Files
SingularityViewer/indra/newview/llvosky.cpp
2018-11-20 02:49:57 -06:00

2293 lines
60 KiB
C++

/**
* @file llvosky.cpp
* @brief LLVOSky class implementation
*
* $LicenseInfo:firstyear=2001&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "llvosky.h"
#include "imageids.h"
#include "llfeaturemanager.h"
#include "llviewercontrol.h"
#include "llframetimer.h"
#include "timing.h"
#include "llagent.h"
#include "llagentcamera.h"
#include "lldrawable.h"
#include "llface.h"
#include "llcubemap.h"
#include "lldrawpoolsky.h"
#include "lldrawpoolwater.h"
#include "llglheaders.h"
#include "llsky.h"
#include "llviewercamera.h"
#include "llviewertexturelist.h"
#include "llviewerobjectlist.h"
#include "llviewerregion.h"
#include "llworld.h"
#include "pipeline.h"
#include "lldrawpoolwlsky.h"
#include "llwlparammanager.h"
#include "llwaterparammanager.h"
#undef min
#undef max
static const S32 NUM_TILES_X = 8;
static const S32 NUM_TILES_Y = 4;
static const S32 NUM_TILES = NUM_TILES_X * NUM_TILES_Y;
// Heavenly body constants
static const F32 SUN_DISK_RADIUS = 0.5f;
static const F32 MOON_DISK_RADIUS = SUN_DISK_RADIUS * 0.9f;
static const F32 SUN_INTENSITY = 1e5;
static const F32 SUN_DISK_INTENSITY = 24.f;
// Texture coordinates:
static const LLVector2 TEX00 = LLVector2(0.f, 0.f);
static const LLVector2 TEX01 = LLVector2(0.f, 1.f);
static const LLVector2 TEX10 = LLVector2(1.f, 0.f);
static const LLVector2 TEX11 = LLVector2(1.f, 1.f);
// Exported globals
LLUUID gSunTextureID = IMG_SUN;
LLUUID gMoonTextureID = IMG_MOON;
class LLFastLn
{
public:
LLFastLn()
{
mTable[0] = 0;
for( S32 i = 1; i < 257; i++ )
{
mTable[i] = log((F32)i);
}
}
F32 ln( F32 x )
{
const F32 OO_255 = 0.003921568627450980392156862745098f;
const F32 LN_255 = 5.5412635451584261462455391880218f;
if( x < OO_255 )
{
return log(x);
}
else
if( x < 1 )
{
x *= 255.f;
S32 index = llfloor(x);
F32 t = x - index;
F32 low = mTable[index];
F32 high = mTable[index + 1];
return low + t * (high - low) - LN_255;
}
else
if( x <= 255 )
{
S32 index = llfloor(x);
F32 t = x - index;
F32 low = mTable[index];
F32 high = mTable[index + 1];
return low + t * (high - low);
}
else
{
return log( x );
}
}
F32 pow( F32 x, F32 y )
{
return (F32)LL_FAST_EXP(y * ln(x));
}
private:
F32 mTable[257]; // index 0 is unused
};
static LLFastLn gFastLn;
// Functions used a lot.
inline F32 LLHaze::calcPhase(const F32 cos_theta) const
{
const F32 g2 = mG * mG;
const F32 den = 1 + g2 - 2 * mG * cos_theta;
return (1 - g2) * gFastLn.pow(den, -1.5);
}
inline void color_pow(LLColor3 &col, const F32 e)
{
col.mV[0] = gFastLn.pow(col.mV[0], e);
col.mV[1] = gFastLn.pow(col.mV[1], e);
col.mV[2] = gFastLn.pow(col.mV[2], e);
}
inline LLColor3 color_norm(const LLColor3 &col)
{
const F32 m = color_max(col);
if (m > 1.f)
{
return 1.f/m * col;
}
else return col;
}
inline void color_gamma_correct(LLColor3 &col)
{
const F32 gamma_inv = 1.f/1.2f;
if (col.mV[0] != 0.f)
{
col.mV[0] = gFastLn.pow(col.mV[0], gamma_inv);
}
if (col.mV[1] != 0.f)
{
col.mV[1] = gFastLn.pow(col.mV[1], gamma_inv);
}
if (col.mV[2] != 0.f)
{
col.mV[2] = gFastLn.pow(col.mV[2], gamma_inv);
}
}
static LLColor3 calc_air_sca_sea_level()
{
static LLColor3 WAVE_LEN(675, 520, 445);
static LLColor3 refr_ind = refr_ind_calc(WAVE_LEN);
static LLColor3 n21 = refr_ind * refr_ind - LLColor3(1, 1, 1);
static LLColor3 n4 = n21 * n21;
static LLColor3 wl2 = WAVE_LEN * WAVE_LEN * 1e-6f;
static LLColor3 wl4 = wl2 * wl2;
static LLColor3 mult_const = fsigma * 2.0f/ 3.0f * 1e24f * (F_PI * F_PI) * n4;
static F32 dens_div_N = F32( ATM_SEA_LEVEL_NDENS / Ndens2);
return dens_div_N * color_div ( mult_const, wl4 );
}
// static constants.
LLColor3 const LLHaze::sAirScaSeaLevel = calc_air_sca_sea_level();
F32 const LLHaze::sAirScaIntense = color_intens(LLHaze::sAirScaSeaLevel);
F32 const LLHaze::sAirScaAvg = LLHaze::sAirScaIntense / 3.f;
/***************************************
SkyTex
***************************************/
S32 LLSkyTex::sComponents = 4;
S32 LLSkyTex::sResolution = 64;
F32 LLSkyTex::sInterpVal = 0.f;
S32 LLSkyTex::sCurrent = 0;
LLSkyTex::LLSkyTex() :
mSkyData(NULL),
mSkyDirs(NULL)
{
}
void LLSkyTex::init()
{
// Singu Note: Store as unsigned to avoid casting.
mSkyData = new LLColor4U[sResolution * sResolution];
mSkyDirs = new LLVector3[sResolution * sResolution];
for (S32 i = 0; i < 2; ++i)
{
mTexture[i] = LLViewerTextureManager::getLocalTexture(FALSE);
mTexture[i]->setAddressMode(LLTexUnit::TAM_CLAMP);
mImageRaw[i] = new LLImageRaw(sResolution, sResolution, sComponents);
initEmpty(i);
}
}
void LLSkyTex::cleanupGL()
{
mTexture[0] = NULL;
mTexture[1] = NULL;
}
void LLSkyTex::restoreGL()
{
for (S32 i = 0; i < 2; i++)
{
mTexture[i] = LLViewerTextureManager::getLocalTexture(FALSE);
mTexture[i]->setAddressMode(LLTexUnit::TAM_CLAMP);
}
}
LLSkyTex::~LLSkyTex()
{
delete[] mSkyData;
mSkyData = NULL;
delete[] mSkyDirs;
mSkyDirs = NULL;
}
void LLSkyTex::initEmpty(const S32 tex)
{
U8* data = mImageRaw[tex]->getData();
for (S32 i = 0; i < sResolution; ++i)
{
for (S32 j = 0; j < sResolution; ++j)
{
const S32 basic_offset = (i * sResolution + j);
S32 offset = basic_offset * sComponents;
data[offset] = 0;
data[offset+1] = 0;
data[offset+2] = 0;
data[offset+3] = 255;
mSkyData[basic_offset].setToBlack();
}
}
createGLImage(tex);
}
void LLSkyTex::create(const F32 brightness)
{
/// Brightness ignored for now.
U8* data = mImageRaw[sCurrent]->getData();
for (S32 i = 0; i < sResolution; ++i)
{
for (S32 j = 0; j < sResolution; ++j)
{
const S32 basic_offset = (i * sResolution + j);
S32 offset = basic_offset * sComponents;
U32* pix = (U32*)(data + offset);
*pix = mSkyData[basic_offset].mAll;
}
}
createGLImage(sCurrent);
}
void LLSkyTex::createGLImage(S32 which)
{
mTexture[which]->createGLTexture(0, mImageRaw[which], nullptr, TRUE, LLGLTexture::LOCAL);
mTexture[which]->setAddressMode(LLTexUnit::TAM_CLAMP);
}
void LLSkyTex::bindTexture(BOOL curr)
{
gGL.getTexUnit(0)->bind(mTexture[getWhich(curr)], true);
}
/***************************************
Sky
***************************************/
F32 LLHeavenBody::sInterpVal = 0;
S32 LLVOSky::sResolution = LLSkyTex::getResolution();
S32 LLVOSky::sTileResX = sResolution/NUM_TILES_X;
S32 LLVOSky::sTileResY = sResolution/NUM_TILES_Y;
LLVOSky::LLVOSky(const LLUUID &id, const LLPCode pcode, LLViewerRegion *regionp)
: LLStaticViewerObject(id, pcode, regionp, TRUE),
mSun(SUN_DISK_RADIUS), mMoon(MOON_DISK_RADIUS),
mBrightnessScale(1.f),
mBrightnessScaleNew(0.f),
mBrightnessScaleGuess(1.f),
mWeatherChange(FALSE),
mCloudDensity(0.2f),
mWind(0.f),
mForceUpdate(FALSE),
mWorldScale(1.f),
mBumpSunDir(0.f, 0.f, 1.f)
{
bool error = false;
/// WL PARAMS
dome_radius = 1.f;
dome_offset_ratio = 0.f;
sunlight_color = LLColor3();
ambient = LLColor3();
gamma = 1.f;
lightnorm = LLVector4();
blue_density = LLColor3();
blue_horizon = LLColor3();
haze_density = 0.f;
haze_horizon = 1.f;
density_multiplier = 0.f;
max_y = 0.f;
glow = LLColor3();
cloud_shadow = 0.f;
cloud_color = LLColor3();
cloud_scale = 0.f;
cloud_pos_density1 = LLColor3();
cloud_pos_density2 = LLColor3();
mInitialized = FALSE;
mbCanSelect = FALSE;
mUpdateTimer.reset();
for (S32 i = 0; i < 6; i++)
{
mSkyTex[i].init();
mShinyTex[i].init();
}
for (S32 i=0; i<FACE_COUNT; i++)
{
mFace[i] = NULL;
}
mCameraPosAgent = gAgentCamera.getCameraPositionAgent();
mAtmHeight = ATM_HEIGHT;
mEarthCenter = LLVector3(mCameraPosAgent.mV[0], mCameraPosAgent.mV[1], -EARTH_RADIUS);
mSunDefaultPosition = LLVector3(LLWLParamManager::getInstance()->mCurParams.getVector("lightnorm", error));
if (gSavedSettings.getBOOL("SkyOverrideSimSunPosition"))
{
initSunDirection(mSunDefaultPosition, LLVector3(0, 0, 0));
}
mAmbientScale = gSavedSettings.getF32("SkyAmbientScale");
mNightColorShift = gSavedSettings.getColor3("SkyNightColorShift");
mFogColor.mV[VRED] = mFogColor.mV[VGREEN] = mFogColor.mV[VBLUE] = 0.5f;
mFogColor.mV[VALPHA] = 0.0f;
mFogRatio = 1.2f;
mSun.setIntensity(SUN_INTENSITY);
mMoon.setIntensity(0.1f * SUN_INTENSITY);
mSunTexturep = LLViewerTextureManager::getFetchedTexture(gSunTextureID, FTT_DEFAULT, TRUE, LLGLTexture::BOOST_UI);
mSunTexturep->setAddressMode(LLTexUnit::TAM_CLAMP);
mMoonTexturep = LLViewerTextureManager::getFetchedTexture(gMoonTextureID, FTT_DEFAULT, TRUE, LLGLTexture::BOOST_UI);
mMoonTexturep->setAddressMode(LLTexUnit::TAM_CLAMP);
mBloomTexturep = LLViewerTextureManager::getFetchedTexture(IMG_BLOOM1);
mBloomTexturep->setNoDelete() ;
mBloomTexturep->setAddressMode(LLTexUnit::TAM_CLAMP);
mHeavenlyBodyUpdated = FALSE ;
mDrawRefl = 0;
mHazeConcentration = 0.f;
mInterpVal = 0.f;
}
LLVOSky::~LLVOSky()
{
// Don't delete images - it'll get deleted by gTextureList on shutdown
// This needs to be done for each texture
mCubeMap = NULL;
}
void LLVOSky::init()
{
const F32 haze_int = color_intens(mHaze.calcSigSca(0));
mHazeConcentration = haze_int /
(color_intens(LLHaze::calcAirSca(0)) + haze_int);
calcAtmospherics();
// Initialize the cached normalized direction vectors
for (S32 side = 0; side < 6; ++side)
{
for (S32 tile = 0; tile < NUM_TILES; ++tile)
{
initSkyTextureDirs(side, tile);
createSkyTexture(side, tile);
}
}
for (S32 i = 0; i < 6; ++i)
{
mSkyTex[i].create(1.0f);
mShinyTex[i].create(1.0f);
}
initCubeMap();
mInitialized = true;
mHeavenlyBodyUpdated = FALSE ;
}
void LLVOSky::initCubeMap()
{
std::vector<LLPointer<LLImageRaw> > images;
for (S32 side = 0; side < 6; side++)
{
images.push_back(mShinyTex[side].getImageRaw());
}
if (mCubeMap)
{
mCubeMap->init(images);
}
else if (gSavedSettings.getBOOL("RenderWater") && gGLManager.mHasCubeMap && LLCubeMap::sUseCubeMaps)
{
mCubeMap = new LLCubeMap();
mCubeMap->init(images);
}
gGL.getTexUnit(0)->disable();
}
void LLVOSky::cleanupGL()
{
S32 i;
for (i = 0; i < 6; i++)
{
mSkyTex[i].cleanupGL();
}
if (getCubeMap())
{
getCubeMap()->destroyGL();
}
}
void LLVOSky::restoreGL()
{
S32 i;
for (i = 0; i < 6; i++)
{
mSkyTex[i].restoreGL();
}
mSunTexturep = LLViewerTextureManager::getFetchedTexture(gSunTextureID, FTT_DEFAULT, TRUE, LLGLTexture::BOOST_UI);
mSunTexturep->setAddressMode(LLTexUnit::TAM_CLAMP);
mMoonTexturep = LLViewerTextureManager::getFetchedTexture(gMoonTextureID, FTT_DEFAULT, TRUE, LLGLTexture::BOOST_UI);
mMoonTexturep->setAddressMode(LLTexUnit::TAM_CLAMP);
mBloomTexturep = LLViewerTextureManager::getFetchedTexture(IMG_BLOOM1);
mBloomTexturep->setNoDelete() ;
mBloomTexturep->setAddressMode(LLTexUnit::TAM_CLAMP);
calcAtmospherics();
if (gSavedSettings.getBOOL("RenderWater") && gGLManager.mHasCubeMap
&& LLCubeMap::sUseCubeMaps)
{
LLCubeMap* cube_map = getCubeMap();
std::vector<LLPointer<LLImageRaw> > images;
for (S32 side = 0; side < 6; side++)
{
images.push_back(mShinyTex[side].getImageRaw());
}
if(cube_map)
{
cube_map->init(images);
mForceUpdate = TRUE;
}
}
if (mDrawable)
{
gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_VOLUME, TRUE);
}
}
void LLVOSky::initSkyTextureDirs(const S32 side, const S32 tile)
{
S32 tile_x = tile % NUM_TILES_X;
S32 tile_y = tile / NUM_TILES_X;
S32 tile_x_pos = tile_x * sTileResX;
S32 tile_y_pos = tile_y * sTileResY;
F32 coeff[3] = {0, 0, 0};
const S32 curr_coef = side >> 1; // 0/1 = Z axis, 2/3 = Y, 4/5 = X
const S32 side_dir = (((side & 1) << 1) - 1); // even = -1, odd = 1
const S32 x_coef = (curr_coef + 1) % 3;
const S32 y_coef = (x_coef + 1) % 3;
coeff[curr_coef] = (F32)side_dir;
F32 inv_res = 1.f/sResolution;
S32 x, y;
for (y = tile_y_pos; y < (tile_y_pos + sTileResY); ++y)
{
for (x = tile_x_pos; x < (tile_x_pos + sTileResX); ++x)
{
coeff[x_coef] = F32((x<<1) + 1) * inv_res - 1.f;
coeff[y_coef] = F32((y<<1) + 1) * inv_res - 1.f;
LLVector3 dir(coeff[0], coeff[1], coeff[2]);
dir.normalize();
mSkyTex[side].setDir(dir, x, y);
mShinyTex[side].setDir(dir, x, y);
}
}
}
void LLVOSky::createSkyTexture(const S32 side, const S32 tile)
{
S32 tile_x = tile % NUM_TILES_X;
S32 tile_y = tile / NUM_TILES_X;
S32 tile_x_pos = tile_x * sTileResX;
S32 tile_y_pos = tile_y * sTileResY;
S32 x, y;
for (y = tile_y_pos; y < (tile_y_pos + sTileResY); ++y)
{
for (x = tile_x_pos; x < (tile_x_pos + sTileResX); ++x)
{
mSkyTex[side].setPixel(calcSkyColorInDir(mSkyTex[side].getDir(x, y)), x, y);
mShinyTex[side].setPixel(calcSkyColorInDir(mSkyTex[side].getDir(x, y), true), x, y);
}
}
}
static inline LLColor3 componentDiv(LLColor3 const &left, LLColor3 const & right)
{
return LLColor3(left.mV[0]/right.mV[0],
left.mV[1]/right.mV[1],
left.mV[2]/right.mV[2]);
}
static inline LLColor3 componentMult(LLColor3 const &left, LLColor3 const & right)
{
return LLColor3(left.mV[0]*right.mV[0],
left.mV[1]*right.mV[1],
left.mV[2]*right.mV[2]);
}
static inline LLColor3 componentExp(LLColor3 const &v)
{
return LLColor3(exp(v.mV[0]),
exp(v.mV[1]),
exp(v.mV[2]));
}
static inline LLColor3 componentPow(LLColor3 const &v, F32 exponent)
{
return LLColor3(pow(v.mV[0], exponent),
pow(v.mV[1], exponent),
pow(v.mV[2], exponent));
}
static inline LLColor3 componentSaturate(LLColor3 const &v)
{
return LLColor3(std::max(std::min(v.mV[0], 1.f), 0.f),
std::max(std::min(v.mV[1], 1.f), 0.f),
std::max(std::min(v.mV[2], 1.f), 0.f));
}
static inline LLColor3 componentSqrt(LLColor3 const &v)
{
return LLColor3(sqrt(v.mV[0]),
sqrt(v.mV[1]),
sqrt(v.mV[2]));
}
static inline void componentMultBy(LLColor3 & left, LLColor3 const & right)
{
left.mV[0] *= right.mV[0];
left.mV[1] *= right.mV[1];
left.mV[2] *= right.mV[2];
}
static inline LLColor3 colorMix(LLColor3 const & left, LLColor3 const & right, F32 amount)
{
return (left + ((right - left) * amount));
}
static inline F32 texture2D(LLPointer<LLImageRaw> const & tex, LLVector2 const & uv)
{
U16 w = tex->getWidth();
U16 h = tex->getHeight();
U16 r = U16(uv[0] * w) % w;
U16 c = U16(uv[1] * h) % h;
U8 const * imageBuffer = tex->getData();
U8 sample = imageBuffer[r * w + c];
return sample / 255.f;
}
static inline LLColor3 smear(F32 val)
{
return LLColor3(val, val, val);
}
void LLVOSky::initAtmospherics(void)
{
bool error;
// uniform parameters for convenience
dome_radius = LLWLParamManager::getInstance()->getDomeRadius();
dome_offset_ratio = LLWLParamManager::getInstance()->getDomeOffset();
sunlight_color = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("sunlight_color", error));
ambient = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("ambient", error));
//lightnorm = LLWLParamManager::getInstance()->mCurParams.getVector("lightnorm", error);
gamma = LLWLParamManager::getInstance()->mCurParams.getFloat("gamma", error);
blue_density = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("blue_density", error));
blue_horizon = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("blue_horizon", error));
haze_density = LLWLParamManager::getInstance()->mCurParams.getFloat("haze_density", error);
haze_horizon = LLWLParamManager::getInstance()->mCurParams.getFloat("haze_horizon", error);
density_multiplier = LLWLParamManager::getInstance()->mCurParams.getFloat("density_multiplier", error);
max_y = LLWLParamManager::getInstance()->mCurParams.getFloat("max_y", error);
glow = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("glow", error));
cloud_shadow = LLWLParamManager::getInstance()->mCurParams.getFloat("cloud_shadow", error);
cloud_color = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("cloud_color", error));
cloud_scale = LLWLParamManager::getInstance()->mCurParams.getFloat("cloud_scale", error);
cloud_pos_density1 = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("cloud_pos_density1", error));
cloud_pos_density2 = LLColor3(LLWLParamManager::getInstance()->mCurParams.getVector("cloud_pos_density2", error));
// light norm is different. We need the sun's direction, not the light direction
// which could be from the moon. And we need to clamp it
// just like for the gpu
LLVector3 sunDir = gSky.getSunDirection();
// CFR_TO_OGL
lightnorm = LLVector4(sunDir.mV[1], sunDir.mV[2], sunDir.mV[0], 0);
unclamped_lightnorm = lightnorm;
if(lightnorm.mV[1] < -0.1f)
{
lightnorm.mV[1] = -0.1f;
}
}
LLColor4 LLVOSky::calcSkyColorInDir(const LLVector3 &dir, bool isShiny)
{
F32 saturation = 0.3f;
if (dir.mV[VZ] < -0.02f)
{
LLColor4 col = LLColor4(llmax(mFogColor[0],0.2f), llmax(mFogColor[1],0.2f), llmax(mFogColor[2],0.22f),0.f);
if (isShiny)
{
LLColor3 desat_fog = LLColor3(mFogColor);
F32 brightness = desat_fog.brightness();
// So that shiny somewhat shows up at night.
if (brightness < 0.15f)
{
brightness = 0.15f;
desat_fog = smear(0.15f);
}
LLColor3 greyscale = smear(brightness);
desat_fog = desat_fog * saturation + greyscale * (1.0f - saturation);
if (!gPipeline.canUseWindLightShaders())
{
col = LLColor4(desat_fog, 0.f);
}
else
{
col = LLColor4(desat_fog * 0.5f, 0.f);
}
}
float x = 1.0f-fabsf(-0.1f-dir.mV[VZ]);
x *= x;
col.mV[0] *= x*x;
col.mV[1] *= powf(x, 2.5f);
col.mV[2] *= x*x*x;
return col;
}
// undo OGL_TO_CFR_ROTATION and negate vertical direction.
LLVector3 Pn = LLVector3(-dir[1] , -dir[2], -dir[0]);
LLColor3 vary_HazeColor(0,0,0);
LLColor3 vary_CloudColorSun(0,0,0);
LLColor3 vary_CloudColorAmbient(0,0,0);
F32 vary_CloudDensity(0);
LLVector2 vary_HorizontalProjection[2];
vary_HorizontalProjection[0] = LLVector2(0,0);
vary_HorizontalProjection[1] = LLVector2(0,0);
calcSkyColorWLVert(Pn, vary_HazeColor, vary_CloudColorSun, vary_CloudColorAmbient,
vary_CloudDensity, vary_HorizontalProjection);
LLColor3 sky_color = calcSkyColorWLFrag(Pn, vary_HazeColor, vary_CloudColorSun, vary_CloudColorAmbient,
vary_CloudDensity, vary_HorizontalProjection);
if (isShiny)
{
F32 brightness = sky_color.brightness();
LLColor3 greyscale = smear(brightness);
sky_color = sky_color * saturation + greyscale * (1.0f - saturation);
sky_color *= (0.5f + 0.5f * brightness);
}
return LLColor4(sky_color, 0.0f);
}
// turn on floating point precision
// in vs2003 for this function. Otherwise
// sky is aliased looking 7:10 - 8:50
#if LL_MSVC && __MSVC_VER__ < 8
#pragma optimize("p", on)
#endif
void LLVOSky::calcSkyColorWLVert(LLVector3 & Pn, LLColor3 & vary_HazeColor, LLColor3 & vary_CloudColorSun,
LLColor3 & vary_CloudColorAmbient, F32 & vary_CloudDensity,
LLVector2 vary_HorizontalProjection[2])
{
// project the direction ray onto the sky dome.
F32 phi = acos(Pn[1]);
F32 sinA = sin(F_PI - phi);
if (fabsf(sinA) < 0.01f)
{ //avoid division by zero
sinA = 0.01f;
}
F32 Plen = dome_radius * sin(F_PI + phi + asin(dome_offset_ratio * sinA)) / sinA;
Pn *= Plen;
vary_HorizontalProjection[0] = LLVector2(Pn[0], Pn[2]);
vary_HorizontalProjection[0] /= - 2.f * Plen;
// Set altitude
if (Pn[1] > 0.f)
{
Pn *= (max_y / Pn[1]);
}
else
{
Pn *= (-32000.f / Pn[1]);
}
Plen = Pn.length();
Pn /= Plen;
// Initialize temp variables
LLColor3 sunlight = sunlight_color;
// Sunlight attenuation effect (hue and brightness) due to atmosphere
// this is used later for sunlight modulation at various altitudes
LLColor3 light_atten =
(blue_density * 1.0 + smear(haze_density * 0.25f)) * (density_multiplier * max_y);
// Calculate relative weights
LLColor3 temp2(0.f, 0.f, 0.f);
LLColor3 temp1 = blue_density + smear(haze_density);
LLColor3 blue_weight = componentDiv(blue_density, temp1);
LLColor3 haze_weight = componentDiv(smear(haze_density), temp1);
// Compute sunlight from P & lightnorm (for long rays like sky)
temp2.mV[1] = llmax(F_APPROXIMATELY_ZERO, llmax(0.f, Pn[1]) * 1.0f + lightnorm[1] );
temp2.mV[1] = 1.f / temp2.mV[1];
componentMultBy(sunlight, componentExp((light_atten * -1.f) * temp2.mV[1]));
// Distance
temp2.mV[2] = Plen * density_multiplier;
// Transparency (-> temp1)
temp1 = componentExp((temp1 * -1.f) * temp2.mV[2]);
// Compute haze glow
temp2.mV[0] = Pn * LLVector3(lightnorm);
temp2.mV[0] = 1.f - temp2.mV[0];
// temp2.x is 0 at the sun and increases away from sun
temp2.mV[0] = llmax(temp2.mV[0], .001f);
// Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot)
temp2.mV[0] *= glow.mV[0];
// Higher glow.x gives dimmer glow (because next step is 1 / "angle")
temp2.mV[0] = pow(temp2.mV[0], glow.mV[2]);
// glow.z should be negative, so we're doing a sort of (1 / "angle") function
// Add "minimum anti-solar illumination"
temp2.mV[0] += .25f;
// Haze color above cloud
vary_HazeColor = (blue_horizon * blue_weight * (sunlight + ambient)
+ componentMult(haze_horizon * haze_weight, sunlight * temp2.mV[0] + ambient)
);
// Increase ambient when there are more clouds
LLColor3 tmpAmbient = ambient + (LLColor3::white - ambient) * cloud_shadow * 0.5f;
// Dim sunlight by cloud shadow percentage
sunlight *= (1.f - cloud_shadow);
// Haze color below cloud
LLColor3 additiveColorBelowCloud = (blue_horizon * blue_weight * (sunlight + tmpAmbient)
+ componentMult(haze_horizon * haze_weight, sunlight * temp2.mV[0] + tmpAmbient)
);
// Final atmosphere additive
componentMultBy(vary_HazeColor, LLColor3::white - temp1);
sunlight = sunlight_color;
temp2.mV[1] = llmax(0.f, lightnorm[1] * 2.f);
temp2.mV[1] = 1.f / temp2.mV[1];
componentMultBy(sunlight, componentExp((light_atten * -1.f) * temp2.mV[1]));
// Attenuate cloud color by atmosphere
temp1 = componentSqrt(temp1); //less atmos opacity (more transparency) below clouds
// At horizon, blend high altitude sky color towards the darker color below the clouds
vary_HazeColor +=
componentMult(additiveColorBelowCloud - vary_HazeColor, LLColor3::white - componentSqrt(temp1));
if (Pn[1] < 0.f)
{
// Eric's original:
// LLColor3 dark_brown(0.143f, 0.129f, 0.114f);
LLColor3 dark_brown(0.082f, 0.076f, 0.066f);
LLColor3 brown(0.430f, 0.386f, 0.322f);
LLColor3 sky_lighting = sunlight + ambient;
F32 haze_brightness = vary_HazeColor.brightness();
if (Pn[1] < -0.05f)
{
vary_HazeColor = colorMix(dark_brown, brown, -Pn[1] * 0.9f) * sky_lighting * haze_brightness;
}
if (Pn[1] > -0.1f)
{
vary_HazeColor = colorMix(LLColor3::white * haze_brightness, vary_HazeColor, fabs((Pn[1] + 0.05f) * -20.f));
}
}
}
#if LL_MSVC && __MSVC_VER__ < 8
#pragma optimize("p", off)
#endif
LLColor3 LLVOSky::calcSkyColorWLFrag(LLVector3 & Pn, LLColor3 & vary_HazeColor, LLColor3 & vary_CloudColorSun,
LLColor3 & vary_CloudColorAmbient, F32 & vary_CloudDensity,
LLVector2 vary_HorizontalProjection[2])
{
LLColor3 res;
LLColor3 color0 = vary_HazeColor;
if (!gPipeline.canUseWindLightShaders())
{
LLColor3 color1 = color0 * 2.0f;
color1 = smear(1.f) - componentSaturate(color1);
componentPow(color1, gamma);
res = smear(1.f) - color1;
}
else
{
res = color0;
}
# ifndef LL_RELEASE_FOR_DOWNLOAD
LLColor3 color2 = 2.f * color0;
LLColor3 color3 = LLColor3(1.f, 1.f, 1.f) - componentSaturate(color2);
componentPow(color3, gamma);
color3 = LLColor3(1.f, 1.f, 1.f) - color3;
static enum {
OUT_DEFAULT = 0,
OUT_SKY_BLUE = 1,
OUT_RED = 2,
OUT_PN = 3,
OUT_HAZE = 4,
} debugOut = OUT_DEFAULT;
switch(debugOut)
{
case OUT_DEFAULT:
break;
case OUT_SKY_BLUE:
res = LLColor3(0.4f, 0.4f, 0.9f);
break;
case OUT_RED:
res = LLColor3(1.f, 0.f, 0.f);
break;
case OUT_PN:
res = LLColor3(Pn[0], Pn[1], Pn[2]);
break;
case OUT_HAZE:
res = vary_HazeColor;
break;
}
# endif // LL_RELEASE_FOR_DOWNLOAD
return res;
}
LLColor3 LLVOSky::createDiffuseFromWL(LLColor3 diffuse, LLColor3 ambient, LLColor3 sundiffuse, LLColor3 sunambient)
{
return componentMult(diffuse, sundiffuse) * 4.0f +
componentMult(ambient, sundiffuse) * 2.0f + sunambient;
}
LLColor3 LLVOSky::createAmbientFromWL(LLColor3 ambient, LLColor3 sundiffuse, LLColor3 sunambient)
{
return (componentMult(ambient, sundiffuse) + sunambient) * 0.8f;
}
void LLVOSky::calcAtmospherics(void)
{
initAtmospherics();
LLColor3 vary_HazeColor;
LLColor3 vary_SunlightColor;
LLColor3 vary_AmbientColor;
{
// Initialize temp variables
LLColor3 sunlight = sunlight_color;
// Sunlight attenuation effect (hue and brightness) due to atmosphere
// this is used later for sunlight modulation at various altitudes
LLColor3 light_atten =
(blue_density * 1.0 + smear(haze_density * 0.25f)) * (density_multiplier * max_y);
// Calculate relative weights
LLColor3 temp2(0.f, 0.f, 0.f);
LLColor3 temp1 = blue_density + smear(haze_density);
LLColor3 blue_weight = componentDiv(blue_density, temp1);
LLColor3 haze_weight = componentDiv(smear(haze_density), temp1);
// Compute sunlight from P & lightnorm (for long rays like sky)
/// USE only lightnorm.
// temp2[1] = llmax(0.f, llmax(0.f, Pn[1]) * 1.0f + lightnorm[1] );
// and vary_sunlight will work properly with moon light
F32 lighty = unclamped_lightnorm[1];
if(lighty < LLSky::NIGHTTIME_ELEVATION_COS)
{
lighty = -lighty;
}
temp2.mV[1] = llmax(0.f, lighty);
if(temp2.mV[1] > 0.f)
{
temp2.mV[1] = 1.f / temp2.mV[1];
}
componentMultBy(sunlight, componentExp((light_atten * -1.f) * temp2.mV[1]));
// Distance
temp2.mV[2] = density_multiplier;
// Transparency (-> temp1)
temp1 = componentExp((temp1 * -1.f) * temp2.mV[2]);
// vary_AtmosAttenuation = temp1;
//increase ambient when there are more clouds
LLColor3 tmpAmbient = ambient + (smear(1.f) - ambient) * cloud_shadow * 0.5f;
//haze color
vary_HazeColor =
(blue_horizon * blue_weight * (sunlight*(1.f - cloud_shadow) + tmpAmbient)
+ componentMult(haze_horizon * haze_weight, sunlight*(1.f - cloud_shadow) * temp2.mV[0] + tmpAmbient)
);
//brightness of surface both sunlight and ambient
vary_SunlightColor = componentMult(sunlight, temp1) * 1.f;
vary_SunlightColor.clamp();
vary_SunlightColor = smear(1.0f) - vary_SunlightColor;
vary_SunlightColor = componentPow(vary_SunlightColor, gamma);
vary_SunlightColor = smear(1.0f) - vary_SunlightColor;
vary_AmbientColor = componentMult(tmpAmbient, temp1) * 0.5;
vary_AmbientColor.clamp();
vary_AmbientColor = smear(1.0f) - vary_AmbientColor;
vary_AmbientColor = componentPow(vary_AmbientColor, gamma);
vary_AmbientColor = smear(1.0f) - vary_AmbientColor;
componentMultBy(vary_HazeColor, LLColor3(1.f, 1.f, 1.f) - temp1);
}
mSun.setColor(vary_SunlightColor);
mMoon.setColor(LLColor3(1.0f, 1.0f, 1.0f));
mSun.renewDirection();
mSun.renewColor();
mMoon.renewDirection();
mMoon.renewColor();
float dp = getToSunLast() * LLVector3(0,0,1.f);
if (dp < 0)
{
dp = 0;
}
// Since WL scales everything by 2, there should always be at least a 2:1 brightness ratio
// between sunlight and point lights in windlight to normalize point lights.
static const LLCachedControl<F32> render_sun_dynamic_range("RenderSunDynamicRange", 1.f);
F32 sun_dynamic_range = llmax((float)render_sun_dynamic_range, 0.0001f);
LLWLParamManager::getInstance()->mSceneLightStrength = 2.0f * (1.0f + sun_dynamic_range * dp);
mSunDiffuse = vary_SunlightColor;
mSunAmbient = vary_AmbientColor;
mMoonDiffuse = vary_SunlightColor;
mMoonAmbient = vary_AmbientColor;
mTotalAmbient = vary_AmbientColor;
mTotalAmbient.setAlpha(1);
mFadeColor = mTotalAmbient + (mSunDiffuse + mMoonDiffuse) * 0.5f;
mFadeColor.setAlpha(0);
}
void LLVOSky::idleUpdate(LLAgent &agent, LLWorld &world, const F64 &time)
{
}
BOOL LLVOSky::updateSky()
{
if (mDead || !(gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_SKY)))
{
return TRUE;
}
if (mDead)
{
// It's dead. Don't update it.
return TRUE;
}
if (gGLManager.mIsDisabled)
{
return TRUE;
}
static S32 next_frame = 0;
const S32 total_no_tiles = 6 * NUM_TILES;
const S32 cycle_frame_no = total_no_tiles + 1;
if (mUpdateTimer.getElapsedTimeF32() > 0.001f)
{
mUpdateTimer.reset();
const S32 frame = next_frame;
++next_frame;
next_frame = next_frame % cycle_frame_no;
mInterpVal = (!mInitialized) ? 1 : (F32)next_frame / cycle_frame_no;
// sInterpVal = (F32)next_frame / cycle_frame_no;
LLSkyTex::setInterpVal( mInterpVal );
LLHeavenBody::setInterpVal( mInterpVal );
calcAtmospherics();
if (mForceUpdate || total_no_tiles == frame)
{
LLSkyTex::stepCurrent();
const static F32 LIGHT_DIRECTION_THRESHOLD = (F32) cos(DEG_TO_RAD * 1.f);
const static F32 COLOR_CHANGE_THRESHOLD = 0.01f;
LLVector3 direction = mSun.getDirection();
direction.normalize();
const F32 dot_lighting = direction * mLastLightingDirection;
LLColor3 delta_color;
delta_color.setVec(mLastTotalAmbient.mV[0] - mTotalAmbient.mV[0],
mLastTotalAmbient.mV[1] - mTotalAmbient.mV[1],
mLastTotalAmbient.mV[2] - mTotalAmbient.mV[2]);
if ( mForceUpdate
|| (((dot_lighting < LIGHT_DIRECTION_THRESHOLD)
|| (delta_color.length() > COLOR_CHANGE_THRESHOLD)
|| !mInitialized)
&& !direction.isExactlyZero()))
{
mLastLightingDirection = direction;
mLastTotalAmbient = mTotalAmbient;
mInitialized = TRUE;
if (mCubeMap)
{
if (mForceUpdate)
{
updateFog(LLViewerCamera::getInstance()->getFar());
for (int side = 0; side < 6; side++)
{
for (int tile = 0; tile < NUM_TILES; tile++)
{
createSkyTexture(side, tile);
}
}
calcAtmospherics();
for (int side = 0; side < 6; side++)
{
LLImageRaw* raw1 = mSkyTex[side].getImageRaw(TRUE);
LLImageRaw* raw2 = mSkyTex[side].getImageRaw(FALSE);
raw2->copy(raw1);
mSkyTex[side].createGLImage(mSkyTex[side].getWhich(FALSE));
raw1 = mShinyTex[side].getImageRaw(TRUE);
raw2 = mShinyTex[side].getImageRaw(FALSE);
raw2->copy(raw1);
mShinyTex[side].createGLImage(mShinyTex[side].getWhich(FALSE));
}
next_frame = 0;
}
}
}
/// *TODO really, sky texture and env map should be shared on a single texture
/// I'll let Brad take this at some point
// update the sky texture
for (S32 i = 0; i < 6; ++i)
{
mSkyTex[i].create(1.0f);
mShinyTex[i].create(1.0f);
}
// update the environment map
if (mCubeMap)
{
std::vector<LLPointer<LLImageRaw> > images;
images.reserve(6);
for (S32 side = 0; side < 6; side++)
{
images.push_back(mShinyTex[side].getImageRaw(TRUE));
}
mCubeMap->init(images);
gGL.getTexUnit(0)->disable();
}
gPipeline.markRebuild(gSky.mVOGroundp->mDrawable, LLDrawable::REBUILD_ALL, TRUE);
// *TODO: decide whether we need to update the stars vertex buffer in LLVOWLSky -Brad.
//gPipeline.markRebuild(gSky.mVOWLSkyp->mDrawable, LLDrawable::REBUILD_ALL, TRUE);
mForceUpdate = FALSE;
}
else
{
const S32 side = frame / NUM_TILES;
const S32 tile = frame % NUM_TILES;
createSkyTexture(side, tile);
}
}
if (mDrawable.notNull() && mDrawable->getFace(0) && !mDrawable->getFace(0)->getVertexBuffer())
{
gPipeline.markRebuild(mDrawable, LLDrawable::REBUILD_VOLUME, TRUE);
}
return TRUE;
}
void LLVOSky::updateTextures()
{
if (mSunTexturep)
{
mSunTexturep->addTextureStats( (F32)MAX_IMAGE_AREA );
mMoonTexturep->addTextureStats( (F32)MAX_IMAGE_AREA );
mBloomTexturep->addTextureStats( (F32)MAX_IMAGE_AREA );
}
}
LLDrawable *LLVOSky::createDrawable(LLPipeline *pipeline)
{
pipeline->allocDrawable(this);
mDrawable->setLit(FALSE);
LLDrawPoolSky *poolp = (LLDrawPoolSky*) gPipeline.getPool(LLDrawPool::POOL_SKY);
poolp->setSkyTex(mSkyTex);
mDrawable->setRenderType(LLPipeline::RENDER_TYPE_SKY);
for (S32 i = 0; i < 6; ++i)
{
mFace[FACE_SIDE0 + i] = mDrawable->addFace(poolp, NULL);
}
mFace[FACE_SUN] = mDrawable->addFace(poolp, mSunTexturep);
mFace[FACE_MOON] = mDrawable->addFace(poolp, mMoonTexturep);
mFace[FACE_BLOOM] = mDrawable->addFace(poolp, mBloomTexturep);
return mDrawable;
}
//by bao
//fake vertex buffer updating
//to guarantee at least updating one VBO buffer every frame
//to walk around the bug caused by ATI card --> DEV-3855
//
void LLVOSky::createDummyVertexBuffer()
{
if(!mFace[FACE_DUMMY])
{
LLDrawPoolSky *poolp = (LLDrawPoolSky*) gPipeline.getPool(LLDrawPool::POOL_SKY);
mFace[FACE_DUMMY] = mDrawable->addFace(poolp, NULL);
}
if(!mFace[FACE_DUMMY]->getVertexBuffer())
{
LLVertexBuffer* buff = new LLVertexBuffer(LLDrawPoolSky::VERTEX_DATA_MASK, GL_DYNAMIC_DRAW_ARB);
buff->allocateBuffer(1, 1, TRUE);
mFace[FACE_DUMMY]->setVertexBuffer(buff);
}
}
static LLTrace::BlockTimerStatHandle FTM_RENDER_FAKE_VBO_UPDATE("Fake VBO Update");
void LLVOSky::updateDummyVertexBuffer()
{
if(!LLVertexBuffer::sEnableVBOs)
return ;
if(mHeavenlyBodyUpdated)
{
mHeavenlyBodyUpdated = FALSE ;
return ;
}
LL_RECORD_BLOCK_TIME(FTM_RENDER_FAKE_VBO_UPDATE) ;
if(!mFace[FACE_DUMMY] || !mFace[FACE_DUMMY]->getVertexBuffer())
createDummyVertexBuffer() ;
LLStrider<LLVector3> vertices ;
mFace[FACE_DUMMY]->getVertexBuffer()->getVertexStrider(vertices, 0);
*vertices = mCameraPosAgent ;
mFace[FACE_DUMMY]->getVertexBuffer()->flush();
}
//----------------------------------
//end of fake vertex buffer updating
//----------------------------------
static LLTrace::BlockTimerStatHandle FTM_GEO_SKY("Sky Geometry");
BOOL LLVOSky::updateGeometry(LLDrawable *drawable)
{
LL_RECORD_BLOCK_TIME(FTM_GEO_SKY);
if (mFace[FACE_REFLECTION] == NULL)
{
LLDrawPoolWater *poolp = (LLDrawPoolWater*) gPipeline.getPool(LLDrawPool::POOL_WATER);
if (gPipeline.getPool(LLDrawPool::POOL_WATER)->getVertexShaderLevel() != 0)
{
mFace[FACE_REFLECTION] = drawable->addFace(poolp, NULL);
}
}
mCameraPosAgent = drawable->getPositionAgent();
mEarthCenter.mV[0] = mCameraPosAgent.mV[0];
mEarthCenter.mV[1] = mCameraPosAgent.mV[1];
LLVector3 v_agent[8];
for (S32 i = 0; i < 8; ++i)
{
F32 x_sgn = (i&1) ? 1.f : -1.f;
F32 y_sgn = (i&2) ? 1.f : -1.f;
F32 z_sgn = (i&4) ? 1.f : -1.f;
v_agent[i] = HORIZON_DIST * SKY_BOX_MULT * LLVector3(x_sgn, y_sgn, z_sgn);
}
LLStrider<LLVector3> verticesp;
LLStrider<LLVector3> normalsp;
LLStrider<LLVector2> texCoordsp;
LLStrider<U16> indicesp;
U16 index_offset;
LLFace *face;
for (S32 side = 0; side < 6; ++side)
{
face = mFace[FACE_SIDE0 + side];
if (!face->getVertexBuffer())
{
face->setSize(4, 6);
face->setGeomIndex(0);
face->setIndicesIndex(0);
LLVertexBuffer* buff = new LLVertexBuffer(LLDrawPoolSky::VERTEX_DATA_MASK, GL_STREAM_DRAW_ARB);
buff->allocateBuffer(4, 6, TRUE);
face->setVertexBuffer(buff);
index_offset = face->getGeometry(verticesp,normalsp,texCoordsp, indicesp);
S32 vtx = 0;
S32 curr_bit = side >> 1; // 0/1 = Z axis, 2/3 = Y, 4/5 = X
S32 side_dir = side & 1; // even - 0, odd - 1
S32 i_bit = (curr_bit + 2) % 3;
S32 j_bit = (i_bit + 2) % 3;
LLVector3 axis;
axis.mV[curr_bit] = 1;
face->mCenterAgent = (F32)((side_dir << 1) - 1) * axis * HORIZON_DIST;
vtx = side_dir << curr_bit;
*(verticesp++) = v_agent[vtx];
*(verticesp++) = v_agent[vtx | 1 << j_bit];
*(verticesp++) = v_agent[vtx | 1 << i_bit];
*(verticesp++) = v_agent[vtx | 1 << i_bit | 1 << j_bit];
*(texCoordsp++) = TEX00;
*(texCoordsp++) = TEX01;
*(texCoordsp++) = TEX10;
*(texCoordsp++) = TEX11;
// Triangles for each side
*indicesp++ = index_offset + 0;
*indicesp++ = index_offset + 1;
*indicesp++ = index_offset + 3;
*indicesp++ = index_offset + 0;
*indicesp++ = index_offset + 3;
*indicesp++ = index_offset + 2;
buff->flush();
}
}
const LLVector3 &look_at = LLViewerCamera::getInstance()->getAtAxis();
LLVector3 right = look_at % LLVector3::z_axis;
LLVector3 up = right % look_at;
right.normalize();
up.normalize();
const static F32 elevation_factor = 0.0f/sResolution;
const F32 cos_max_angle = cosHorizon(elevation_factor);
mSun.setDraw(updateHeavenlyBodyGeometry(drawable, FACE_SUN, TRUE, mSun, cos_max_angle, up, right));
mMoon.setDraw(updateHeavenlyBodyGeometry(drawable, FACE_MOON, FALSE, mMoon, cos_max_angle, up, right));
const F32 water_height = gAgent.getRegion()->getWaterHeight() + 0.01f;
// LLWorld::getInstance()->getWaterHeight() + 0.01f;
const F32 camera_height = mCameraPosAgent.mV[2];
const F32 height_above_water = camera_height - water_height;
BOOL sun_flag = FALSE;
if (mSun.isVisible())
{
if (mMoon.isVisible())
{
sun_flag = look_at * mSun.getDirection() > 0;
}
else
{
sun_flag = TRUE;
}
}
if (height_above_water > 0)
{
BOOL render_ref = gPipeline.getPool(LLDrawPool::POOL_WATER)->getVertexShaderLevel() == 0;
if (sun_flag)
{
setDrawRefl(0);
if (render_ref)
{
updateReflectionGeometry(drawable, height_above_water, mSun);
}
}
else
{
setDrawRefl(1);
if (render_ref)
{
updateReflectionGeometry(drawable, height_above_water, mMoon);
}
}
}
else
{
setDrawRefl(-1);
}
return TRUE;
}
BOOL LLVOSky::updateHeavenlyBodyGeometry(LLDrawable *drawable, const S32 f, const BOOL is_sun,
LLHeavenBody& hb, const F32 cos_max_angle,
const LLVector3 &up, const LLVector3 &right)
{
mHeavenlyBodyUpdated = TRUE ;
LLStrider<LLVector3> verticesp;
LLStrider<LLVector3> normalsp;
LLStrider<LLVector2> texCoordsp;
LLStrider<U16> indicesp;
LLStrider<LLColor4U> colorsp;
S32 index_offset;
LLFace *facep;
LLVector3 to_dir = hb.getDirection();
if (!is_sun)
{
to_dir.mV[2] = llmax(to_dir.mV[2]+0.1f, 0.1f);
}
LLVector3 draw_pos = to_dir * HEAVENLY_BODY_DIST;
LLVector3 hb_right = to_dir % LLVector3::z_axis;
LLVector3 hb_up = hb_right % to_dir;
hb_right.normalize();
hb_up.normalize();
//const static F32 cos_max_turn = sqrt(3.f) / 2; // 30 degrees
//const F32 cos_turn_right = 1. / (llmax(cos_max_turn, hb_right * right));
//const F32 cos_turn_up = 1. / llmax(cos_max_turn, hb_up * up);
const F32 enlargm_factor = ( 1 - to_dir.mV[2] );
F32 horiz_enlargement = 1 + enlargm_factor * 0.3f;
F32 vert_enlargement = 1 + enlargm_factor * 0.2f;
// Parameters for the water reflection
hb.setU(HEAVENLY_BODY_FACTOR * horiz_enlargement * hb.getDiskRadius() * hb_right);
hb.setV(HEAVENLY_BODY_FACTOR * vert_enlargement * hb.getDiskRadius() * hb_up);
// End of parameters for the water reflection
const LLVector3 scaled_right = HEAVENLY_BODY_DIST * hb.getU();
const LLVector3 scaled_up = HEAVENLY_BODY_DIST * hb.getV();
//const LLVector3 scaled_right = horiz_enlargement * HEAVENLY_BODY_SCALE * hb.getDiskRadius() * hb_right;//right;
//const LLVector3 scaled_up = vert_enlargement * HEAVENLY_BODY_SCALE * hb.getDiskRadius() * hb_up;//up;
LLVector3 v_clipped[4];
hb.corner(0) = draw_pos - scaled_right + scaled_up;
hb.corner(1) = draw_pos - scaled_right - scaled_up;
hb.corner(2) = draw_pos + scaled_right + scaled_up;
hb.corner(3) = draw_pos + scaled_right - scaled_up;
F32 t_left, t_right;
if (!clip_quad_to_horizon(t_left, t_right, v_clipped, hb.corners(), cos_max_angle))
{
hb.setVisible(FALSE);
return FALSE;
}
hb.setVisible(TRUE);
facep = mFace[f];
if (!facep->getVertexBuffer())
{
facep->setSize(4, 6);
LLVertexBuffer* buff = new LLVertexBuffer(LLDrawPoolWLSky::STAR_VERTEX_DATA_MASK, GL_STREAM_DRAW_ARB); //Singu Note: Using LLDrawPoolWLSky::STAR_VERTEX_DATA_MASK on purpose.
buff->allocateBuffer(facep->getGeomCount(), facep->getIndicesCount(), TRUE);
facep->setGeomIndex(0);
facep->setIndicesIndex(0);
facep->setVertexBuffer(buff);
}
llassert(facep->getVertexBuffer()->getNumIndices() == 6);
index_offset = facep->getGeometry(verticesp,normalsp,texCoordsp, indicesp);
facep->getColors(colorsp);
if (-1 == index_offset)
{
return TRUE;
}
for (S32 vtx = 0; vtx < 4; ++vtx)
{
hb.corner(vtx) = v_clipped[vtx];
*(verticesp++) = hb.corner(vtx) + mCameraPosAgent;
}
*(texCoordsp++) = TEX01;
*(texCoordsp++) = TEX00;
*(texCoordsp++) = TEX11;
*(texCoordsp++) = TEX10;
*indicesp++ = index_offset + 0;
*indicesp++ = index_offset + 2;
*indicesp++ = index_offset + 1;
*indicesp++ = index_offset + 1;
*indicesp++ = index_offset + 2;
*indicesp++ = index_offset + 3;
*(colorsp++) = LLColor4U::white;
*(colorsp++) = LLColor4U::white;
*(colorsp++) = LLColor4U::white;
*(colorsp++) = LLColor4U::white;
facep->getVertexBuffer()->flush();
if (is_sun)
{
if ((t_left > 0) && (t_right > 0))
{
F32 t = (t_left + t_right) * 0.5f;
mSun.setHorizonVisibility(0.5f * (1 + cos(t * F_PI)));
}
else
{
mSun.setHorizonVisibility();
}
updateSunHaloGeometry(drawable);
}
return TRUE;
}
// Clips quads with top and bottom sides parallel to horizon.
BOOL clip_quad_to_horizon(F32& t_left, F32& t_right, LLVector3 v_clipped[4],
const LLVector3 v_corner[4], const F32 cos_max_angle)
{
t_left = clip_side_to_horizon(v_corner[1], v_corner[0], cos_max_angle);
t_right = clip_side_to_horizon(v_corner[3], v_corner[2], cos_max_angle);
if ((t_left >= 1) || (t_right >= 1))
{
return FALSE;
}
//const BOOL left_clip = (t_left > 0);
//const BOOL right_clip = (t_right > 0);
//if (!left_clip && !right_clip)
{
for (S32 vtx = 0; vtx < 4; ++vtx)
{
v_clipped[vtx] = v_corner[vtx];
}
}
/* else
{
v_clipped[0] = v_corner[0];
v_clipped[1] = left_clip ? ((1 - t_left) * v_corner[1] + t_left * v_corner[0])
: v_corner[1];
v_clipped[2] = v_corner[2];
v_clipped[3] = right_clip ? ((1 - t_right) * v_corner[3] + t_right * v_corner[2])
: v_corner[3];
}*/
return TRUE;
}
F32 clip_side_to_horizon(const LLVector3& V0, const LLVector3& V1, const F32 cos_max_angle)
{
const LLVector3 V = V1 - V0;
const F32 k2 = 1.f/(cos_max_angle * cos_max_angle) - 1;
const F32 A = V.mV[0] * V.mV[0] + V.mV[1] * V.mV[1] - k2 * V.mV[2] * V.mV[2];
const F32 B = V0.mV[0] * V.mV[0] + V0.mV[1] * V.mV[1] - k2 * V0.mV[2] * V.mV[2];
const F32 C = V0.mV[0] * V0.mV[0] + V0.mV[1] * V0.mV[1] - k2 * V0.mV[2] * V0.mV[2];
if (fabs(A) < 1e-7)
{
return -0.1f; // v0 is cone origin and v1 is on the surface of the cone.
}
const F32 det = sqrt(B*B - A*C);
const F32 t1 = (-B - det) / A;
const F32 t2 = (-B + det) / A;
const F32 z1 = V0.mV[2] + t1 * V.mV[2];
const F32 z2 = V0.mV[2] + t2 * V.mV[2];
if (z1 * cos_max_angle < 0)
{
return t2;
}
else if (z2 * cos_max_angle < 0)
{
return t1;
}
else if ((t1 < 0) || (t1 > 1))
{
return t2;
}
else
{
return t1;
}
}
void LLVOSky::updateSunHaloGeometry(LLDrawable *drawable )
{
#if 0
const LLVector3* v_corner = mSun.corners();
LLStrider<LLVector3> verticesp;
LLStrider<LLVector3> normalsp;
LLStrider<LLVector2> texCoordsp;
LLStrider<U16> indicesp;
S32 index_offset;
LLFace *face;
const LLVector3 right = 2 * (v_corner[2] - v_corner[0]);
LLVector3 up = 2 * (v_corner[2] - v_corner[3]);
up.normalize();
F32 size = right.length();
up = size * up;
const LLVector3 draw_pos = 0.25 * (v_corner[0] + v_corner[1] + v_corner[2] + v_corner[3]);
LLVector3 v_glow_corner[4];
v_glow_corner[0] = draw_pos - right + up;
v_glow_corner[1] = draw_pos - right - up;
v_glow_corner[2] = draw_pos + right + up;
v_glow_corner[3] = draw_pos + right - up;
face = mFace[FACE_BLOOM];
if (face->mVertexBuffer.isNull())
{
face->setSize(4, 6);
face->setGeomIndex(0);
face->setIndicesIndex(0);
face->mVertexBuffer = new LLVertexBuffer(LLDrawPoolWater::VERTEX_DATA_MASK, GL_STREAM_DRAW_ARB);
face->mVertexBuffer->allocateBuffer(4, 6, TRUE);
}
index_offset = face->getGeometry(verticesp,normalsp,texCoordsp, indicesp);
if (-1 == index_offset)
{
return;
}
for (S32 vtx = 0; vtx < 4; ++vtx)
{
*(verticesp++) = v_glow_corner[vtx] + mCameraPosAgent;
}
*(texCoordsp++) = TEX01;
*(texCoordsp++) = TEX00;
*(texCoordsp++) = TEX11;
*(texCoordsp++) = TEX10;
*indicesp++ = index_offset + 0;
*indicesp++ = index_offset + 2;
*indicesp++ = index_offset + 1;
*indicesp++ = index_offset + 1;
*indicesp++ = index_offset + 2;
*indicesp++ = index_offset + 3;
#endif
}
F32 dtReflection(const LLVector3& p, F32 cos_dir_from_top, F32 sin_dir_from_top, F32 diff_angl_dir)
{
LLVector3 P = p;
P.normalize();
const F32 cos_dir_angle = -P.mV[VZ];
const F32 sin_dir_angle = sqrt(1 - cos_dir_angle * cos_dir_angle);
F32 cos_diff_angles = cos_dir_angle * cos_dir_from_top
+ sin_dir_angle * sin_dir_from_top;
F32 diff_angles;
if (cos_diff_angles > (1 - 1e-7))
diff_angles = 0;
else
diff_angles = acos(cos_diff_angles);
const F32 rel_diff_angles = diff_angles / diff_angl_dir;
const F32 dt = 1 - rel_diff_angles;
return (dt < 0) ? 0 : dt;
}
F32 dtClip(const LLVector3& v0, const LLVector3& v1, F32 far_clip2)
{
F32 dt_clip;
const LLVector3 otrezok = v1 - v0;
const F32 A = otrezok.lengthSquared();
const F32 B = v0 * otrezok;
const F32 C = v0.lengthSquared() - far_clip2;
const F32 det = sqrt(B*B - A*C);
dt_clip = (-B - det) / A;
if ((dt_clip < 0) || (dt_clip > 1))
dt_clip = (-B + det) / A;
return dt_clip;
}
void LLVOSky::updateReflectionGeometry(LLDrawable *drawable, F32 H,
const LLHeavenBody& HB)
{
const LLVector3 &look_at = LLViewerCamera::getInstance()->getAtAxis();
// const F32 water_height = gAgent.getRegion()->getWaterHeight() + 0.001f;
// LLWorld::getInstance()->getWaterHeight() + 0.001f;
LLVector3 to_dir = HB.getDirection();
LLVector3 hb_pos = to_dir * (HORIZON_DIST - 10);
LLVector3 to_dir_proj = to_dir;
to_dir_proj.mV[VZ] = 0;
to_dir_proj.normalize();
LLVector3 Right = to_dir % LLVector3::z_axis;
LLVector3 Up = Right % to_dir;
Right.normalize();
Up.normalize();
// finding angle between look direction and sprite.
LLVector3 look_at_right = look_at % LLVector3::z_axis;
look_at_right.normalize();
const static F32 cos_horizon_angle = cosHorizon(0.0f/sResolution);
//const static F32 horizon_angle = acos(cos_horizon_angle);
const F32 enlargm_factor = ( 1 - to_dir.mV[2] );
F32 horiz_enlargement = 1 + enlargm_factor * 0.3f;
F32 vert_enlargement = 1 + enlargm_factor * 0.2f;
F32 vert_size = vert_enlargement * HEAVENLY_BODY_SCALE * HB.getDiskRadius();
Right *= /*cos_lookAt_toDir */ horiz_enlargement * HEAVENLY_BODY_SCALE * HB.getDiskRadius();
Up *= vert_size;
LLVector3 v_corner[2];
LLVector3 stretch_corner[2];
LLVector3 top_hb = v_corner[0] = stretch_corner[0] = hb_pos - Right + Up;
v_corner[1] = stretch_corner[1] = hb_pos - Right - Up;
F32 dt_hor, dt;
dt_hor = clip_side_to_horizon(v_corner[1], v_corner[0], cos_horizon_angle);
LLVector2 TEX0t = TEX00;
LLVector2 TEX1t = TEX10;
LLVector3 lower_corner = v_corner[1];
if ((dt_hor > 0) && (dt_hor < 1))
{
TEX0t = LLVector2(0, dt_hor);
TEX1t = LLVector2(1, dt_hor);
lower_corner = (1 - dt_hor) * v_corner[1] + dt_hor * v_corner[0];
}
else
dt_hor = llmax(0.0f, llmin(1.0f, dt_hor));
top_hb.normalize();
const F32 cos_angle_of_view = fabs(top_hb.mV[VZ]);
const F32 extension = llmin (5.0f, 1.0f / cos_angle_of_view);
const S32 cols = 1;
const S32 raws = lltrunc(16 * extension);
S32 quads = cols * raws;
stretch_corner[0] = lower_corner + extension * (stretch_corner[0] - lower_corner);
stretch_corner[1] = lower_corner + extension * (stretch_corner[1] - lower_corner);
dt = dt_hor;
F32 cos_dir_from_top[2];
LLVector3 dir = stretch_corner[0];
dir.normalize();
cos_dir_from_top[0] = dir.mV[VZ];
dir = stretch_corner[1];
dir.normalize();
cos_dir_from_top[1] = dir.mV[VZ];
const F32 sin_dir_from_top = sqrt(1 - cos_dir_from_top[0] * cos_dir_from_top[0]);
const F32 sin_dir_from_top2 = sqrt(1 - cos_dir_from_top[1] * cos_dir_from_top[1]);
const F32 cos_diff_dir = cos_dir_from_top[0] * cos_dir_from_top[1]
+ sin_dir_from_top * sin_dir_from_top2;
const F32 diff_angl_dir = acos(cos_diff_dir);
v_corner[0] = stretch_corner[0];
v_corner[1] = lower_corner;
LLVector2 TEX0tt = TEX01;
LLVector2 TEX1tt = TEX11;
LLVector3 v_refl_corner[4];
LLVector3 v_sprite_corner[4];
S32 vtx;
for (vtx = 0; vtx < 2; ++vtx)
{
LLVector3 light_proj = v_corner[vtx];
light_proj.normalize();
const F32 z = light_proj.mV[VZ];
const F32 sin_angle = sqrt(1 - z * z);
light_proj *= 1.f / sin_angle;
light_proj.mV[VZ] = 0;
const F32 to_refl_point = H * sin_angle / fabs(z);
v_refl_corner[vtx] = to_refl_point * light_proj;
}
for (vtx = 2; vtx < 4; ++vtx)
{
const LLVector3 to_dir_vec = (to_dir_proj * v_refl_corner[vtx-2]) * to_dir_proj;
v_refl_corner[vtx] = v_refl_corner[vtx-2] + 2 * (to_dir_vec - v_refl_corner[vtx-2]);
}
for (vtx = 0; vtx < 4; ++vtx)
v_refl_corner[vtx].mV[VZ] -= H;
S32 side = 0;
LLVector3 refl_corn_norm[2];
refl_corn_norm[0] = v_refl_corner[1];
refl_corn_norm[0].normalize();
refl_corn_norm[1] = v_refl_corner[3];
refl_corn_norm[1].normalize();
F32 cos_refl_look_at[2];
cos_refl_look_at[0] = refl_corn_norm[0] * look_at;
cos_refl_look_at[1] = refl_corn_norm[1] * look_at;
if (cos_refl_look_at[1] > cos_refl_look_at[0])
{
side = 2;
}
//const F32 far_clip = (LLViewerCamera::getInstance()->getFar() - 0.01) / far_clip_factor;
const F32 far_clip = 512;
const F32 far_clip2 = far_clip*far_clip;
F32 dt_clip;
F32 vtx_near2, vtx_far2;
if ((vtx_far2 = v_refl_corner[side].lengthSquared()) > far_clip2)
{
// whole thing is sprite: reflection is beyond far clip plane.
dt_clip = 1.1f;
quads = 1;
}
else if ((vtx_near2 = v_refl_corner[side+1].lengthSquared()) > far_clip2)
{
// part is reflection, the rest is sprite.
dt_clip = dtClip(v_refl_corner[side + 1], v_refl_corner[side], far_clip2);
const LLVector3 P = (1 - dt_clip) * v_refl_corner[side + 1] + dt_clip * v_refl_corner[side];
F32 dt_tex = dtReflection(P, cos_dir_from_top[0], sin_dir_from_top, diff_angl_dir);
dt = dt_tex;
TEX0tt = LLVector2(0, dt);
TEX1tt = LLVector2(1, dt);
quads++;
}
else
{
// whole thing is correct reflection.
dt_clip = -0.1f;
}
LLFace *face = mFace[FACE_REFLECTION];
if (!face->getVertexBuffer() || quads*4 != face->getGeomCount())
{
face->setSize(quads * 4, quads * 6);
LLVertexBuffer* buff = new LLVertexBuffer(LLDrawPoolWater::VERTEX_DATA_MASK, GL_STREAM_DRAW_ARB);
buff->allocateBuffer(face->getGeomCount(), face->getIndicesCount(), TRUE);
face->setIndicesIndex(0);
face->setGeomIndex(0);
face->setVertexBuffer(buff);
}
LLStrider<LLVector3> verticesp;
LLStrider<LLVector3> normalsp;
LLStrider<LLVector2> texCoordsp;
LLStrider<U16> indicesp;
S32 index_offset;
index_offset = face->getGeometry(verticesp,normalsp,texCoordsp, indicesp);
if (-1 == index_offset)
{
return;
}
LLColor3 hb_col3 = HB.getInterpColor();
hb_col3.clamp();
const LLColor4 hb_col = LLColor4(hb_col3);
const F32 min_attenuation = 0.4f;
const F32 max_attenuation = 0.7f;
const F32 attenuation = min_attenuation
+ cos_angle_of_view * (max_attenuation - min_attenuation);
LLColor4 hb_refl_col = (1-attenuation) * hb_col + attenuation * mFogColor;
face->setFaceColor(hb_refl_col);
LLVector3 v_far[2];
v_far[0] = v_refl_corner[1];
v_far[1] = v_refl_corner[3];
if(dt_clip > 0)
{
if (dt_clip >= 1)
{
for (S32 vtx = 0; vtx < 4; ++vtx)
{
F32 ratio = far_clip / v_refl_corner[vtx].length();
*(verticesp++) = v_refl_corner[vtx] = ratio * v_refl_corner[vtx] + mCameraPosAgent;
}
const LLVector3 draw_pos = 0.25 *
(v_refl_corner[0] + v_refl_corner[1] + v_refl_corner[2] + v_refl_corner[3]);
face->mCenterAgent = draw_pos;
}
else
{
F32 ratio = far_clip / v_refl_corner[1].length();
v_sprite_corner[1] = v_refl_corner[1] * ratio;
ratio = far_clip / v_refl_corner[3].length();
v_sprite_corner[3] = v_refl_corner[3] * ratio;
v_refl_corner[1] = (1 - dt_clip) * v_refl_corner[1] + dt_clip * v_refl_corner[0];
v_refl_corner[3] = (1 - dt_clip) * v_refl_corner[3] + dt_clip * v_refl_corner[2];
v_sprite_corner[0] = v_refl_corner[1];
v_sprite_corner[2] = v_refl_corner[3];
for (S32 vtx = 0; vtx < 4; ++vtx)
{
*(verticesp++) = v_sprite_corner[vtx] + mCameraPosAgent;
}
const LLVector3 draw_pos = 0.25 *
(v_refl_corner[0] + v_sprite_corner[1] + v_refl_corner[2] + v_sprite_corner[3]);
face->mCenterAgent = draw_pos;
}
*(texCoordsp++) = TEX0tt;
*(texCoordsp++) = TEX0t;
*(texCoordsp++) = TEX1tt;
*(texCoordsp++) = TEX1t;
*indicesp++ = index_offset + 0;
*indicesp++ = index_offset + 2;
*indicesp++ = index_offset + 1;
*indicesp++ = index_offset + 1;
*indicesp++ = index_offset + 2;
*indicesp++ = index_offset + 3;
index_offset += 4;
}
if (dt_clip < 1)
{
if (dt_clip <= 0)
{
const LLVector3 draw_pos = 0.25 *
(v_refl_corner[0] + v_refl_corner[1] + v_refl_corner[2] + v_refl_corner[3]);
face->mCenterAgent = draw_pos;
}
const F32 raws_inv = 1.f/raws;
const F32 cols_inv = 1.f/cols;
LLVector3 left = v_refl_corner[0] - v_refl_corner[1];
LLVector3 right = v_refl_corner[2] - v_refl_corner[3];
left *= raws_inv;
right *= raws_inv;
F32 dt_raw = dt;
for (S32 raw = 0; raw < raws; ++raw)
{
F32 dt_v0 = raw * raws_inv;
F32 dt_v1 = (raw + 1) * raws_inv;
const LLVector3 BL = v_refl_corner[1] + (F32)raw * left;
const LLVector3 BR = v_refl_corner[3] + (F32)raw * right;
const LLVector3 EL = BL + left;
const LLVector3 ER = BR + right;
dt_v0 = dt_raw;
dt_raw = dt_v1 = dtReflection(EL, cos_dir_from_top[0], sin_dir_from_top, diff_angl_dir);
for (S32 col = 0; col < cols; ++col)
{
F32 dt_h0 = col * cols_inv;
*(verticesp++) = (1 - dt_h0) * EL + dt_h0 * ER + mCameraPosAgent;
*(verticesp++) = (1 - dt_h0) * BL + dt_h0 * BR + mCameraPosAgent;
F32 dt_h1 = (col + 1) * cols_inv;
*(verticesp++) = (1 - dt_h1) * EL + dt_h1 * ER + mCameraPosAgent;
*(verticesp++) = (1 - dt_h1) * BL + dt_h1 * BR + mCameraPosAgent;
*(texCoordsp++) = LLVector2(dt_h0, dt_v1);
*(texCoordsp++) = LLVector2(dt_h0, dt_v0);
*(texCoordsp++) = LLVector2(dt_h1, dt_v1);
*(texCoordsp++) = LLVector2(dt_h1, dt_v0);
*indicesp++ = index_offset + 0;
*indicesp++ = index_offset + 2;
*indicesp++ = index_offset + 1;
*indicesp++ = index_offset + 1;
*indicesp++ = index_offset + 2;
*indicesp++ = index_offset + 3;
index_offset += 4;
}
}
}
face->getVertexBuffer()->flush();
}
void LLVOSky::updateFog(const F32 distance)
{
if (!gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_FOG))
{
if (!LLGLSLShader::sNoFixedFunction)
{
glFogf(GL_FOG_DENSITY, 0);
glFogfv(GL_FOG_COLOR, (F32 *) &LLColor4::white.mV);
glFogf(GL_FOG_END, 1000000.f);
}
return;
}
const BOOL hide_clip_plane = TRUE;
LLColor4 target_fog(0.f, 0.2f, 0.5f, 0.f);
const F32 water_height = gAgent.getRegion() ? gAgent.getRegion()->getWaterHeight() : 0.f;
// LLWorld::getInstance()->getWaterHeight();
F32 camera_height = gAgentCamera.getCameraPositionAgent().mV[2];
F32 near_clip_height = LLViewerCamera::getInstance()->getAtAxis().mV[VZ] * LLViewerCamera::getInstance()->getNear();
camera_height += near_clip_height;
F32 fog_distance = 0.f;
LLColor3 res_color[3];
LLColor3 sky_fog_color = LLColor3::white;
LLColor3 render_fog_color = LLColor3::white;
LLVector3 tosun = getToSunLast();
const F32 tosun_z = tosun.mV[VZ];
tosun.mV[VZ] = 0.f;
tosun.normalize();
LLVector3 perp_tosun;
perp_tosun.mV[VX] = -tosun.mV[VY];
perp_tosun.mV[VY] = tosun.mV[VX];
LLVector3 tosun_45 = tosun + perp_tosun;
tosun_45.normalize();
F32 delta = 0.06f;
tosun.mV[VZ] = delta;
perp_tosun.mV[VZ] = delta;
tosun_45.mV[VZ] = delta;
tosun.normalize();
perp_tosun.normalize();
tosun_45.normalize();
// Sky colors, just slightly above the horizon in the direction of the sun, perpendicular to the sun, and at a 45 degree angle to the sun.
initAtmospherics();
res_color[0] = calcSkyColorInDir(tosun);
res_color[1] = calcSkyColorInDir(perp_tosun);
res_color[2] = calcSkyColorInDir(tosun_45);
sky_fog_color = color_norm(res_color[0] + res_color[1] + res_color[2]);
F32 full_off = -0.25f;
F32 full_on = 0.00f;
F32 on = (tosun_z - full_off) / (full_on - full_off);
on = llclamp(on, 0.01f, 1.f);
sky_fog_color *= 0.5f * on;
// We need to clamp these to non-zero, in order for the gamma correction to work. 0^y = ???
S32 i;
for (i = 0; i < 3; i++)
{
sky_fog_color.mV[i] = llmax(0.0001f, sky_fog_color.mV[i]);
}
color_gamma_correct(sky_fog_color);
render_fog_color = sky_fog_color;
F32 fog_density = 0.f;
fog_distance = mFogRatio * distance;
if (camera_height > water_height)
{
LLColor4 fog(render_fog_color);
if (!LLGLSLShader::sNoFixedFunction)
{
glFogfv(GL_FOG_COLOR, fog.mV);
}
mGLFogCol = fog;
if (hide_clip_plane)
{
// For now, set the density to extend to the cull distance.
const F32 f_log = 2.14596602628934723963618357029f; // sqrt(fabs(log(0.01f)))
fog_density = f_log/fog_distance;
if (!LLGLSLShader::sNoFixedFunction)
{
glFogi(GL_FOG_MODE, GL_EXP2);
}
}
else
{
const F32 f_log = 4.6051701859880913680359829093687f; // fabs(log(0.01f))
fog_density = (f_log)/fog_distance;
if (!LLGLSLShader::sNoFixedFunction)
{
glFogi(GL_FOG_MODE, GL_EXP);
}
}
}
else
{
F32 depth = water_height - camera_height;
// get the water param manager variables
float water_fog_density = LLWaterParamManager::getInstance()->getFogDensity();
LLColor4 water_fog_color = LLDrawPoolWater::sWaterFogColor.mV;
// adjust the color based on depth. We're doing linear approximations
float depth_scale = gSavedSettings.getF32("WaterGLFogDepthScale");
float depth_modifier = 1.0f - llmin(llmax(depth / depth_scale, 0.01f),
gSavedSettings.getF32("WaterGLFogDepthFloor"));
LLColor4 fogCol = water_fog_color * depth_modifier;
fogCol.setAlpha(1);
// set the gl fog color
mGLFogCol = fogCol;
// set the density based on what the shaders use
fog_density = water_fog_density * gSavedSettings.getF32("WaterGLFogDensityScale");
if (!LLGLSLShader::sNoFixedFunction)
{
glFogfv(GL_FOG_COLOR, (F32 *) &fogCol.mV);
glFogi(GL_FOG_MODE, GL_EXP2);
}
}
mFogColor = sky_fog_color;
mFogColor.setAlpha(1);
LLDrawPoolWater::sWaterFogEnd = fog_distance*2.2f;
if (!LLGLSLShader::sNoFixedFunction)
{
LLGLSFog gls_fog;
glFogf(GL_FOG_END, fog_distance*2.2f);
glFogf(GL_FOG_DENSITY, fog_density);
glHint(GL_FOG_HINT, GL_NICEST);
}
stop_glerror();
}
// Functions used a lot.
F32 color_norm_pow(LLColor3& col, F32 e, BOOL postmultiply)
{
F32 mv = color_max(col);
if (0 == mv)
{
return 0;
}
col *= 1.f / mv;
color_pow(col, e);
if (postmultiply)
{
col *= mv;
}
return mv;
}
// Returns angle (RADIANs) between the horizontal projection of "v" and the x_axis.
// Range of output is 0.0f to 2pi //359.99999...f
// Returns 0.0f when "v" = +/- z_axis.
F32 azimuth(const LLVector3 &v)
{
F32 azimuth = 0.0f;
if (v.mV[VX] == 0.0f)
{
if (v.mV[VY] > 0.0f)
{
azimuth = F_PI * 0.5f;
}
else if (v.mV[VY] < 0.0f)
{
azimuth = F_PI * 1.5f;// 270.f;
}
}
else
{
azimuth = (F32) atan(v.mV[VY] / v.mV[VX]);
if (v.mV[VX] < 0.0f)
{
azimuth += F_PI;
}
else if (v.mV[VY] < 0.0f)
{
azimuth += F_PI * 2;
}
}
return azimuth;
}
void LLVOSky::initSunDirection(const LLVector3 &sun_dir, const LLVector3 &sun_ang_velocity)
{
LLVector3 sun_direction = (sun_dir.length() == 0) ? LLVector3::x_axis : sun_dir;
sun_direction.normalize();
mSun.setDirection(sun_direction);
mSun.renewDirection();
mSun.setAngularVelocity(sun_ang_velocity);
mMoon.setDirection(-mSun.getDirection());
mMoon.renewDirection();
mLastLightingDirection = mSun.getDirection();
calcAtmospherics();
if ( !mInitialized )
{
init();
LLSkyTex::stepCurrent();
}
}
void LLVOSky::setSunDirection(const LLVector3 &sun_dir, const LLVector3 &sun_ang_velocity)
{
LLVector3 sun_direction = (sun_dir.length() == 0) ? LLVector3::x_axis : sun_dir;
sun_direction.normalize();
// Push the sun "South" as it approaches directly overhead so that we can always see bump mapping
// on the upward facing faces of cubes.
LLVector3 newDir = sun_direction;
// Same as dot product with the up direction + clamp.
F32 sunDot = llmax(0.f, newDir.mV[2]);
sunDot *= sunDot;
// Create normalized vector that has the sunDir pushed south about an hour and change.
LLVector3 adjustedDir = (newDir + LLVector3(0.f, -0.70711f, 0.70711f)) * 0.5f;
// Blend between normal sun dir and adjusted sun dir based on how close we are
// to having the sun overhead.
mBumpSunDir = adjustedDir * sunDot + newDir * (1.0f - sunDot);
mBumpSunDir.normalize();
F32 dp = mLastLightingDirection * sun_direction;
mSun.setDirection(sun_direction);
mSun.setAngularVelocity(sun_ang_velocity);
mMoon.setDirection(-sun_direction);
calcAtmospherics();
if (dp < 0.995f) { //the sun jumped a great deal, update immediately
mForceUpdate = TRUE;
}
}