Files
SingularityViewer/indra/newview/llmeshrepository.cpp

3764 lines
97 KiB
C++

/**
* @file llmeshrepository.cpp
* @brief Mesh repository implementation.
*
* $LicenseInfo:firstyear=2005&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "apr_pools.h"
#include "apr_dso.h"
#include "llhttpstatuscodes.h"
#include "llmeshrepository.h"
#include "llagent.h"
#include "llappviewer.h"
#include "llbufferstream.h"
#include "llcallbacklist.h"
#include "lldatapacker.h"
#include "llfasttimer.h"
#include "llfloaterperms.h"
#include "lleconomy.h"
#include "llimagej2c.h"
#include "llhost.h"
#include "llnotificationsutil.h"
#include "llsd.h"
#include "llsdutil_math.h"
#include "llsdserialize.h"
#include "llthread.h"
#include "llvfile.h"
#include "llviewercontrol.h"
#include "llviewerinventory.h"
#include "llviewermenufile.h"
#include "llviewerobjectlist.h"
#include "llviewerregion.h"
#include "llviewertexturelist.h"
#include "llvolume.h"
#include "llvolumemgr.h"
#include "llvovolume.h"
#include "llworld.h"
#include "material_codes.h"
#include "pipeline.h"
#include "llinventorymodel.h"
#include "llfoldertype.h"
#include "llviewerparcelmgr.h"
#include "llassetuploadresponders.h"
#include "lluploadfloaterobservers.h"
#include "aicurl.h"
#include "boost/lexical_cast.hpp"
#ifndef LL_WINDOWS
#include "netdb.h"
#endif
#include <queue>
class AIHTTPTimeoutPolicy;
extern AIHTTPTimeoutPolicy meshHeaderResponder_timeout;
extern AIHTTPTimeoutPolicy meshLODResponder_timeout;
extern AIHTTPTimeoutPolicy meshSkinInfoResponder_timeout;
extern AIHTTPTimeoutPolicy meshDecompositionResponder_timeout;
extern AIHTTPTimeoutPolicy meshPhysicsShapeResponder_timeout;
extern AIHTTPTimeoutPolicy wholeModelFeeResponder_timeout;
extern AIHTTPTimeoutPolicy wholeModelUploadResponder_timeout;
LLMeshRepository gMeshRepo;
const U32 MAX_MESH_REQUESTS_PER_SECOND = 100;
// Maximum mesh version to support. Three least significant digits are reserved for the minor version,
// with major version changes indicating a format change that is not backwards compatible and should not
// be parsed by viewers that don't specifically support that version. For example, if the integer "1" is
// present, the version is 0.001. A viewer that can parse version 0.001 can also parse versions up to 0.999,
// but not 1.0 (integer 1000).
// See wiki at https://wiki.secondlife.com/wiki/Mesh/Mesh_Asset_Format
const S32 MAX_MESH_VERSION = 999;
U32 LLMeshRepository::sBytesReceived = 0;
U32 LLMeshRepository::sHTTPRequestCount = 0;
U32 LLMeshRepository::sHTTPRetryCount = 0;
U32 LLMeshRepository::sLODProcessing = 0;
U32 LLMeshRepository::sLODPending = 0;
U32 LLMeshRepository::sCacheBytesRead = 0;
U32 LLMeshRepository::sCacheBytesWritten = 0;
U32 LLMeshRepository::sPeakKbps = 0;
const U32 MAX_TEXTURE_UPLOAD_RETRIES = 5;
static S32 dump_num = 0;
std::string make_dump_name(std::string prefix, S32 num)
{
return prefix + boost::lexical_cast<std::string>(num) + std::string(".xml");
}
void dump_llsd_to_file(const LLSD& content, std::string filename);
LLSD llsd_from_file(std::string filename);
std::string header_lod[] =
{
"lowest_lod",
"low_lod",
"medium_lod",
"high_lod"
};
const char * const LOG_MESH = "Mesh";
//get the number of bytes resident in memory for given volume
U32 get_volume_memory_size(const LLVolume* volume)
{
U32 indices = 0;
U32 vertices = 0;
for (U32 i = 0; i < (U32)volume->getNumVolumeFaces(); ++i)
{
const LLVolumeFace& face = volume->getVolumeFace(i);
indices += face.mNumIndices;
vertices += face.mNumVertices;
}
return indices * 2 + vertices * 11 + sizeof(LLVolume) + sizeof(LLVolumeFace) * volume->getNumVolumeFaces();
}
void get_vertex_buffer_from_mesh(LLCDMeshData& mesh, LLModel::PhysicsMesh& res, F32 scale = 1.f)
{
res.mPositions.clear();
res.mNormals.clear();
const F32* v = mesh.mVertexBase;
if (mesh.mIndexType == LLCDMeshData::INT_16)
{
U16* idx = (U16*) mesh.mIndexBase;
for (S32 j = 0; j < mesh.mNumTriangles; ++j)
{
F32* mp0 = (F32*) ((U8*)v+idx[0]*mesh.mVertexStrideBytes);
F32* mp1 = (F32*) ((U8*)v+idx[1]*mesh.mVertexStrideBytes);
F32* mp2 = (F32*) ((U8*)v+idx[2]*mesh.mVertexStrideBytes);
idx = (U16*) (((U8*)idx)+mesh.mIndexStrideBytes);
LLVector3 v0(mp0);
LLVector3 v1(mp1);
LLVector3 v2(mp2);
LLVector3 n = (v1-v0)%(v2-v0);
n.normalize();
res.mPositions.push_back(v0*scale);
res.mPositions.push_back(v1*scale);
res.mPositions.push_back(v2*scale);
res.mNormals.push_back(n);
res.mNormals.push_back(n);
res.mNormals.push_back(n);
}
}
else
{
U32* idx = (U32*) mesh.mIndexBase;
for (S32 j = 0; j < mesh.mNumTriangles; ++j)
{
F32* mp0 = (F32*) ((U8*)v+idx[0]*mesh.mVertexStrideBytes);
F32* mp1 = (F32*) ((U8*)v+idx[1]*mesh.mVertexStrideBytes);
F32* mp2 = (F32*) ((U8*)v+idx[2]*mesh.mVertexStrideBytes);
idx = (U32*) (((U8*)idx)+mesh.mIndexStrideBytes);
LLVector3 v0(mp0);
LLVector3 v1(mp1);
LLVector3 v2(mp2);
LLVector3 n = (v1-v0)%(v2-v0);
n.normalize();
res.mPositions.push_back(v0*scale);
res.mPositions.push_back(v1*scale);
res.mPositions.push_back(v2*scale);
res.mNormals.push_back(n);
res.mNormals.push_back(n);
res.mNormals.push_back(n);
}
}
}
LLViewerFetchedTexture* LLMeshUploadThread::FindViewerTexture(const LLImportMaterial& material)
{
LLPointer< LLViewerFetchedTexture > * ppTex = static_cast< LLPointer< LLViewerFetchedTexture > * >(material.mOpaqueData);
return ppTex ? (*ppTex).get() : NULL;
}
S32 LLMeshRepoThread::sActiveHeaderRequests = 0;
S32 LLMeshRepoThread::sActiveLODRequests = 0;
U32 LLMeshRepoThread::sMaxConcurrentRequests = 1;
class LLMeshHeaderResponder : public LLHTTPClient::ResponderWithCompleted
{
public:
LLVolumeParams mMeshParams;
bool mProcessed;
void retry();
LLMeshHeaderResponder(const LLVolumeParams& mesh_params)
: mMeshParams(mesh_params)
{
LLMeshRepoThread::incActiveHeaderRequests();
mProcessed = false;
}
~LLMeshHeaderResponder()
{
if (!LLApp::isQuitting())
{
if (!mProcessed)
{ //something went wrong, retry
LL_WARNS() << "Timeout or service unavailable, retrying." << LL_ENDL;
LLMeshRepository::sHTTPRetryCount++;
LLMutexLock lock(gMeshRepo.mThread->mMutex);
gMeshRepo.mThread->pushHeaderRequest(mMeshParams, 10.f);
}
LLMeshRepoThread::decActiveHeaderRequests();
}
}
virtual void completedRaw(LLChannelDescriptors const& channels,
LLIOPipe::buffer_ptr_t const& buffer);
/*virtual*/ AICapabilityType capability_type(void) const { return cap_mesh; }
/*virtual*/ AIHTTPTimeoutPolicy const& getHTTPTimeoutPolicy(void) const { return meshHeaderResponder_timeout; }
/*virtual*/ char const* getName(void) const { return "LLMeshHeaderResponder"; }
};
class LLMeshLODResponder : public LLHTTPClient::ResponderWithCompleted
{
public:
LLVolumeParams mMeshParams;
S32 mLOD;
U32 mRequestedBytes;
U32 mOffset;
bool mProcessed;
void retry();
LLMeshLODResponder(const LLVolumeParams& mesh_params, S32 lod, U32 offset, U32 requested_bytes)
: mMeshParams(mesh_params), mLOD(lod), mOffset(offset), mRequestedBytes(requested_bytes)
{
LLMeshRepoThread::incActiveLODRequests();
mProcessed = false;
}
~LLMeshLODResponder()
{
if (!LLApp::isExiting())
{
if (!mProcessed)
{
LL_WARNS() << "Killed without being processed, retrying." << LL_ENDL;
LLMeshRepository::sHTTPRetryCount++;
gMeshRepo.mThread->lockAndLoadMeshLOD(mMeshParams, mLOD);
}
LLMeshRepoThread::decActiveLODRequests();
}
}
virtual void completedRaw(LLChannelDescriptors const& channels,
LLIOPipe::buffer_ptr_t const& buffer);
/*virtual*/ AICapabilityType capability_type(void) const { return cap_mesh; }
/*virtual*/ AIHTTPTimeoutPolicy const& getHTTPTimeoutPolicy(void) const { return meshLODResponder_timeout; }
/*virtual*/ char const* getName(void) const { return "LLMeshLODResponder"; }
};
class LLMeshSkinInfoResponder : public LLHTTPClient::ResponderWithCompleted
{
public:
LLUUID mMeshID;
U32 mRequestedBytes;
U32 mOffset;
bool mProcessed;
void retry();
LLMeshSkinInfoResponder(const LLUUID& id, U32 offset, U32 size)
: mMeshID(id), mRequestedBytes(size), mOffset(offset)
{
mProcessed = false;
}
~LLMeshSkinInfoResponder()
{
if (!LLApp::isQuitting() &&
!mProcessed &&
mMeshID.notNull())
{ // Something went wrong, retry
LL_WARNS() << "Timeout or service unavailable, retrying loadMeshSkinInfo() for " << mMeshID << LL_ENDL;
LLMeshRepository::sHTTPRetryCount++;
gMeshRepo.mThread->loadMeshSkinInfo(mMeshID);
}
}
virtual void completedRaw(LLChannelDescriptors const& channels,
LLIOPipe::buffer_ptr_t const& buffer);
/*virtual*/ AICapabilityType capability_type(void) const { return cap_mesh; }
/*virtual*/ AIHTTPTimeoutPolicy const& getHTTPTimeoutPolicy(void) const { return meshSkinInfoResponder_timeout; }
/*virtual*/ char const* getName(void) const { return "LLMeshSkinInfoResponder"; }
};
class LLMeshDecompositionResponder : public LLHTTPClient::ResponderWithCompleted
{
public:
LLUUID mMeshID;
U32 mRequestedBytes;
U32 mOffset;
bool mProcessed;
void retry();
LLMeshDecompositionResponder(const LLUUID& id, U32 offset, U32 size)
: mMeshID(id), mRequestedBytes(size), mOffset(offset)
{
mProcessed = false;
}
~LLMeshDecompositionResponder()
{
if (!LLApp::isQuitting() &&
!mProcessed &&
mMeshID.notNull())
{ // Something went wrong, retry
LL_WARNS() << "Timeout or service unavailable, retrying loadMeshDecomposition() for " << mMeshID << LL_ENDL;
LLMeshRepository::sHTTPRetryCount++;
gMeshRepo.mThread->loadMeshDecomposition(mMeshID);
}
}
virtual void completedRaw(LLChannelDescriptors const& channels,
LLIOPipe::buffer_ptr_t const& buffer);
/*virtual*/ AICapabilityType capability_type(void) const { return cap_mesh; }
/*virtual*/ AIHTTPTimeoutPolicy const& getHTTPTimeoutPolicy(void) const { return meshDecompositionResponder_timeout; }
/*virtual*/ char const* getName(void) const { return "LLMeshDecompositionResponder"; }
};
class LLMeshPhysicsShapeResponder : public LLHTTPClient::ResponderWithCompleted
{
public:
LLUUID mMeshID;
U32 mRequestedBytes;
U32 mOffset;
bool mProcessed;
void retry();
LLMeshPhysicsShapeResponder(const LLUUID& id, U32 offset, U32 size)
: mMeshID(id), mRequestedBytes(size), mOffset(offset)
{
mProcessed = false;
}
~LLMeshPhysicsShapeResponder()
{
if (!LLApp::isQuitting() &&
!mProcessed &&
mMeshID.notNull())
{ // Something went wrong, retry
LL_WARNS() << "Timeout or service unavailable, retrying loadMeshPhysicsShape() for " << mMeshID << LL_ENDL;
LLMeshRepository::sHTTPRetryCount++;
gMeshRepo.mThread->loadMeshPhysicsShape(mMeshID);
}
}
virtual void completedRaw(LLChannelDescriptors const& channels,
LLIOPipe::buffer_ptr_t const& buffer);
/*virtual*/ AICapabilityType capability_type(void) const { return cap_mesh; }
/*virtual*/ AIHTTPTimeoutPolicy const& getHTTPTimeoutPolicy(void) const { return meshPhysicsShapeResponder_timeout; }
/*virtual*/ char const* getName(void) const { return "LLMeshPhysicsShapeResponder"; }
};
void log_upload_error(S32 status, const LLSD& content, std::string stage, std::string model_name)
{
// Add notification popup.
LLSD args;
std::string message = content["error"]["message"];
std::string identifier = content["error"]["identifier"];
args["MESSAGE"] = message;
args["IDENTIFIER"] = identifier;
args["LABEL"] = model_name;
gMeshRepo.uploadError(args);
// Log details.
LL_WARNS() << "stage: " << stage << " http status: " << status << LL_ENDL;
if (content.has("error"))
{
const LLSD& err = content["error"];
LL_WARNS() << "err: " << err << LL_ENDL;
LL_WARNS() << "mesh upload failed, stage '" << stage
<< "' error '" << err["error"].asString()
<< "', message '" << err["message"].asString()
<< "', id '" << err["identifier"].asString()
<< "'" << LL_ENDL;
if (err.has("errors"))
{
S32 error_num = 0;
const LLSD& err_list = err["errors"];
for (LLSD::array_const_iterator it = err_list.beginArray();
it != err_list.endArray();
++it)
{
const LLSD& err_entry = *it;
LL_WARNS() << "error[" << error_num << "]:" << LL_ENDL;
for (LLSD::map_const_iterator map_it = err_entry.beginMap();
map_it != err_entry.endMap();
++map_it)
{
LL_WARNS() << "\t" << map_it->first << ": "
<< map_it->second << LL_ENDL;
}
error_num++;
}
}
}
else
{
LL_WARNS() << "bad mesh, no error information available" << LL_ENDL;
}
}
class LLWholeModelFeeResponder : public LLHTTPClient::ResponderWithCompleted
{
std::string& mWholeModelUploadURL;
LLSD mModelData;
LLHandle<LLWholeModelFeeObserver> mObserverHandle;
public:
LLWholeModelFeeResponder(LLSD& model_data, LLHandle<LLWholeModelFeeObserver> observer_handle, std::string& url_out):
mWholeModelUploadURL(url_out),
mModelData(model_data),
mObserverHandle(observer_handle)
{
}
~LLWholeModelFeeResponder()
{
}
virtual void httpCompleted(void)
{
LLSD cc = mContent;
if (gSavedSettings.getS32("MeshUploadFakeErrors")&1)
{
cc = llsd_from_file("fake_upload_error.xml");
}
dump_llsd_to_file(cc,make_dump_name("whole_model_fee_response_",dump_num));
LLWholeModelFeeObserver* observer = mObserverHandle.get();
if (isGoodStatus(mStatus) &&
cc["state"].asString() == "upload")
{
mWholeModelUploadURL = cc["uploader"].asString();
if (observer)
{
cc["data"]["upload_price"] = cc["upload_price"];
observer->onModelPhysicsFeeReceived(cc["data"], mWholeModelUploadURL);
}
}
else
{
LL_WARNS() << "fee request failed" << LL_ENDL;
log_upload_error(mStatus,cc,"fee",mModelData["name"]);
mWholeModelUploadURL = "";
if (observer)
{
observer->setModelPhysicsFeeErrorStatus(mStatus, mReason);
}
}
}
/*virtual*/ AIHTTPTimeoutPolicy const& getHTTPTimeoutPolicy(void) const { return wholeModelFeeResponder_timeout; }
/*virtual*/ char const* getName(void) const { return "LLWholeModelFeeResponder"; }
};
class LLWholeModelUploadResponder : public LLHTTPClient::ResponderWithCompleted
{
LLSD mModelData;
LLHandle<LLWholeModelUploadObserver> mObserverHandle;
public:
LLWholeModelUploadResponder(LLSD& model_data, LLHandle<LLWholeModelUploadObserver> observer_handle):
mModelData(model_data),
mObserverHandle(observer_handle)
{
}
~LLWholeModelUploadResponder()
{
}
virtual void httpCompleted(void)
{
LLSD cc = mContent;
if (gSavedSettings.getS32("MeshUploadFakeErrors")&2)
{
cc = llsd_from_file("fake_upload_error.xml");
}
dump_llsd_to_file(cc,make_dump_name("whole_model_upload_response_",dump_num));
LLWholeModelUploadObserver* observer = mObserverHandle.get();
// requested "mesh" asset type isn't actually the type
// of the resultant object, fix it up here.
if (isGoodStatus(mStatus) &&
cc["state"].asString() == "complete")
{
mModelData["asset_type"] = "object";
gMeshRepo.updateInventory(LLMeshRepository::inventory_data(mModelData,cc));
if (observer)
{
doOnIdleOneTime(boost::bind(&LLWholeModelUploadObserver::onModelUploadSuccess, observer));
}
}
else
{
LL_WARNS() << "upload failed" << LL_ENDL;
std::string model_name = mModelData["name"].asString();
log_upload_error(mStatus,cc,"upload",model_name);
if (observer)
{
doOnIdleOneTime(boost::bind(&LLWholeModelUploadObserver::onModelUploadFailure, observer));
}
}
}
/*virtual*/ AIHTTPTimeoutPolicy const& getHTTPTimeoutPolicy(void) const { return wholeModelUploadResponder_timeout; }
/*virtual*/ char const* getName(void) const { return "LLWholeModelUploadResponder"; }
};
LLMeshRepoThread::LLMeshRepoThread()
: LLThread("mesh repo")
{
mMutex = new LLMutex();
mHeaderMutex = new LLMutex();
mSignal = new LLCondition();
}
LLMeshRepoThread::~LLMeshRepoThread()
{
delete mMutex;
mMutex = NULL;
delete mHeaderMutex;
mHeaderMutex = NULL;
delete mSignal;
mSignal = NULL;
}
bool LLMeshRepoThread::HeaderRequest::fetch(U32& count)
{
return gMeshRepo.mThread->fetchMeshHeader(this->mMeshParams, count);
}
void LLMeshRepoThread::LODRequest::preFetch()
{
--LLMeshRepository::sLODProcessing;
}
bool LLMeshRepoThread::LODRequest::fetch(U32& count)
{
if (!gMeshRepo.mThread->fetchMeshLOD(this->mMeshParams, this->mLOD, count))
{
gMeshRepo.mThread->mMutex->lock();
++LLMeshRepository::sLODProcessing;
gMeshRepo.mThread->mMutex->unlock();
return false;
}
return true;
}
void LLMeshRepoThread::runQueue(std::deque<std::pair<std::shared_ptr<MeshRequest>, F32> >& query, U32& count, S32& active_requests)
{
std::queue<std::pair<std::shared_ptr<MeshRequest>, F32> > incomplete;
while (!query.empty() && count < MAX_MESH_REQUESTS_PER_SECOND && active_requests < (S32)sMaxConcurrentRequests)
{
if (mMutex)
{
mMutex->lock();
auto req = query.front().first;
F32 delay = query.front().second;
query.pop_front();
req->preFetch();
mMutex->unlock();
F32 remainder = delay - req->mTimer.getElapsedTimeF32();
if (remainder > 0.f)
{
//LL_INFOS() << req->mMeshParams.getSculptID() << " skipped. " << remainder << "s remaining" << LL_ENDL;
incomplete.push(std::make_pair(req, delay));
}
else if (!req->fetch(count))//failed, resubmit
{
LL_INFOS() << req->mMeshParams.getSculptID() << " fetch failed outright. Delaying for " << (delay ? delay : 15) << "s" << LL_ENDL;
req->mTimer.reset();
incomplete.push(std::make_pair(req, delay ? delay : 15));
}
else {
//LL_INFOS() << req->mMeshParams.getSculptID() << " fetch request created. " << std::hex << &(req->mMeshParams) << std::dec << LL_ENDL;
}
}
}
if (!incomplete.empty())
{
mMutex->lock();
while (!incomplete.empty())
{
query.push_back(incomplete.front());
incomplete.pop();
}
mMutex->unlock();
}
}
void LLMeshRepoThread::runSet(std::set<LLUUID>& set, std::function<bool(const LLUUID& mesh_id)> fn)
{
std::set<LLUUID> incomplete;
for (std::set<LLUUID>::iterator iter = set.begin(); iter != set.end(); ++iter)
{
LLUUID mesh_id = *iter;
if (!fn(mesh_id))
{
incomplete.insert(mesh_id);
}
}
set = incomplete;
}
void LLMeshRepoThread::run()
{
LLCDResult res = LLConvexDecomposition::initThread();
if (res != LLCD_OK)
{
LL_WARNS() << "convex decomposition unable to be loaded" << LL_ENDL;
}
mSignal->lock();
while (!LLApp::isQuitting())
{
if (!LLApp::isQuitting())
{
static U32 count = 0;
static F32 last_hundred = gFrameTimeSeconds;
if (gFrameTimeSeconds - last_hundred > 1.f)
{ //a second has gone by, clear count
last_hundred = gFrameTimeSeconds;
count = 0;
}
// NOTE: throttling intentionally favors LOD requests over header requests
runQueue(mLODReqQ, count, sActiveLODRequests);
runQueue(mHeaderReqQ, count, sActiveHeaderRequests);
// Protected by mSignal
runSet(mSkinRequests, std::bind(&LLMeshRepoThread::fetchMeshSkinInfo, this, std::placeholders::_1));
runSet(mDecompositionRequests, std::bind(&LLMeshRepoThread::fetchMeshDecomposition, this, std::placeholders::_1));
runSet(mPhysicsShapeRequests, std::bind(&LLMeshRepoThread::fetchMeshPhysicsShape, this, std::placeholders::_1));
}
mSignal->unlock();
ms_sleep(1000 / 60);
mSignal->lock();
//mSignal->wait();
}
if (mSignal->isLocked())
{ //make sure to let go of the mutex associated with the given signal before shutting down
mSignal->unlock();
}
res = LLConvexDecomposition::quitThread();
if (res != LLCD_OK)
{
LL_WARNS() << "convex decomposition unable to be quit" << LL_ENDL;
}
}
void LLMeshRepoThread::loadMeshSkinInfo(const LLUUID& mesh_id)
{ //protected by mSignal, no locking needed here
mSkinRequests.insert(mesh_id);
}
void LLMeshRepoThread::loadMeshDecomposition(const LLUUID& mesh_id)
{ //protected by mSignal, no locking needed here
mDecompositionRequests.insert(mesh_id);
}
void LLMeshRepoThread::loadMeshPhysicsShape(const LLUUID& mesh_id)
{ //protected by mSignal, no locking needed here
mPhysicsShapeRequests.insert(mesh_id);
}
void LLMeshRepoThread::lockAndLoadMeshLOD(const LLVolumeParams& mesh_params, S32 lod)
{
if (!LLAppViewer::isQuitting())
{
loadMeshLOD(mesh_params, lod);
}
}
void LLMeshRepoThread::loadMeshLOD(const LLVolumeParams& mesh_params, S32 lod)
{ //could be called from any thread
LLMutexLock lock(mMutex);
mesh_header_map::iterator iter = mMeshHeader.find(mesh_params.getSculptID());
if (iter != mMeshHeader.end())
{ //if we have the header, request LOD byte range
gMeshRepo.mThread->pushLODRequest(mesh_params, lod, 0.f);
LLMeshRepository::sLODProcessing++;
}
else
{
pending_lod_map::iterator pending = mPendingLOD.find(mesh_params);
if (pending != mPendingLOD.end())
{ //append this lod request to existing header request
pending->second.push_back(lod);
llassert(pending->second.size() <= LLModel::NUM_LODS);
}
else
{ //if no header request is pending, fetch header
gMeshRepo.mThread->pushHeaderRequest(mesh_params, 0.f);
mPendingLOD[mesh_params].push_back(lod);
}
}
}
//static
std::string LLMeshRepoThread::constructUrl(LLUUID mesh_id)
{
std::string http_url;
if (gAgent.getRegion())
{
http_url = gMeshRepo.mGetMeshCapability;
}
if (!http_url.empty())
{
http_url += "/?mesh_id=";
http_url += mesh_id.asString().c_str();
}
else
{
LL_WARNS() << "Current region does not have GetMesh capability! Cannot load " << mesh_id << ".mesh" << LL_ENDL;
}
return http_url;
}
bool LLMeshRepoThread::getMeshHeaderInfo(const LLUUID& mesh_id, const char* block_name, MeshHeaderInfo& info)
{ //protected by mMutex
if (!mHeaderMutex)
{
return false;
}
LLMutexLock lock(mHeaderMutex);
if (mMeshHeader.find(mesh_id) == mMeshHeader.end())
{ //we have no header info for this mesh, do nothing
return false;
}
if ((info.mHeaderSize = mMeshHeaderSize[mesh_id]) > 0)
{
const LLSD& header = mMeshHeader[mesh_id];
const LLSD& block = header[block_name];
info.mVersion = header["version"].asInteger();
info.mOffset = info.mHeaderSize + block["offset"].asInteger();
info.mSize = block["size"].asInteger();
}
return true;
}
bool LLMeshRepoThread::loadInfoFromVFS(const LLUUID& mesh_id, MeshHeaderInfo& info, boost::function<bool(const LLUUID&, U8*, S32)> fn)
{
//check VFS for mesh skin info
LLVFile file(gVFS, mesh_id, LLAssetType::AT_MESH);
if (file.getSize() >= info.mOffset + info.mSize)
{
LLMeshRepository::sCacheBytesRead += info.mSize;
file.seek(info.mOffset);
U8* buffer = new U8[info.mSize];
file.read(buffer, info.mSize);
//make sure buffer isn't all 0's by checking the first 1KB (reserved block but not written)
bool zero = true;
for (S32 i = 0; i < llmin(info.mSize, S32(1024)) && zero; ++i)
{
zero = buffer[i] > 0 ? false : true;
}
if (!zero)
{ //attempt to parse
if (fn(mesh_id, buffer, info.mSize))
{
delete[] buffer;
return true;
}
}
delete[] buffer;
}
return false;
}
bool LLMeshRepoThread::fetchMeshSkinInfo(const LLUUID& mesh_id)
{
MeshHeaderInfo info;
if (!getMeshHeaderInfo(mesh_id, "skin", info))
{
return false;
}
if (info.mHeaderSize > 0 && info.mVersion <= MAX_MESH_VERSION && info.mOffset >= 0 && info.mSize > 0)
{
//check VFS for mesh skin info
if (loadInfoFromVFS(mesh_id, info, boost::bind(&LLMeshRepoThread::skinInfoReceived, this, _1, _2, _3 )))
return true;
//reading from VFS failed for whatever reason, fetch from sim
AIHTTPHeaders headers("Accept", "application/octet-stream");
std::string http_url = constructUrl(mesh_id);
if (!http_url.empty())
{
if (!LLHTTPClient::getByteRange(http_url, headers, info.mOffset, info.mSize,
new LLMeshSkinInfoResponder(mesh_id, info.mOffset, info.mSize)))
return false;
LLMeshRepository::sHTTPRequestCount++;
}
}
//early out was not hit, effectively fetched
return true;
}
bool LLMeshRepoThread::fetchMeshDecomposition(const LLUUID& mesh_id)
{
MeshHeaderInfo info;
if (!getMeshHeaderInfo(mesh_id, "physics_convex", info))
{
return false;
}
if (info.mHeaderSize > 0 && info.mVersion <= MAX_MESH_VERSION && info.mOffset >= 0 && info.mSize > 0)
{
if (loadInfoFromVFS(mesh_id, info, boost::bind(&LLMeshRepoThread::decompositionReceived, this, _1, _2, _3 )))
return true;
//reading from VFS failed for whatever reason, fetch from sim
AIHTTPHeaders headers("Accept", "application/octet-stream");
std::string http_url = constructUrl(mesh_id);
if (!http_url.empty())
{
if (!LLHTTPClient::getByteRange(http_url, headers, info.mOffset, info.mSize,
new LLMeshDecompositionResponder(mesh_id, info.mOffset, info.mSize)))
return false;
LLMeshRepository::sHTTPRequestCount++;
}
}
//early out was not hit, effectively fetched
return true;
}
bool LLMeshRepoThread::fetchMeshPhysicsShape(const LLUUID& mesh_id)
{
MeshHeaderInfo info;
if (!getMeshHeaderInfo(mesh_id, "physics_mesh", info))
{
return false;
}
if (info.mHeaderSize > 0)
{
if (info.mVersion <= MAX_MESH_VERSION && info.mOffset >= 0 && info.mSize > 0)
{
if (loadInfoFromVFS(mesh_id, info, boost::bind(&LLMeshRepoThread::physicsShapeReceived, this, _1, _2, _3 )))
return true;
//reading from VFS failed for whatever reason, fetch from sim
AIHTTPHeaders headers("Accept", "application/octet-stream");
std::string http_url = constructUrl(mesh_id);
if (!http_url.empty())
{
if (!LLHTTPClient::getByteRange(http_url, headers, info.mOffset, info.mSize,
new LLMeshPhysicsShapeResponder(mesh_id, info.mOffset, info.mSize)))
return false;
LLMeshRepository::sHTTPRequestCount++;
}
}
else
{ //no physics shape whatsoever, report back NULL
physicsShapeReceived(mesh_id, NULL, 0);
}
}
//early out was not hit, effectively fetched
return true;
}
//static
void LLMeshRepoThread::incActiveLODRequests()
{
LLMutexLock lock(gMeshRepo.mThread->mMutex);
++LLMeshRepoThread::sActiveLODRequests;
}
//static
void LLMeshRepoThread::decActiveLODRequests()
{
LLMutexLock lock(gMeshRepo.mThread->mMutex);
--LLMeshRepoThread::sActiveLODRequests;
}
//static
void LLMeshRepoThread::incActiveHeaderRequests()
{
LLMutexLock lock(gMeshRepo.mThread->mMutex);
++LLMeshRepoThread::sActiveHeaderRequests;
}
//static
void LLMeshRepoThread::decActiveHeaderRequests()
{
LLMutexLock lock(gMeshRepo.mThread->mMutex);
--LLMeshRepoThread::sActiveHeaderRequests;
}
//return false if failed to get header
bool LLMeshRepoThread::fetchMeshHeader(const LLVolumeParams& mesh_params, U32& count)
{
{
//look for mesh in asset in vfs
LLVFile file(gVFS, mesh_params.getSculptID(), LLAssetType::AT_MESH);
S32 size = file.getSize();
if (size > 0)
{ //NOTE -- if the header size is ever more than 4KB, this will break
U8 buffer[4096];
S32 bytes = llmin(size, 4096);
LLMeshRepository::sCacheBytesRead += bytes;
file.read(buffer, bytes);
if (headerReceived(mesh_params, buffer, bytes))
{ //did not do an HTTP request, return false
return true;
}
}
}
//either cache entry doesn't exist or is corrupt, request header from simulator
bool retval = true;
AIHTTPHeaders headers("Accept", "application/octet-stream");
std::string http_url = constructUrl(mesh_params.getSculptID());
if (!http_url.empty())
{
//grab first 4KB if we're going to bother with a fetch. Cache will prevent future fetches if a full mesh fits
//within the first 4KB
//NOTE -- this will break of headers ever exceed 4KB
retval = LLHTTPClient::getByteRange(http_url, headers, 0, 4096, new LLMeshHeaderResponder(mesh_params));
if (retval)
{
LLMeshRepository::sHTTPRequestCount++;
}
count++;
}
return retval;
}
//return false if failed to get mesh lod.
bool LLMeshRepoThread::fetchMeshLOD(const LLVolumeParams& mesh_params, S32 lod, U32& count)
{
LLUUID mesh_id = mesh_params.getSculptID();
MeshHeaderInfo info;
if (!getMeshHeaderInfo(mesh_id, header_lod[lod].c_str(), info))
{
return false;
}
if (info.mHeaderSize > 0)
{
if(info.mVersion <= MAX_MESH_VERSION && info.mOffset >= 0 && info.mSize > 0)
{
if (loadInfoFromVFS(mesh_id, info, boost::bind(&LLMeshRepoThread::lodReceived, this, mesh_params, lod, _2, _3 )))
return true;
//reading from VFS failed for whatever reason, fetch from sim
AIHTTPHeaders headers("Accept", "application/octet-stream");
std::string http_url = constructUrl(mesh_id);
if (!http_url.empty())
{
count++;
if (!LLHTTPClient::getByteRange(constructUrl(mesh_id), headers, info.mOffset, info.mSize,
new LLMeshLODResponder(mesh_params, lod, info.mOffset, info.mSize)))
return false;
LLMeshRepository::sHTTPRequestCount++;
}
else
{
mUnavailableQ.push(LODRequest(mesh_params, lod));
}
}
else
{
mUnavailableQ.push(LODRequest(mesh_params, lod));
}
}
return true;
}
bool LLMeshRepoThread::headerReceived(const LLVolumeParams& mesh_params, U8* data, S32 data_size)
{
LLSD header;
U32 header_size = 0;
if (data_size > 0)
{
std::string res_str((char*) data, data_size);
std::string deprecated_header("<? LLSD/Binary ?>");
if (res_str.substr(0, deprecated_header.size()) == deprecated_header)
{
res_str = res_str.substr(deprecated_header.size()+1, data_size);
header_size = deprecated_header.size()+1;
}
data_size = res_str.size();
std::istringstream stream(res_str);
if (!LLSDSerialize::fromBinary(header, stream, data_size))
{
LL_WARNS() << "Mesh header parse error. Not a valid mesh asset!" << LL_ENDL;
return false;
}
header_size += stream.tellg();
}
else
{
LL_INFOS()
<< "Marking header as non-existent, will not retry." << LL_ENDL;
header["404"] = 1;
}
{
LLUUID mesh_id = mesh_params.getSculptID();
{
LLMutexLock lock(mHeaderMutex);
mMeshHeaderSize[mesh_id] = header_size;
mMeshHeader[mesh_id] = header;
}
LLMutexLock lock(mMutex); // make sure only one thread access mPendingLOD at the same time.
//check for pending requests
pending_lod_map::iterator iter = mPendingLOD.find(mesh_params);
if (iter != mPendingLOD.end())
{
for (U32 i = 0; i < iter->second.size(); ++i)
{
LLMeshRepository::sLODProcessing++;
gMeshRepo.mThread->pushLODRequest(mesh_params, iter->second[i], 0.f);
}
mPendingLOD.erase(iter);
}
}
return true;
}
bool LLMeshRepoThread::lodReceived(const LLVolumeParams& mesh_params, S32 lod, U8* data, S32 data_size)
{
AIStateMachine::StateTimer timer("lodReceived");
LLPointer<LLVolume> volume = new LLVolume(mesh_params, LLVolumeLODGroup::getVolumeScaleFromDetail(lod));
std::string mesh_string((char*) data, data_size);
std::istringstream stream(mesh_string);
AIStateMachine::StateTimer timer2("unpackVolumeFaces");
if (volume->unpackVolumeFaces(stream, data_size))
{
AIStateMachine::StateTimer timer("getNumFaces");
if (volume->getNumFaces() > 0)
{
AIStateMachine::StateTimer timer("LoadedMesh");
LoadedMesh mesh(volume, mesh_params, lod);
{
AIStateMachine::StateTimer timer("LLMutexLock");
LLMutexLock lock(mMutex);
mLoadedQ.push(mesh);
}
return true;
}
}
return false;
}
bool LLMeshRepoThread::skinInfoReceived(const LLUUID& mesh_id, U8* data, S32 data_size)
{
LLSD skin;
if (data_size > 0)
{
std::string res_str((char*) data, data_size);
std::istringstream stream(res_str);
if (!unzip_llsd(skin, stream, data_size))
{
LL_WARNS() << "Mesh skin info parse error. Not a valid mesh asset!" << LL_ENDL;
return false;
}
}
{
LLMeshSkinInfo info(skin);
info.mMeshID = mesh_id;
//LL_INFOS() <<"info pelvis offset"<<info.mPelvisOffset<<LL_ENDL;
mSkinInfoQ.push(info);
}
return true;
}
bool LLMeshRepoThread::decompositionReceived(const LLUUID& mesh_id, U8* data, S32 data_size)
{
LLSD decomp;
if (data_size > 0)
{
std::string res_str((char*) data, data_size);
std::istringstream stream(res_str);
if (!unzip_llsd(decomp, stream, data_size))
{
LL_WARNS() << "Mesh decomposition parse error. Not a valid mesh asset!" << LL_ENDL;
return false;
}
}
{
LLModel::Decomposition* d = new LLModel::Decomposition(decomp);
d->mMeshID = mesh_id;
mDecompositionQ.push(d);
}
return true;
}
bool LLMeshRepoThread::physicsShapeReceived(const LLUUID& mesh_id, U8* data, S32 data_size)
{
LLSD physics_shape;
LLModel::Decomposition* d = new LLModel::Decomposition();
d->mMeshID = mesh_id;
if (data == NULL)
{ //no data, no physics shape exists
d->mPhysicsShapeMesh.clear();
}
else
{
LLVolumeParams volume_params;
volume_params.setType(LL_PCODE_PROFILE_SQUARE, LL_PCODE_PATH_LINE);
volume_params.setSculptID(mesh_id, LL_SCULPT_TYPE_MESH);
LLPointer<LLVolume> volume = new LLVolume(volume_params,0);
std::string mesh_string((char*) data, data_size);
std::istringstream stream(mesh_string);
if (volume->unpackVolumeFaces(stream, data_size))
{
//load volume faces into decomposition buffer
S32 vertex_count = 0;
S32 index_count = 0;
for (S32 i = 0; i < volume->getNumVolumeFaces(); ++i)
{
const LLVolumeFace& face = volume->getVolumeFace(i);
vertex_count += face.mNumVertices;
index_count += face.mNumIndices;
}
d->mPhysicsShapeMesh.clear();
std::vector<LLVector3>& pos = d->mPhysicsShapeMesh.mPositions;
std::vector<LLVector3>& norm = d->mPhysicsShapeMesh.mNormals;
for (S32 i = 0; i < volume->getNumVolumeFaces(); ++i)
{
const LLVolumeFace& face = volume->getVolumeFace(i);
for (S32 i = 0; i < face.mNumIndices; ++i)
{
U16 idx = face.mIndices[i];
pos.push_back(LLVector3(face.mPositions[idx].getF32ptr()));
norm.push_back(LLVector3(face.mNormals[idx].getF32ptr()));
}
}
}
}
mDecompositionQ.push(d);
return true;
}
void LLMeshUploadThread::init(LLMeshUploadThread::instance_list& data, LLVector3& scale, bool upload_textures,
bool upload_skin, bool upload_joints, bool do_upload,
LLHandle<LLWholeModelFeeObserver> const& fee_observer, LLHandle<LLWholeModelUploadObserver> const& upload_observer)
{
mDoUpload = do_upload;
mFeeObserverHandle = fee_observer;
mUploadObserverHandle = upload_observer;
mInstanceList = data;
mUploadTextures = upload_textures;
mUploadSkin = upload_skin;
mUploadJoints = upload_joints;
mOrigin = gAgent.getPositionAgent();
mHost = gAgent.getRegionHost();
mWholeModelFeeCapability = gAgent.getRegion()->getCapability("NewFileAgentInventory");
mOrigin += gAgent.getAtAxis() * scale.magVec();
mMeshUploadTimeOut = gSavedSettings.getS32("MeshUploadTimeOut") ;
}
LLMeshUploadThread::~LLMeshUploadThread()
{
}
LLMeshUploadThread::DecompRequest::DecompRequest(LLModel* mdl, LLModel* base_model, LLMeshUploadThread* thread)
{
mStage = "single_hull";
mModel = mdl;
mDecompID = &mdl->mDecompID;
mBaseModel = base_model;
mThread = thread;
//copy out positions and indices
assignData(mdl) ;
mThread->mFinalDecomp = this;
mThread->mPhysicsComplete = false;
}
void LLMeshUploadThread::DecompRequest::completed()
{
if (mThread->mFinalDecomp == this)
{
mThread->mPhysicsComplete = true;
}
llassert(mHull.size() == 1);
mThread->mHullMap[mBaseModel] = mHull[0];
}
//called in the main thread.
void LLMeshUploadThread::preStart()
{
//build map of LLModel refs to instances for callbacks
for (instance_list::iterator iter = mInstanceList.begin(); iter != mInstanceList.end(); ++iter)
{
mInstance[iter->mModel].push_back(*iter);
}
}
AIMeshUpload::AIMeshUpload(LLMeshUploadThread::instance_list& data, LLVector3& scale, bool upload_textures, bool upload_skin, bool upload_joints, std::string const& upload_url, bool do_upload,
LLHandle<LLWholeModelFeeObserver> const& fee_observer, LLHandle<LLWholeModelUploadObserver> const& upload_observer) :
#ifdef CWDEBUG
AIStateMachine(false),
#endif
mMeshUpload(new AIStateMachineThread<LLMeshUploadThread>(CWD_ONLY(false))), mWholeModelUploadURL(upload_url)
{
mMeshUpload->thread_impl().init(data, scale, upload_textures, upload_skin, upload_joints, do_upload, fee_observer, upload_observer);
}
char const* AIMeshUpload::state_str_impl(state_type run_state) const
{
switch (run_state)
{
AI_CASE_RETURN(AIMeshUpload_start);
AI_CASE_RETURN(AIMeshUpload_threadFinished);
AI_CASE_RETURN(AIMeshUpload_responderFinished);
}
return "UNKNOWN STATE";
}
void AIMeshUpload::initialize_impl()
{
mMeshUpload->thread_impl().preStart();
set_state(AIMeshUpload_start);
}
void AIMeshUpload::multiplex_impl(state_type run_state)
{
switch (run_state)
{
case AIMeshUpload_start:
mMeshUpload->run(this, AIMeshUpload_threadFinished);
idle(); // Wait till the thread finished.
break;
case AIMeshUpload_threadFinished:
mMeshUpload->thread_impl().postRequest(mWholeModelUploadURL, this);
idle(); // Wait till the responder finished.
break;
case AIMeshUpload_responderFinished:
finish();
break;
}
}
bool LLMeshUploadThread::run()
{
generateHulls();
wholeModelToLLSD(mModelData, mDoUpload);
if (!mDoUpload)
{
++dump_num;
dump_llsd_to_file(mModelData, make_dump_name("whole_model_fee_request_", dump_num));
}
else
{
mBody = mModelData["asset_resources"];
dump_llsd_to_file(mBody, make_dump_name("whole_model_body_", dump_num));
}
return true; // true = finish, false = abort.
}
void LLMeshUploadThread::postRequest(std::string& whole_model_upload_url, AIMeshUpload* state_machine)
{
if (mDoUpload)
{
LLHTTPClient::post(whole_model_upload_url, mBody,
new LLWholeModelUploadResponder(mModelData, mUploadObserverHandle)/*,*/
DEBUG_CURLIO_PARAM(debug_off), keep_alive, state_machine, AIMeshUpload_responderFinished);
}
else
{
LLHTTPClient::post(mWholeModelFeeCapability, mModelData,
new LLWholeModelFeeResponder(mModelData, mFeeObserverHandle, whole_model_upload_url)/*,*/
DEBUG_CURLIO_PARAM(debug_on), keep_alive, state_machine, AIMeshUpload_responderFinished);
}
}
void dump_llsd_to_file(const LLSD& content, std::string filename)
{
if (gSavedSettings.getBOOL("MeshUploadLogXML"))
{
std::ofstream of(filename.c_str());
LLSDSerialize::toPrettyXML(content,of);
}
}
LLSD llsd_from_file(std::string filename)
{
std::ifstream ifs(filename.c_str());
LLSD result;
LLSDSerialize::fromXML(result,ifs);
return result;
}
void LLMeshUploadThread::wholeModelToLLSD(LLSD& dest, bool include_textures)
{
LLSD result;
LLSD res;
result["folder_id"] = gInventory.findCategoryUUIDForType(LLFolderType::FT_OBJECT);
result["texture_folder_id"] = gInventory.findCategoryUUIDForType(LLFolderType::FT_TEXTURE);
result["asset_type"] = "mesh";
result["inventory_type"] = "object";
result["description"] = "(No Description)";
result["next_owner_mask"] = LLSD::Integer(LLFloaterPerms::getNextOwnerPerms("Uploads"));
result["group_mask"] = LLSD::Integer(LLFloaterPerms::getGroupPerms("Uploads"));
result["everyone_mask"] = LLSD::Integer(LLFloaterPerms::getEveryonePerms("Uploads"));
res["mesh_list"] = LLSD::emptyArray();
res["texture_list"] = LLSD::emptyArray();
res["instance_list"] = LLSD::emptyArray();
S32 mesh_num = 0;
S32 texture_num = 0;
std::set<LLViewerTexture* > textures;
std::map<LLViewerTexture*,S32> texture_index;
std::map<LLModel*,S32> mesh_index;
std::string model_name;
std::string model_metric;
S32 instance_num = 0;
for (instance_map::iterator iter = mInstance.begin(); iter != mInstance.end(); ++iter)
{
LLMeshUploadData data;
data.mBaseModel = iter->first;
if (data.mBaseModel->mSubmodelID)
{
// These are handled below to insure correct parenting order on creation
// due to map walking being based on model address (aka random)
continue;
}
LLModelInstance& first_instance = *(iter->second.begin());
for (S32 i = 0; i < 5; i++)
{
data.mModel[i] = first_instance.mLOD[i];
}
if (mesh_index.find(data.mBaseModel) == mesh_index.end())
{
// Have not seen this model before - create a new mesh_list entry for it.
if (model_name.empty())
{
model_name = data.mBaseModel->getName();
}
if (model_metric.empty())
{
model_metric = data.mBaseModel->getMetric();
}
std::stringstream ostr;
LLModel::Decomposition& decomp =
data.mModel[LLModel::LOD_PHYSICS].notNull() ?
data.mModel[LLModel::LOD_PHYSICS]->mPhysics :
data.mBaseModel->mPhysics;
decomp.mBaseHull = mHullMap[data.mBaseModel];
LLSD mesh_header = LLModel::writeModel(
ostr,
data.mModel[LLModel::LOD_PHYSICS],
data.mModel[LLModel::LOD_HIGH],
data.mModel[LLModel::LOD_MEDIUM],
data.mModel[LLModel::LOD_LOW],
data.mModel[LLModel::LOD_IMPOSTOR],
decomp,
mUploadSkin,
mUploadJoints,
FALSE,
FALSE,
data.mBaseModel->mSubmodelID);
data.mAssetData = ostr.str();
std::string str = ostr.str();
res["mesh_list"][mesh_num] = LLSD::Binary(str.begin(),str.end());
mesh_index[data.mBaseModel] = mesh_num;
mesh_num++;
}
// For all instances that use this model
for (instance_list::iterator instance_iter = iter->second.begin();
instance_iter != iter->second.end();
++instance_iter)
{
LLModelInstance& instance = *instance_iter;
LLSD instance_entry;
for (S32 i = 0; i < 5; i++)
{
data.mModel[i] = instance.mLOD[i];
}
LLVector3 pos, scale;
LLQuaternion rot;
LLMatrix4 transformation = instance.mTransform;
decomposeMeshMatrix(transformation,pos,rot,scale);
instance_entry["position"] = ll_sd_from_vector3(pos);
instance_entry["rotation"] = ll_sd_from_quaternion(rot);
instance_entry["scale"] = ll_sd_from_vector3(scale);
instance_entry["material"] = LL_MCODE_WOOD;
instance_entry["physics_shape_type"] = data.mModel[LLModel::LOD_PHYSICS].notNull() ? (U8)(LLViewerObject::PHYSICS_SHAPE_PRIM) : (U8)(LLViewerObject::PHYSICS_SHAPE_CONVEX_HULL);
instance_entry["mesh"] = mesh_index[data.mBaseModel];
instance_entry["face_list"] = LLSD::emptyArray();
// We want to be able to allow more than 8 materials...
//
S32 end = llmin((S32)instance.mMaterial.size(), instance.mModel->getNumVolumeFaces()) ;
for (S32 face_num = 0; face_num < end; face_num++)
{
LLImportMaterial& material = instance.mMaterial[data.mBaseModel->mMaterialList[face_num]];
LLSD face_entry = LLSD::emptyMap();
LLViewerFetchedTexture *texture = NULL;
if (material.mDiffuseMapFilename.size())
{
texture = FindViewerTexture(material);
}
if ((texture != NULL) &&
(textures.find(texture) == textures.end()))
{
textures.insert(texture);
}
std::stringstream texture_str;
if (texture != NULL && include_textures && mUploadTextures)
{
if(texture->hasSavedRawImage())
{
LLPointer<LLImageJ2C> upload_file =
LLViewerTextureList::convertToUploadFile(texture->getSavedRawImage());
if (!upload_file.isNull() && upload_file->getDataSize())
{
texture_str.write((const char*) upload_file->getData(), upload_file->getDataSize());
}
}
}
if (texture != NULL &&
mUploadTextures &&
texture_index.find(texture) == texture_index.end())
{
texture_index[texture] = texture_num;
std::string str = texture_str.str();
res["texture_list"][texture_num] = LLSD::Binary(str.begin(),str.end());
texture_num++;
}
// Subset of TextureEntry fields.
if (texture != NULL && mUploadTextures)
{
face_entry["image"] = texture_index[texture];
face_entry["scales"] = 1.0;
face_entry["scalet"] = 1.0;
face_entry["offsets"] = 0.0;
face_entry["offsett"] = 0.0;
face_entry["imagerot"] = 0.0;
}
face_entry["diffuse_color"] = ll_sd_from_color4(material.mDiffuseColor);
face_entry["fullbright"] = material.mFullbright;
instance_entry["face_list"][face_num] = face_entry;
}
res["instance_list"][instance_num] = instance_entry;
instance_num++;
}
}
for (instance_map::iterator iter = mInstance.begin(); iter != mInstance.end(); ++iter)
{
LLMeshUploadData data;
data.mBaseModel = iter->first;
if (!data.mBaseModel->mSubmodelID)
{
// These were handled above already...
//
continue;
}
LLModelInstance& first_instance = *(iter->second.begin());
for (S32 i = 0; i < 5; i++)
{
data.mModel[i] = first_instance.mLOD[i];
}
if (mesh_index.find(data.mBaseModel) == mesh_index.end())
{
// Have not seen this model before - create a new mesh_list entry for it.
if (model_name.empty())
{
model_name = data.mBaseModel->getName();
}
if (model_metric.empty())
{
model_metric = data.mBaseModel->getMetric();
}
std::stringstream ostr;
LLModel::Decomposition& decomp =
data.mModel[LLModel::LOD_PHYSICS].notNull() ?
data.mModel[LLModel::LOD_PHYSICS]->mPhysics :
data.mBaseModel->mPhysics;
decomp.mBaseHull = mHullMap[data.mBaseModel];
LLSD mesh_header = LLModel::writeModel(
ostr,
data.mModel[LLModel::LOD_PHYSICS],
data.mModel[LLModel::LOD_HIGH],
data.mModel[LLModel::LOD_MEDIUM],
data.mModel[LLModel::LOD_LOW],
data.mModel[LLModel::LOD_IMPOSTOR],
decomp,
mUploadSkin,
mUploadJoints,
FALSE,
FALSE,
data.mBaseModel->mSubmodelID);
data.mAssetData = ostr.str();
std::string str = ostr.str();
res["mesh_list"][mesh_num] = LLSD::Binary(str.begin(),str.end());
mesh_index[data.mBaseModel] = mesh_num;
mesh_num++;
}
// For all instances that use this model
for (instance_list::iterator instance_iter = iter->second.begin();
instance_iter != iter->second.end();
++instance_iter)
{
LLModelInstance& instance = *instance_iter;
LLSD instance_entry;
for (S32 i = 0; i < 5; i++)
{
data.mModel[i] = instance.mLOD[i];
}
LLVector3 pos, scale;
LLQuaternion rot;
LLMatrix4 transformation = instance.mTransform;
decomposeMeshMatrix(transformation,pos,rot,scale);
instance_entry["position"] = ll_sd_from_vector3(pos);
instance_entry["rotation"] = ll_sd_from_quaternion(rot);
instance_entry["scale"] = ll_sd_from_vector3(scale);
instance_entry["material"] = LL_MCODE_WOOD;
instance_entry["physics_shape_type"] = (U8)(LLViewerObject::PHYSICS_SHAPE_NONE);
instance_entry["mesh"] = mesh_index[data.mBaseModel];
instance_entry["face_list"] = LLSD::emptyArray();
// We want to be able to allow more than 8 materials...
//
S32 end = llmin((S32)instance.mMaterial.size(), instance.mModel->getNumVolumeFaces()) ;
for (S32 face_num = 0; face_num < end; face_num++)
{
LLImportMaterial& material = instance.mMaterial[data.mBaseModel->mMaterialList[face_num]];
LLSD face_entry = LLSD::emptyMap();
LLViewerFetchedTexture *texture = NULL;
if (material.mDiffuseMapFilename.size())
{
texture = FindViewerTexture(material);
}
if ((texture != NULL) &&
(textures.find(texture) == textures.end()))
{
textures.insert(texture);
}
std::stringstream texture_str;
if (texture != NULL && include_textures && mUploadTextures)
{
if(texture->hasSavedRawImage())
{
LLPointer<LLImageJ2C> upload_file =
LLViewerTextureList::convertToUploadFile(texture->getSavedRawImage());
if (!upload_file.isNull() && upload_file->getDataSize())
{
texture_str.write((const char*) upload_file->getData(), upload_file->getDataSize());
}
}
}
if (texture != NULL &&
mUploadTextures &&
texture_index.find(texture) == texture_index.end())
{
texture_index[texture] = texture_num;
std::string str = texture_str.str();
res["texture_list"][texture_num] = LLSD::Binary(str.begin(),str.end());
texture_num++;
}
// Subset of TextureEntry fields.
if (texture != NULL && mUploadTextures)
{
face_entry["image"] = texture_index[texture];
face_entry["scales"] = 1.0;
face_entry["scalet"] = 1.0;
face_entry["offsets"] = 0.0;
face_entry["offsett"] = 0.0;
face_entry["imagerot"] = 0.0;
}
face_entry["diffuse_color"] = ll_sd_from_color4(material.mDiffuseColor);
face_entry["fullbright"] = material.mFullbright;
instance_entry["face_list"][face_num] = face_entry;
}
res["instance_list"][instance_num] = instance_entry;
instance_num++;
}
}
if (model_name.empty()) model_name = "mesh model";
result["name"] = model_name;
if (model_metric.empty()) model_metric = "MUT_Unspecified";
res["metric"] = model_metric;
result["asset_resources"] = res;
dump_llsd_to_file(result,make_dump_name("whole_model_",dump_num));
dest = result;
}
void LLMeshUploadThread::generateHulls()
{
bool has_valid_requests = false ;
for (instance_map::iterator iter = mInstance.begin(); iter != mInstance.end(); ++iter)
{
LLMeshUploadData data;
data.mBaseModel = iter->first;
LLModelInstance& instance = *(iter->second.begin());
for (S32 i = 0; i < 5; i++)
{
data.mModel[i] = instance.mLOD[i];
}
//queue up models for hull generation
LLModel* physics = NULL;
if (data.mModel[LLModel::LOD_PHYSICS].notNull())
{
physics = data.mModel[LLModel::LOD_PHYSICS];
}
else if (data.mModel[LLModel::LOD_LOW].notNull())
{
physics = data.mModel[LLModel::LOD_LOW];
}
else if (data.mModel[LLModel::LOD_MEDIUM].notNull())
{
physics = data.mModel[LLModel::LOD_MEDIUM];
}
else
{
physics = data.mModel[LLModel::LOD_HIGH];
}
llassert(physics != NULL);
DecompRequest* request = new DecompRequest(physics, data.mBaseModel, this);
if(request->isValid())
{
gMeshRepo.mDecompThread->submitRequest(request);
has_valid_requests = true ;
}
}
if(has_valid_requests)
{
while (!mPhysicsComplete)
{
apr_sleep(100);
}
}
}
void LLMeshRepoThread::notifyLoadedMeshes()
{
if (!mMutex)
{
return;
}
while (!mLoadedQ.empty())
{
mMutex->lock();
LoadedMesh mesh = mLoadedQ.front();
mLoadedQ.pop();
mMutex->unlock();
if (mesh.mVolume && mesh.mVolume->getNumVolumeFaces() > 0)
{
gMeshRepo.notifyMeshLoaded(mesh.mMeshParams, mesh.mVolume);
}
else
{
gMeshRepo.notifyMeshUnavailable(mesh.mMeshParams,
LLVolumeLODGroup::getVolumeDetailFromScale(mesh.mVolume->getDetail()));
}
}
while (!mUnavailableQ.empty())
{
mMutex->lock();
LODRequest req = mUnavailableQ.front();
mUnavailableQ.pop();
mMutex->unlock();
gMeshRepo.notifyMeshUnavailable(req.mMeshParams, req.mLOD);
}
while (!mSkinInfoQ.empty())
{
gMeshRepo.notifySkinInfoReceived(mSkinInfoQ.front());
mSkinInfoQ.pop();
}
while (!mDecompositionQ.empty())
{
gMeshRepo.notifyDecompositionReceived(mDecompositionQ.front());
mDecompositionQ.pop();
}
}
S32 LLMeshRepoThread::getActualMeshLOD(const LLVolumeParams& mesh_params, S32 lod)
{ //only ever called from main thread
LLMutexLock lock(mHeaderMutex);
mesh_header_map::iterator iter = mMeshHeader.find(mesh_params.getSculptID());
if (iter != mMeshHeader.end())
{
LLSD& header = iter->second;
return LLMeshRepository::getActualMeshLOD(header, lod);
}
return lod;
}
//static
S32 LLMeshRepository::getActualMeshLOD(LLSD& header, S32 lod)
{
lod = llclamp(lod, 0, 3);
S32 version = header["version"];
if (header.has("404") || version > MAX_MESH_VERSION)
{
return -1;
}
if (header[header_lod[lod]]["size"].asInteger() > 0)
{
return lod;
}
//search down to find the next available lower lod
for (S32 i = lod-1; i >= 0; --i)
{
if (header[header_lod[i]]["size"].asInteger() > 0)
{
return i;
}
}
//search up to find then ext available higher lod
for (S32 i = lod+1; i < 4; ++i)
{
if (header[header_lod[i]]["size"].asInteger() > 0)
{
return i;
}
}
//header exists and no good lod found, treat as 404
header["404"] = 1;
return -1;
}
void LLMeshRepository::cacheOutgoingMesh(LLMeshUploadData& data, LLSD& header)
{
mThread->mMeshHeader[data.mUUID] = header;
// we cache the mesh for default parameters
LLVolumeParams volume_params;
volume_params.setType(LL_PCODE_PROFILE_SQUARE, LL_PCODE_PATH_LINE);
volume_params.setSculptID(data.mUUID, LL_SCULPT_TYPE_MESH);
for (U32 i = 0; i < 4; i++)
{
if (data.mModel[i].notNull())
{
LLPointer<LLVolume> volume = new LLVolume(volume_params, LLVolumeLODGroup::getVolumeScaleFromDetail(i));
volume->copyVolumeFaces(data.mModel[i]);
volume->setMeshAssetLoaded(TRUE);
}
}
}
void LLMeshLODResponder::retry()
{
AIStateMachine::StateTimer timer("loadMeshLOD");
LLMeshRepository::sHTTPRetryCount++;
gMeshRepo.mThread->loadMeshLOD(mMeshParams, mLOD);
}
void LLMeshLODResponder::completedRaw(LLChannelDescriptors const& channels,
LLIOPipe::buffer_ptr_t const& buffer)
{
mProcessed = true;
// thread could have already be destroyed during logout
if( !gMeshRepo.mThread )
{
return;
}
S32 data_size = buffer->countAfter(channels.in(), NULL);
if (mStatus < 200 || mStatus >= 400)
{
LL_WARNS() << mStatus << ": " << mReason << LL_ENDL;
}
if (data_size < (S32)mRequestedBytes)
{
if (is_internal_http_error_that_warrants_a_retry(mStatus) || mStatus == HTTP_SERVICE_UNAVAILABLE)
{ //timeout or service unavailable, try again
LL_WARNS() << "Timeout or service unavailable, retrying." << LL_ENDL;
retry();
}
else
{
llassert(is_internal_http_error_that_warrants_a_retry(mStatus) || mStatus == HTTP_SERVICE_UNAVAILABLE); //intentionally trigger a breakpoint
LL_WARNS() << "Unhandled status " << mStatus << LL_ENDL;
}
return;
}
LLMeshRepository::sBytesReceived += mRequestedBytes;
U8* data = NULL;
if (data_size > 0)
{
AIStateMachine::StateTimer timer("readAfter");
data = new U8[data_size];
buffer->readAfter(channels.in(), NULL, data, data_size);
}
if (gMeshRepo.mThread->lodReceived(mMeshParams, mLOD, data, data_size))
{
AIStateMachine::StateTimer timer("FileOpen");
//good fetch from sim, write to VFS for caching
LLVFile file(gVFS, mMeshParams.getSculptID(), LLAssetType::AT_MESH, LLVFile::WRITE);
S32 offset = mOffset;
S32 size = mRequestedBytes;
if (file.getSize() >= offset+size)
{
AIStateMachine::StateTimer timer("WriteData");
file.seek(offset);
file.write(data, size);
LLMeshRepository::sCacheBytesWritten += size;
}
}
delete [] data;
}
void LLMeshSkinInfoResponder::retry()
{
LLMeshRepository::sHTTPRetryCount++;
gMeshRepo.mThread->loadMeshSkinInfo(mMeshID);
}
void LLMeshSkinInfoResponder::completedRaw(LLChannelDescriptors const& channels,
LLIOPipe::buffer_ptr_t const& buffer)
{
mProcessed = true;
// thread could have already be destroyed during logout
if( !gMeshRepo.mThread )
{
return;
}
S32 data_size = buffer->countAfter(channels.in(), NULL);
if (mStatus < 200 || mStatus >= 400)
{
LL_WARNS() << mStatus << ": " << mReason << LL_ENDL;
}
if (data_size < (S32)mRequestedBytes)
{
if (is_internal_http_error_that_warrants_a_retry(mStatus) || mStatus == HTTP_SERVICE_UNAVAILABLE)
{ //timeout or service unavailable, try again
LL_WARNS() << "Timeout or service unavailable, retrying loadMeshSkinInfo() for " << mMeshID << LL_ENDL;
retry();
}
else
{
llassert(is_internal_http_error_that_warrants_a_retry(mStatus) || mStatus == HTTP_SERVICE_UNAVAILABLE); //intentionally trigger a breakpoint
LL_WARNS() << "Unhandled status " << mStatus << LL_ENDL;
}
return;
}
LLMeshRepository::sBytesReceived += mRequestedBytes;
U8* data = NULL;
if (data_size > 0)
{
data = new U8[data_size];
buffer->readAfter(channels.in(), NULL, data, data_size);
}
if (gMeshRepo.mThread->skinInfoReceived(mMeshID, data, data_size))
{
//good fetch from sim, write to VFS for caching
LLVFile file(gVFS, mMeshID, LLAssetType::AT_MESH, LLVFile::WRITE);
S32 offset = mOffset;
S32 size = mRequestedBytes;
if (file.getSize() >= offset+size)
{
LLMeshRepository::sCacheBytesWritten += size;
file.seek(offset);
file.write(data, size);
}
}
delete [] data;
}
void LLMeshDecompositionResponder::retry()
{
LLMeshRepository::sHTTPRetryCount++;
gMeshRepo.mThread->loadMeshDecomposition(mMeshID);
}
void LLMeshDecompositionResponder::completedRaw(LLChannelDescriptors const& channels,
LLIOPipe::buffer_ptr_t const& buffer)
{
mProcessed = true;
if( !gMeshRepo.mThread )
{
return;
}
S32 data_size = buffer->countAfter(channels.in(), NULL);
if (mStatus < 200 || mStatus >= 400)
{
LL_WARNS() << mStatus << ": " << mReason << LL_ENDL;
}
if (data_size < (S32)mRequestedBytes)
{
if (is_internal_http_error_that_warrants_a_retry(mStatus) || mStatus == HTTP_SERVICE_UNAVAILABLE)
{ //timeout or service unavailable, try again
LL_WARNS() << "Timeout or service unavailable, retrying loadMeshDecomposition() for " << mMeshID << LL_ENDL;
retry();
}
else
{
llassert(is_internal_http_error_that_warrants_a_retry(mStatus) || mStatus == HTTP_SERVICE_UNAVAILABLE); //intentionally trigger a breakpoint
LL_WARNS() << "Unhandled status " << mStatus << LL_ENDL;
}
return;
}
LLMeshRepository::sBytesReceived += mRequestedBytes;
U8* data = NULL;
if (data_size > 0)
{
data = new U8[data_size];
buffer->readAfter(channels.in(), NULL, data, data_size);
}
if (gMeshRepo.mThread->decompositionReceived(mMeshID, data, data_size))
{
//good fetch from sim, write to VFS for caching
LLVFile file(gVFS, mMeshID, LLAssetType::AT_MESH, LLVFile::WRITE);
S32 offset = mOffset;
S32 size = mRequestedBytes;
if (file.getSize() >= offset+size)
{
LLMeshRepository::sCacheBytesWritten += size;
file.seek(offset);
file.write(data, size);
}
}
delete [] data;
}
void LLMeshPhysicsShapeResponder::retry()
{
LLMeshRepository::sHTTPRetryCount++;
gMeshRepo.mThread->loadMeshPhysicsShape(mMeshID);
}
void LLMeshPhysicsShapeResponder::completedRaw(LLChannelDescriptors const& channels,
LLIOPipe::buffer_ptr_t const& buffer)
{
mProcessed = true;
// thread could have already be destroyed during logout
if( !gMeshRepo.mThread )
{
return;
}
S32 data_size = buffer->countAfter(channels.in(), NULL);
if (mStatus < 200 || mStatus >= 400)
{
LL_WARNS() << mStatus << ": " << mReason << LL_ENDL;
}
if (data_size < (S32)mRequestedBytes)
{
if (is_internal_http_error_that_warrants_a_retry(mStatus) || mStatus == HTTP_SERVICE_UNAVAILABLE)
{ //timeout or service unavailable, try again
LL_WARNS() << "Timeout or service unavailable, retrying loadMeshPhysicsShape() for " << mMeshID << LL_ENDL;
retry();
}
else
{
llassert(is_internal_http_error_that_warrants_a_retry(mStatus) || mStatus == HTTP_SERVICE_UNAVAILABLE); //intentionally trigger a breakpoint
LL_WARNS() << "Unhandled status " << mStatus << LL_ENDL;
}
return;
}
LLMeshRepository::sBytesReceived += mRequestedBytes;
U8* data = NULL;
if (data_size > 0)
{
data = new U8[data_size];
buffer->readAfter(channels.in(), NULL, data, data_size);
}
if (gMeshRepo.mThread->physicsShapeReceived(mMeshID, data, data_size))
{
//good fetch from sim, write to VFS for caching
LLVFile file(gVFS, mMeshID, LLAssetType::AT_MESH, LLVFile::WRITE);
S32 offset = mOffset;
S32 size = mRequestedBytes;
if (file.getSize() >= offset+size)
{
LLMeshRepository::sCacheBytesWritten += size;
file.seek(offset);
file.write(data, size);
}
}
delete [] data;
}
void LLMeshHeaderResponder::retry()
{
AIStateMachine::StateTimer timer("Retry");
LLMeshRepository::sHTTPRetryCount++;
LLMutexLock lock(gMeshRepo.mThread->mMutex);
gMeshRepo.mThread->pushHeaderRequest(mMeshParams, 10.f);
}
void LLMeshHeaderResponder::completedRaw(LLChannelDescriptors const& channels,
LLIOPipe::buffer_ptr_t const& buffer)
{
//LL_INFOS() << mMeshParams.getSculptID() << " Status: " << mStatus << LL_ENDL;
mProcessed = true;
// thread could have already be destroyed during logout
if( !gMeshRepo.mThread )
{
return;
}
if (mStatus < 200 || mStatus >= 400)
{
//llwarns
// << "Header responder failed with status: "
// << mStatus << ": " << mReason << LL_ENDL;
// 503 (service unavailable) or HTTP_INTERNAL_ERROR_*'s.
// can be due to server load and can be retried
// TODO*: Add maximum retry logic, exponential backoff
// and (somewhat more optional than the others) retries
// again after some set period of time
llassert(mStatus == HTTP_NOT_FOUND || mStatus == HTTP_SERVICE_UNAVAILABLE || mStatus == HTTP_REQUEST_TIME_OUT || is_internal_http_error_that_warrants_a_retry(mStatus));
if (is_internal_http_error_that_warrants_a_retry(mStatus) || mStatus == HTTP_SERVICE_UNAVAILABLE)
{ //retry
LL_WARNS() << "Timeout or service unavailable, retrying." << LL_ENDL;
retry();
return;
}
else
{
LL_WARNS() << "Unhandled status: " << mStatus << LL_ENDL;
}
}
S32 data_size = buffer->countAfter(channels.in(), NULL);
static const U32 BUFF_MAX_STATIC_SIZE = 16384; //If we exceed this size just bump the vector back to BUFF_MAX_STATIC_SIZE after we're done.
static std::vector<U8> data(BUFF_MAX_STATIC_SIZE);
if (data_size > (S32)data.size())
data.resize(data_size);
else
memset(&data[0] + data_size, 0, data.size() - data_size);
if (data_size > 0)
{
AIStateMachine::StateTimer timer("readAfter");
buffer->readAfter(channels.in(), NULL, &data[0], data_size);
}
LLMeshRepository::sBytesReceived += llmin(data_size, 4096);
AIStateMachine::StateTimer timer("headerReceived");
bool success = gMeshRepo.mThread->headerReceived(mMeshParams, &data[0], data_size);
llassert(success);
if (!success)
{
LL_WARNS()
<< "Unable to parse mesh header: "
<< mStatus << ": " << mReason << LL_ENDL;
}
else if (data_size > 0)
{
//header was successfully retrieved from sim, cache in vfs
LLUUID mesh_id = mMeshParams.getSculptID();
LLSD header = gMeshRepo.mThread->mMeshHeader[mesh_id];
S32 version = header["version"].asInteger();
if (version <= MAX_MESH_VERSION)
{
std::stringstream str;
S32 lod_bytes = 0;
for (U32 i = 0; i < LLModel::LOD_PHYSICS; ++i)
{ //figure out how many bytes we'll need to reserve in the file
std::string lod_name = header_lod[i];
lod_bytes = llmax(lod_bytes, header[lod_name]["offset"].asInteger()+header[lod_name]["size"].asInteger());
}
//just in case skin info or decomposition is at the end of the file (which it shouldn't be)
lod_bytes = llmax(lod_bytes, header["skin"]["offset"].asInteger() + header["skin"]["size"].asInteger());
lod_bytes = llmax(lod_bytes, header["physics_convex"]["offset"].asInteger() + header["physics_convex"]["size"].asInteger());
S32 header_bytes = (S32) gMeshRepo.mThread->mMeshHeaderSize[mesh_id];
S32 bytes = lod_bytes + header_bytes;
//it's possible for the remote asset to have more data than is needed for the local cache
//only allocate as much space in the VFS as is needed for the local cache
data_size = llmin(data_size, bytes);
AIStateMachine::StateTimer timer("FileOpen");
LLVFile file(gVFS, mesh_id, LLAssetType::AT_MESH, LLVFile::WRITE);
if (file.getMaxSize() >= bytes || file.setMaxSize(bytes))
{
LLMeshRepository::sCacheBytesWritten += data_size;
AIStateMachine::StateTimer timer("WriteData");
S32 bytes_remaining = bytes;
while (bytes_remaining > 0)
{
const S32 bytes_to_write = llmin(bytes_remaining, data_size);
file.write(&data[0], bytes_to_write);
if (bytes_remaining == bytes && bytes_to_write < bytes_remaining)
{
memset(&data[0], 0, data.size());
}
bytes_remaining -= llmin(bytes_remaining, bytes_to_write);
}
}
}
}
if (data.size() > BUFF_MAX_STATIC_SIZE)
{
std::vector<U8>().swap(data);
data.resize(BUFF_MAX_STATIC_SIZE);
}
}
LLMeshRepository::LLMeshRepository()
: mMeshMutex(NULL),
mMeshThreadCount(0),
mThread(NULL),
mDecompThread(nullptr)
{
}
void LLMeshRepository::init()
{
mMeshMutex = new LLMutex();
LLConvexDecomposition::getInstance()->initSystem();
mDecompThread = new LLPhysicsDecomp();
mDecompThread->start();
while (!mDecompThread->mInited)
{ //wait for physics decomp thread to init
apr_sleep(100);
}
mThread = new LLMeshRepoThread();
mThread->start();
}
void LLMeshRepository::shutdown()
{
LL_INFOS(LOG_MESH) << "Shutting down mesh repository." << LL_ENDL;
mThread->mSignal->signal();
while (!mThread->isStopped())
{
apr_sleep(10);
}
delete mThread;
mThread = NULL;
delete mMeshMutex;
mMeshMutex = NULL;
LL_INFOS(LOG_MESH) << "Shutting down decomposition system." << LL_ENDL;
if (mDecompThread)
{
mDecompThread->shutdown();
delete mDecompThread;
mDecompThread = NULL;
}
LLConvexDecomposition::quitSystem();
}
void LLMeshRepository::unregisterMesh(LLVOVolume* vobj)
{
for (auto& lod : mLoadingMeshes)
{
for (auto& param : lod)
{
vector_replace_with_last(param.second, vobj);
}
}
}
S32 LLMeshRepository::loadMesh(LLVOVolume* vobj, const LLVolumeParams& mesh_params, S32 detail, S32 last_lod)
{
if (detail < 0 || detail > 4)
{
return detail;
}
{
LLMutexLock lock(mMeshMutex);
//add volume to list of loading meshes
mesh_load_map::iterator iter = mLoadingMeshes[detail].find(mesh_params);
if (iter != mLoadingMeshes[detail].end())
{ //request pending for this mesh, append volume id to list
auto it = std::find(iter->second.begin(), iter->second.end(), vobj);
if (it == iter->second.end()) {
iter->second.push_back(vobj);
}
}
else
{
//first request for this mesh
mLoadingMeshes[detail][mesh_params].push_back(vobj);
mPendingRequests.push_back(LLMeshRepoThread::LODRequest(mesh_params, detail));
LLMeshRepository::sLODPending++;
}
}
//do a quick search to see if we can't display something while we wait for this mesh to load
LLVolume* volume = vobj->getVolume();
if (volume)
{
LLVolumeParams params = volume->getParams();
LLVolumeLODGroup* group = LLPrimitive::getVolumeManager()->getGroup(params);
if (group)
{
//first, see if last_lod is available (don't transition down to avoid funny popping a la SH-641)
if (last_lod >= 0)
{
LLVolume* lod = group->refLOD(last_lod);
if (lod && lod->isMeshAssetLoaded() && lod->getNumVolumeFaces() > 0)
{
group->derefLOD(lod);
return last_lod;
}
group->derefLOD(lod);
}
//next, see what the next lowest LOD available might be
for (S32 i = detail-1; i >= 0; --i)
{
LLVolume* lod = group->refLOD(i);
if (lod && lod->isMeshAssetLoaded() && lod->getNumVolumeFaces() > 0)
{
group->derefLOD(lod);
return i;
}
group->derefLOD(lod);
}
//no lower LOD is a available, is a higher lod available?
for (S32 i = detail+1; i < 4; ++i)
{
LLVolume* lod = group->refLOD(i);
if (lod && lod->isMeshAssetLoaded() && lod->getNumVolumeFaces() > 0)
{
group->derefLOD(lod);
return i;
}
group->derefLOD(lod);
}
}
}
return detail;
}
void LLMeshRepository::notifyLoadedMeshes()
{ //called from main thread
static const LLCachedControl<U32> max_concurrent_requests("MeshMaxConcurrentRequests");
LLMeshRepoThread::sMaxConcurrentRequests = max_concurrent_requests;
//update inventory
if (!mInventoryQ.empty())
{
LLMutexLock lock(mMeshMutex);
while (!mInventoryQ.empty())
{
inventory_data& data = mInventoryQ.front();
LLAssetType::EType asset_type = LLAssetType::lookup(data.mPostData["asset_type"].asString());
LLInventoryType::EType inventory_type = LLInventoryType::lookup(data.mPostData["inventory_type"].asString());
// Handle addition of texture, if any.
if ( data.mResponse.has("new_texture_folder_id") )
{
const LLUUID& folder_id = data.mResponse["new_texture_folder_id"].asUUID();
if ( folder_id.notNull() )
{
LLUUID parent_id = gInventory.findCategoryUUIDForType(LLFolderType::FT_TEXTURE);
std::string name;
// Check if the server built a different name for the texture folder
if ( data.mResponse.has("new_texture_folder_name") )
{
name = data.mResponse["new_texture_folder_name"].asString();
}
else
{
name = data.mPostData["name"].asString();
}
// Add the category to the internal representation
LLPointer<LLViewerInventoryCategory> cat =
new LLViewerInventoryCategory(folder_id, parent_id,
LLFolderType::FT_NONE, name, gAgent.getID());
cat->setVersion(LLViewerInventoryCategory::VERSION_UNKNOWN);
LLInventoryModel::LLCategoryUpdate update(cat->getParentUUID(), 1);
gInventory.accountForUpdate(update);
gInventory.updateCategory(cat);
}
}
on_new_single_inventory_upload_complete(
asset_type,
inventory_type,
data.mPostData["asset_type"].asString(),
data.mPostData["folder_id"].asUUID(),
data.mPostData["name"],
data.mPostData["description"],
data.mResponse,
data.mResponse["upload_price"]);
//}
mInventoryQ.pop();
}
}
//call completed callbacks on finished decompositions
mDecompThread->notifyCompleted();
if (!mThread->mSignal->try_lock())
{ //curl thread is churning, wait for it to go idle
return;
}
mThread->mSignal->unlock();
static std::string region_name("never name a region this");
if (gAgent.getRegion())
{ //update capability url
if (gAgent.getRegion()->getName() != region_name && gAgent.getRegion()->capabilitiesReceived())
{
region_name = gAgent.getRegion()->getName();
const std::string mesh_cap(gAgent.getRegion()->getViewerAssetUrl());
mGetMeshCapability = !mesh_cap.empty() ? mesh_cap : gAgent.getRegion()->getCapability("GetMesh2");
if (mGetMeshCapability.empty())
{
mGetMeshCapability = gAgent.getRegion()->getCapability("GetMesh");
}
}
}
{
LLMutexLock lock1(mMeshMutex);
LLMutexLock lock2(mThread->mMutex);
//popup queued error messages from background threads
while (!mUploadErrorQ.empty())
{
LLNotificationsUtil::add("MeshUploadError", mUploadErrorQ.front());
mUploadErrorQ.pop();
}
S32 push_count = LLMeshRepoThread::sMaxConcurrentRequests-(LLMeshRepoThread::sActiveHeaderRequests+LLMeshRepoThread::sActiveLODRequests);
push_count = llmin(push_count, (S32)mPendingRequests.size());
if (push_count > 0)
{
//calculate "score" for pending requests
//create score map
boost::unordered_map<LLUUID, F32> score_map;
for (auto& lod : mLoadingMeshes)
{
for (auto& param : lod)
{
F32 max_score = 0.f;
for (auto& vobj : param.second)
{
if (LLDrawable* drawable = vobj->mDrawable)
{
F32 cur_score = drawable->getRadius() / llmax(drawable->mDistanceWRTCamera, 1.f);
max_score = llmax(max_score, cur_score);
}
}
score_map[param.first.getSculptID()] = max_score;
}
}
//set "score" for pending requests
for (std::vector<LLMeshRepoThread::LODRequest>::iterator iter = mPendingRequests.begin(); iter != mPendingRequests.end(); ++iter)
{
iter->mScore = score_map[iter->mMeshParams.getSculptID()];
}
//sort by "score"
std::partial_sort(mPendingRequests.begin(), mPendingRequests.begin() + push_count,
mPendingRequests.end(), LLMeshRepoThread::CompareScoreGreater());
while (!mPendingRequests.empty() && push_count > 0)
{
LLMeshRepoThread::LODRequest& request = mPendingRequests.front();
mThread->loadMeshLOD(request.mMeshParams, request.mLOD);
mPendingRequests.erase(mPendingRequests.begin());
LLMeshRepository::sLODPending--;
push_count--;
}
}
//send skin info requests
while (!mPendingSkinRequests.empty())
{
mThread->loadMeshSkinInfo(mPendingSkinRequests.front());
mPendingSkinRequests.pop();
}
//send decomposition requests
while (!mPendingDecompositionRequests.empty())
{
mThread->loadMeshDecomposition(mPendingDecompositionRequests.front());
mPendingDecompositionRequests.pop();
}
//send physics shapes decomposition requests
while (!mPendingPhysicsShapeRequests.empty())
{
mThread->loadMeshPhysicsShape(mPendingPhysicsShapeRequests.front());
mPendingPhysicsShapeRequests.pop();
}
mThread->notifyLoadedMeshes();
}
mThread->mSignal->signal();
}
void LLMeshRepository::notifySkinInfoReceived(LLMeshSkinInfo& info)
{
mSkinMap[info.mMeshID] = info;
skin_load_map::iterator iter = mLoadingSkins.find(info.mMeshID);
if (iter != mLoadingSkins.end())
{
for (std::set<LLUUID>::iterator obj_id = iter->second.begin(); obj_id != iter->second.end(); ++obj_id)
{
LLVOVolume* vobj = (LLVOVolume*) gObjectList.findObject(*obj_id);
if (vobj)
{
vobj->notifyMeshLoaded();
}
}
mLoadingSkins.erase(info.mMeshID);
}
}
void LLMeshRepository::notifyDecompositionReceived(LLModel::Decomposition* decomp)
{
decomposition_map::iterator iter = mDecompositionMap.find(decomp->mMeshID);
if (iter == mDecompositionMap.end())
{ //just insert decomp into map
mDecompositionMap[decomp->mMeshID] = decomp;
mLoadingDecompositions.erase(decomp->mMeshID);
}
else
{ //merge decomp with existing entry
iter->second->merge(decomp);
mLoadingDecompositions.erase(decomp->mMeshID);
delete decomp;
}
}
void LLMeshRepository::notifyMeshLoaded(const LLVolumeParams& mesh_params, LLVolume* volume)
{ //called from main thread
S32 detail = LLVolumeLODGroup::getVolumeDetailFromScale(volume->getDetail());
//get list of objects waiting to be notified this mesh is loaded
mesh_load_map::iterator obj_iter = mLoadingMeshes[detail].find(mesh_params);
if (volume && obj_iter != mLoadingMeshes[detail].end())
{
//make sure target volume is still valid
if (volume->getNumVolumeFaces() <= 0)
{
LL_WARNS(LOG_MESH) << "Mesh loading returned empty volume. ID: " << mesh_params.getSculptID()
<< LL_ENDL;
}
{ //update system volume
LLVolume* sys_volume = LLPrimitive::getVolumeManager()->refVolume(mesh_params, detail);
if (sys_volume)
{
sys_volume->copyVolumeFaces(volume);
sys_volume->setMeshAssetLoaded(TRUE);
LLPrimitive::getVolumeManager()->unrefVolume(sys_volume);
}
else
{
LL_WARNS(LOG_MESH) << "Couldn't find system volume for mesh " << mesh_params.getSculptID()
<< LL_ENDL;
}
}
//notify waiting LLVOVolume instances that their requested mesh is available
for (auto& vobj : obj_iter->second)
{
vobj->notifyMeshLoaded();
}
mLoadingMeshes[detail].erase(mesh_params);
}
}
void LLMeshRepository::notifyMeshUnavailable(const LLVolumeParams& mesh_params, S32 lod)
{ //called from main thread
//get list of objects waiting to be notified this mesh is loaded
mesh_load_map::iterator obj_iter = mLoadingMeshes[lod].find(mesh_params);
F32 detail = LLVolumeLODGroup::getVolumeScaleFromDetail(lod);
if (obj_iter != mLoadingMeshes[lod].end())
{
for (auto& vobj : obj_iter->second)
{
LLVolume* obj_volume = vobj->getVolume();
if (obj_volume &&
obj_volume->getDetail() == detail &&
obj_volume->getParams() == mesh_params)
{ //should force volume to find most appropriate LOD
vobj->setVolume(obj_volume->getParams(), lod);
}
}
mLoadingMeshes[lod].erase(mesh_params);
}
}
S32 LLMeshRepository::getActualMeshLOD(const LLVolumeParams& mesh_params, S32 lod)
{
return mThread->getActualMeshLOD(mesh_params, lod);
}
const LLMeshSkinInfo* LLMeshRepository::getSkinInfo(const LLUUID& mesh_id, const LLVOVolume* requesting_obj)
{
if (mesh_id.notNull())
{
skin_map::iterator iter = mSkinMap.find(mesh_id);
if (iter != mSkinMap.end())
{
return &(iter->second);
}
//no skin info known about given mesh, try to fetch it
{
LLMutexLock lock(mMeshMutex);
//add volume to list of loading meshes
skin_load_map::iterator iter = mLoadingSkins.find(mesh_id);
if (iter == mLoadingSkins.end())
{ //no request pending for this skin info
mPendingSkinRequests.push(mesh_id);
}
mLoadingSkins[mesh_id].insert(requesting_obj->getID());
}
}
return NULL;
}
void LLMeshRepository::fetchPhysicsShape(const LLUUID& mesh_id)
{
if (mesh_id.notNull())
{
LLModel::Decomposition* decomp = NULL;
decomposition_map::iterator iter = mDecompositionMap.find(mesh_id);
if (iter != mDecompositionMap.end())
{
decomp = iter->second;
}
//decomposition block hasn't been fetched yet
if (!decomp || decomp->mPhysicsShapeMesh.empty())
{
LLMutexLock lock(mMeshMutex);
//add volume to list of loading meshes
std::set<LLUUID>::iterator iter = mLoadingPhysicsShapes.find(mesh_id);
if (iter == mLoadingPhysicsShapes.end())
{ //no request pending for this skin info
mLoadingPhysicsShapes.insert(mesh_id);
mPendingPhysicsShapeRequests.push(mesh_id);
}
}
}
}
LLModel::Decomposition* LLMeshRepository::getDecomposition(const LLUUID& mesh_id)
{
LLModel::Decomposition* ret = NULL;
if (mesh_id.notNull())
{
decomposition_map::iterator iter = mDecompositionMap.find(mesh_id);
if (iter != mDecompositionMap.end())
{
ret = iter->second;
}
//decomposition block hasn't been fetched yet
if (!ret || ret->mBaseHullMesh.empty())
{
LLMutexLock lock(mMeshMutex);
//add volume to list of loading meshes
std::set<LLUUID>::iterator iter = mLoadingDecompositions.find(mesh_id);
if (iter == mLoadingDecompositions.end())
{ //no request pending for this skin info
mLoadingDecompositions.insert(mesh_id);
mPendingDecompositionRequests.push(mesh_id);
}
}
}
return ret;
}
void LLMeshRepository::buildHull(const LLVolumeParams& params, S32 detail)
{
LLVolume* volume = LLPrimitive::getVolumeManager()->refVolume(params, detail);
if (!volume->mHullPoints)
{
//all default params
//execute first stage
//set simplify mode to retain
//set retain percentage to zero
//run second stage
}
LLPrimitive::getVolumeManager()->unrefVolume(volume);
}
bool LLMeshRepository::hasPhysicsShape(const LLUUID& mesh_id)
{
LLSD mesh = mThread->getMeshHeader(mesh_id);
if (mesh.has("physics_mesh") && mesh["physics_mesh"].has("size") && (mesh["physics_mesh"]["size"].asInteger() > 0))
{
return true;
}
LLModel::Decomposition* decomp = getDecomposition(mesh_id);
if (decomp && !decomp->mHull.empty())
{
return true;
}
return false;
}
LLSD& LLMeshRepository::getMeshHeader(const LLUUID& mesh_id)
{
return mThread->getMeshHeader(mesh_id);
}
LLSD& LLMeshRepoThread::getMeshHeader(const LLUUID& mesh_id)
{
static LLSD dummy_ret;
if (mesh_id.notNull())
{
LLMutexLock lock(mHeaderMutex);
mesh_header_map::iterator iter = mMeshHeader.find(mesh_id);
if (iter != mMeshHeader.end())
{
return iter->second;
}
}
return dummy_ret;
}
void LLMeshRepository::uploadModel(std::vector<LLModelInstance>& data, LLVector3& scale, bool upload_textures,
bool upload_skin, bool upload_joints, std::string upload_url, bool do_upload,
LLHandle<LLWholeModelFeeObserver> fee_observer, LLHandle<LLWholeModelUploadObserver> upload_observer)
{
if (do_upload && upload_url.empty())
{
LL_INFOS() << "unable to upload, fee request failed" << LL_ENDL;
return;
}
AIMeshUpload* thread = new AIMeshUpload(data, scale, upload_textures, upload_skin, upload_joints, upload_url,
do_upload, fee_observer, upload_observer);
thread->run(NULL, 0, false, true, &gMainThreadEngine);
}
S32 LLMeshRepository::getMeshSize(const LLUUID& mesh_id, S32 lod)
{
if (mThread)
{
LLMeshRepoThread::mesh_header_map::iterator iter = mThread->mMeshHeader.find(mesh_id);
if (iter != mThread->mMeshHeader.end())
{
LLSD& header = iter->second;
if (header.has("404"))
{
return -1;
}
S32 size = header[header_lod[lod]]["size"].asInteger();
return size;
}
}
return -1;
}
void LLMeshUploadThread::decomposeMeshMatrix(LLMatrix4& transformation,
LLVector3& result_pos,
LLQuaternion& result_rot,
LLVector3& result_scale)
{
// check for reflection
BOOL reflected = (transformation.determinant() < 0);
// compute position
LLVector3 position = LLVector3(0, 0, 0) * transformation;
// compute scale
LLVector3 x_transformed = LLVector3(1, 0, 0) * transformation - position;
LLVector3 y_transformed = LLVector3(0, 1, 0) * transformation - position;
LLVector3 z_transformed = LLVector3(0, 0, 1) * transformation - position;
F32 x_length = x_transformed.normalize();
F32 y_length = y_transformed.normalize();
F32 z_length = z_transformed.normalize();
LLVector3 scale = LLVector3(x_length, y_length, z_length);
// adjust for "reflected" geometry
LLVector3 x_transformed_reflected = x_transformed;
if (reflected)
{
x_transformed_reflected *= -1.0;
}
// compute rotation
LLMatrix3 rotation_matrix;
rotation_matrix.setRows(x_transformed_reflected, y_transformed, z_transformed);
LLQuaternion quat_rotation = rotation_matrix.quaternion();
quat_rotation.normalize(); // the rotation_matrix might not have been orthoginal. make it so here.
LLVector3 euler_rotation;
quat_rotation.getEulerAngles(&euler_rotation.mV[VX], &euler_rotation.mV[VY], &euler_rotation.mV[VZ]);
result_pos = position + mOrigin;
result_scale = scale;
result_rot = quat_rotation;
}
void LLMeshRepository::updateInventory(inventory_data data)
{
LLMutexLock lock(mMeshMutex);
dump_llsd_to_file(data.mPostData,make_dump_name("update_inventory_post_data_",dump_num));
dump_llsd_to_file(data.mResponse,make_dump_name("update_inventory_response_",dump_num));
mInventoryQ.push(data);
}
void LLMeshRepository::uploadError(LLSD& args)
{
LLMutexLock lock(mMeshMutex);
mUploadErrorQ.push(args);
}
//static
F32 LLMeshRepository::getStreamingCost(LLSD& header, F32 radius, S32* bytes, S32* bytes_visible, S32 lod, F32 *unscaled_value)
{
F32 max_distance = 512.f;
F32 dlowest = llmin(radius/0.03f, max_distance);
F32 dlow = llmin(radius/0.06f, max_distance);
F32 dmid = llmin(radius/0.24f, max_distance);
static const LLCachedControl<U32> mesh_meta_data_discount("MeshMetaDataDiscount");
static const LLCachedControl<U32> mesh_minimum_byte_size("MeshMinimumByteSize");
static const LLCachedControl<U32> mesh_bytes_per_triangle("MeshBytesPerTriangle");
static const LLCachedControl<U32> mesh_triangle_budget("MeshTriangleBudget");
F32 METADATA_DISCOUNT = (F32) mesh_meta_data_discount.get(); //discount 128 bytes to cover the cost of LLSD tags and compression domain overhead
F32 MINIMUM_SIZE = (F32) mesh_minimum_byte_size.get(); //make sure nothing is "free"
F32 bytes_per_triangle = (F32) mesh_bytes_per_triangle.get();
S32 bytes_lowest = header["lowest_lod"]["size"].asInteger();
S32 bytes_low = header["low_lod"]["size"].asInteger();
S32 bytes_mid = header["medium_lod"]["size"].asInteger();
S32 bytes_high = header["high_lod"]["size"].asInteger();
if (bytes_high == 0)
{
return 0.f;
}
if (bytes_mid == 0)
{
bytes_mid = bytes_high;
}
if (bytes_low == 0)
{
bytes_low = bytes_mid;
}
if (bytes_lowest == 0)
{
bytes_lowest = bytes_low;
}
F32 triangles_lowest = llmax((F32) bytes_lowest-METADATA_DISCOUNT, MINIMUM_SIZE)/bytes_per_triangle;
F32 triangles_low = llmax((F32) bytes_low-METADATA_DISCOUNT, MINIMUM_SIZE)/bytes_per_triangle;
F32 triangles_mid = llmax((F32) bytes_mid-METADATA_DISCOUNT, MINIMUM_SIZE)/bytes_per_triangle;
F32 triangles_high = llmax((F32) bytes_high-METADATA_DISCOUNT, MINIMUM_SIZE)/bytes_per_triangle;
if (bytes)
{
*bytes = 0;
*bytes += header["lowest_lod"]["size"].asInteger();
*bytes += header["low_lod"]["size"].asInteger();
*bytes += header["medium_lod"]["size"].asInteger();
*bytes += header["high_lod"]["size"].asInteger();
}
if (bytes_visible)
{
lod = LLMeshRepository::getActualMeshLOD(header, lod);
if (lod >= 0 && lod <= 3)
{
*bytes_visible = header[header_lod[lod]]["size"].asInteger();
}
}
F32 max_area = 102932.f; //area of circle that encompasses region
F32 min_area = 1.f;
F32 high_area = llmin(F_PI*dmid*dmid, max_area);
F32 mid_area = llmin(F_PI*dlow*dlow, max_area);
F32 low_area = llmin(F_PI*dlowest*dlowest, max_area);
F32 lowest_area = max_area;
lowest_area -= low_area;
low_area -= mid_area;
mid_area -= high_area;
high_area = llclamp(high_area, min_area, max_area);
mid_area = llclamp(mid_area, min_area, max_area);
low_area = llclamp(low_area, min_area, max_area);
lowest_area = llclamp(lowest_area, min_area, max_area);
F32 total_area = high_area + mid_area + low_area + lowest_area;
high_area /= total_area;
mid_area /= total_area;
low_area /= total_area;
lowest_area /= total_area;
F32 weighted_avg = triangles_high*high_area +
triangles_mid*mid_area +
triangles_low*low_area +
triangles_lowest*lowest_area;
if (unscaled_value)
{
*unscaled_value = weighted_avg;
}
return weighted_avg/mesh_triangle_budget*15000.f;
}
LLPhysicsDecomp::LLPhysicsDecomp()
: LLThread("Physics Decomp")
{
mInited = false;
mQuitting = false;
mDone = false;
mSignal = new LLCondition;
mMutex = new LLMutex;
}
LLPhysicsDecomp::~LLPhysicsDecomp()
{
shutdown();
delete mSignal;
mSignal = NULL;
delete mMutex;
mMutex = NULL;
}
void LLPhysicsDecomp::shutdown()
{
if (mSignal)
{
mQuitting = true;
mSignal->signal();
while (!isStopped())
{
apr_sleep(10);
}
}
}
void LLPhysicsDecomp::submitRequest(LLPhysicsDecomp::Request* request)
{
LLMutexLock lock(mMutex);
mRequestQ.push(request);
mSignal->signal();
}
//static
S32 LLPhysicsDecomp::llcdCallback(const char* status, S32 p1, S32 p2)
{
if (gMeshRepo.mDecompThread && gMeshRepo.mDecompThread->mCurRequest.notNull())
{
return gMeshRepo.mDecompThread->mCurRequest->statusCallback(status, p1, p2);
}
return 1;
}
bool needTriangles( LLConvexDecomposition *aDC )
{
if( !aDC )
return false;
LLCDParam const *pParams(0);
int nParams = aDC->getParameters( &pParams );
if( nParams <= 0 )
return false;
for( int i = 0; i < nParams; ++i )
{
if( pParams[i].mName && strcmp( "nd_AlwaysNeedTriangles", pParams[i].mName ) == 0 )
{
if( LLCDParam::LLCD_BOOLEAN == pParams[i].mType && pParams[i].mDefault.mBool )
return true;
else
return false;
}
}
return false;
}
void LLPhysicsDecomp::setMeshData(LLCDMeshData& mesh, bool vertex_based)
{
// <singu> HACD
if (vertex_based)
{
if (LLConvexDecomposition* pDeComp = LLConvexDecomposition::getInstance())
vertex_based = !needTriangles(pDeComp);
else
return;
}
// </singu>
mesh.mVertexBase = mCurRequest->mPositions[0].mV;
mesh.mVertexStrideBytes = 12;
mesh.mNumVertices = mCurRequest->mPositions.size();
if(!vertex_based)
{
mesh.mIndexType = LLCDMeshData::INT_16;
mesh.mIndexBase = &(mCurRequest->mIndices[0]);
mesh.mIndexStrideBytes = 6;
mesh.mNumTriangles = mCurRequest->mIndices.size()/3;
}
if ((vertex_based || mesh.mNumTriangles > 0) && mesh.mNumVertices > 2)
{
LLCDResult ret = LLCD_OK;
if (LLConvexDecomposition::getInstance() != NULL)
{
ret = LLConvexDecomposition::getInstance()->setMeshData(&mesh, vertex_based);
}
if (ret)
{
LL_ERRS(LOG_MESH) << "Convex Decomposition thread valid but could not set mesh data." << LL_ENDL;
}
}
}
void LLPhysicsDecomp::doDecomposition()
{
LLCDMeshData mesh;
S32 stage = mStageID[mCurRequest->mStage];
if (LLConvexDecomposition::getInstance() == NULL)
{
// stub library. do nothing.
return;
}
//load data intoLLCD
if (stage == 0)
{
setMeshData(mesh, false);
}
//build parameter map
std::map<std::string, const LLCDParam*> param_map;
static const LLCDParam* params = NULL;
static S32 param_count = 0;
if (!params)
{
param_count = LLConvexDecomposition::getInstance()->getParameters(&params);
}
for (S32 i = 0; i < param_count; ++i)
{
param_map[params[i].mName] = params+i;
}
LLCDResult ret = LLCD_OK;
//set parameter values
for (decomp_params::iterator iter = mCurRequest->mParams.begin(); iter != mCurRequest->mParams.end(); ++iter)
{
const std::string& name = iter->first;
const LLSD& value = iter->second;
const LLCDParam* param = param_map[name];
if (param == NULL)
{ //couldn't find valid parameter
continue;
}
if (param->mType == LLCDParam::LLCD_FLOAT)
{
ret = LLConvexDecomposition::getInstance()->setParam(param->mName, (F32) value.asReal());
}
else if (param->mType == LLCDParam::LLCD_INTEGER ||
param->mType == LLCDParam::LLCD_ENUM)
{
ret = LLConvexDecomposition::getInstance()->setParam(param->mName, value.asInteger());
}
else if (param->mType == LLCDParam::LLCD_BOOLEAN)
{
ret = LLConvexDecomposition::getInstance()->setParam(param->mName, value.asBoolean());
}
}
mCurRequest->setStatusMessage("Executing.");
if (LLConvexDecomposition::getInstance() != NULL)
{
ret = LLConvexDecomposition::getInstance()->executeStage(stage);
}
if (ret)
{
LL_WARNS(LOG_MESH) << "Convex Decomposition thread valid but could not execute stage " << stage << "."
<< LL_ENDL;
LLMutexLock lock(mMutex);
mCurRequest->mHull.clear();
mCurRequest->mHullMesh.clear();
mCurRequest->setStatusMessage("FAIL");
completeCurrent();
}
else
{
mCurRequest->setStatusMessage("Reading results");
S32 num_hulls =0;
if (LLConvexDecomposition::getInstance() != NULL)
{
num_hulls = LLConvexDecomposition::getInstance()->getNumHullsFromStage(stage);
}
{
LLMutexLock lock(mMutex);
mCurRequest->mHull.clear();
mCurRequest->mHull.resize(num_hulls);
mCurRequest->mHullMesh.clear();
mCurRequest->mHullMesh.resize(num_hulls);
}
for (S32 i = 0; i < num_hulls; ++i)
{
std::vector<LLVector3> p;
LLCDHull hull;
// if LLConvexDecomposition is a stub, num_hulls should have been set to 0 above, and we should not reach this code
LLConvexDecomposition::getInstance()->getHullFromStage(stage, i, &hull);
const F32* v = hull.mVertexBase;
for (S32 j = 0; j < hull.mNumVertices; ++j)
{
LLVector3 vert(v[0], v[1], v[2]);
p.push_back(vert);
v = (F32*) (((U8*) v) + hull.mVertexStrideBytes);
}
LLCDMeshData mesh;
// if LLConvexDecomposition is a stub, num_hulls should have been set to 0 above, and we should not reach this code
LLConvexDecomposition::getInstance()->getMeshFromStage(stage, i, &mesh);
get_vertex_buffer_from_mesh(mesh, mCurRequest->mHullMesh[i]);
{
LLMutexLock lock(mMutex);
mCurRequest->mHull[i] = p;
}
}
{
LLMutexLock lock(mMutex);
mCurRequest->setStatusMessage("FAIL");
completeCurrent();
}
}
}
void LLPhysicsDecomp::completeCurrent()
{
LLMutexLock lock(mMutex);
mCompletedQ.push(mCurRequest);
mCurRequest = NULL;
}
void LLPhysicsDecomp::notifyCompleted()
{
if (!mCompletedQ.empty())
{
LLMutexLock lock(mMutex);
while (!mCompletedQ.empty())
{
Request* req = mCompletedQ.front();
req->completed();
mCompletedQ.pop();
}
}
}
void make_box(LLPhysicsDecomp::Request * request)
{
LLVector3 min,max;
min = request->mPositions[0];
max = min;
for (U32 i = 0; i < request->mPositions.size(); ++i)
{
update_min_max(min, max, request->mPositions[i]);
}
request->mHull.clear();
LLModel::hull box;
box.push_back(LLVector3(min[0],min[1],min[2]));
box.push_back(LLVector3(max[0],min[1],min[2]));
box.push_back(LLVector3(min[0],max[1],min[2]));
box.push_back(LLVector3(max[0],max[1],min[2]));
box.push_back(LLVector3(min[0],min[1],max[2]));
box.push_back(LLVector3(max[0],min[1],max[2]));
box.push_back(LLVector3(min[0],max[1],max[2]));
box.push_back(LLVector3(max[0],max[1],max[2]));
request->mHull.push_back(box);
}
void LLPhysicsDecomp::doDecompositionSingleHull()
{
LLConvexDecomposition* decomp = LLConvexDecomposition::getInstance();
if (decomp == NULL)
{
//stub. do nothing.
return;
}
LLCDMeshData mesh;
setMeshData(mesh, true);
LLCDResult ret = decomp->buildSingleHull() ;
if(ret)
{
LL_WARNS(LOG_MESH) << "Could not execute decomposition stage when attempting to create single hull." << LL_ENDL;
make_box(mCurRequest);
}
else
{
{
LLMutexLock lock(mMutex);
mCurRequest->mHull.clear();
mCurRequest->mHull.resize(1);
mCurRequest->mHullMesh.clear();
}
std::vector<LLVector3> p;
LLCDHull hull;
// if LLConvexDecomposition is a stub, num_hulls should have been set to 0 above, and we should not reach this code
decomp->getSingleHull(&hull);
const F32* v = hull.mVertexBase;
for (S32 j = 0; j < hull.mNumVertices; ++j)
{
LLVector3 vert(v[0], v[1], v[2]);
p.push_back(vert);
v = (F32*) (((U8*) v) + hull.mVertexStrideBytes);
}
{
LLMutexLock lock(mMutex);
mCurRequest->mHull[0] = p;
}
}
{
completeCurrent();
}
}
#ifdef ND_HASCONVEXDECOMP_TRACER
class ndDecompTracer: public ndConvexDecompositionTracer
{
int mRefCount;
public:
ndDecompTracer()
: mRefCount(0)
{
}
virtual ~ndDecompTracer() { }
virtual void trace( char const *a_strMsg )
{
LL_INFOS() << a_strMsg << LL_ENDL;
}
virtual void startTraceData( char const *a_strWhat)
{
LL_INFOS() << a_strWhat << LL_ENDL;
}
virtual void traceData( char const *a_strData )
{
LL_INFOS() << a_strData << LL_ENDL;
}
virtual void endTraceData()
{
}
virtual int getLevel()
{
return eTraceFunctions;// | eTraceData;
}
virtual void addref()
{
++mRefCount;
}
virtual void release()
{
--mRefCount;
if( mRefCount == 0 )
delete this;
}
};
#endif
void LLPhysicsDecomp::run()
{
LLConvexDecomposition* decomp = LLConvexDecomposition::getInstance();
if (decomp == NULL)
{
// stub library. Set init to true so the main thread
// doesn't wait for this to finish.
mInited = true;
return;
}
#ifdef ND_HASCONVEXDECOMP_TRACER
ndConvexDecompositionTracable *pTraceable = dynamic_cast< ndConvexDecompositionTracable* >( decomp );
if( pTraceable )
pTraceable->setTracer( new ndDecompTracer() );
#endif
decomp->initThread();
mInited = true;
static const LLCDStageData* stages = NULL;
static S32 num_stages = 0;
if (!stages)
{
num_stages = decomp->getStages(&stages);
}
for (S32 i = 0; i < num_stages; i++)
{
mStageID[stages[i].mName] = i;
}
mSignal->lock();
while (!mQuitting)
{
mSignal->wait();
while (!mQuitting && !mRequestQ.empty())
{
{
LLMutexLock lock(mMutex);
mCurRequest = mRequestQ.front();
mRequestQ.pop();
}
S32& id = *(mCurRequest->mDecompID);
if (id == -1)
{
decomp->genDecomposition(id);
}
decomp->bindDecomposition(id);
if (mCurRequest->mStage == "single_hull")
{
doDecompositionSingleHull();
}
else
{
doDecomposition();
}
}
}
decomp->quitThread();
if (mSignal->isLocked())
{ //let go of mSignal's associated mutex
mSignal->unlock();
}
mDone = true;
}
void LLPhysicsDecomp::Request::assignData(LLModel* mdl)
{
if (!mdl)
{
return ;
}
U16 index_offset = 0;
U16 tri[3] ;
mPositions.clear();
mIndices.clear();
mBBox[1] = LLVector3(F32_MIN, F32_MIN, F32_MIN) ;
mBBox[0] = LLVector3(F32_MAX, F32_MAX, F32_MAX) ;
//queue up vertex positions and indices
for (S32 i = 0; i < mdl->getNumVolumeFaces(); ++i)
{
const LLVolumeFace& face = mdl->getVolumeFace(i);
if (mPositions.size() + face.mNumVertices > 65535)
{
continue;
}
for (U32 j = 0; j < (U32)face.mNumVertices; ++j)
{
mPositions.push_back(LLVector3(face.mPositions[j].getF32ptr()));
for(U32 k = 0 ; k < 3 ; k++)
{
mBBox[0].mV[k] = llmin(mBBox[0].mV[k], mPositions[j].mV[k]) ;
mBBox[1].mV[k] = llmax(mBBox[1].mV[k], mPositions[j].mV[k]) ;
}
}
updateTriangleAreaThreshold() ;
for (U32 j = 0; j+2 < (U32)face.mNumIndices; j += 3)
{
tri[0] = face.mIndices[j] + index_offset ;
tri[1] = face.mIndices[j + 1] + index_offset ;
tri[2] = face.mIndices[j + 2] + index_offset ;
if(isValidTriangle(tri[0], tri[1], tri[2]))
{
mIndices.push_back(tri[0]);
mIndices.push_back(tri[1]);
mIndices.push_back(tri[2]);
}
}
index_offset += face.mNumVertices;
}
return ;
}
void LLPhysicsDecomp::Request::updateTriangleAreaThreshold()
{
F32 range = mBBox[1].mV[0] - mBBox[0].mV[0] ;
range = llmin(range, mBBox[1].mV[1] - mBBox[0].mV[1]) ;
range = llmin(range, mBBox[1].mV[2] - mBBox[0].mV[2]) ;
mTriangleAreaThreshold = llmin(0.0002f, range * 0.000002f) ;
}
//check if the triangle area is large enough to qualify for a valid triangle
bool LLPhysicsDecomp::Request::isValidTriangle(U16 idx1, U16 idx2, U16 idx3)
{
LLVector3 a = mPositions[idx2] - mPositions[idx1] ;
LLVector3 b = mPositions[idx3] - mPositions[idx1] ;
F32 c = a * b ;
return ((a*a) * (b*b) - c * c) > mTriangleAreaThreshold ;
}
void LLPhysicsDecomp::Request::setStatusMessage(const std::string& msg)
{
mStatusMessage = msg;
}
void LLMeshRepository::buildPhysicsMesh(LLModel::Decomposition& decomp)
{
decomp.mMesh.resize(decomp.mHull.size());
for (U32 i = 0; i < decomp.mHull.size(); ++i)
{
LLCDHull hull;
hull.mNumVertices = decomp.mHull[i].size();
hull.mVertexBase = decomp.mHull[i][0].mV;
hull.mVertexStrideBytes = 12;
LLCDMeshData mesh;
LLCDResult res = LLCD_OK;
if (LLConvexDecomposition::getInstance() != NULL)
{
res = LLConvexDecomposition::getInstance()->getMeshFromHull(&hull, &mesh);
}
if (res == LLCD_OK)
{
get_vertex_buffer_from_mesh(mesh, decomp.mMesh[i]);
}
}
if (!decomp.mBaseHull.empty() && decomp.mBaseHullMesh.empty())
{ //get mesh for base hull
LLCDHull hull;
hull.mNumVertices = decomp.mBaseHull.size();
hull.mVertexBase = decomp.mBaseHull[0].mV;
hull.mVertexStrideBytes = 12;
LLCDMeshData mesh;
LLCDResult res = LLCD_OK;
if (LLConvexDecomposition::getInstance() != NULL)
{
res = LLConvexDecomposition::getInstance()->getMeshFromHull(&hull, &mesh);
}
if (res == LLCD_OK)
{
get_vertex_buffer_from_mesh(mesh, decomp.mBaseHullMesh);
}
}
}
bool LLMeshRepository::meshUploadEnabled()
{
LLViewerRegion *region = gAgent.getRegion();
static const LLCachedControl<bool> mesh_enabled("MeshEnabled");
if(mesh_enabled &&
region)
{
return region->meshUploadEnabled();
}
return false;
}
bool LLMeshRepository::meshRezEnabled()
{
LLViewerRegion *region = gAgent.getRegion();
static const LLCachedControl<bool> mesh_enabled("MeshEnabled");
if(mesh_enabled &&
region)
{
return region->meshRezEnabled();
}
return false;
}