
|
|
LLVector3 &v3 = vin[index[i*3+2]];
|
|
|
|
if (v1.mV[1] > d ||
|
|
v2.mV[1] > d ||
|
|
v3.mV[1] > d)
|
|
{
|
|
v1.mV[1] = llmax(v1.mV[1], d);
|
|
v2.mV[1] = llmax(v1.mV[1], d);
|
|
v3.mV[1] = llmax(v1.mV[1], d);
|
|
|
|
vert.push_back(v1);
|
|
vert.push_back(v2);
|
|
vert.push_back(v3);
|
|
}
|
|
}
|
|
|
|
out->allocateBuffer(vert.size(), vert.size(), TRUE);
|
|
|
|
LLStrider<LLVector3> vout;
|
|
out->getVertexStrider(vout);
|
|
out->getIndexStrider(index);
|
|
|
|
for (U32 i = 0; i < vert.size(); i++)
|
|
{
|
|
*vout++ = vert[i];
|
|
*index++ = i;
|
|
}
|
|
}
|
|
#endif // !DOME_SLICES
|
|
|
|
void LLVOWLSky::resetVertexBuffers()
|
|
{
|
|
mFanVerts = NULL;
|
|
mStripsVerts.clear();
|
|
mStarsVerts = NULL;
|
|
|
|
gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_ALL, TRUE);
|
|
}
|
|
|
|
void LLVOWLSky::cleanupGL()
|
|
{
|
|
mFanVerts = NULL;
|
|
mStripsVerts.clear();
|
|
mStarsVerts = NULL;
|
|
|
|
LLDrawPoolWLSky::cleanupGL();
|
|
}
|
|
|
|
void LLVOWLSky::restoreGL()
|
|
{
|
|
LLDrawPoolWLSky::restoreGL();
|
|
gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_ALL, TRUE);
|
|
}
|
|
|
|
static LLTrace::BlockTimerStatHandle FTM_GEO_SKY("Sky Geometry");
|
|
|
|
BOOL LLVOWLSky::updateGeometry(LLDrawable * drawable)
|
|
{
|
|
LL_RECORD_BLOCK_TIME(FTM_GEO_SKY);
|
|
LLStrider<LLVector3> vertices;
|
|
LLStrider<LLVector2> texCoords;
|
|
LLStrider<U16> indices;
|
|
|
|
#if DOME_SLICES
|
|
{
|
|
mFanVerts = new LLVertexBuffer(LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK, GL_STATIC_DRAW_ARB);
|
|
mFanVerts->allocateBuffer(getFanNumVerts(), getFanNumIndices(), TRUE);
|
|
|
|
BOOL success = mFanVerts->getVertexStrider(vertices)
|
|
&& mFanVerts->getTexCoord0Strider(texCoords)
|
|
&& mFanVerts->getIndexStrider(indices);
|
|
|
|
if(!success)
|
|
{
|
|
LL_ERRS() << "Failed updating WindLight sky geometry." << LL_ENDL;
|
|
}
|
|
|
|
buildFanBuffer(vertices, texCoords, indices);
|
|
|
|
mFanVerts->flush();
|
|
}
|
|
|
|
{
|
|
const U32 max_buffer_bytes = gSavedSettings.getS32("RenderMaxVBOSize")*1024;
|
|
const U32 data_mask = LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK;
|
|
const U32 max_verts = max_buffer_bytes / LLVertexBuffer::calcVertexSize(data_mask);
|
|
|
|
const U32 total_stacks = getNumStacks();
|
|
|
|
const U32 verts_per_stack = getNumSlices();
|
|
|
|
// each seg has to have one more row of verts than it has stacks
|
|
// then round down
|
|
const U32 stacks_per_seg = (max_verts - verts_per_stack) / verts_per_stack;
|
|
|
|
// round up to a whole number of segments
|
|
const U32 strips_segments = (total_stacks+stacks_per_seg-1) / stacks_per_seg;
|
|
|
|
LL_INFOS() << "WL Skydome strips in " << strips_segments << " batches." << LL_ENDL;
|
|
|
|
mStripsVerts.resize(strips_segments, NULL);
|
|
|
|
LLTimer timer;
|
|
timer.start();
|
|
|
|
for (U32 i = 0; i < strips_segments ;++i)
|
|
{
|
|
LLVertexBuffer * segment = new LLVertexBuffer(LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK, GL_STATIC_DRAW_ARB);
|
|
mStripsVerts[i] = segment;
|
|
|
|
U32 num_stacks_this_seg = stacks_per_seg;
|
|
if ((i == strips_segments - 1) && (total_stacks % stacks_per_seg) != 0)
|
|
{
|
|
// for the last buffer only allocate what we'll use
|
|
num_stacks_this_seg = total_stacks % stacks_per_seg;
|
|
}
|
|
|
|
// figure out what range of the sky we're filling
|
|
const U32 begin_stack = i * stacks_per_seg;
|
|
const U32 end_stack = begin_stack + num_stacks_this_seg;
|
|
llassert(end_stack <= total_stacks);
|
|
|
|
const U32 num_verts_this_seg = verts_per_stack * (num_stacks_this_seg+1);
|
|
llassert(num_verts_this_seg <= max_verts);
|
|
|
|
const U32 num_indices_this_seg = 1+num_stacks_this_seg*(2+2*verts_per_stack);
|
|
llassert(num_indices_this_seg * sizeof(U16) <= max_buffer_bytes);
|
|
|
|
segment->allocateBuffer(num_verts_this_seg, num_indices_this_seg, TRUE);
|
|
|
|
// lock the buffer
|
|
BOOL success = segment->getVertexStrider(vertices)
|
|
&& segment->getTexCoord0Strider(texCoords)
|
|
&& segment->getIndexStrider(indices);
|
|
|
|
if(!success)
|
|
{
|
|
LL_ERRS() << "Failed updating WindLight sky geometry." << LL_ENDL;
|
|
}
|
|
|
|
// fill it
|
|
buildStripsBuffer(begin_stack, end_stack, vertices, texCoords, indices);
|
|
|
|
// and unlock the buffer
|
|
segment->flush();
|
|
}
|
|
LL_INFOS() << "completed in " << llformat("%.2f", timer.getElapsedTimeF32()) << "seconds" << LL_ENDL;
|
|
}
|
|
#else
|
|
mStripsVerts = new LLVertexBuffer(LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK, GL_STATIC_DRAW_ARB);
|
|
|
|
const F32 RADIUS = LLWLParamManager::sParamMgr->getDomeRadius();
|
|
|
|
LLPointer<LLVertexBuffer> temp = new LLVertexBuffer(LLVertexBuffer::MAP_VERTEX, 0);
|
|
temp->allocateBuffer(12, 60, TRUE);
|
|
|
|
BOOL success = temp->getVertexStrider(vertices)
|
|
&& temp->getIndexStrider(indices);
|
|
|
|
if (success)
|
|
{
|
|
for (U32 i = 0; i < 12; i++)
|
|
{
|
|
*vertices++ = icosahedron_vert[i];
|
|
}
|
|
|
|
for (U32 i = 0; i < 60; i++)
|
|
{
|
|
*indices++ = icosahedron_ind[i];
|
|
}
|
|
}
|
|
|
|
|
|
LLPointer<LLVertexBuffer> temp2;
|
|
|
|
for (U32 i = 0; i < 8; i++)
|
|
{
|
|
temp2 = new LLVertexBuffer(LLVertexBuffer::MAP_VERTEX, 0);
|
|
subdivide(*temp, temp2);
|
|
temp = temp2;
|
|
}
|
|
|
|
temp->getVertexStrider(vertices);
|
|
for (S32 i = 0; i < temp->getNumVerts(); i++)
|
|
{
|
|
LLVector3 v = vertices[i];
|
|
v.normVec();
|
|
vertices[i] = v*RADIUS;
|
|
}
|
|
|
|
temp2 = new LLVertexBuffer(LLVertexBuffer::MAP_VERTEX, 0);
|
|
chop(*temp, temp2);
|
|
|
|
mStripsVerts->allocateBuffer(temp2->getNumVerts(), temp2->getNumIndices(), TRUE);
|
|
|
|
success = mStripsVerts->getVertexStrider(vertices)
|
|
&& mStripsVerts->getTexCoordStrider(texCoords)
|
|
&& mStripsVerts->getIndexStrider(indices);
|
|
|
|
LLStrider<LLVector3> v;
|
|
temp2->getVertexStrider(v);
|
|
LLStrider<U16> ind;
|
|
temp2->getIndexStrider(ind);
|
|
|
|
if (success)
|
|
{
|
|
for (S32 i = 0; i < temp2->getNumVerts(); ++i)
|
|
{
|
|
LLVector3 vert = *v++;
|
|
vert.normVec();
|
|
F32 z0 = vert.mV[2];
|
|
F32 x0 = vert.mV[0];
|
|
|
|
vert *= RADIUS;
|
|
|
|
*vertices++ = vert;
|
|
*texCoords++ = LLVector2((-z0 + 1.f) / 2.f, (-x0 + 1.f) / 2.f);
|
|
}
|
|
|
|
for (S32 i = 0; i < temp2->getNumIndices(); ++i)
|
|
{
|
|
*indices++ = *ind++;
|
|
}
|
|
}
|
|
|
|
mStripsVerts->flush();
|
|
#endif
|
|
|
|
updateStarColors();
|
|
updateStarGeometry(drawable);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
void LLVOWLSky::drawStars(void)
|
|
{
|
|
// render the stars as a sphere centered at viewer camera
|
|
if (mStarsVerts.notNull())
|
|
{
|
|
mStarsVerts->setBuffer(LLDrawPoolWLSky::STAR_VERTEX_DATA_MASK);
|
|
mStarsVerts->drawArrays(LLRender::TRIANGLES, 0, getStarsNumVerts()*4);
|
|
}
|
|
}
|
|
|
|
void LLVOWLSky::drawDome(void)
|
|
{
|
|
if (mStripsVerts.empty())
|
|
{
|
|
updateGeometry(mDrawable);
|
|
}
|
|
|
|
LLGLDepthTest gls_depth(GL_TRUE, GL_FALSE);
|
|
|
|
const U32 data_mask = LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK;
|
|
|
|
#if DOME_SLICES
|
|
std::vector< LLPointer<LLVertexBuffer> >::const_iterator strips_vbo_iter, end_strips;
|
|
end_strips = mStripsVerts.end();
|
|
for(strips_vbo_iter = mStripsVerts.begin(); strips_vbo_iter != end_strips; ++strips_vbo_iter)
|
|
{
|
|
LLVertexBuffer * strips_segment = strips_vbo_iter->get();
|
|
|
|
strips_segment->setBuffer(data_mask);
|
|
|
|
strips_segment->drawRange(
|
|
LLRender::TRIANGLE_STRIP,
|
|
0, strips_segment->getNumVerts()-1, strips_segment->getNumIndices(),
|
|
0);
|
|
gPipeline.addTrianglesDrawn(strips_segment->getNumIndices(), LLRender::TRIANGLE_STRIP);
|
|
}
|
|
|
|
#else
|
|
mStripsVerts->setBuffer(data_mask);
|
|
gGL.syncMatrices();
|
|
glDrawRangeElements(
|
|
GL_TRIANGLES,
|
|
0, mStripsVerts->getNumVerts()-1, mStripsVerts->getNumIndices(),
|
|
GL_UNSIGNED_SHORT,
|
|
mStripsVerts->getIndicesPointer());
|
|
#endif
|
|
|
|
LLVertexBuffer::unbind();
|
|
}
|
|
|
|
void LLVOWLSky::initStars()
|
|
{
|
|
// Initialize star map
|
|
mStarVertices.resize(getStarsNumVerts());
|
|
mStarColors.resize(getStarsNumVerts());
|
|
mStarIntensities.resize(getStarsNumVerts());
|
|
|
|
std::vector<LLVector3>::iterator v_p = mStarVertices.begin();
|
|
std::vector<LLColor4>::iterator v_c = mStarColors.begin();
|
|
std::vector<F32>::iterator v_i = mStarIntensities.begin();
|
|
|
|
U32 i;
|
|
for (i = 0; i < getStarsNumVerts(); ++i)
|
|
{
|
|
v_p->mV[VX] = ll_frand() - 0.5f;
|
|
v_p->mV[VY] = ll_frand() - 0.5f;
|
|
|
|
// we only want stars on the top half of the dome!
|
|
|
|
v_p->mV[VZ] = ll_frand()/2.f;
|
|
|
|
v_p->normVec();
|
|
*v_p *= DISTANCE_TO_STARS;
|
|
*v_i = llmin((F32)pow(ll_frand(),2.f) + 0.1f, 1.f);
|
|
v_c->mV[VRED] = 0.75f + ll_frand() * 0.25f ;
|
|
v_c->mV[VGREEN] = 1.f ;
|
|
v_c->mV[VBLUE] = 0.75f + ll_frand() * 0.25f ;
|
|
v_c->mV[VALPHA] = 1.f;
|
|
v_c->clamp();
|
|
v_p++;
|
|
v_c++;
|
|
v_i++;
|
|
}
|
|
}
|
|
|
|
void LLVOWLSky::buildFanBuffer(LLStrider<LLVector3> & vertices,
|
|
LLStrider<LLVector2> & texCoords,
|
|
LLStrider<U16> & indices)
|
|
{
|
|
const F32 RADIUS = LLWLParamManager::getInstance()->getDomeRadius();
|
|
|
|
U32 i, num_slices;
|
|
F32 phi0, theta, x0, y0, z0;
|
|
|
|
// paranoia checking for SL-55986/SL-55833
|
|
U32 count_verts = 0;
|
|
U32 count_indices = 0;
|
|
|
|
// apex
|
|
*vertices++ = LLVector3(0.f, RADIUS, 0.f);
|
|
*texCoords++ = LLVector2(0.5f, 0.5f);
|
|
++count_verts;
|
|
|
|
num_slices = getNumSlices();
|
|
|
|
// and fan in a circle around the apex
|
|
phi0 = calcPhi(1);
|
|
for(i = 0; i < num_slices; ++i) {
|
|
theta = 2.f * F_PI * float(i) / float(num_slices);
|
|
|
|
// standard transformation from spherical to
|
|
// rectangular coordinates
|
|
x0 = sin(phi0) * cos(theta);
|
|
y0 = cos(phi0);
|
|
z0 = sin(phi0) * sin(theta);
|
|
|
|
*vertices++ = LLVector3(x0 * RADIUS, y0 * RADIUS, z0 * RADIUS);
|
|
// generate planar uv coordinates
|
|
// note: x and z are transposed in order for things to animate
|
|
// correctly in the global coordinate system where +x is east and
|
|
// +y is north
|
|
*texCoords++ = LLVector2((-z0 + 1.f) / 2.f, (-x0 + 1.f) / 2.f);
|
|
++count_verts;
|
|
|
|
if (i > 0)
|
|
{
|
|
*indices++ = 0;
|
|
*indices++ = i;
|
|
*indices++ = i+1;
|
|
count_indices += 3;
|
|
}
|
|
}
|
|
|
|
// the last vertex of the last triangle should wrap around to
|
|
// the beginning
|
|
*indices++ = 0;
|
|
*indices++ = num_slices;
|
|
*indices++ = 1;
|
|
count_indices += 3;
|
|
|
|
// paranoia checking for SL-55986/SL-55833
|
|
llassert(getFanNumVerts() == count_verts);
|
|
llassert(getFanNumIndices() == count_indices);
|
|
}
|
|
|
|
void LLVOWLSky::buildStripsBuffer(U32 begin_stack, U32 end_stack,
|
|
LLStrider<LLVector3> & vertices,
|
|
LLStrider<LLVector2> & texCoords,
|
|
LLStrider<U16> & indices)
|
|
{
|
|
const F32 RADIUS = LLWLParamManager::getInstance()->getDomeRadius();
|
|
|
|
U32 i, j, num_slices, num_stacks;
|
|
F32 phi0, theta, x0, y0, z0;
|
|
|
|
// paranoia checking for SL-55986/SL-55833
|
|
U32 count_verts = 0;
|
|
U32 count_indices = 0;
|
|
|
|
num_slices = getNumSlices();
|
|
num_stacks = getNumStacks();
|
|
|
|
llassert(end_stack <= num_stacks);
|
|
|
|
// stacks are iterated one-indexed since phi(0) was handled by the fan above
|
|
for(i = begin_stack + 1; i <= end_stack+1; ++i)
|
|
{
|
|
phi0 = calcPhi(i);
|
|
|
|
for(j = 0; j < num_slices; ++j)
|
|
{
|
|
theta = F_TWO_PI * (float(j) / float(num_slices));
|
|
|
|
// standard transformation from spherical to
|
|
// rectangular coordinates
|
|
x0 = sin(phi0) * cos(theta);
|
|
y0 = cos(phi0);
|
|
z0 = sin(phi0) * sin(theta);
|
|
|
|
if (i == num_stacks-2)
|
|
{
|
|
*vertices++ = LLVector3(x0*RADIUS, y0*RADIUS-1024.f*2.f, z0*RADIUS);
|
|
}
|
|
else if (i == num_stacks-1)
|
|
{
|
|
*vertices++ = LLVector3(0, y0*RADIUS-1024.f*2.f, 0);
|
|
}
|
|
else
|
|
{
|
|
*vertices++ = LLVector3(x0 * RADIUS, y0 * RADIUS, z0 * RADIUS);
|
|
}
|
|
++count_verts;
|
|
|
|
// generate planar uv coordinates
|
|
// note: x and z are transposed in order for things to animate
|
|
// correctly in the global coordinate system where +x is east and
|
|
// +y is north
|
|
*texCoords++ = LLVector2((-z0 + 1.f) / 2.f, (-x0 + 1.f) / 2.f);
|
|
}
|
|
}
|
|
|
|
//build triangle strip...
|
|
*indices++ = 0 ;
|
|
count_indices++ ;
|
|
S32 k = 0 ;
|
|
for(i = 1; i <= end_stack - begin_stack; ++i)
|
|
{
|
|
*indices++ = i * num_slices + k ;
|
|
count_indices++ ;
|
|
|
|
k = (k+1) % num_slices ;
|
|
for(j = 0; j < num_slices ; ++j)
|
|
{
|
|
*indices++ = (i-1) * num_slices + k ;
|
|
*indices++ = i * num_slices + k ;
|
|
|
|
count_indices += 2 ;
|
|
|
|
k = (k+1) % num_slices ;
|
|
}
|
|
|
|
if((--k) < 0)
|
|
{
|
|
k = num_slices - 1 ;
|
|
}
|
|
|
|
*indices++ = i * num_slices + k ;
|
|
count_indices++ ;
|
|
}
|
|
}
|
|
|
|
void LLVOWLSky::updateStarColors()
|
|
{
|
|
std::vector<LLColor4>::iterator v_c = mStarColors.begin();
|
|
std::vector<F32>::iterator v_i = mStarIntensities.begin();
|
|
std::vector<LLVector3>::iterator v_p = mStarVertices.begin();
|
|
|
|
const F32 var = 0.15f;
|
|
const F32 min = 0.5f; //0.75f;
|
|
//const F32 sunclose_max = 0.6f;
|
|
//const F32 sunclose_range = 1 - sunclose_max;
|
|
|
|
//F32 below_horizon = - llmin(0.0f, gSky.mVOSkyp->getToSunLast().mV[2]);
|
|
//F32 brightness_factor = llmin(1.0f, below_horizon * 20);
|
|
|
|
static S32 swap = 0;
|
|
swap++;
|
|
|
|
if ((swap % 2) == 1)
|
|
{
|
|
F32 intensity; // max intensity of each star
|
|
U32 x;
|
|
for (x = 0; x < getStarsNumVerts(); ++x)
|
|
{
|
|
//F32 sundir_factor = 1;
|
|
LLVector3 tostar = *v_p;
|
|
tostar.normVec();
|
|
//const F32 how_close_to_sun = tostar * gSky.mVOSkyp->getToSunLast();
|
|
//if (how_close_to_sun > sunclose_max)
|
|
//{
|
|
// sundir_factor = (1 - how_close_to_sun) / sunclose_range;
|
|
//}
|
|
intensity = *(v_i);
|
|
F32 alpha = v_c->mV[VALPHA] + (ll_frand() - 0.5f) * var * intensity;
|
|
if (alpha < min * intensity)
|
|
{
|
|
alpha = min * intensity;
|
|
}
|
|
if (alpha > intensity)
|
|
{
|
|
alpha = intensity;
|
|
}
|
|
//alpha *= brightness_factor * sundir_factor;
|
|
|
|
alpha = llclamp(alpha, 0.f, 1.f);
|
|
v_c->mV[VALPHA] = alpha;
|
|
v_c++;
|
|
v_i++;
|
|
v_p++;
|
|
}
|
|
}
|
|
}
|
|
|
|
BOOL LLVOWLSky::updateStarGeometry(LLDrawable *drawable)
|
|
{
|
|
LLStrider<LLVector3> verticesp;
|
|
LLStrider<LLColor4U> colorsp;
|
|
LLStrider<LLVector2> texcoordsp;
|
|
|
|
if (mStarsVerts.isNull() || !mStarsVerts->isWriteable())
|
|
{
|
|
mStarsVerts = new LLVertexBuffer(LLDrawPoolWLSky::STAR_VERTEX_DATA_MASK, GL_DYNAMIC_DRAW);
|
|
mStarsVerts->allocateBuffer(getStarsNumVerts()*6, 0, TRUE);
|
|
}
|
|
|
|
BOOL success = mStarsVerts->getVertexStrider(verticesp)
|
|
&& mStarsVerts->getColorStrider(colorsp)
|
|
&& mStarsVerts->getTexCoord0Strider(texcoordsp);
|
|
|
|
if(!success)
|
|
{
|
|
LL_ERRS() << "Failed updating star geometry." << LL_ENDL;
|
|
}
|
|
|
|
// *TODO: fix LLStrider with a real prefix increment operator so it can be
|
|
// used as a model of OutputIterator. -Brad
|
|
// std::copy(mStarVertices.begin(), mStarVertices.end(), verticesp);
|
|
|
|
if (mStarVertices.size() < getStarsNumVerts())
|
|
{
|
|
LL_ERRS() << "Star reference geometry insufficient." << LL_ENDL;
|
|
}
|
|
|
|
for (U32 vtx = 0; vtx < getStarsNumVerts(); ++vtx)
|
|
{
|
|
LLVector3 at = mStarVertices[vtx];
|
|
at.normVec();
|
|
LLVector3 left = at%LLVector3(0,0,1);
|
|
LLVector3 up = at%left;
|
|
|
|
F32 sc = 0.5f+ll_frand()*1.25f;
|
|
left *= sc;
|
|
up *= sc;
|
|
|
|
*(verticesp++) = mStarVertices[vtx];
|
|
*(verticesp++) = mStarVertices[vtx]+up;
|
|
*(verticesp++) = mStarVertices[vtx]+left+up;
|
|
*(verticesp++) = mStarVertices[vtx];
|
|
*(verticesp++) = mStarVertices[vtx]+left+up;
|
|
*(verticesp++) = mStarVertices[vtx]+left;
|
|
|
|
*(texcoordsp++) = LLVector2(1,0);
|
|
*(texcoordsp++) = LLVector2(1,1);
|
|
*(texcoordsp++) = LLVector2(0,1);
|
|
*(texcoordsp++) = LLVector2(1,0);
|
|
*(texcoordsp++) = LLVector2(0,1);
|
|
*(texcoordsp++) = LLVector2(0,0);
|
|
|
|
*(colorsp++) = LLColor4U(mStarColors[vtx]);
|
|
*(colorsp++) = LLColor4U(mStarColors[vtx]);
|
|
*(colorsp++) = LLColor4U(mStarColors[vtx]);
|
|
*(colorsp++) = LLColor4U(mStarColors[vtx]);
|
|
*(colorsp++) = LLColor4U(mStarColors[vtx]);
|
|
*(colorsp++) = LLColor4U(mStarColors[vtx]);
|
|
}
|
|
|
|
mStarsVerts->flush();
|
|
return TRUE;
|
|
}
|