Files
SingularityViewer/indra/newview/llvowlsky.cpp
2017-03-14 04:02:53 -05:00

839 lines
20 KiB
C++

/**
* @file llvowlsky.cpp
* @brief LLVOWLSky class implementation
*
* $LicenseInfo:firstyear=2007&license=viewergpl$
*
* Copyright (c) 2007-2009, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "pipeline.h"
#include "llvowlsky.h"
#include "llsky.h"
#include "lldrawpoolwlsky.h"
#include "llface.h"
#include "llwlparammanager.h"
#include "llviewercontrol.h"
#define DOME_SLICES 1
const F32 LLVOWLSky::DISTANCE_TO_STARS = (HORIZON_DIST - 10.f)*0.25f;
const U32 LLVOWLSky::MIN_SKY_DETAIL = 3;
const U32 LLVOWLSky::MAX_SKY_DETAIL = 180;
inline U32 LLVOWLSky::getNumStacks(void)
{
return llmin(MAX_SKY_DETAIL, llmax(MIN_SKY_DETAIL, gSavedSettings.getU32("WLSkyDetail")));
}
inline U32 LLVOWLSky::getNumSlices(void)
{
return 2 * llmin(MAX_SKY_DETAIL, llmax(MIN_SKY_DETAIL, gSavedSettings.getU32("WLSkyDetail")));
}
inline U32 LLVOWLSky::getFanNumVerts(void)
{
return getNumSlices() + 1;
}
inline U32 LLVOWLSky::getFanNumIndices(void)
{
return getNumSlices() * 3;
}
inline U32 LLVOWLSky::getStripsNumVerts(void)
{
return (getNumStacks() - 1) * getNumSlices();
}
inline U32 LLVOWLSky::getStripsNumIndices(void)
{
return 2 * ((getNumStacks() - 2) * (getNumSlices() + 1)) + 1 ;
}
inline U32 LLVOWLSky::getStarsNumVerts(void)
{
return 1000;
}
inline U32 LLVOWLSky::getStarsNumIndices(void)
{
return 1000;
}
LLVOWLSky::LLVOWLSky(const LLUUID &id, const LLPCode pcode, LLViewerRegion *regionp)
: LLStaticViewerObject(id, pcode, regionp, TRUE)
{
initStars();
}
void LLVOWLSky::initSunDirection(LLVector3 const & sun_direction,
LLVector3 const & sun_angular_velocity)
{
}
void LLVOWLSky::idleUpdate(LLAgent &agent, LLWorld &world, const F64 &time)
{
}
BOOL LLVOWLSky::isActive(void) const
{
return FALSE;
}
LLDrawable * LLVOWLSky::createDrawable(LLPipeline * pipeline)
{
pipeline->allocDrawable(this);
//LLDrawPoolWLSky *poolp = static_cast<LLDrawPoolWLSky *>(
gPipeline.getPool(LLDrawPool::POOL_WL_SKY);
mDrawable->setRenderType(LLPipeline::RENDER_TYPE_WL_SKY);
return mDrawable;
}
inline F32 LLVOWLSky::calcPhi(U32 i)
{
// i should range from [0..SKY_STACKS] so t will range from [0.f .. 1.f]
F32 t = float(i) / float(getNumStacks());
// ^4 the parameter of the tesselation to bias things toward 0 (the dome's apex)
t = t*t*t*t;
// invert and square the parameter of the tesselation to bias things toward 1 (the horizon)
t = 1.f - t;
t = t*t;
t = 1.f - t;
return (F_PI / 8.f) * t;
}
#if !DOME_SLICES
static const F32 Q = (1.f + sqrtf(5.f))/2.f; //golden ratio
//icosahedron verts (based on asset b0c7b76e-28c6-1f87-a1de-752d5e3cd264, contact Runitai Linden for a copy)
static const LLVector3 icosahedron_vert[] =
{
LLVector3(0,1.f,Q),
LLVector3(0,-1.f,Q),
LLVector3(0,-1.f,-Q),
LLVector3(0,1.f,-Q),
LLVector3(Q,0,1.f),
LLVector3(-Q,0,1.f),
LLVector3(-Q,0,-1.f),
LLVector3(Q,0,-1.f),
LLVector3(1,-Q,0.f),
LLVector3(-1,-Q,0.f),
LLVector3(-1,Q,0.f),
LLVector3(1,Q,0.f),
};
//indices
static const U32 icosahedron_ind[] =
{
5,0,1,
10,0,5,
5,1,9,
10,5,6,
6,5,9,
11,0,10,
3,11,10,
3,10,6,
3,6,2,
7,3,2,
8,7,2,
4,7,8,
1,4,8,
9,8,2,
9,2,6,
11,3,7,
4,0,11,
4,11,7,
1,0,4,
1,8,9,
};
//split every triangle in LLVertexBuffer into even fourths (assumes index triangle lists)
void subdivide(LLVertexBuffer& in, LLVertexBuffer* ret)
{
S32 tri_in = in.getNumIndices()/3;
ret->allocateBuffer(tri_in*4*3, tri_in*4*3, TRUE);
LLStrider<LLVector3> vin, vout;
LLStrider<U16> indin, indout;
ret->getVertexStrider(vout);
in.getVertexStrider(vin);
ret->getIndexStrider(indout);
in.getIndexStrider(indin);
for (S32 i = 0; i < tri_in; i++)
{
LLVector3 v0 = vin[*indin++];
LLVector3 v1 = vin[*indin++];
LLVector3 v2 = vin[*indin++];
LLVector3 v3 = (v0 + v1) * 0.5f;
LLVector3 v4 = (v1 + v2) * 0.5f;
LLVector3 v5 = (v2 + v0) * 0.5f;
*vout++ = v0;
*vout++ = v3;
*vout++ = v5;
*vout++ = v3;
*vout++ = v4;
*vout++ = v5;
*vout++ = v3;
*vout++ = v1;
*vout++ = v4;
*vout++ = v5;
*vout++ = v4;
*vout++ = v2;
}
for (S32 i = 0; i < ret->getNumIndices(); i++)
{
*indout++ = i;
}
}
void chop(LLVertexBuffer& in, LLVertexBuffer* out)
{
//chop off all triangles below horizon
F32 d = LLWLParamManager::sParamMgr->getDomeOffset() * LLWLParamManager::sParamMgr->getDomeRadius();
std::vector<LLVector3> vert;
LLStrider<LLVector3> vin;
LLStrider<U16> index;
in.getVertexStrider(vin);
in.getIndexStrider(index);
U32 tri_count = in.getNumIndices()/3;
for (U32 i = 0; i < tri_count; i++)
{
LLVector3 &v1 = vin[index[i*3+0]];
LLVector3 &v2 = vin[index[i*3+1]];
LLVector3 &v3 = vin[index[i*3+2]];
if (v1.mV[1] > d ||
v2.mV[1] > d ||
v3.mV[1] > d)
{
v1.mV[1] = llmax(v1.mV[1], d);
v2.mV[1] = llmax(v1.mV[1], d);
v3.mV[1] = llmax(v1.mV[1], d);
vert.push_back(v1);
vert.push_back(v2);
vert.push_back(v3);
}
}
out->allocateBuffer(vert.size(), vert.size(), TRUE);
LLStrider<LLVector3> vout;
out->getVertexStrider(vout);
out->getIndexStrider(index);
for (U32 i = 0; i < vert.size(); i++)
{
*vout++ = vert[i];
*index++ = i;
}
}
#endif // !DOME_SLICES
void LLVOWLSky::resetVertexBuffers()
{
mFanVerts = NULL;
mStripsVerts.clear();
mStarsVerts = NULL;
gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_ALL, TRUE);
}
void LLVOWLSky::cleanupGL()
{
mFanVerts = NULL;
mStripsVerts.clear();
mStarsVerts = NULL;
LLDrawPoolWLSky::cleanupGL();
}
void LLVOWLSky::restoreGL()
{
LLDrawPoolWLSky::restoreGL();
gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_ALL, TRUE);
}
static LLTrace::BlockTimerStatHandle FTM_GEO_SKY("Sky Geometry");
BOOL LLVOWLSky::updateGeometry(LLDrawable * drawable)
{
LL_RECORD_BLOCK_TIME(FTM_GEO_SKY);
LLStrider<LLVector3> vertices;
LLStrider<LLVector2> texCoords;
LLStrider<U16> indices;
#if DOME_SLICES
{
mFanVerts = new LLVertexBuffer(LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK, GL_STATIC_DRAW_ARB);
mFanVerts->allocateBuffer(getFanNumVerts(), getFanNumIndices(), TRUE);
BOOL success = mFanVerts->getVertexStrider(vertices)
&& mFanVerts->getTexCoord0Strider(texCoords)
&& mFanVerts->getIndexStrider(indices);
if(!success)
{
LL_ERRS() << "Failed updating WindLight sky geometry." << LL_ENDL;
}
buildFanBuffer(vertices, texCoords, indices);
mFanVerts->flush();
}
{
const U32 max_buffer_bytes = gSavedSettings.getS32("RenderMaxVBOSize")*1024;
const U32 data_mask = LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK;
const U32 max_verts = max_buffer_bytes / LLVertexBuffer::calcVertexSize(data_mask);
const U32 total_stacks = getNumStacks();
const U32 verts_per_stack = getNumSlices();
// each seg has to have one more row of verts than it has stacks
// then round down
const U32 stacks_per_seg = (max_verts - verts_per_stack) / verts_per_stack;
// round up to a whole number of segments
const U32 strips_segments = (total_stacks+stacks_per_seg-1) / stacks_per_seg;
LL_INFOS() << "WL Skydome strips in " << strips_segments << " batches." << LL_ENDL;
mStripsVerts.resize(strips_segments, NULL);
LLTimer timer;
timer.start();
for (U32 i = 0; i < strips_segments ;++i)
{
LLVertexBuffer * segment = new LLVertexBuffer(LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK, GL_STATIC_DRAW_ARB);
mStripsVerts[i] = segment;
U32 num_stacks_this_seg = stacks_per_seg;
if ((i == strips_segments - 1) && (total_stacks % stacks_per_seg) != 0)
{
// for the last buffer only allocate what we'll use
num_stacks_this_seg = total_stacks % stacks_per_seg;
}
// figure out what range of the sky we're filling
const U32 begin_stack = i * stacks_per_seg;
const U32 end_stack = begin_stack + num_stacks_this_seg;
llassert(end_stack <= total_stacks);
const U32 num_verts_this_seg = verts_per_stack * (num_stacks_this_seg+1);
llassert(num_verts_this_seg <= max_verts);
const U32 num_indices_this_seg = 1+num_stacks_this_seg*(2+2*verts_per_stack);
llassert(num_indices_this_seg * sizeof(U16) <= max_buffer_bytes);
segment->allocateBuffer(num_verts_this_seg, num_indices_this_seg, TRUE);
// lock the buffer
BOOL success = segment->getVertexStrider(vertices)
&& segment->getTexCoord0Strider(texCoords)
&& segment->getIndexStrider(indices);
if(!success)
{
LL_ERRS() << "Failed updating WindLight sky geometry." << LL_ENDL;
}
// fill it
buildStripsBuffer(begin_stack, end_stack, vertices, texCoords, indices);
// and unlock the buffer
segment->flush();
}
LL_INFOS() << "completed in " << llformat("%.2f", timer.getElapsedTimeF32()) << "seconds" << LL_ENDL;
}
#else
mStripsVerts = new LLVertexBuffer(LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK, GL_STATIC_DRAW_ARB);
const F32 RADIUS = LLWLParamManager::sParamMgr->getDomeRadius();
LLPointer<LLVertexBuffer> temp = new LLVertexBuffer(LLVertexBuffer::MAP_VERTEX, 0);
temp->allocateBuffer(12, 60, TRUE);
BOOL success = temp->getVertexStrider(vertices)
&& temp->getIndexStrider(indices);
if (success)
{
for (U32 i = 0; i < 12; i++)
{
*vertices++ = icosahedron_vert[i];
}
for (U32 i = 0; i < 60; i++)
{
*indices++ = icosahedron_ind[i];
}
}
LLPointer<LLVertexBuffer> temp2;
for (U32 i = 0; i < 8; i++)
{
temp2 = new LLVertexBuffer(LLVertexBuffer::MAP_VERTEX, 0);
subdivide(*temp, temp2);
temp = temp2;
}
temp->getVertexStrider(vertices);
for (S32 i = 0; i < temp->getNumVerts(); i++)
{
LLVector3 v = vertices[i];
v.normVec();
vertices[i] = v*RADIUS;
}
temp2 = new LLVertexBuffer(LLVertexBuffer::MAP_VERTEX, 0);
chop(*temp, temp2);
mStripsVerts->allocateBuffer(temp2->getNumVerts(), temp2->getNumIndices(), TRUE);
success = mStripsVerts->getVertexStrider(vertices)
&& mStripsVerts->getTexCoordStrider(texCoords)
&& mStripsVerts->getIndexStrider(indices);
LLStrider<LLVector3> v;
temp2->getVertexStrider(v);
LLStrider<U16> ind;
temp2->getIndexStrider(ind);
if (success)
{
for (S32 i = 0; i < temp2->getNumVerts(); ++i)
{
LLVector3 vert = *v++;
vert.normVec();
F32 z0 = vert.mV[2];
F32 x0 = vert.mV[0];
vert *= RADIUS;
*vertices++ = vert;
*texCoords++ = LLVector2((-z0 + 1.f) / 2.f, (-x0 + 1.f) / 2.f);
}
for (S32 i = 0; i < temp2->getNumIndices(); ++i)
{
*indices++ = *ind++;
}
}
mStripsVerts->flush();
#endif
updateStarColors();
updateStarGeometry(drawable);
return TRUE;
}
void LLVOWLSky::drawStars(void)
{
// render the stars as a sphere centered at viewer camera
if (mStarsVerts.notNull())
{
mStarsVerts->setBuffer(LLDrawPoolWLSky::STAR_VERTEX_DATA_MASK);
mStarsVerts->drawArrays(LLRender::TRIANGLES, 0, getStarsNumVerts()*4);
}
}
void LLVOWLSky::drawDome(void)
{
if (mStripsVerts.empty())
{
updateGeometry(mDrawable);
}
LLGLDepthTest gls_depth(GL_TRUE, GL_FALSE);
const U32 data_mask = LLDrawPoolWLSky::SKY_VERTEX_DATA_MASK;
#if DOME_SLICES
std::vector< LLPointer<LLVertexBuffer> >::const_iterator strips_vbo_iter, end_strips;
end_strips = mStripsVerts.end();
for(strips_vbo_iter = mStripsVerts.begin(); strips_vbo_iter != end_strips; ++strips_vbo_iter)
{
LLVertexBuffer * strips_segment = strips_vbo_iter->get();
strips_segment->setBuffer(data_mask);
strips_segment->drawRange(
LLRender::TRIANGLE_STRIP,
0, strips_segment->getNumVerts()-1, strips_segment->getNumIndices(),
0);
gPipeline.addTrianglesDrawn(strips_segment->getNumIndices(), LLRender::TRIANGLE_STRIP);
}
#else
mStripsVerts->setBuffer(data_mask);
gGL.syncMatrices();
glDrawRangeElements(
GL_TRIANGLES,
0, mStripsVerts->getNumVerts()-1, mStripsVerts->getNumIndices(),
GL_UNSIGNED_SHORT,
mStripsVerts->getIndicesPointer());
#endif
LLVertexBuffer::unbind();
}
void LLVOWLSky::initStars()
{
// Initialize star map
mStarVertices.resize(getStarsNumVerts());
mStarColors.resize(getStarsNumVerts());
mStarIntensities.resize(getStarsNumVerts());
std::vector<LLVector3>::iterator v_p = mStarVertices.begin();
std::vector<LLColor4>::iterator v_c = mStarColors.begin();
std::vector<F32>::iterator v_i = mStarIntensities.begin();
U32 i;
for (i = 0; i < getStarsNumVerts(); ++i)
{
v_p->mV[VX] = ll_frand() - 0.5f;
v_p->mV[VY] = ll_frand() - 0.5f;
// we only want stars on the top half of the dome!
v_p->mV[VZ] = ll_frand()/2.f;
v_p->normVec();
*v_p *= DISTANCE_TO_STARS;
*v_i = llmin((F32)pow(ll_frand(),2.f) + 0.1f, 1.f);
v_c->mV[VRED] = 0.75f + ll_frand() * 0.25f ;
v_c->mV[VGREEN] = 1.f ;
v_c->mV[VBLUE] = 0.75f + ll_frand() * 0.25f ;
v_c->mV[VALPHA] = 1.f;
v_c->clamp();
v_p++;
v_c++;
v_i++;
}
}
void LLVOWLSky::buildFanBuffer(LLStrider<LLVector3> & vertices,
LLStrider<LLVector2> & texCoords,
LLStrider<U16> & indices)
{
const F32 RADIUS = LLWLParamManager::getInstance()->getDomeRadius();
U32 i, num_slices;
F32 phi0, theta, x0, y0, z0;
// paranoia checking for SL-55986/SL-55833
U32 count_verts = 0;
U32 count_indices = 0;
// apex
*vertices++ = LLVector3(0.f, RADIUS, 0.f);
*texCoords++ = LLVector2(0.5f, 0.5f);
++count_verts;
num_slices = getNumSlices();
// and fan in a circle around the apex
phi0 = calcPhi(1);
for(i = 0; i < num_slices; ++i) {
theta = 2.f * F_PI * float(i) / float(num_slices);
// standard transformation from spherical to
// rectangular coordinates
x0 = sin(phi0) * cos(theta);
y0 = cos(phi0);
z0 = sin(phi0) * sin(theta);
*vertices++ = LLVector3(x0 * RADIUS, y0 * RADIUS, z0 * RADIUS);
// generate planar uv coordinates
// note: x and z are transposed in order for things to animate
// correctly in the global coordinate system where +x is east and
// +y is north
*texCoords++ = LLVector2((-z0 + 1.f) / 2.f, (-x0 + 1.f) / 2.f);
++count_verts;
if (i > 0)
{
*indices++ = 0;
*indices++ = i;
*indices++ = i+1;
count_indices += 3;
}
}
// the last vertex of the last triangle should wrap around to
// the beginning
*indices++ = 0;
*indices++ = num_slices;
*indices++ = 1;
count_indices += 3;
// paranoia checking for SL-55986/SL-55833
llassert(getFanNumVerts() == count_verts);
llassert(getFanNumIndices() == count_indices);
}
void LLVOWLSky::buildStripsBuffer(U32 begin_stack, U32 end_stack,
LLStrider<LLVector3> & vertices,
LLStrider<LLVector2> & texCoords,
LLStrider<U16> & indices)
{
const F32 RADIUS = LLWLParamManager::getInstance()->getDomeRadius();
U32 i, j, num_slices, num_stacks;
F32 phi0, theta, x0, y0, z0;
// paranoia checking for SL-55986/SL-55833
U32 count_verts = 0;
U32 count_indices = 0;
num_slices = getNumSlices();
num_stacks = getNumStacks();
llassert(end_stack <= num_stacks);
// stacks are iterated one-indexed since phi(0) was handled by the fan above
for(i = begin_stack + 1; i <= end_stack+1; ++i)
{
phi0 = calcPhi(i);
for(j = 0; j < num_slices; ++j)
{
theta = F_TWO_PI * (float(j) / float(num_slices));
// standard transformation from spherical to
// rectangular coordinates
x0 = sin(phi0) * cos(theta);
y0 = cos(phi0);
z0 = sin(phi0) * sin(theta);
if (i == num_stacks-2)
{
*vertices++ = LLVector3(x0*RADIUS, y0*RADIUS-1024.f*2.f, z0*RADIUS);
}
else if (i == num_stacks-1)
{
*vertices++ = LLVector3(0, y0*RADIUS-1024.f*2.f, 0);
}
else
{
*vertices++ = LLVector3(x0 * RADIUS, y0 * RADIUS, z0 * RADIUS);
}
++count_verts;
// generate planar uv coordinates
// note: x and z are transposed in order for things to animate
// correctly in the global coordinate system where +x is east and
// +y is north
*texCoords++ = LLVector2((-z0 + 1.f) / 2.f, (-x0 + 1.f) / 2.f);
}
}
//build triangle strip...
*indices++ = 0 ;
count_indices++ ;
S32 k = 0 ;
for(i = 1; i <= end_stack - begin_stack; ++i)
{
*indices++ = i * num_slices + k ;
count_indices++ ;
k = (k+1) % num_slices ;
for(j = 0; j < num_slices ; ++j)
{
*indices++ = (i-1) * num_slices + k ;
*indices++ = i * num_slices + k ;
count_indices += 2 ;
k = (k+1) % num_slices ;
}
if((--k) < 0)
{
k = num_slices - 1 ;
}
*indices++ = i * num_slices + k ;
count_indices++ ;
}
}
void LLVOWLSky::updateStarColors()
{
std::vector<LLColor4>::iterator v_c = mStarColors.begin();
std::vector<F32>::iterator v_i = mStarIntensities.begin();
std::vector<LLVector3>::iterator v_p = mStarVertices.begin();
const F32 var = 0.15f;
const F32 min = 0.5f; //0.75f;
//const F32 sunclose_max = 0.6f;
//const F32 sunclose_range = 1 - sunclose_max;
//F32 below_horizon = - llmin(0.0f, gSky.mVOSkyp->getToSunLast().mV[2]);
//F32 brightness_factor = llmin(1.0f, below_horizon * 20);
static S32 swap = 0;
swap++;
if ((swap % 2) == 1)
{
F32 intensity; // max intensity of each star
U32 x;
for (x = 0; x < getStarsNumVerts(); ++x)
{
//F32 sundir_factor = 1;
LLVector3 tostar = *v_p;
tostar.normVec();
//const F32 how_close_to_sun = tostar * gSky.mVOSkyp->getToSunLast();
//if (how_close_to_sun > sunclose_max)
//{
// sundir_factor = (1 - how_close_to_sun) / sunclose_range;
//}
intensity = *(v_i);
F32 alpha = v_c->mV[VALPHA] + (ll_frand() - 0.5f) * var * intensity;
if (alpha < min * intensity)
{
alpha = min * intensity;
}
if (alpha > intensity)
{
alpha = intensity;
}
//alpha *= brightness_factor * sundir_factor;
alpha = llclamp(alpha, 0.f, 1.f);
v_c->mV[VALPHA] = alpha;
v_c++;
v_i++;
v_p++;
}
}
}
BOOL LLVOWLSky::updateStarGeometry(LLDrawable *drawable)
{
LLStrider<LLVector3> verticesp;
LLStrider<LLColor4U> colorsp;
LLStrider<LLVector2> texcoordsp;
if (mStarsVerts.isNull() || !mStarsVerts->isWriteable())
{
mStarsVerts = new LLVertexBuffer(LLDrawPoolWLSky::STAR_VERTEX_DATA_MASK, GL_DYNAMIC_DRAW);
mStarsVerts->allocateBuffer(getStarsNumVerts()*6, 0, TRUE);
}
BOOL success = mStarsVerts->getVertexStrider(verticesp)
&& mStarsVerts->getColorStrider(colorsp)
&& mStarsVerts->getTexCoord0Strider(texcoordsp);
if(!success)
{
LL_ERRS() << "Failed updating star geometry." << LL_ENDL;
}
// *TODO: fix LLStrider with a real prefix increment operator so it can be
// used as a model of OutputIterator. -Brad
// std::copy(mStarVertices.begin(), mStarVertices.end(), verticesp);
if (mStarVertices.size() < getStarsNumVerts())
{
LL_ERRS() << "Star reference geometry insufficient." << LL_ENDL;
}
for (U32 vtx = 0; vtx < getStarsNumVerts(); ++vtx)
{
LLVector3 at = mStarVertices[vtx];
at.normVec();
LLVector3 left = at%LLVector3(0,0,1);
LLVector3 up = at%left;
F32 sc = 0.5f+ll_frand()*1.25f;
left *= sc;
up *= sc;
*(verticesp++) = mStarVertices[vtx];
*(verticesp++) = mStarVertices[vtx]+up;
*(verticesp++) = mStarVertices[vtx]+left+up;
*(verticesp++) = mStarVertices[vtx];
*(verticesp++) = mStarVertices[vtx]+left+up;
*(verticesp++) = mStarVertices[vtx]+left;
*(texcoordsp++) = LLVector2(1,0);
*(texcoordsp++) = LLVector2(1,1);
*(texcoordsp++) = LLVector2(0,1);
*(texcoordsp++) = LLVector2(1,0);
*(texcoordsp++) = LLVector2(0,1);
*(texcoordsp++) = LLVector2(0,0);
*(colorsp++) = LLColor4U(mStarColors[vtx]);
*(colorsp++) = LLColor4U(mStarColors[vtx]);
*(colorsp++) = LLColor4U(mStarColors[vtx]);
*(colorsp++) = LLColor4U(mStarColors[vtx]);
*(colorsp++) = LLColor4U(mStarColors[vtx]);
*(colorsp++) = LLColor4U(mStarColors[vtx]);
}
mStarsVerts->flush();
return TRUE;
}