Files
SingularityViewer/indra/llcommon/llthread.h
Lirusaito 6e3f404a1c Rip out old workarounds, hacks and macros for newer C++ features not being supported back in the day.
Adds LL_COMPILE_TIME_MESSAGE support to Linux.

llfinite -> std::isfinite
llisnan -> std::isnan
vector_shrink_to_fit -> vector.shrink_to_fit
2016-02-14 17:37:10 -05:00

701 lines
19 KiB
C++

/**
* @file llthread.h
* @brief Base classes for thread, mutex and condition handling.
*
* $LicenseInfo:firstyear=2004&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LL_LLTHREAD_H
#define LL_LLTHREAD_H
#if !defined(_MSC_VER) || _MSC_VER >= 1700
#define USE_BOOST_MUTEX 1
#endif
#define IS_LLCOMMON_INLINE (!LL_COMMON_LINK_SHARED || defined(llcommon_EXPORTS))
#if LL_GNUC
// Needed for is_main_thread() when compiling with optimization (relwithdebinfo).
// It doesn't hurt to just always specify it though.
//#pragma interface
#endif
#include "llapp.h"
#include "llapr.h"
#include "llaprpool.h"
#include "llatomic.h"
#include "llmemory.h"
#include "aithreadid.h"
class LLThread;
class LLMutex;
class LLCondition;
class LL_COMMON_API LLThreadLocalDataMember
{
public:
virtual ~LLThreadLocalDataMember() { };
};
class LL_COMMON_API LLThreadLocalData
{
private:
static apr_threadkey_t* sThreadLocalDataKey;
public:
// Thread-local memory pool.
LLAPRRootPool mRootPool;
LLVolatileAPRPool mVolatileAPRPool;
LLThreadLocalDataMember* mCurlMultiHandle; // Initialized by AICurlMultiHandle::getInstance
char* mCurlErrorBuffer; // NULL, or pointing to a buffer used by libcurl.
std::string mName; // "main thread", or a copy of LLThread::mName.
static void init(void);
static void destroy(void* thread_local_data);
static void create(LLThread* pthread);
static LLThreadLocalData& tldata(void);
private:
LLThreadLocalData(char const* name);
~LLThreadLocalData();
};
// Print to llerrs if the current thread is not the main thread.
LL_COMMON_API void assert_main_thread();
class LL_COMMON_API LLThread
{
private:
static U32 sIDIter;
static LLAtomicS32 sCount;
static LLAtomicS32 sRunning;
public:
typedef enum e_thread_status
{
STOPPED = 0, // The thread is not running. Not started, or has exited its run function
RUNNING = 1, // The thread is currently running
QUITTING= 2 // Someone wants this thread to quit
} EThreadStatus;
LLThread(std::string const& name);
virtual ~LLThread(); // Warning! You almost NEVER want to destroy a thread unless it's in the STOPPED state.
virtual void shutdown(); // stops the thread
bool isQuitting() const { return (QUITTING == mStatus); }
bool isStopped() const { return (STOPPED == mStatus); }
static S32 getCount() { return sCount; }
static S32 getRunning() { return sRunning; }
static void yield(); // Static because it can be called by the main thread, which doesn't have an LLThread data structure.
public:
// PAUSE / RESUME functionality. See source code for important usage notes.
// Called from MAIN THREAD.
void pause();
void unpause();
bool isPaused() { return isStopped() || mPaused; }
// Cause the thread to wake up and check its condition
void wake();
// Same as above, but to be used when the condition is already locked.
void wakeLocked();
// Called from run() (CHILD THREAD). Pause the thread if requested until unpaused.
void checkPause();
// this kicks off the apr thread
void start(void);
// Can be used to tell the thread we're not interested anymore and it should abort.
void setQuitting();
// Return thread-local data for the current thread.
static LLThreadLocalData& tldata(void) { return LLThreadLocalData::tldata(); }
private:
bool mPaused;
// static function passed to APR thread creation routine
static void *APR_THREAD_FUNC staticRun(apr_thread_t *apr_threadp, void *datap);
protected:
std::string mName;
LLCondition* mRunCondition;
apr_thread_t *mAPRThreadp;
volatile EThreadStatus mStatus;
friend void LLThreadLocalData::create(LLThread* threadp);
LLThreadLocalData* mThreadLocalData;
// virtual function overridden by subclass -- this will be called when the thread runs
virtual void run(void) = 0;
// This class is completely done (called from THREAD!).
virtual void terminated(void) { mStatus = STOPPED; }
// virtual predicate function -- returns true if the thread should wake up, false if it should sleep.
virtual bool runCondition(void);
// Lock/Unlock Run Condition -- use around modification of any variable used in runCondition()
inline void lockData();
inline void unlockData();
// This is the predicate that decides whether the thread should sleep.
// It should only be called with mRunCondition locked, since the virtual runCondition() function may need to access
// data structures that are thread-unsafe.
bool shouldSleep(void) { return (mStatus == RUNNING) && (isPaused() || (!runCondition())); }
// To avoid spurious signals (and the associated context switches) when the condition may or may not have changed, you can do the following:
// mRunCondition->lock();
// if(!shouldSleep())
// mRunCondition->signal();
// mRunCondition->unlock();
};
#ifdef SHOW_ASSERT
#define ASSERT_SINGLE_THREAD do { static AIThreadID first_thread_id; llassert(first_thread_id.equals_current_thread()); } while(0)
#else
#define ASSERT_SINGLE_THREAD do { } while(0)
#endif
//============================================================================
#define MUTEX_POOL(arg)
//Internal definitions
#define NEEDS_MUTEX_IMPL do_not_define_manually_thanks
#undef NEEDS_MUTEX_IMPL
#define NEEDS_MUTEX_RECURSION do_not_define_manually_thanks
#undef NEEDS_MUTEX_RECURSION
//Prefer boost over stl over windows over apr.
#if USE_BOOST_MUTEX && (BOOST_VERSION >= 103400) //condition_variable_any was added in boost 1.34
//Define BOOST_SYSTEM_NO_DEPRECATED to avoid system_category() and generic_category() dependencies, as those won't be exported.
#define BOOST_SYSTEM_NO_DEPRECATED
#include <boost/thread/mutex.hpp>
#include <boost/thread/recursive_mutex.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/condition_variable.hpp>
typedef boost::recursive_mutex LLMutexImpl;
typedef boost::condition_variable_any LLConditionVariableImpl;
#elif defined(USE_STD_MUTEX)
#include <mutex>
typedef std::recursive_mutex LLMutexImpl;
typedef std::condition_variable_any LLConditionVariableImpl;
#elif defined(USE_WIN32_MUTEX)
typedef CRITICAL_SECTION impl_mutex_handle_type;
typedef CONDITION_VARIABLE impl_cond_handle_type;
#define NEEDS_MUTEX_IMPL
#define NEEDS_MUTEX_RECURSION
#else
//----APR specific------
#include "apr_thread_cond.h"
#include "apr_thread_mutex.h"
typedef LLAPRPool native_pool_type;
typedef apr_thread_mutex_t* impl_mutex_handle_type;
typedef apr_thread_cond_t* impl_cond_handle_type;
#undef MUTEX_POOL
#undef DEFAULT_POOL
#define MUTEX_POOL(arg) arg
#define NEEDS_MUTEX_IMPL
#define NEEDS_MUTEX_RECURSION
//END
#endif
#include "llfasttimer.h"
#ifdef NEEDS_MUTEX_IMPL
//Impl classes are not meant to be accessed directly. They must be utilized by a parent classes.
// They are designed to be 'clones' of their stl counterparts to facilitate simple drop-in
// replacement of underlying implementation (boost,std,apr,critical_sections,etc)
// Members and member functions are all private.
class LL_COMMON_API LLMutexImpl : private boost::noncopyable
{
friend class LLMutex;
friend class LLCondition;
friend class LLConditionVariableImpl;
typedef impl_mutex_handle_type native_handle_type;
LLMutexImpl(MUTEX_POOL(native_pool_type& pool));
virtual ~LLMutexImpl();
void lock();
void unlock();
bool try_lock();
native_handle_type& native_handle() { return mMutexImpl; }
private:
native_handle_type mMutexImpl;
MUTEX_POOL(native_pool_type mPool);
};
#endif
class LL_COMMON_API LLMutex : public LLMutexImpl
{
#ifdef NEEDS_MUTEX_IMPL
friend class LLConditionVariableImpl;
#endif
public:
LLMutex(MUTEX_POOL(native_pool_type& pool = LLThread::tldata().mRootPool)) : LLMutexImpl(MUTEX_POOL(pool)),
#ifdef NEEDS_MUTEX_RECURSION
mLockDepth(0),
#endif
mLockingThread(AIThreadID::sNone)
{}
~LLMutex()
{}
void lock(LLFastTimer::DeclareTimer* timer = NULL) // blocks
{
if (inc_lock_if_recursive())
return;
#if IS_LLCOMMON_INLINE
if (AIThreadID::in_main_thread_inline() && LLApp::isRunning())
#else
if (AIThreadID::in_main_thread() && LLApp::isRunning())
#endif
{
if (!LLMutexImpl::try_lock())
{
lock_main(timer);
}
}
else
{
LLMutexImpl::lock();
}
#if IS_LLCOMMON_INLINE
mLockingThread.reset_inline();
#else
mLockingThread.reset();
#endif
}
void unlock()
{
#ifdef NEEDS_MUTEX_RECURSION
if (mLockDepth > 0)
{
--mLockDepth;
return;
}
#endif
mLockingThread = AIThreadID::sNone;
LLMutexImpl::unlock();
}
// Returns true if lock was obtained successfully.
bool try_lock()
{
if (inc_lock_if_recursive())
return true;
if (!LLMutexImpl::try_lock())
return false;
#if IS_LLCOMMON_INLINE
mLockingThread.reset_inline();
#else
mLockingThread.reset();
#endif
return true;
}
// Returns true if locked not by this thread
bool isLocked()
{
if (isSelfLocked())
return false;
if (LLMutexImpl::try_lock())
{
LLMutexImpl::unlock();
return false;
}
return true;
}
// Returns true if locked by this thread.
bool isSelfLocked() const
{
#if IS_LLCOMMON_INLINE
return mLockingThread.equals_current_thread_inline();
#else
return mLockingThread.equals_current_thread();
#endif
}
#ifdef NEEDS_MUTEX_IMPL
//This is important for libraries that we cannot pass LLMutex into.
//For example, apr wait. apr wait unlocks and re-locks the thread, however
// it has no knowledge of LLMutex::mLockingThread and LLMutex::mLockDepth,
// and thus will leave those member variables set even after the wait internally releases the lock.
// Leaving those two variables set even when mutex has actually been unlocked via apr is BAD.
friend class ImplAdoptMutex;
class ImplAdoptMutex
{
friend class LLConditionVariableImpl;
ImplAdoptMutex(LLMutex& mutex) : mMutex(mutex),
#ifdef NEEDS_MUTEX_RECURSION
mLockDepth(mutex.mLockDepth),
#endif
mLockingThread(mutex.mLockingThread)
{
mMutex.mLockingThread = AIThreadID::sNone;
#ifdef NEEDS_MUTEX_RECURSION
mMutex.mLockDepth = 0;
#endif
}
~ImplAdoptMutex()
{
mMutex.mLockingThread = mLockingThread;
#ifdef NEEDS_MUTEX_RECURSION
mMutex.mLockDepth = mLockDepth;
#endif
}
LLMutex& mMutex;
AIThreadID mLockingThread;
#ifdef NEEDS_MUTEX_RECURSION
S32 mLockDepth;
#endif
};
#endif
private:
void lock_main(LLFastTimer::DeclareTimer* timer);
bool inc_lock_if_recursive()
{
#ifdef NEEDS_MUTEX_RECURSION
if (isSelfLocked())
{
mLockDepth++;
return true;
}
#endif
return false;
}
mutable AIThreadID mLockingThread;
#ifdef NEEDS_MUTEX_RECURSION
LLAtomicS32 mLockDepth;
#endif
};
class LLGlobalMutex : public LLMutex
{
public:
LLGlobalMutex() : LLMutex(MUTEX_POOL(LLAPRRootPool::get())), mbInitalized(true)
{}
bool isInitalized() const
{
return mbInitalized;
}
private:
bool mbInitalized;
};
#ifdef NEEDS_MUTEX_IMPL
class LL_COMMON_API LLConditionVariableImpl : private boost::noncopyable
{
friend class LLCondition;
typedef impl_cond_handle_type native_handle_type;
LLConditionVariableImpl(MUTEX_POOL(native_pool_type& pool));
virtual ~LLConditionVariableImpl();
void notify_one();
void notify_all();
void wait(LLMutex& lock);
native_handle_type& native_handle() { return mConditionVariableImpl; }
native_handle_type mConditionVariableImpl;
MUTEX_POOL(native_pool_type mPool);
};
#endif
typedef LLMutex LLMutexRootPool;
// Actually a condition/mutex pair (since each condition needs to be associated with a mutex).
class LLCondition : public LLConditionVariableImpl, public LLMutex
{
public:
LLCondition(MUTEX_POOL(native_pool_type& pool = LLThread::tldata().mRootPool)) :
LLMutex(MUTEX_POOL(pool)),
LLConditionVariableImpl(MUTEX_POOL(pool))
{}
~LLCondition()
{}
void wait()
{
#if IS_LLCOMMON_INLINE
if (AIThreadID::in_main_thread_inline())
#else
if (AIThreadID::in_main_thread())
#endif
wait_main();
else LLConditionVariableImpl::wait(*this);
}
void signal() { LLConditionVariableImpl::notify_one(); }
void broadcast() { LLConditionVariableImpl::notify_all(); }
private:
LL_COMMON_API void wait_main(); //Cannot be inline. Uses internal fasttimer.
};
class LLMutexLock
{
public:
LLMutexLock(LLMutex* mutex)
{
mMutex = mutex;
lock();
}
LLMutexLock(LLMutex& mutex)
{
mMutex = &mutex;
lock();
}
~LLMutexLock()
{
if (mMutex) mMutex->unlock();
}
private:
LL_COMMON_API void lock(); //Cannot be inline. Uses internal fasttimer.
LLMutex* mMutex;
};
class AIRWLock
{
public:
AIRWLock(LLAPRPool& parent = LLThread::tldata().mRootPool) :
mWriterWaitingMutex(MUTEX_POOL(parent)), mNoHoldersCondition(MUTEX_POOL(parent)), mHoldersCount(0), mWriterIsWaiting(false) { }
private:
LLMutex mWriterWaitingMutex; //!< This mutex is locked while some writer is waiting for access.
LLCondition mNoHoldersCondition; //!< Access control for mHoldersCount. Condition true when there are no more holders.
int mHoldersCount; //!< Number of readers or -1 if a writer locked this object.
// This is volatile because we read it outside the critical area of mWriterWaitingMutex, at [1].
// That means that other threads can change it while we are already in the (inlined) function rdlock.
// Without volatile, the following assembly would fail:
// register x = mWriterIsWaiting;
// /* some thread changes mWriterIsWaiting */
// if (x ...
// However, because the function is fuzzy to begin with (we don't mind that this race
// condition exists) it would work fine without volatile. So, basically it's just here
// out of principle ;). -- Aleric
bool volatile mWriterIsWaiting; //!< True when there is a writer waiting for write access.
public:
void rdlock(bool high_priority = false)
{
// Give a writer a higher priority (kinda fuzzy).
if (mWriterIsWaiting && !high_priority) // [1] If there is a writer interested,
{
mWriterWaitingMutex.lock(); // [2] then give it precedence and wait here.
// If we get here then the writer got it's access; mHoldersCount == -1.
mWriterWaitingMutex.unlock();
}
mNoHoldersCondition.lock(); // [3] Get exclusive access to mHoldersCount.
while (mHoldersCount == -1) // [4]
{
mNoHoldersCondition.wait(); // [5] Wait till mHoldersCount is (or just was) 0.
}
++mHoldersCount; // One more reader.
mNoHoldersCondition.unlock(); // Release lock on mHoldersCount.
}
void rdunlock(void)
{
mNoHoldersCondition.lock(); // Get exclusive access to mHoldersCount.
if (--mHoldersCount == 0) // Was this the last reader?
{
mNoHoldersCondition.signal(); // Tell waiting threads, see [5], [6] and [7].
}
mNoHoldersCondition.unlock(); // Release lock on mHoldersCount.
}
void wrlock(void)
{
mWriterWaitingMutex.lock(); // Block new readers, see [2],
mWriterIsWaiting = true; // from this moment on, see [1].
mNoHoldersCondition.lock(); // Get exclusive access to mHoldersCount.
while (mHoldersCount != 0) // Other readers or writers have this lock?
{
mNoHoldersCondition.wait(); // [6] Wait till mHoldersCount is (or just was) 0.
}
mWriterIsWaiting = false; // Stop checking the lock for new readers, see [1].
mWriterWaitingMutex.unlock(); // Release blocked readers, they will still hang at [3].
mHoldersCount = -1; // We are a writer now (will cause a hang at [5], see [4]).
mNoHoldersCondition.unlock(); // Release lock on mHolders (readers go from [3] to [5]).
}
void wrunlock(void)
{
mNoHoldersCondition.lock(); // Get exclusive access to mHoldersCount.
mHoldersCount = 0; // We have no writer anymore.
mNoHoldersCondition.signal(); // Tell waiting threads, see [5], [6] and [7].
mNoHoldersCondition.unlock(); // Release lock on mHoldersCount.
}
void rd2wrlock(void)
{
mNoHoldersCondition.lock(); // Get exclusive access to mHoldersCount. Blocks new readers at [3].
if (--mHoldersCount > 0) // Any other reads left?
{
mWriterWaitingMutex.lock(); // Block new readers, see [2],
mWriterIsWaiting = true; // from this moment on, see [1].
while (mHoldersCount != 0) // Other readers (still) have this lock?
{
mNoHoldersCondition.wait(); // [7] Wait till mHoldersCount is (or just was) 0.
}
mWriterIsWaiting = false; // Stop checking the lock for new readers, see [1].
mWriterWaitingMutex.unlock(); // Release blocked readers, they will still hang at [3].
}
mHoldersCount = -1; // We are a writer now (will cause a hang at [5], see [4]).
mNoHoldersCondition.unlock(); // Release lock on mHolders (readers go from [3] to [5]).
}
void wr2rdlock(void)
{
mNoHoldersCondition.lock(); // Get exclusive access to mHoldersCount.
mHoldersCount = 1; // Turn writer into a reader.
mNoHoldersCondition.signal(); // Tell waiting readers, see [5].
mNoHoldersCondition.unlock(); // Release lock on mHoldersCount.
}
#if LL_DEBUG
// Really only intended for debugging purposes:
bool isLocked(void)
{
mNoHoldersCondition.lock();
bool res = mHoldersCount;
mNoHoldersCondition.unlock();
return res;
}
#endif
};
#if LL_DEBUG
class AINRLock
{
private:
int read_locked;
int write_locked;
mutable bool mAccessed;
mutable AIThreadID mTheadID;
void accessed(void) const
{
if (!mAccessed)
{
mAccessed = true;
mTheadID.reset();
}
else
{
llassert_always(mTheadID.equals_current_thread());
}
}
public:
AINRLock(void) : read_locked(false), write_locked(false), mAccessed(false) { }
bool isLocked() const { return read_locked || write_locked; }
void rdlock(bool high_priority = false) { accessed(); ++read_locked; }
void rdunlock() { --read_locked; }
void wrlock() { llassert(!isLocked()); accessed(); ++write_locked; }
void wrunlock() { --write_locked; }
void wr2rdlock() { llassert(false); }
void rd2wrlock() { llassert(false); }
};
#endif
//============================================================================
void LLThread::lockData()
{
mRunCondition->lock();
}
void LLThread::unlockData()
{
mRunCondition->unlock();
}
//============================================================================
// see llmemory.h for LLPointer<> definition
class LLThreadSafeRefCount
{
private:
LLThreadSafeRefCount(const LLThreadSafeRefCount&); // not implemented
LLThreadSafeRefCount&operator=(const LLThreadSafeRefCount&); // not implemented
protected:
virtual ~LLThreadSafeRefCount() // use unref()
{
if (mRef != 0)
{
LL_ERRS() << "deleting non-zero reference" << LL_ENDL;
}
}
public:
LLThreadSafeRefCount() : mRef(0)
{}
void ref()
{
mRef++;
}
void unref()
{
llassert(mRef > 0);
if (--mRef == 0) delete this;
}
S32 getNumRefs() const
{
return mRef;
}
private:
LLAtomicS32 mRef;
};
//============================================================================
// Simple responder for self destructing callbacks
// Pure virtual class
class LLResponder : public LLThreadSafeRefCount
{
protected:
virtual ~LLResponder() {}
public:
virtual void completed(bool success) = 0;
};
//============================================================================
#endif // LL_LLTHREAD_H