Files
SingularityViewer/indra/llmath/llplane.h
2011-05-24 18:56:53 +02:00

105 lines
3.0 KiB
C++

/**
* @file llplane.h
*
* $LicenseInfo:firstyear=2001&license=viewergpl$
*
* Copyright (c) 2001-2009, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#ifndef LL_LLPLANE_H
#define LL_LLPLANE_H
#include "v3math.h"
#include "v4math.h"
// A simple way to specify a plane is to give its normal,
// and it's nearest approach to the origin.
//
// Given the equation for a plane : A*x + B*y + C*z + D = 0
// The plane normal = [A, B, C]
// The closest approach = D / sqrt(A*A + B*B + C*C)
class LLPlane : public LLVector4
{
public:
LLPlane() {}; // no default constructor
LLPlane(const LLVector3 &p0, F32 d) { setVec(p0, d); }
LLPlane(const LLVector3 &p0, const LLVector3 &n) { setVec(p0, n); }
inline void setVec(const LLVector3 &p0, F32 d) { LLVector4::setVec(p0[0], p0[1], p0[2], d); }
inline void setVec(const LLVector3 &p0, const LLVector3 &n)
{
F32 d = -(p0 * n);
setVec(n, d);
}
inline void setVec(const LLVector3 &p0, const LLVector3 &p1, const LLVector3 &p2)
{
LLVector3 u, v, w;
u = p1 - p0;
v = p2 - p0;
w = u % v;
w.normVec();
F32 d = -(w * p0);
setVec(w, d);
}
inline LLPlane& operator=(const LLVector4& v2) { LLVector4::setVec(v2[0],v2[1],v2[2],v2[3]); return *this;}
inline void set(const LLPlane& p2) { LLVector4::setVec(p2); }
//
F32 dist(const LLVector3 &v2) const { return mV[0]*v2[0] + mV[1]*v2[1] + mV[2]*v2[2] + mV[3]; }
// reset the vector to 0, 0, 0, 1
inline void clear() { LLVector4::setVec(0, 0, 0, 1); }
inline void getVector3(LLVector3& vec) const { vec.set(mV[0], mV[1], mV[2]); }
// Retrieve the mask indicating which of the x, y, or z axis are greater or equal to zero.
inline U8 calcPlaneMask() const
{
U8 mask = 0;
if (mV[0] >= 0)
{
mask |= 1;
}
if (mV[1] >= 0)
{
mask |= 2;
}
if (mV[2] >= 0)
{
mask |= 4;
}
return mask;
}
};
#endif // LL_LLPLANE_H