Files
SingularityViewer/indra/llprimitive/llprimitive.cpp
2019-03-09 01:51:50 -06:00

2083 lines
52 KiB
C++

/**
* @file llprimitive.cpp
* @brief LLPrimitive base class
*
* $LicenseInfo:firstyear=2001&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "material_codes.h"
#include "llerror.h"
#include "message.h"
#include "llprimitive.h"
#include "llvolume.h"
#include "legacy_object_types.h"
#include "v4coloru.h"
#include "llvolumemgr.h"
#include "llstring.h"
#include "lldatapacker.h"
#include "llsdutil_math.h"
#include "llprimtexturelist.h"
#include "imageids.h"
#include "llmaterialid.h"
#include "llvolume.h"
/**
* exported constants
*/
const F32 OBJECT_CUT_MIN = 0.f;
const F32 OBJECT_CUT_MAX = 1.f;
const F32 OBJECT_CUT_INC = 0.05f;
const F32 OBJECT_MIN_CUT_INC = 0.02f;
const F32 OBJECT_ROTATION_PRECISION = 0.05f;
const F32 OBJECT_TWIST_MIN = -360.f;
const F32 OBJECT_TWIST_MAX = 360.f;
const F32 OBJECT_TWIST_INC = 18.f;
// This is used for linear paths,
// since twist is used in a slightly different manner.
const F32 OBJECT_TWIST_LINEAR_MIN = -180.f;
const F32 OBJECT_TWIST_LINEAR_MAX = 180.f;
const F32 OBJECT_TWIST_LINEAR_INC = 9.f;
const F32 OBJECT_MIN_HOLE_SIZE = 0.05f;
const F32 OBJECT_MAX_HOLE_SIZE_X = 1.0f;
const F32 OBJECT_MAX_HOLE_SIZE_Y = 0.5f;
// Revolutions parameters.
const F32 OBJECT_REV_MIN = 1.0f;
const F32 OBJECT_REV_MAX = 4.0f;
const F32 OBJECT_REV_INC = 0.1f;
// lights
const F32 LIGHT_MIN_RADIUS = 0.0f;
const F32 LIGHT_DEFAULT_RADIUS = 5.0f;
const F32 LIGHT_MAX_RADIUS = 20.0f;
const F32 LIGHT_MIN_FALLOFF = 0.0f;
const F32 LIGHT_DEFAULT_FALLOFF = 1.0f;
const F32 LIGHT_MAX_FALLOFF = 2.0f;
const F32 LIGHT_MIN_CUTOFF = 0.0f;
const F32 LIGHT_DEFAULT_CUTOFF = 0.0f;
const F32 LIGHT_MAX_CUTOFF = 180.f;
// "Tension" => [0,10], increments of 0.1
const F32 FLEXIBLE_OBJECT_MIN_TENSION = 0.0f;
const F32 FLEXIBLE_OBJECT_DEFAULT_TENSION = 1.0f;
const F32 FLEXIBLE_OBJECT_MAX_TENSION = 10.0f;
// "Drag" => [0,10], increments of 0.1
const F32 FLEXIBLE_OBJECT_MIN_AIR_FRICTION = 0.0f;
const F32 FLEXIBLE_OBJECT_DEFAULT_AIR_FRICTION = 2.0f;
const F32 FLEXIBLE_OBJECT_MAX_AIR_FRICTION = 10.0f;
// "Gravity" = [-10,10], increments of 0.1
const F32 FLEXIBLE_OBJECT_MIN_GRAVITY = -10.0f;
const F32 FLEXIBLE_OBJECT_DEFAULT_GRAVITY = 0.3f;
const F32 FLEXIBLE_OBJECT_MAX_GRAVITY = 10.0f;
// "Wind" = [0,10], increments of 0.1
const F32 FLEXIBLE_OBJECT_MIN_WIND_SENSITIVITY = 0.0f;
const F32 FLEXIBLE_OBJECT_DEFAULT_WIND_SENSITIVITY = 0.0f;
const F32 FLEXIBLE_OBJECT_MAX_WIND_SENSITIVITY = 10.0f;
// I'll explain later...
const F32 FLEXIBLE_OBJECT_MAX_INTERNAL_TENSION_FORCE = 0.99f;
const F32 FLEXIBLE_OBJECT_DEFAULT_LENGTH = 1.0f;
const BOOL FLEXIBLE_OBJECT_DEFAULT_USING_COLLISION_SPHERE = FALSE;
const BOOL FLEXIBLE_OBJECT_DEFAULT_RENDERING_COLLISION_SPHERE = FALSE;
const S32 MAX_FACE_BITS = 9;
const char *SCULPT_DEFAULT_TEXTURE = "be293869-d0d9-0a69-5989-ad27f1946fd4"; // old inverted texture: "7595d345-a24c-e7ef-f0bd-78793792133e";
// Texture rotations are sent over the wire as a S16. This is used to scale the actual float
// value to a S16. Don't use 7FFF as it introduces some odd rounding with 180 since it
// can't be divided by 2. See DEV-19108
const F32 TEXTURE_ROTATION_PACK_FACTOR = ((F32) 0x08000);
//static
// LEGACY: by default we use the LLVolumeMgr::gVolumeMgr global
// TODO -- eliminate this global from the codebase!
LLVolumeMgr* LLPrimitive::sVolumeManager = NULL;
// static
void LLPrimitive::setVolumeManager( LLVolumeMgr* volume_manager )
{
if ( !volume_manager || sVolumeManager )
{
LL_ERRS() << "LLPrimitive::sVolumeManager attempting to be set to NULL or it already has been set." << LL_ENDL;
}
sVolumeManager = volume_manager;
}
// static
bool LLPrimitive::cleanupVolumeManager()
{
BOOL res = FALSE;
if (sVolumeManager)
{
res = sVolumeManager->cleanup();
delete sVolumeManager;
sVolumeManager = NULL;
}
return res;
}
//===============================================================
LLPrimitive::LLPrimitive()
: mTextureList(),
mNumTEs(0),
mMiscFlags(0)
{
mPrimitiveCode = 0;
mMaterial = LL_MCODE_STONE;
mVolumep = NULL;
mChanged = UNCHANGED;
mPosition.setVec(0.f,0.f,0.f);
mVelocity.setVec(0.f,0.f,0.f);
mAcceleration.setVec(0.f,0.f,0.f);
mRotation.loadIdentity();
mAngularVelocity.setVec(0.f,0.f,0.f);
mScale.setVec(1.f,1.f,1.f);
}
//===============================================================
LLPrimitive::~LLPrimitive()
{
clearTextureList();
// Cleanup handled by volume manager
if (mVolumep && sVolumeManager)
{
sVolumeManager->unrefVolume(mVolumep);
}
mVolumep = NULL;
}
void LLPrimitive::clearTextureList()
{
}
//===============================================================
// static
LLPrimitive *LLPrimitive::createPrimitive(LLPCode p_code)
{
LLPrimitive *retval = new LLPrimitive();
if (retval)
{
retval->init_primitive(p_code);
}
else
{
LL_ERRS() << "primitive allocation failed" << LL_ENDL;
}
return retval;
}
//===============================================================
void LLPrimitive::init_primitive(LLPCode p_code)
{
clearTextureList();
mPrimitiveCode = p_code;
}
void LLPrimitive::setPCode(const U8 p_code)
{
mPrimitiveCode = p_code;
}
//===============================================================
LLTextureEntry* LLPrimitive::getTE(const U8 index) const
{
return mTextureList.getTexture(index);
}
//===============================================================
void LLPrimitive::setNumTEs(const U8 num_tes)
{
mTextureList.setSize(num_tes);
}
//===============================================================
void LLPrimitive::setAllTETextures(const LLUUID &tex_id)
{
mTextureList.setAllIDs(tex_id);
}
//===============================================================
void LLPrimitive::setTE(const U8 index, const LLTextureEntry& te)
{
mTextureList.copyTexture(index, te);
}
S32 LLPrimitive::setTETexture(const U8 index, const LLUUID &id)
{
return mTextureList.setID(index, id);
}
S32 LLPrimitive::setTEColor(const U8 index, const LLColor4 &color)
{
return mTextureList.setColor(index, color);
}
S32 LLPrimitive::setTEColor(const U8 index, const LLColor3 &color)
{
return mTextureList.setColor(index, color);
}
S32 LLPrimitive::setTEAlpha(const U8 index, const F32 alpha)
{
return mTextureList.setAlpha(index, alpha);
}
//===============================================================
S32 LLPrimitive::setTEScale(const U8 index, const F32 s, const F32 t)
{
return mTextureList.setScale(index, s, t);
}
// BUG: slow - done this way because texture entries have some
// voodoo related to texture coords
S32 LLPrimitive::setTEScaleS(const U8 index, const F32 s)
{
return mTextureList.setScaleS(index, s);
}
// BUG: slow - done this way because texture entries have some
// voodoo related to texture coords
S32 LLPrimitive::setTEScaleT(const U8 index, const F32 t)
{
return mTextureList.setScaleT(index, t);
}
//===============================================================
S32 LLPrimitive::setTEOffset(const U8 index, const F32 s, const F32 t)
{
return mTextureList.setOffset(index, s, t);
}
// BUG: slow - done this way because texture entries have some
// voodoo related to texture coords
S32 LLPrimitive::setTEOffsetS(const U8 index, const F32 s)
{
return mTextureList.setOffsetS(index, s);
}
// BUG: slow - done this way because texture entries have some
// voodoo related to texture coords
S32 LLPrimitive::setTEOffsetT(const U8 index, const F32 t)
{
return mTextureList.setOffsetT(index, t);
}
//===============================================================
S32 LLPrimitive::setTERotation(const U8 index, const F32 r)
{
return mTextureList.setRotation(index, r);
}
S32 LLPrimitive::setTEMaterialID(const U8 index, const LLMaterialID& pMaterialID)
{
return mTextureList.setMaterialID(index, pMaterialID);
}
S32 LLPrimitive::setTEMaterialParams(const U8 index, const LLMaterialPtr pMaterialParams)
{
return mTextureList.setMaterialParams(index, pMaterialParams);
}
LLMaterialPtr LLPrimitive::getTEMaterialParams(const U8 index)
{
return mTextureList.getMaterialParams(index);
}
//===============================================================
S32 LLPrimitive::setTEBumpShinyFullbright(const U8 index, const U8 bump)
{
return mTextureList.setBumpShinyFullbright(index, bump);
}
S32 LLPrimitive::setTEMediaTexGen(const U8 index, const U8 media)
{
return mTextureList.setMediaTexGen(index, media);
}
S32 LLPrimitive::setTEBumpmap(const U8 index, const U8 bump)
{
return mTextureList.setBumpMap(index, bump);
}
S32 LLPrimitive::setTEBumpShiny(const U8 index, const U8 bump_shiny)
{
return mTextureList.setBumpShiny(index, bump_shiny);
}
S32 LLPrimitive::setTETexGen(const U8 index, const U8 texgen)
{
return mTextureList.setTexGen(index, texgen);
}
S32 LLPrimitive::setTEShiny(const U8 index, const U8 shiny)
{
return mTextureList.setShiny(index, shiny);
}
S32 LLPrimitive::setTEFullbright(const U8 index, const U8 fullbright)
{
return mTextureList.setFullbright(index, fullbright);
}
S32 LLPrimitive::setTEMediaFlags(const U8 index, const U8 media_flags)
{
return mTextureList.setMediaFlags(index, media_flags);
}
S32 LLPrimitive::setTEGlow(const U8 index, const F32 glow)
{
return mTextureList.setGlow(index, glow);
}
void LLPrimitive::setAllTESelected(bool sel)
{
for (int i = 0, cnt = getNumTEs(); i < cnt; i++)
{
setTESelected(i, sel);
}
}
void LLPrimitive::setTESelected(const U8 te, bool sel)
{
LLTextureEntry* tep = getTE(te);
if ( (tep) && (tep->setSelected(sel)) && (!sel) && (tep->hasPendingMaterialUpdate()) )
{
LLMaterialID material_id = tep->getMaterialID();
setTEMaterialID(te, material_id);
}
}
LLPCode LLPrimitive::legacyToPCode(const U8 legacy)
{
// TODO: Should this default to something valid?
// Maybe volume?
LLPCode pcode = 0;
switch (legacy)
{
/*
case BOX:
pcode = LL_PCODE_CUBE;
break;
case CYLINDER:
pcode = LL_PCODE_CYLINDER;
break;
case CONE:
pcode = LL_PCODE_CONE;
break;
case HALF_CONE:
pcode = LL_PCODE_CONE_HEMI;
break;
case HALF_CYLINDER:
pcode = LL_PCODE_CYLINDER_HEMI;
break;
case HALF_SPHERE:
pcode = LL_PCODE_SPHERE_HEMI;
break;
case PRISM:
pcode = LL_PCODE_PRISM;
break;
case PYRAMID:
pcode = LL_PCODE_PYRAMID;
break;
case SPHERE:
pcode = LL_PCODE_SPHERE;
break;
case TETRAHEDRON:
pcode = LL_PCODE_TETRAHEDRON;
break;
case DEMON:
pcode = LL_PCODE_LEGACY_DEMON;
break;
case LSL_TEST:
pcode = LL_PCODE_LEGACY_LSL_TEST;
break;
case ORACLE:
pcode = LL_PCODE_LEGACY_ORACLE;
break;
case TEXTBUBBLE:
pcode = LL_PCODE_LEGACY_TEXT_BUBBLE;
break;
case ATOR:
pcode = LL_PCODE_LEGACY_ATOR;
break;
case BASIC_SHOT:
pcode = LL_PCODE_LEGACY_SHOT;
break;
case BIG_SHOT:
pcode = LL_PCODE_LEGACY_SHOT_BIG;
break;
case BIRD:
pcode = LL_PCODE_LEGACY_BIRD;
break;
case ROCK:
pcode = LL_PCODE_LEGACY_ROCK;
break;
case SMOKE:
pcode = LL_PCODE_LEGACY_SMOKE;
break;
case SPARK:
pcode = LL_PCODE_LEGACY_SPARK;
break;
*/
case PRIMITIVE_VOLUME:
pcode = LL_PCODE_VOLUME;
break;
case GRASS:
pcode = LL_PCODE_LEGACY_GRASS;
break;
case PART_SYS:
pcode = LL_PCODE_LEGACY_PART_SYS;
break;
case PLAYER:
pcode = LL_PCODE_LEGACY_AVATAR;
break;
case TREE:
pcode = LL_PCODE_LEGACY_TREE;
break;
case TREE_NEW:
pcode = LL_PCODE_TREE_NEW;
break;
default:
LL_WARNS() << "Unknown legacy code " << legacy << " [" << (S32)legacy << "]!" << LL_ENDL;
}
return pcode;
}
U8 LLPrimitive::pCodeToLegacy(const LLPCode pcode)
{
U8 legacy;
switch (pcode)
{
/*
case LL_PCODE_CUBE:
legacy = BOX;
break;
case LL_PCODE_CYLINDER:
legacy = CYLINDER;
break;
case LL_PCODE_CONE:
legacy = CONE;
break;
case LL_PCODE_CONE_HEMI:
legacy = HALF_CONE;
break;
case LL_PCODE_CYLINDER_HEMI:
legacy = HALF_CYLINDER;
break;
case LL_PCODE_SPHERE_HEMI:
legacy = HALF_SPHERE;
break;
case LL_PCODE_PRISM:
legacy = PRISM;
break;
case LL_PCODE_PYRAMID:
legacy = PYRAMID;
break;
case LL_PCODE_SPHERE:
legacy = SPHERE;
break;
case LL_PCODE_TETRAHEDRON:
legacy = TETRAHEDRON;
break;
case LL_PCODE_LEGACY_ATOR:
legacy = ATOR;
break;
case LL_PCODE_LEGACY_SHOT:
legacy = BASIC_SHOT;
break;
case LL_PCODE_LEGACY_SHOT_BIG:
legacy = BIG_SHOT;
break;
case LL_PCODE_LEGACY_BIRD:
legacy = BIRD;
break;
case LL_PCODE_LEGACY_DEMON:
legacy = DEMON;
break;
case LL_PCODE_LEGACY_LSL_TEST:
legacy = LSL_TEST;
break;
case LL_PCODE_LEGACY_ORACLE:
legacy = ORACLE;
break;
case LL_PCODE_LEGACY_ROCK:
legacy = ROCK;
break;
case LL_PCODE_LEGACY_TEXT_BUBBLE:
legacy = TEXTBUBBLE;
break;
case LL_PCODE_LEGACY_SMOKE:
legacy = SMOKE;
break;
case LL_PCODE_LEGACY_SPARK:
legacy = SPARK;
break;
*/
case LL_PCODE_VOLUME:
legacy = PRIMITIVE_VOLUME;
break;
case LL_PCODE_LEGACY_GRASS:
legacy = GRASS;
break;
case LL_PCODE_LEGACY_PART_SYS:
legacy = PART_SYS;
break;
case LL_PCODE_LEGACY_AVATAR:
legacy = PLAYER;
break;
case LL_PCODE_LEGACY_TREE:
legacy = TREE;
break;
case LL_PCODE_TREE_NEW:
legacy = TREE_NEW;
break;
default:
LL_WARNS() << "Unknown pcode " << (S32)pcode << ":" << pcode << "!" << LL_ENDL;
return 0;
}
return legacy;
}
// static
// Don't crash or LL_ERRS() here! This function is used for debug strings.
std::string LLPrimitive::pCodeToString(const LLPCode pcode)
{
std::string pcode_string;
U8 base_code = pcode & LL_PCODE_BASE_MASK;
if (!pcode)
{
pcode_string = "null";
}
else if ((base_code) == LL_PCODE_LEGACY)
{
// It's a legacy object
switch (pcode)
{
case LL_PCODE_LEGACY_GRASS:
pcode_string = "grass";
break;
case LL_PCODE_LEGACY_PART_SYS:
pcode_string = "particle system";
break;
case LL_PCODE_LEGACY_AVATAR:
pcode_string = "avatar";
break;
case LL_PCODE_LEGACY_TEXT_BUBBLE:
pcode_string = "text bubble";
break;
case LL_PCODE_LEGACY_TREE:
pcode_string = "tree";
break;
case LL_PCODE_TREE_NEW:
pcode_string = "tree_new";
break;
default:
pcode_string = llformat( "unknown legacy pcode %i",(U32)pcode);
}
}
else
{
std::string shape;
std::string mask;
if (base_code == LL_PCODE_CUBE)
{
shape = "cube";
}
else if (base_code == LL_PCODE_CYLINDER)
{
shape = "cylinder";
}
else if (base_code == LL_PCODE_CONE)
{
shape = "cone";
}
else if (base_code == LL_PCODE_PRISM)
{
shape = "prism";
}
else if (base_code == LL_PCODE_PYRAMID)
{
shape = "pyramid";
}
else if (base_code == LL_PCODE_SPHERE)
{
shape = "sphere";
}
else if (base_code == LL_PCODE_TETRAHEDRON)
{
shape = "tetrahedron";
}
else if (base_code == LL_PCODE_VOLUME)
{
shape = "volume";
}
else if (base_code == LL_PCODE_APP)
{
shape = "app";
}
else
{
LL_WARNS() << "Unknown base mask for pcode: " << base_code << LL_ENDL;
}
U8 mask_code = pcode & (~LL_PCODE_BASE_MASK);
if (base_code == LL_PCODE_APP)
{
mask = llformat( "%x", mask_code);
}
else if (mask_code & LL_PCODE_HEMI_MASK)
{
mask = "hemi";
}
else
{
mask = llformat( "%x", mask_code);
}
if (mask[0])
{
pcode_string = llformat( "%s-%s", shape.c_str(), mask.c_str());
}
else
{
pcode_string = llformat( "%s", shape.c_str());
}
}
return pcode_string;
}
void LLPrimitive::copyTEs(const LLPrimitive *primitivep)
{
U32 i;
if (primitivep->getExpectedNumTEs() != getExpectedNumTEs())
{
LL_WARNS() << "Primitives don't have same expected number of TE's" << LL_ENDL;
}
U32 num_tes = llmin(primitivep->getExpectedNumTEs(), getExpectedNumTEs());
if (mTextureList.size() < getExpectedNumTEs())
{
mTextureList.setSize(getExpectedNumTEs());
}
for (i = 0; i < num_tes; i++)
{
mTextureList.copyTexture(i, *(primitivep->getTE(i)));
}
}
S32 face_index_from_id(LLFaceID face_ID, const std::vector<LLProfile::Face>& faceArray)
{
S32 i;
for (i = 0; i < (S32)faceArray.size(); i++)
{
if (faceArray[i].mFaceID == face_ID)
{
return i;
}
}
return -1;
}
BOOL LLPrimitive::setVolume(const LLVolumeParams &volume_params, const S32 detail, bool unique_volume)
{
if (NO_LOD == detail)
{
// build the new object
setChanged(GEOMETRY);
sVolumeManager->unrefVolume(mVolumep);
mVolumep = new LLVolume(volume_params, 1, TRUE, TRUE);
setNumTEs(mVolumep->getNumFaces());
return FALSE;
}
LLVolume *volumep;
if (unique_volume)
{
F32 volume_detail = LLVolumeLODGroup::getVolumeScaleFromDetail(detail);
if (mVolumep.notNull() && volume_params == mVolumep->getParams() && (volume_detail == mVolumep->getDetail()))
{
return FALSE;
}
volumep = new LLVolume(volume_params, volume_detail, FALSE, TRUE);
}
else
{
if (mVolumep.notNull())
{
F32 volume_detail = LLVolumeLODGroup::getVolumeScaleFromDetail(detail);
if (volume_params == mVolumep->getParams() && (volume_detail == mVolumep->getDetail()))
{
return FALSE;
}
}
volumep = sVolumeManager->refVolume(volume_params, detail);
if (volumep == mVolumep)
{
sVolumeManager->unrefVolume( volumep ); // LLVolumeMgr::refVolume() creates a reference, but we don't need a second one.
return TRUE;
}
}
setChanged(GEOMETRY);
if (!mVolumep)
{
mVolumep = volumep;
//mFaceMask = mVolumep->generateFaceMask();
setNumTEs(mVolumep->getNumFaces());
return TRUE;
}
#if 0
// #if 0'd out by davep
// this is a lot of cruft to set texture entry values that just stay the same for LOD switch
// or immediately get overridden by an object update message, also crashes occasionally
U32 old_face_mask = mVolumep->mFaceMask;
S32 face_bit = 0;
S32 cur_mask = 0;
// Grab copies of the old faces from the original shape, ordered by type.
// We will use these to figure out what old texture info gets mapped to new
// faces in the new shape.
std::vector<LLProfile::Face> old_faces;
for (S32 face = 0; face < mVolumep->getNumFaces(); face++)
{
old_faces.push_back(mVolumep->getProfile().mFaces[face]);
}
// Copy the old texture info off to the side, but not in the order in which
// they live in the mTextureList, rather in order of ther "face id" which
// is the corresponding value of LLVolueParams::LLProfile::mFaces::mIndex.
//
// Hence, some elements of old_tes::mEntryList will be invalid. It is
// initialized to a size of 9 (max number of possible faces on a volume?)
// and only the ones with valid types are filled in.
LLPrimTextureList old_tes;
old_tes.setSize(9);
for (face_bit = 0; face_bit < 9; face_bit++)
{
cur_mask = 0x1 << face_bit;
if (old_face_mask & cur_mask)
{
S32 te_index = face_index_from_id(cur_mask, old_faces);
old_tes.copyTexture(face_bit, *(getTE(te_index)));
//LL_INFOS() << face_bit << ":" << te_index << ":" << old_tes[face_bit].getID() << LL_ENDL;
}
}
// build the new object
sVolumeManager->unrefVolume(mVolumep);
mVolumep = volumep;
U32 new_face_mask = mVolumep->mFaceMask;
S32 i;
if (old_face_mask == new_face_mask)
{
// nothing to do
return TRUE;
}
if (mVolumep->getNumFaces() == 0 && new_face_mask != 0)
{
LL_WARNS() << "Object with 0 faces found...INCORRECT!" << LL_ENDL;
setNumTEs(mVolumep->getNumFaces());
return TRUE;
}
// initialize face_mapping
S32 face_mapping[9];
for (face_bit = 0; face_bit < 9; face_bit++)
{
face_mapping[face_bit] = face_bit;
}
// The new shape may have more faces than the original, but we can't just
// add them to the end -- the ordering matters and it may be that we must
// insert the new faces in the middle of the list. When we add a face it
// will pick up the texture/color info of one of the old faces an so we
// now figure out which old face info gets mapped to each new face, and
// store in the face_mapping lookup table.
for (face_bit = 0; face_bit < 9; face_bit++)
{
cur_mask = 0x1 << face_bit;
if (!(new_face_mask & cur_mask))
{
// Face doesn't exist in new map.
face_mapping[face_bit] = -1;
continue;
}
else if (old_face_mask & cur_mask)
{
// Face exists in new and old map.
face_mapping[face_bit] = face_bit;
continue;
}
// OK, how we've got a mismatch, where we have to fill a new face with one from
// the old face.
if (cur_mask & (LL_FACE_PATH_BEGIN | LL_FACE_PATH_END | LL_FACE_INNER_SIDE))
{
// It's a top/bottom/hollow interior face.
if (old_face_mask & LL_FACE_PATH_END)
{
face_mapping[face_bit] = 1;
continue;
}
else
{
S32 cur_outer_mask = LL_FACE_OUTER_SIDE_0;
for (i = 0; i < 4; i++)
{
if (old_face_mask & cur_outer_mask)
{
face_mapping[face_bit] = 5 + i;
break;
}
cur_outer_mask <<= 1;
}
if (i == 4)
{
LL_WARNS() << "No path end or outer face in volume!" << LL_ENDL;
}
continue;
}
}
if (cur_mask & (LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END))
{
// A cut slice. Use the hollow interior if we have it.
if (old_face_mask & LL_FACE_INNER_SIDE)
{
face_mapping[face_bit] = 2;
continue;
}
// No interior, use the bottom face.
// Could figure out which of the outer faces was nearest, but that would be harder.
if (old_face_mask & LL_FACE_PATH_END)
{
face_mapping[face_bit] = 1;
continue;
}
else
{
S32 cur_outer_mask = LL_FACE_OUTER_SIDE_0;
for (i = 0; i < 4; i++)
{
if (old_face_mask & cur_outer_mask)
{
face_mapping[face_bit] = 5 + i;
break;
}
cur_outer_mask <<= 1;
}
if (i == 4)
{
LL_WARNS() << "No path end or outer face in volume!" << LL_ENDL;
}
continue;
}
}
// OK, the face that's missing is an outer face...
// Pull from the nearest adjacent outer face (there's always guaranteed to be one...
S32 cur_outer = face_bit - 5;
S32 min_dist = 5;
S32 min_outer_bit = -1;
S32 i;
for (i = 0; i < 4; i++)
{
if (old_face_mask & (LL_FACE_OUTER_SIDE_0 << i))
{
S32 dist = abs(i - cur_outer);
if (dist < min_dist)
{
min_dist = dist;
min_outer_bit = i + 5;
}
}
}
if (-1 == min_outer_bit)
{
LL_INFOS() << (LLVolume *)mVolumep << LL_ENDL;
LL_WARNS() << "Bad! No outer faces, impossible!" << LL_ENDL;
}
face_mapping[face_bit] = min_outer_bit;
}
setNumTEs(mVolumep->getNumFaces());
for (face_bit = 0; face_bit < 9; face_bit++)
{
// For each possible face type on the new shape we check to see if that
// face exists and if it does we create a texture entry that is a copy
// of one of the originals. Since the originals might not have a
// matching face, we use the face_mapping lookup table to figure out
// which face information to copy.
cur_mask = 0x1 << face_bit;
if (new_face_mask & cur_mask)
{
if (-1 == face_mapping[face_bit])
{
LL_WARNS() << "No mapping from old face to new face!" << LL_ENDL;
}
S32 te_num = face_index_from_id(cur_mask, mVolumep->getProfile().mFaces);
setTE(te_num, *(old_tes.getTexture(face_mapping[face_bit])));
}
}
#else
// build the new object
sVolumeManager->unrefVolume(mVolumep);
mVolumep = volumep;
setNumTEs(mVolumep->getNumFaces());
#endif
return TRUE;
}
BOOL LLPrimitive::setMaterial(U8 material)
{
if (material != mMaterial)
{
mMaterial = material;
return TRUE;
}
else
{
return FALSE;
}
}
S32 LLPrimitive::packTEField(U8 *cur_ptr, U8 *data_ptr, U8 data_size, U8 last_face_index, EMsgVariableType type) const
{
S32 face_index;
S32 i;
U64 exception_faces;
U8 *start_loc = cur_ptr;
htonmemcpy(cur_ptr,data_ptr + (last_face_index * data_size), type, data_size);
cur_ptr += data_size;
for (face_index = last_face_index-1; face_index >= 0; face_index--)
{
BOOL already_sent = FALSE;
for (i = face_index+1; i <= last_face_index; i++)
{
if (!memcmp(data_ptr+(data_size *face_index), data_ptr+(data_size *i), data_size))
{
already_sent = TRUE;
break;
}
}
if (!already_sent)
{
exception_faces = 0;
for (i = face_index; i >= 0; i--)
{
if (!memcmp(data_ptr+(data_size *face_index), data_ptr+(data_size *i), data_size))
{
exception_faces |= ((U64)1 << i);
}
}
//assign exception faces to cur_ptr
if (exception_faces >= (0x1 << 7))
{
if (exception_faces >= (0x1 << 14))
{
if (exception_faces >= (0x1 << 21))
{
if (exception_faces >= (0x1 << 28))
{
*cur_ptr++ = (U8)(((exception_faces >> 28) & 0x7F) | 0x80);
}
*cur_ptr++ = (U8)(((exception_faces >> 21) & 0x7F) | 0x80);
}
*cur_ptr++ = (U8)(((exception_faces >> 14) & 0x7F) | 0x80);
}
*cur_ptr++ = (U8)(((exception_faces >> 7) & 0x7F) | 0x80);
}
*cur_ptr++ = (U8)(exception_faces & 0x7F);
htonmemcpy(cur_ptr,data_ptr + (face_index * data_size), type, data_size);
cur_ptr += data_size;
}
}
return (S32)(cur_ptr - start_loc);
}
S32 LLPrimitive::unpackTEField(U8 *cur_ptr, U8 *buffer_end, U8 *data_ptr, U8 data_size, U8 face_count, EMsgVariableType type)
{
U8 *start_loc = cur_ptr;
U64 i;
htonmemcpy(data_ptr,cur_ptr, type,data_size);
cur_ptr += data_size;
for (i = 1; i < face_count; i++)
{
// Already unswizzled, don't need to unswizzle it again!
memcpy(data_ptr+(i*data_size),data_ptr,data_size); /* Flawfinder: ignore */
}
while ((cur_ptr < buffer_end) && (*cur_ptr != 0))
{
LL_DEBUGS("TEFieldDecode") << "TE exception" << LL_ENDL;
i = 0;
while (*cur_ptr & 0x80)
{
i |= ((*cur_ptr++) & 0x7F);
i = i << 7;
}
i |= *cur_ptr++;
for (S32 j = 0; j < face_count; j++)
{
if (i & 0x01)
{
htonmemcpy(data_ptr+(j*data_size),cur_ptr,type,data_size);
LL_DEBUGS("TEFieldDecode") << "Assigning " ;
char foo[64];
sprintf(foo,"%x %x",*(data_ptr+(j*data_size)), *(data_ptr+(j*data_size)+1));
LL_CONT << foo << " to face " << j << LL_ENDL;
}
i = i >> 1;
}
cur_ptr += data_size;
}
llassert(cur_ptr <= buffer_end); // buffer underrun
return (S32)(cur_ptr - start_loc);
}
// Pack information about all texture entries into container:
// { TextureEntry Variable 2 }
// Includes information about image ID, color, scale S,T, offset S,T and rotation
BOOL LLPrimitive::packTEMessage(LLMessageSystem *mesgsys) const
{
const U32 MAX_TES = 32;
U8 image_ids[MAX_TES*16];
U8 colors[MAX_TES*4];
F32 scale_s[MAX_TES];
F32 scale_t[MAX_TES];
S16 offset_s[MAX_TES];
S16 offset_t[MAX_TES];
S16 image_rot[MAX_TES];
U8 bump[MAX_TES];
U8 media_flags[MAX_TES];
U8 glow[MAX_TES];
U8 material_data[MAX_TES*16];
const U32 MAX_TE_BUFFER = 4096;
U8 packed_buffer[MAX_TE_BUFFER];
U8 *cur_ptr = packed_buffer;
S32 last_face_index = llmin((U32) getNumTEs(), MAX_TES) - 1;
if (last_face_index > -1)
{
// ...if we hit the front, send one image id
S8 face_index;
LLColor4U coloru;
for (face_index = 0; face_index <= last_face_index; face_index++)
{
// Directly sending image_ids is not safe!
memcpy(&image_ids[face_index*16],getTE(face_index)->getID().mData,16); /* Flawfinder: ignore */
// Cast LLColor4 to LLColor4U
coloru.setVec( getTE(face_index)->getColor() );
// Note: This is an optimization to send common colors (1.f, 1.f, 1.f, 1.f)
// as all zeros. However, the subtraction and addition must be done in unsigned
// byte space, not in float space, otherwise off-by-one errors occur. JC
colors[4*face_index] = 255 - coloru.mV[0];
colors[4*face_index + 1] = 255 - coloru.mV[1];
colors[4*face_index + 2] = 255 - coloru.mV[2];
colors[4*face_index + 3] = 255 - coloru.mV[3];
const LLTextureEntry* te = getTE(face_index);
scale_s[face_index] = (F32) te->mScaleS;
scale_t[face_index] = (F32) te->mScaleT;
offset_s[face_index] = (S16) ll_round((llclamp(te->mOffsetS,-1.0f,1.0f) * (F32)0x7FFF)) ;
offset_t[face_index] = (S16) ll_round((llclamp(te->mOffsetT,-1.0f,1.0f) * (F32)0x7FFF)) ;
image_rot[face_index] = (S16) ll_round(((fmod(te->mRotation, F_TWO_PI)/F_TWO_PI) * TEXTURE_ROTATION_PACK_FACTOR));
bump[face_index] = te->getBumpShinyFullbright();
media_flags[face_index] = te->getMediaTexGen();
glow[face_index] = (U8) ll_round((llclamp(te->getGlow(), 0.0f, 1.0f) * (F32)0xFF));
// Directly sending material_ids is not safe!
memcpy(&material_data[face_index*16],getTE(face_index)->getMaterialID().get(),16); /* Flawfinder: ignore */
}
cur_ptr += packTEField(cur_ptr, (U8 *)image_ids, sizeof(LLUUID),last_face_index, MVT_LLUUID);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)colors, 4 ,last_face_index, MVT_U8);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)scale_s, 4 ,last_face_index, MVT_F32);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)scale_t, 4 ,last_face_index, MVT_F32);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)offset_s, 2 ,last_face_index, MVT_S16Array);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)offset_t, 2 ,last_face_index, MVT_S16Array);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)image_rot, 2 ,last_face_index, MVT_S16Array);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)bump, 1 ,last_face_index, MVT_U8);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)media_flags, 1 ,last_face_index, MVT_U8);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)glow, 1 ,last_face_index, MVT_U8);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)material_data, 16, last_face_index, MVT_LLUUID);
}
mesgsys->addBinaryDataFast(_PREHASH_TextureEntry, packed_buffer, (S32)(cur_ptr - packed_buffer));
return FALSE;
}
BOOL LLPrimitive::packTEMessage(LLDataPacker &dp) const
{
const U32 MAX_TES = 32;
U8 image_ids[MAX_TES*16];
U8 colors[MAX_TES*4];
F32 scale_s[MAX_TES];
F32 scale_t[MAX_TES];
S16 offset_s[MAX_TES];
S16 offset_t[MAX_TES];
S16 image_rot[MAX_TES];
U8 bump[MAX_TES];
U8 media_flags[MAX_TES];
U8 glow[MAX_TES];
U8 material_data[MAX_TES*16];
const U32 MAX_TE_BUFFER = 4096;
U8 packed_buffer[MAX_TE_BUFFER];
U8 *cur_ptr = packed_buffer;
S32 last_face_index = getNumTEs() - 1;
if (last_face_index > -1)
{
// ...if we hit the front, send one image id
S8 face_index;
LLColor4U coloru;
for (face_index = 0; face_index <= last_face_index; face_index++)
{
// Directly sending image_ids is not safe!
memcpy(&image_ids[face_index*16],getTE(face_index)->getID().mData,16); /* Flawfinder: ignore */
// Cast LLColor4 to LLColor4U
coloru.setVec( getTE(face_index)->getColor() );
// Note: This is an optimization to send common colors (1.f, 1.f, 1.f, 1.f)
// as all zeros. However, the subtraction and addition must be done in unsigned
// byte space, not in float space, otherwise off-by-one errors occur. JC
colors[4*face_index] = 255 - coloru.mV[0];
colors[4*face_index + 1] = 255 - coloru.mV[1];
colors[4*face_index + 2] = 255 - coloru.mV[2];
colors[4*face_index + 3] = 255 - coloru.mV[3];
const LLTextureEntry* te = getTE(face_index);
scale_s[face_index] = (F32) te->mScaleS;
scale_t[face_index] = (F32) te->mScaleT;
offset_s[face_index] = (S16) ll_round((llclamp(te->mOffsetS,-1.0f,1.0f) * (F32)0x7FFF)) ;
offset_t[face_index] = (S16) ll_round((llclamp(te->mOffsetT,-1.0f,1.0f) * (F32)0x7FFF)) ;
image_rot[face_index] = (S16) ll_round(((fmod(te->mRotation, F_TWO_PI)/F_TWO_PI) * TEXTURE_ROTATION_PACK_FACTOR));
bump[face_index] = te->getBumpShinyFullbright();
media_flags[face_index] = te->getMediaTexGen();
glow[face_index] = (U8) ll_round((llclamp(te->getGlow(), 0.0f, 1.0f) * (F32)0xFF));
// Directly sending material_ids is not safe!
memcpy(&material_data[face_index*16],getTE(face_index)->getMaterialID().get(),16); /* Flawfinder: ignore */
}
cur_ptr += packTEField(cur_ptr, (U8 *)image_ids, sizeof(LLUUID),last_face_index, MVT_LLUUID);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)colors, 4 ,last_face_index, MVT_U8);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)scale_s, 4 ,last_face_index, MVT_F32);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)scale_t, 4 ,last_face_index, MVT_F32);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)offset_s, 2 ,last_face_index, MVT_S16Array);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)offset_t, 2 ,last_face_index, MVT_S16Array);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)image_rot, 2 ,last_face_index, MVT_S16Array);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)bump, 1 ,last_face_index, MVT_U8);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)media_flags, 1 ,last_face_index, MVT_U8);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)glow, 1 ,last_face_index, MVT_U8);
*cur_ptr++ = 0;
cur_ptr += packTEField(cur_ptr, (U8 *)material_data, 16, last_face_index, MVT_LLUUID);
}
dp.packBinaryData(packed_buffer, (S32)(cur_ptr - packed_buffer), "TextureEntry");
return FALSE;
}
S32 LLPrimitive::parseTEMessage(LLMessageSystem* mesgsys, char const* block_name, const S32 block_num, LLTEContents& tec)
{
S32 retval = 0;
// temp buffer for material ID processing
// data will end up in tec.material_id[]
U8 material_data[LLTEContents::MAX_TES*16];
if (block_num < 0)
{
tec.size = mesgsys->getSizeFast(block_name, _PREHASH_TextureEntry);
}
else
{
tec.size = mesgsys->getSizeFast(block_name, block_num, _PREHASH_TextureEntry);
}
if (tec.size == 0)
{
tec.face_count = 0;
return retval;
}
if (block_num < 0)
{
mesgsys->getBinaryDataFast(block_name, _PREHASH_TextureEntry, tec.packed_buffer, 0, 0, LLTEContents::MAX_TE_BUFFER);
}
else
{
mesgsys->getBinaryDataFast(block_name, _PREHASH_TextureEntry, tec.packed_buffer, 0, block_num, LLTEContents::MAX_TE_BUFFER);
}
tec.face_count = llmin((U32)getNumTEs(),(U32)LLTEContents::MAX_TES);
U8 *cur_ptr = tec.packed_buffer;
cur_ptr += unpackTEField(cur_ptr, tec.packed_buffer+tec.size, (U8 *)tec.image_data, 16, tec.face_count, MVT_LLUUID);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, tec.packed_buffer+tec.size, (U8 *)tec.colors, 4, tec.face_count, MVT_U8);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, tec.packed_buffer+tec.size, (U8 *)tec.scale_s, 4, tec.face_count, MVT_F32);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, tec.packed_buffer+tec.size, (U8 *)tec.scale_t, 4, tec.face_count, MVT_F32);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, tec.packed_buffer+tec.size, (U8 *)tec.offset_s, 2, tec.face_count, MVT_S16Array);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, tec.packed_buffer+tec.size, (U8 *)tec.offset_t, 2, tec.face_count, MVT_S16Array);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, tec.packed_buffer+tec.size, (U8 *)tec.image_rot, 2, tec.face_count, MVT_S16Array);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, tec.packed_buffer+tec.size, (U8 *)tec.bump, 1, tec.face_count, MVT_U8);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, tec.packed_buffer+tec.size, (U8 *)tec.media_flags, 1, tec.face_count, MVT_U8);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, tec.packed_buffer+tec.size, (U8 *)tec.glow, 1, tec.face_count, MVT_U8);
if (cur_ptr < tec.packed_buffer + tec.size)
{
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, tec.packed_buffer+tec.size, (U8 *)material_data, 16, tec.face_count, MVT_LLUUID);
}
else
{
memset(material_data, 0, sizeof(material_data));
}
for (U32 i = 0; i < tec.face_count; i++)
{
tec.material_ids[i].set(&material_data[i * 16]);
}
retval = 1;
return retval;
}
S32 LLPrimitive::applyParsedTEMessage(LLTEContents& tec)
{
S32 retval = 0;
LLColor4 color;
LLColor4U coloru;
for (U32 i = 0; i < tec.face_count; i++)
{
LLUUID& req_id = ((LLUUID*)tec.image_data)[i];
retval |= setTETexture(i, req_id);
retval |= setTEScale(i, tec.scale_s[i], tec.scale_t[i]);
retval |= setTEOffset(i, (F32)tec.offset_s[i] / (F32)0x7FFF, (F32) tec.offset_t[i] / (F32) 0x7FFF);
retval |= setTERotation(i, ((F32)tec.image_rot[i] / TEXTURE_ROTATION_PACK_FACTOR) * F_TWO_PI);
retval |= setTEBumpShinyFullbright(i, tec.bump[i]);
retval |= setTEMediaTexGen(i, tec.media_flags[i]);
retval |= setTEGlow(i, (F32)tec.glow[i] / (F32)0xFF);
retval |= setTEMaterialID(i, tec.material_ids[i]);
coloru = LLColor4U(tec.colors + 4*i);
// Note: This is an optimization to send common colors (1.f, 1.f, 1.f, 1.f)
// as all zeros. However, the subtraction and addition must be done in unsigned
// byte space, not in float space, otherwise off-by-one errors occur. JC
color.mV[VRED] = F32(255 - coloru.mV[VRED]) / 255.f;
color.mV[VGREEN] = F32(255 - coloru.mV[VGREEN]) / 255.f;
color.mV[VBLUE] = F32(255 - coloru.mV[VBLUE]) / 255.f;
color.mV[VALPHA] = F32(255 - coloru.mV[VALPHA]) / 255.f;
retval |= setTEColor(i, color);
}
return retval;
}
S32 LLPrimitive::unpackTEMessage(LLMessageSystem* mesgsys, char const* block_name, const S32 block_num)
{
LLTEContents tec;
S32 retval = parseTEMessage(mesgsys, block_name, block_num, tec);
if (!retval)
return retval;
return applyParsedTEMessage(tec);
}
S32 LLPrimitive::unpackTEMessage(LLDataPacker &dp)
{
// use a negative block_num to indicate a single-block read (a non-variable block)
S32 retval = 0;
const U32 MAX_TES = 32;
// Avoid construction of 32 UUIDs per call
static LLUUID image_ids[MAX_TES];
static LLMaterialID material_ids[MAX_TES];
U8 image_data[MAX_TES*16];
U8 colors[MAX_TES*4];
F32 scale_s[MAX_TES];
F32 scale_t[MAX_TES];
S16 offset_s[MAX_TES];
S16 offset_t[MAX_TES];
S16 image_rot[MAX_TES];
U8 bump[MAX_TES];
U8 media_flags[MAX_TES];
U8 glow[MAX_TES];
U8 material_data[MAX_TES*16];
const U32 MAX_TE_BUFFER = 4096;
U8 packed_buffer[MAX_TE_BUFFER];
U8 *cur_ptr = packed_buffer;
S32 size;
U32 face_count = 0;
if (!dp.unpackBinaryData(packed_buffer, size, "TextureEntry"))
{
retval = TEM_INVALID;
LL_WARNS() << "Bad texture entry block! Abort!" << LL_ENDL;
return retval;
}
if (size == 0)
{
return retval;
}
face_count = llmin((U32) getNumTEs(), MAX_TES);
U32 i;
cur_ptr += unpackTEField(cur_ptr, packed_buffer+size, (U8 *)image_data, 16, face_count, MVT_LLUUID);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, packed_buffer+size, (U8 *)colors, 4, face_count, MVT_U8);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, packed_buffer+size, (U8 *)scale_s, 4, face_count, MVT_F32);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, packed_buffer+size, (U8 *)scale_t, 4, face_count, MVT_F32);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, packed_buffer+size, (U8 *)offset_s, 2, face_count, MVT_S16Array);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, packed_buffer+size, (U8 *)offset_t, 2, face_count, MVT_S16Array);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, packed_buffer+size, (U8 *)image_rot, 2, face_count, MVT_S16Array);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, packed_buffer+size, (U8 *)bump, 1, face_count, MVT_U8);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, packed_buffer+size, (U8 *)media_flags, 1, face_count, MVT_U8);
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, packed_buffer+size, (U8 *)glow, 1, face_count, MVT_U8);
if (cur_ptr < packed_buffer + size)
{
cur_ptr++;
cur_ptr += unpackTEField(cur_ptr, packed_buffer+size, (U8 *)material_data, 16, face_count, MVT_LLUUID);
}
else
{
memset(material_data, 0, sizeof(material_data));
}
for (i = 0; i < face_count; i++)
{
memcpy(image_ids[i].mData,&image_data[i*16],16); /* Flawfinder: ignore */
material_ids[i].set(&material_data[i * 16]);
}
LLColor4 color;
LLColor4U coloru;
for (i = 0; i < face_count; i++)
{
retval |= setTETexture(i, image_ids[i]);
retval |= setTEScale(i, scale_s[i], scale_t[i]);
retval |= setTEOffset(i, (F32)offset_s[i] / (F32)0x7FFF, (F32) offset_t[i] / (F32) 0x7FFF);
retval |= setTERotation(i, ((F32)image_rot[i] / TEXTURE_ROTATION_PACK_FACTOR) * F_TWO_PI);
retval |= setTEBumpShinyFullbright(i, bump[i]);
retval |= setTEMediaTexGen(i, media_flags[i]);
retval |= setTEGlow(i, (F32)glow[i] / (F32)0xFF);
retval |= setTEMaterialID(i, material_ids[i]);
coloru = LLColor4U(colors + 4*i);
// Note: This is an optimization to send common colors (1.f, 1.f, 1.f, 1.f)
// as all zeros. However, the subtraction and addition must be done in unsigned
// byte space, not in float space, otherwise off-by-one errors occur. JC
color.mV[VRED] = F32(255 - coloru.mV[VRED]) / 255.f;
color.mV[VGREEN] = F32(255 - coloru.mV[VGREEN]) / 255.f;
color.mV[VBLUE] = F32(255 - coloru.mV[VBLUE]) / 255.f;
color.mV[VALPHA] = F32(255 - coloru.mV[VALPHA]) / 255.f;
retval |= setTEColor(i, color);
}
return retval;
}
U8 LLPrimitive::getExpectedNumTEs() const
{
U8 expected_face_count = 0;
if (mVolumep)
{
expected_face_count = mVolumep->getNumFaces();
}
return expected_face_count;
}
void LLPrimitive::copyTextureList(const LLPrimTextureList& other_list)
{
mTextureList.copy(other_list);
}
void LLPrimitive::takeTextureList(LLPrimTextureList& other_list)
{
mTextureList.take(other_list);
}
//============================================================================
// Moved from llselectmgr.cpp
// BUG: Only works for boxes.
// Face numbering for flex boxes as of 1.14.2
// static
bool LLPrimitive::getTESTAxes(const U8 face, U32* s_axis, U32* t_axis)
{
if (face == 0)
{
*s_axis = VX; *t_axis = VY;
return true;
}
else if (face == 1)
{
*s_axis = VX; *t_axis = VZ;
return true;
}
else if (face == 2)
{
*s_axis = VY; *t_axis = VZ;
return true;
}
else if (face == 3)
{
*s_axis = VX; *t_axis = VZ;
return true;
}
else if (face == 4)
{
*s_axis = VY; *t_axis = VZ;
return true;
}
else if (face == 5)
{
*s_axis = VX; *t_axis = VY;
return true;
}
else
{
// unknown face
return false;
}
}
//============================================================================
//static
BOOL LLNetworkData::isValid(U16 param_type, U32 size)
{
// ew - better mechanism needed
switch(param_type)
{
case PARAMS_FLEXIBLE:
return (size == 16);
case PARAMS_LIGHT:
return (size == 16);
case PARAMS_SCULPT:
return (size == 17);
case PARAMS_LIGHT_IMAGE:
return (size == 28);
case PARAMS_EXTENDED_MESH:
return (size == 4);
}
return FALSE;
}
//============================================================================
LLLightParams::LLLightParams()
{
mColor.setToWhite();
mRadius = 10.f;
mCutoff = 0.0f;
mFalloff = 0.75f;
mType = PARAMS_LIGHT;
}
BOOL LLLightParams::pack(LLDataPacker &dp) const
{
LLColor4U color4u(mColor);
dp.packColor4U(color4u, "color");
dp.packF32(mRadius, "radius");
dp.packF32(mCutoff, "cutoff");
dp.packF32(mFalloff, "falloff");
return TRUE;
}
BOOL LLLightParams::unpack(LLDataPacker &dp)
{
LLColor4U color;
dp.unpackColor4U(color, "color");
setColor(LLColor4(color));
F32 radius;
dp.unpackF32(radius, "radius");
setRadius(radius);
F32 cutoff;
dp.unpackF32(cutoff, "cutoff");
setCutoff(cutoff);
F32 falloff;
dp.unpackF32(falloff, "falloff");
setFalloff(falloff);
return TRUE;
}
bool LLLightParams::operator==(const LLNetworkData& data) const
{
if (data.mType != PARAMS_LIGHT)
{
return false;
}
const LLLightParams *param = (const LLLightParams*)&data;
if (param->mColor != mColor ||
param->mRadius != mRadius ||
param->mCutoff != mCutoff ||
param->mFalloff != mFalloff)
{
return false;
}
return true;
}
void LLLightParams::copy(const LLNetworkData& data)
{
const LLLightParams *param = (LLLightParams*)&data;
mType = param->mType;
mColor = param->mColor;
mRadius = param->mRadius;
mCutoff = param->mCutoff;
mFalloff = param->mFalloff;
}
LLSD LLLightParams::asLLSD() const
{
LLSD sd;
sd["color"] = ll_sd_from_color4(getColor());
sd["radius"] = getRadius();
sd["falloff"] = getFalloff();
sd["cutoff"] = getCutoff();
return sd;
}
bool LLLightParams::fromLLSD(LLSD& sd)
{
const char *w;
w = "color";
if (sd.has(w))
{
setColor( ll_color4_from_sd(sd["color"]) );
} else goto fail;
w = "radius";
if (sd.has(w))
{
setRadius( (F32)sd[w].asReal() );
} else goto fail;
w = "falloff";
if (sd.has(w))
{
setFalloff( (F32)sd[w].asReal() );
} else goto fail;
w = "cutoff";
if (sd.has(w))
{
setCutoff( (F32)sd[w].asReal() );
} else goto fail;
return true;
fail:
return false;
}
//============================================================================
LLFlexibleObjectData::LLFlexibleObjectData()
{
mSimulateLOD = FLEXIBLE_OBJECT_DEFAULT_NUM_SECTIONS;
mGravity = FLEXIBLE_OBJECT_DEFAULT_GRAVITY;
mAirFriction = FLEXIBLE_OBJECT_DEFAULT_AIR_FRICTION;
mWindSensitivity = FLEXIBLE_OBJECT_DEFAULT_WIND_SENSITIVITY;
mTension = FLEXIBLE_OBJECT_DEFAULT_TENSION;
//mUsingCollisionSphere = FLEXIBLE_OBJECT_DEFAULT_USING_COLLISION_SPHERE;
//mRenderingCollisionSphere = FLEXIBLE_OBJECT_DEFAULT_RENDERING_COLLISION_SPHERE;
mUserForce = LLVector3(0.f, 0.f, 0.f);
mType = PARAMS_FLEXIBLE;
}
BOOL LLFlexibleObjectData::pack(LLDataPacker &dp) const
{
// Custom, uber-svelte pack "softness" in upper bits of tension & drag
U8 bit1 = (mSimulateLOD & 2) << 6;
U8 bit2 = (mSimulateLOD & 1) << 7;
dp.packU8((U8)(mTension*10.01f) + bit1, "tension");
dp.packU8((U8)(mAirFriction*10.01f) + bit2, "drag");
dp.packU8((U8)((mGravity+10.f)*10.01f), "gravity");
dp.packU8((U8)(mWindSensitivity*10.01f), "wind");
dp.packVector3(mUserForce, "userforce");
return TRUE;
}
BOOL LLFlexibleObjectData::unpack(LLDataPacker &dp)
{
U8 tension, friction, gravity, wind;
U8 bit1, bit2;
dp.unpackU8(tension, "tension"); bit1 = (tension >> 6) & 2;
mTension = ((F32)(tension&0x7f))/10.f;
dp.unpackU8(friction, "drag"); bit2 = (friction >> 7) & 1;
mAirFriction = ((F32)(friction&0x7f))/10.f;
mSimulateLOD = bit1 | bit2;
dp.unpackU8(gravity, "gravity"); mGravity = ((F32)gravity)/10.f - 10.f;
dp.unpackU8(wind, "wind"); mWindSensitivity = ((F32)wind)/10.f;
if (dp.hasNext())
{
dp.unpackVector3(mUserForce, "userforce");
}
else
{
mUserForce.setVec(0.f, 0.f, 0.f);
}
return TRUE;
}
bool LLFlexibleObjectData::operator==(const LLNetworkData& data) const
{
if (data.mType != PARAMS_FLEXIBLE)
{
return false;
}
LLFlexibleObjectData *flex_data = (LLFlexibleObjectData*)&data;
return (mSimulateLOD == flex_data->mSimulateLOD &&
mGravity == flex_data->mGravity &&
mAirFriction == flex_data->mAirFriction &&
mWindSensitivity == flex_data->mWindSensitivity &&
mTension == flex_data->mTension &&
mUserForce == flex_data->mUserForce);
//mUsingCollisionSphere == flex_data->mUsingCollisionSphere &&
//mRenderingCollisionSphere == flex_data->mRenderingCollisionSphere
}
void LLFlexibleObjectData::copy(const LLNetworkData& data)
{
const LLFlexibleObjectData *flex_data = (LLFlexibleObjectData*)&data;
mSimulateLOD = flex_data->mSimulateLOD;
mGravity = flex_data->mGravity;
mAirFriction = flex_data->mAirFriction;
mWindSensitivity = flex_data->mWindSensitivity;
mTension = flex_data->mTension;
mUserForce = flex_data->mUserForce;
//mUsingCollisionSphere = flex_data->mUsingCollisionSphere;
//mRenderingCollisionSphere = flex_data->mRenderingCollisionSphere;
}
LLSD LLFlexibleObjectData::asLLSD() const
{
LLSD sd;
sd["air_friction"] = getAirFriction();
sd["gravity"] = getGravity();
sd["simulate_lod"] = getSimulateLOD();
sd["tension"] = getTension();
sd["user_force"] = getUserForce().getValue();
sd["wind_sensitivity"] = getWindSensitivity();
return sd;
}
bool LLFlexibleObjectData::fromLLSD(LLSD& sd)
{
const char *w;
w = "air_friction";
if (sd.has(w))
{
setAirFriction( (F32)sd[w].asReal() );
} else goto fail;
w = "gravity";
if (sd.has(w))
{
setGravity( (F32)sd[w].asReal() );
} else goto fail;
w = "simulate_lod";
if (sd.has(w))
{
setSimulateLOD( sd[w].asInteger() );
} else goto fail;
w = "tension";
if (sd.has(w))
{
setTension( (F32)sd[w].asReal() );
} else goto fail;
w = "user_force";
if (sd.has(w))
{
LLVector3 user_force = ll_vector3_from_sd(sd[w], 0);
setUserForce( user_force );
} else goto fail;
w = "wind_sensitivity";
if (sd.has(w))
{
setWindSensitivity( (F32)sd[w].asReal() );
} else goto fail;
return true;
fail:
return false;
}
//============================================================================
LLSculptParams::LLSculptParams()
{
mType = PARAMS_SCULPT;
mSculptTexture.set(SCULPT_DEFAULT_TEXTURE);
mSculptType = LL_SCULPT_TYPE_SPHERE;
}
BOOL LLSculptParams::pack(LLDataPacker &dp) const
{
dp.packUUID(mSculptTexture, "texture");
dp.packU8(mSculptType, "type");
return TRUE;
}
BOOL LLSculptParams::unpack(LLDataPacker &dp)
{
U8 type;
LLUUID id;
dp.unpackUUID(id, "texture");
dp.unpackU8(type, "type");
setSculptTexture(id, type);
return TRUE;
}
bool LLSculptParams::operator==(const LLNetworkData& data) const
{
if (data.mType != PARAMS_SCULPT)
{
return false;
}
const LLSculptParams *param = (const LLSculptParams*)&data;
if ( (param->mSculptTexture != mSculptTexture) ||
(param->mSculptType != mSculptType) )
{
return false;
}
return true;
}
void LLSculptParams::copy(const LLNetworkData& data)
{
const LLSculptParams *param = (LLSculptParams*)&data;
setSculptTexture(param->mSculptTexture, param->mSculptType);
}
LLSD LLSculptParams::asLLSD() const
{
LLSD sd;
sd["texture"] = mSculptTexture;
sd["type"] = mSculptType;
return sd;
}
bool LLSculptParams::fromLLSD(LLSD& sd)
{
const char *w;
U8 type;
w = "type";
if (sd.has(w))
{
type = sd[w].asInteger();
}
else return false;
w = "texture";
if (sd.has(w))
{
setSculptTexture(sd[w], type);
}
else return false;
return true;
}
void LLSculptParams::setSculptTexture(const LLUUID& texture_id, U8 sculpt_type)
{
U8 type = sculpt_type & LL_SCULPT_TYPE_MASK;
U8 flags = sculpt_type & LL_SCULPT_FLAG_MASK;
if (sculpt_type != (type | flags) || type > LL_SCULPT_TYPE_MAX)
{
mSculptTexture.set(SCULPT_DEFAULT_TEXTURE);
mSculptType = LL_SCULPT_TYPE_SPHERE;
}
else
{
mSculptTexture = texture_id;
mSculptType = sculpt_type;
}
}
//============================================================================
LLLightImageParams::LLLightImageParams()
{
mType = PARAMS_LIGHT_IMAGE;
mParams.setVec(F_PI*0.5f, 0.f, 0.f);
}
BOOL LLLightImageParams::pack(LLDataPacker &dp) const
{
dp.packUUID(mLightTexture, "texture");
dp.packVector3(mParams, "params");
return TRUE;
}
BOOL LLLightImageParams::unpack(LLDataPacker &dp)
{
dp.unpackUUID(mLightTexture, "texture");
dp.unpackVector3(mParams, "params");
return TRUE;
}
bool LLLightImageParams::operator==(const LLNetworkData& data) const
{
if (data.mType != PARAMS_LIGHT_IMAGE)
{
return false;
}
const LLLightImageParams *param = (const LLLightImageParams*)&data;
if ( (param->mLightTexture != mLightTexture) )
{
return false;
}
if ( (param->mParams != mParams ) )
{
return false;
}
return true;
}
void LLLightImageParams::copy(const LLNetworkData& data)
{
const LLLightImageParams *param = (LLLightImageParams*)&data;
mLightTexture = param->mLightTexture;
mParams = param->mParams;
}
LLSD LLLightImageParams::asLLSD() const
{
LLSD sd;
sd["texture"] = mLightTexture;
sd["params"] = mParams.getValue();
return sd;
}
bool LLLightImageParams::fromLLSD(LLSD& sd)
{
if (sd.has("texture"))
{
setLightTexture( sd["texture"] );
setParams( LLVector3( sd["params"] ) );
return true;
}
return false;
}
//============================================================================
LLExtendedMeshParams::LLExtendedMeshParams()
{
mType = PARAMS_EXTENDED_MESH;
mFlags = 0;
}
BOOL LLExtendedMeshParams::pack(LLDataPacker &dp) const
{
dp.packU32(mFlags, "flags");
return TRUE;
}
BOOL LLExtendedMeshParams::unpack(LLDataPacker &dp)
{
dp.unpackU32(mFlags, "flags");
return TRUE;
}
bool LLExtendedMeshParams::operator==(const LLNetworkData& data) const
{
if (data.mType != PARAMS_EXTENDED_MESH)
{
return false;
}
const LLExtendedMeshParams *param = (const LLExtendedMeshParams*)&data;
if ( (param->mFlags != mFlags) )
{
return false;
}
return true;
}
void LLExtendedMeshParams::copy(const LLNetworkData& data)
{
const LLExtendedMeshParams *param = (LLExtendedMeshParams*)&data;
mFlags = param->mFlags;
}
LLSD LLExtendedMeshParams::asLLSD() const
{
LLSD sd;
sd["flags"] = LLSD::Integer(mFlags);
return sd;
}
bool LLExtendedMeshParams::fromLLSD(LLSD& sd)
{
if (sd.has("flags"))
{
setFlags( sd["flags"].asInteger());
return true;
}
return false;
}