Files
SingularityViewer/indra/llcharacter/llbvhloader.cpp

1596 lines
47 KiB
C++

/**
* @file llbvhloader.cpp
* @brief Translates a BVH files to LindenLabAnimation format.
*
* $LicenseInfo:firstyear=2004&license=viewergpl$
*
* Copyright (c) 2004-2009, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llbvhloader.h"
#include <boost/tokenizer.hpp>
#include "lldatapacker.h"
#include "lldir.h"
#include "llkeyframemotion.h"
#include "llquantize.h"
#include "llstl.h"
#include "llapr.h"
using namespace std;
#define INCHES_TO_METERS 0.02540005f
const F32 POSITION_KEYFRAME_THRESHOLD_SQUARED = 0.03f * 0.03f;
const F32 ROTATION_KEYFRAME_THRESHOLD = 0.01f;
const F32 POSITION_MOTION_THRESHOLD_SQUARED = 0.001f * 0.001f;
const F32 ROTATION_MOTION_THRESHOLD = 0.001f;
char gInFile[1024]; /* Flawfinder: ignore */
char gOutFile[1024]; /* Flawfinder: ignore */
/*
//------------------------------------------------------------------------
// Status Codes
//------------------------------------------------------------------------
const char *LLBVHLoader::ST_OK = "Ok";
const char *LLBVHLoader::ST_EOF = "Premature end of file.";
const char *LLBVHLoader::ST_NO_CONSTRAINT = "Can't read constraint definition.";
const char *LLBVHLoader::ST_NO_FILE = "Can't open BVH file.";
const char *LLBVHLoader::ST_NO_HIER = "Invalid HIERARCHY header.";
const char *LLBVHLoader::ST_NO_JOINT = "Can't find ROOT or JOINT.";
const char *LLBVHLoader::ST_NO_NAME = "Can't get JOINT name.";
const char *LLBVHLoader::ST_NO_OFFSET = "Can't find OFFSET.";
const char *LLBVHLoader::ST_NO_CHANNELS = "Can't find CHANNELS.";
const char *LLBVHLoader::ST_NO_ROTATION = "Can't get rotation order.";
const char *LLBVHLoader::ST_NO_AXIS = "Can't get rotation axis.";
const char *LLBVHLoader::ST_NO_MOTION = "Can't find MOTION.";
const char *LLBVHLoader::ST_NO_FRAMES = "Can't get number of frames.";
const char *LLBVHLoader::ST_NO_FRAME_TIME = "Can't get frame time.";
const char *LLBVHLoader::ST_NO_POS = "Can't get position values.";
const char *LLBVHLoader::ST_NO_ROT = "Can't get rotation values.";
const char *LLBVHLoader::ST_NO_XLT_FILE = "Can't open translation file.";
const char *LLBVHLoader::ST_NO_XLT_HEADER = "Can't read translation header.";
const char *LLBVHLoader::ST_NO_XLT_NAME = "Can't read translation names.";
const char *LLBVHLoader::ST_NO_XLT_IGNORE = "Can't read translation ignore value.";
const char *LLBVHLoader::ST_NO_XLT_RELATIVE = "Can't read translation relative value.";
const char *LLBVHLoader::ST_NO_XLT_OUTNAME = "Can't read translation outname value.";
const char *LLBVHLoader::ST_NO_XLT_MATRIX = "Can't read translation matrix.";
const char *LLBVHLoader::ST_NO_XLT_MERGECHILD = "Can't get mergechild name.";
const char *LLBVHLoader::ST_NO_XLT_MERGEPARENT = "Can't get mergeparent name.";
const char *LLBVHLoader::ST_NO_XLT_PRIORITY = "Can't get priority value.";
const char *LLBVHLoader::ST_NO_XLT_LOOP = "Can't get loop value.";
const char *LLBVHLoader::ST_NO_XLT_EASEIN = "Can't get easeIn values.";
const char *LLBVHLoader::ST_NO_XLT_EASEOUT = "Can't get easeOut values.";
const char *LLBVHLoader::ST_NO_XLT_HAND = "Can't get hand morph value.";
const char *LLBVHLoader::ST_NO_XLT_EMOTE = "Can't read emote name.";
const char *LLBVHLoader::ST_BAD_ROOT = "Illegal ROOT joint.";
*/
//------------------------------------------------------------------------
// find_next_whitespace()
//------------------------------------------------------------------------
const char *find_next_whitespace(const char *p)
{
while(*p && isspace(*p)) p++;
while(*p && !isspace(*p)) p++;
return p;
}
//------------------------------------------------------------------------
// bvhStringToOrder()
//
// XYZ order in BVH files must be passed to mayaQ() as ZYX.
// This function reverses the input string before passing it on
// to StringToOrder().
//------------------------------------------------------------------------
LLQuaternion::Order bvhStringToOrder( char *str )
{
char order[4]; /* Flawfinder: ignore */
order[0] = str[2];
order[1] = str[1];
order[2] = str[0];
order[3] = 0;
LLQuaternion::Order retVal = StringToOrder( order );
return retVal;
}
//-----------------------------------------------------------------------------
// LLBVHLoader()
//-----------------------------------------------------------------------------
/*
LLBVHLoader::LLBVHLoader(const char* buffer)
{
reset();
mStatus = loadTranslationTable("anim.ini");
if (mStatus == LLBVHLoader::ST_NO_XLT_FILE)
{
llwarns << "NOTE: No translation table found." << llendl;
return;
}
else
{
if (mStatus != LLBVHLoader::ST_OK)
{
llwarns << "ERROR: [line: " << getLineNumber() << "] " << mStatus << llendl;
return;
}
}
char error_text[128]; // Flawfinder: ignore
S32 error_line;
mStatus = loadBVHFile(buffer, error_text, error_line);
if (mStatus != LLBVHLoader::ST_OK)
{
llwarns << "ERROR: [line: " << getLineNumber() << "] " << mStatus << llendl;
return;
}
applyTranslations();
optimize();
mInitialized = TRUE;
}
*/
LLBVHLoader::LLBVHLoader(const char* buffer, ELoadStatus &loadStatus, S32 &errorLine)
{
reset();
errorLine = 0;
mStatus = loadTranslationTable("anim.ini");
loadStatus = mStatus;
llinfos<<"Load Status 00 : "<< loadStatus << llendl;
if (mStatus == E_ST_NO_XLT_FILE)
{
//llwarns << "NOTE: No translation table found." << llendl;
loadStatus = mStatus;
return;
}
else
{
if (mStatus != E_ST_OK)
{
//llwarns << "ERROR: [line: " << getLineNumber() << "] " << mStatus << llendl;
errorLine = getLineNumber();
loadStatus = mStatus;
return;
}
}
char error_text[128]; /* Flawfinder: ignore */
S32 error_line;
mStatus = loadBVHFile(buffer, error_text, error_line);
if (mStatus != E_ST_OK)
{
//llwarns << "ERROR: [line: " << getLineNumber() << "] " << mStatus << llendl;
loadStatus = mStatus;
errorLine = getLineNumber();
return;
}
applyTranslations();
optimize();
mInitialized = TRUE;
}
LLBVHLoader::~LLBVHLoader()
{
std::for_each(mJoints.begin(),mJoints.end(),DeletePointer());
}
//------------------------------------------------------------------------
// LLBVHLoader::loadTranslationTable()
//------------------------------------------------------------------------
ELoadStatus LLBVHLoader::loadTranslationTable(const char *fileName)
{
mLineNumber = 0;
mTranslations.clear();
mConstraints.clear();
//--------------------------------------------------------------------
// open file
//--------------------------------------------------------------------
std::string path = gDirUtilp->getExpandedFilename(LL_PATH_APP_SETTINGS,fileName);
LLAPRFile infile ;
infile.open(path, LL_APR_R, LLAPRFile::global);
apr_file_t *fp = infile.getFileHandle();
if (!fp)
return E_ST_NO_XLT_FILE;
llinfos << "NOTE: Loading translation table: " << fileName << llendl;
//--------------------------------------------------------------------
// register file to be closed on function exit
//--------------------------------------------------------------------
//--------------------------------------------------------------------
// load header
//--------------------------------------------------------------------
if ( ! getLine(fp) )
return E_ST_EOF;
if ( strncmp(mLine, "Translations 1.0", 16) )
return E_ST_NO_XLT_HEADER;
//--------------------------------------------------------------------
// load data one line at a time
//--------------------------------------------------------------------
BOOL loadingGlobals = FALSE;
Translation *trans = NULL;
while ( getLine(fp) )
{
//----------------------------------------------------------------
// check the 1st token on the line to determine if it's empty or a comment
//----------------------------------------------------------------
char token[128]; /* Flawfinder: ignore */
if ( sscanf(mLine, " %127s", token) != 1 ) /* Flawfinder: ignore */
continue;
if (token[0] == '#')
continue;
//----------------------------------------------------------------
// check if a [jointName] or [GLOBALS] was specified.
//----------------------------------------------------------------
if (token[0] == '[')
{
char name[128]; /* Flawfinder: ignore */
if ( sscanf(mLine, " [%127[^]]", name) != 1 )
return E_ST_NO_XLT_NAME;
if (strcmp(name, "GLOBALS")==0)
{
loadingGlobals = TRUE;
continue;
}
else
{
loadingGlobals = FALSE;
Translation &newTrans = mTranslations[ name ];
trans = &newTrans;
continue;
}
}
//----------------------------------------------------------------
// check for optional emote
//----------------------------------------------------------------
if (loadingGlobals && LLStringUtil::compareInsensitive(token, "emote")==0)
{
char emote_str[1024]; /* Flawfinder: ignore */
if ( sscanf(mLine, " %*s = %1023s", emote_str) != 1 ) /* Flawfinder: ignore */
return E_ST_NO_XLT_EMOTE;
mEmoteName.assign( emote_str );
// llinfos << "NOTE: Emote: " << mEmoteName.c_str() << llendl;
continue;
}
//----------------------------------------------------------------
// check for global priority setting
//----------------------------------------------------------------
if (loadingGlobals && LLStringUtil::compareInsensitive(token, "priority")==0)
{
S32 priority;
if ( sscanf(mLine, " %*s = %d", &priority) != 1 )
return E_ST_NO_XLT_PRIORITY;
mPriority = priority;
// llinfos << "NOTE: Priority: " << mPriority << llendl;
continue;
}
//----------------------------------------------------------------
// check for global loop setting
//----------------------------------------------------------------
if (loadingGlobals && LLStringUtil::compareInsensitive(token, "loop")==0)
{
char trueFalse[128]; /* Flawfinder: ignore */
trueFalse[0] = '\0';
F32 loop_in = 0.f;
F32 loop_out = 1.f;
if ( sscanf(mLine, " %*s = %f %f", &loop_in, &loop_out) == 2 )
{
mLoop = TRUE;
}
else if ( sscanf(mLine, " %*s = %127s", trueFalse) == 1 ) /* Flawfinder: ignore */
{
mLoop = (LLStringUtil::compareInsensitive(trueFalse, "true")==0);
}
else
{
return E_ST_NO_XLT_LOOP;
}
mLoopInPoint = loop_in * mDuration;
mLoopOutPoint = loop_out * mDuration;
continue;
}
//----------------------------------------------------------------
// check for global easeIn setting
//----------------------------------------------------------------
if (loadingGlobals && LLStringUtil::compareInsensitive(token, "easein")==0)
{
F32 duration;
char type[128]; /* Flawfinder: ignore */
if ( sscanf(mLine, " %*s = %f %127s", &duration, type) != 2 ) /* Flawfinder: ignore */
return E_ST_NO_XLT_EASEIN;
mEaseIn = duration;
continue;
}
//----------------------------------------------------------------
// check for global easeOut setting
//----------------------------------------------------------------
if (loadingGlobals && LLStringUtil::compareInsensitive(token, "easeout")==0)
{
F32 duration;
char type[128]; /* Flawfinder: ignore */
if ( sscanf(mLine, " %*s = %f %127s", &duration, type) != 2 ) /* Flawfinder: ignore */
return E_ST_NO_XLT_EASEOUT;
mEaseOut = duration;
continue;
}
//----------------------------------------------------------------
// check for global handMorph setting
//----------------------------------------------------------------
if (loadingGlobals && LLStringUtil::compareInsensitive(token, "hand")==0)
{
S32 handMorph;
if (sscanf(mLine, " %*s = %d", &handMorph) != 1)
return E_ST_NO_XLT_HAND;
mHand = handMorph;
continue;
}
if (loadingGlobals && LLStringUtil::compareInsensitive(token, "constraint")==0)
{
Constraint constraint;
// try reading optional target direction
if(sscanf( /* Flawfinder: ignore */
mLine,
" %*s = %d %f %f %f %f %15s %f %f %f %15s %f %f %f %f %f %f",
&constraint.mChainLength,
&constraint.mEaseInStart,
&constraint.mEaseInStop,
&constraint.mEaseOutStart,
&constraint.mEaseOutStop,
constraint.mSourceJointName,
&constraint.mSourceOffset.mV[VX],
&constraint.mSourceOffset.mV[VY],
&constraint.mSourceOffset.mV[VZ],
constraint.mTargetJointName,
&constraint.mTargetOffset.mV[VX],
&constraint.mTargetOffset.mV[VY],
&constraint.mTargetOffset.mV[VZ],
&constraint.mTargetDir.mV[VX],
&constraint.mTargetDir.mV[VY],
&constraint.mTargetDir.mV[VZ]) != 16)
{
if(sscanf( /* Flawfinder: ignore */
mLine,
" %*s = %d %f %f %f %f %15s %f %f %f %15s %f %f %f",
&constraint.mChainLength,
&constraint.mEaseInStart,
&constraint.mEaseInStop,
&constraint.mEaseOutStart,
&constraint.mEaseOutStop,
constraint.mSourceJointName,
&constraint.mSourceOffset.mV[VX],
&constraint.mSourceOffset.mV[VY],
&constraint.mSourceOffset.mV[VZ],
constraint.mTargetJointName,
&constraint.mTargetOffset.mV[VX],
&constraint.mTargetOffset.mV[VY],
&constraint.mTargetOffset.mV[VZ]) != 13)
{
return E_ST_NO_CONSTRAINT;
}
}
else
{
// normalize direction
if (!constraint.mTargetDir.isExactlyZero())
{
constraint.mTargetDir.normVec();
}
}
constraint.mConstraintType = CONSTRAINT_TYPE_POINT;
mConstraints.push_back(constraint);
continue;
}
if (loadingGlobals && LLStringUtil::compareInsensitive(token, "planar_constraint")==0)
{
Constraint constraint;
// try reading optional target direction
if(sscanf( /* Flawfinder: ignore */
mLine,
" %*s = %d %f %f %f %f %15s %f %f %f %15s %f %f %f %f %f %f",
&constraint.mChainLength,
&constraint.mEaseInStart,
&constraint.mEaseInStop,
&constraint.mEaseOutStart,
&constraint.mEaseOutStop,
constraint.mSourceJointName,
&constraint.mSourceOffset.mV[VX],
&constraint.mSourceOffset.mV[VY],
&constraint.mSourceOffset.mV[VZ],
constraint.mTargetJointName,
&constraint.mTargetOffset.mV[VX],
&constraint.mTargetOffset.mV[VY],
&constraint.mTargetOffset.mV[VZ],
&constraint.mTargetDir.mV[VX],
&constraint.mTargetDir.mV[VY],
&constraint.mTargetDir.mV[VZ]) != 16)
{
if(sscanf( /* Flawfinder: ignore */
mLine,
" %*s = %d %f %f %f %f %15s %f %f %f %15s %f %f %f",
&constraint.mChainLength,
&constraint.mEaseInStart,
&constraint.mEaseInStop,
&constraint.mEaseOutStart,
&constraint.mEaseOutStop,
constraint.mSourceJointName,
&constraint.mSourceOffset.mV[VX],
&constraint.mSourceOffset.mV[VY],
&constraint.mSourceOffset.mV[VZ],
constraint.mTargetJointName,
&constraint.mTargetOffset.mV[VX],
&constraint.mTargetOffset.mV[VY],
&constraint.mTargetOffset.mV[VZ]) != 13)
{
return E_ST_NO_CONSTRAINT;
}
}
else
{
// normalize direction
if (!constraint.mTargetDir.isExactlyZero())
{
constraint.mTargetDir.normVec();
}
}
constraint.mConstraintType = CONSTRAINT_TYPE_PLANE;
mConstraints.push_back(constraint);
continue;
}
//----------------------------------------------------------------
// at this point there must be a valid trans pointer
//----------------------------------------------------------------
if ( ! trans )
return E_ST_NO_XLT_NAME;
//----------------------------------------------------------------
// check for ignore flag
//----------------------------------------------------------------
if ( LLStringUtil::compareInsensitive(token, "ignore")==0 )
{
char trueFalse[128]; /* Flawfinder: ignore */
if ( sscanf(mLine, " %*s = %127s", trueFalse) != 1 ) /* Flawfinder: ignore */
return E_ST_NO_XLT_IGNORE;
trans->mIgnore = (LLStringUtil::compareInsensitive(trueFalse, "true")==0);
continue;
}
//----------------------------------------------------------------
// check for relativepos flag
//----------------------------------------------------------------
if ( LLStringUtil::compareInsensitive(token, "relativepos")==0 )
{
F32 x, y, z;
char relpos[128]; /* Flawfinder: ignore */
if ( sscanf(mLine, " %*s = %f %f %f", &x, &y, &z) == 3 )
{
trans->mRelativePosition.setVec( x, y, z );
}
else if ( sscanf(mLine, " %*s = %127s", relpos) == 1 ) /* Flawfinder: ignore */
{
if ( LLStringUtil::compareInsensitive(relpos, "firstkey")==0 )
{
trans->mRelativePositionKey = TRUE;
}
else
{
return E_ST_NO_XLT_RELATIVE;
}
}
else
{
return E_ST_NO_XLT_RELATIVE;
}
continue;
}
//----------------------------------------------------------------
// check for relativerot flag
//----------------------------------------------------------------
if ( LLStringUtil::compareInsensitive(token, "relativerot")==0 )
{
//F32 x, y, z;
char relpos[128]; /* Flawfinder: ignore */
if ( sscanf(mLine, " %*s = %127s", relpos) == 1 ) /* Flawfinder: ignore */
{
if ( LLStringUtil::compareInsensitive(relpos, "firstkey")==0 )
{
trans->mRelativeRotationKey = TRUE;
}
else
{
return E_ST_NO_XLT_RELATIVE;
}
}
else
{
return E_ST_NO_XLT_RELATIVE;
}
continue;
}
//----------------------------------------------------------------
// check for outname value
//----------------------------------------------------------------
if ( LLStringUtil::compareInsensitive(token, "outname")==0 )
{
char outName[128]; /* Flawfinder: ignore */
if ( sscanf(mLine, " %*s = %127s", outName) != 1 ) /* Flawfinder: ignore */
return E_ST_NO_XLT_OUTNAME;
trans->mOutName = outName;
continue;
}
//----------------------------------------------------------------
// check for frame matrix value
//----------------------------------------------------------------
if ( LLStringUtil::compareInsensitive(token, "frame")==0 )
{
LLMatrix3 fm;
if ( sscanf(mLine, " %*s = %f %f %f, %f %f %f, %f %f %f",
&fm.mMatrix[0][0], &fm.mMatrix[0][1], &fm.mMatrix[0][2],
&fm.mMatrix[1][0], &fm.mMatrix[1][1], &fm.mMatrix[1][2],
&fm.mMatrix[2][0], &fm.mMatrix[2][1], &fm.mMatrix[2][2] ) != 9 )
return E_ST_NO_XLT_MATRIX;
trans->mFrameMatrix = fm;
continue;
}
//----------------------------------------------------------------
// check for offset matrix value
//----------------------------------------------------------------
if ( LLStringUtil::compareInsensitive(token, "offset")==0 )
{
LLMatrix3 om;
if ( sscanf(mLine, " %*s = %f %f %f, %f %f %f, %f %f %f",
&om.mMatrix[0][0], &om.mMatrix[0][1], &om.mMatrix[0][2],
&om.mMatrix[1][0], &om.mMatrix[1][1], &om.mMatrix[1][2],
&om.mMatrix[2][0], &om.mMatrix[2][1], &om.mMatrix[2][2] ) != 9 )
return E_ST_NO_XLT_MATRIX;
trans->mOffsetMatrix = om;
continue;
}
//----------------------------------------------------------------
// check for mergeparent value
//----------------------------------------------------------------
if ( LLStringUtil::compareInsensitive(token, "mergeparent")==0 )
{
char mergeParentName[128]; /* Flawfinder: ignore */
if ( sscanf(mLine, " %*s = %127s", mergeParentName) != 1 ) /* Flawfinder: ignore */
return E_ST_NO_XLT_MERGEPARENT;
trans->mMergeParentName = mergeParentName;
continue;
}
//----------------------------------------------------------------
// check for mergechild value
//----------------------------------------------------------------
if ( LLStringUtil::compareInsensitive(token, "mergechild")==0 )
{
char mergeChildName[128]; /* Flawfinder: ignore */
if ( sscanf(mLine, " %*s = %127s", mergeChildName) != 1 ) /* Flawfinder: ignore */
return E_ST_NO_XLT_MERGECHILD;
trans->mMergeChildName = mergeChildName;
continue;
}
//----------------------------------------------------------------
// check for per-joint priority
//----------------------------------------------------------------
if ( LLStringUtil::compareInsensitive(token, "priority")==0 )
{
S32 priority;
if ( sscanf(mLine, " %*s = %d", &priority) != 1 )
return E_ST_NO_XLT_PRIORITY;
trans->mPriorityModifier = priority;
continue;
}
}
infile.close() ;
return E_ST_OK;
}
//------------------------------------------------------------------------
// LLBVHLoader::loadBVHFile()
//------------------------------------------------------------------------
ELoadStatus LLBVHLoader::loadBVHFile(const char *buffer, char* error_text, S32 &err_line)
{
std::string line;
err_line = 0;
error_text[127] = '\0';
std::string str(buffer);
typedef boost::tokenizer<boost::char_separator<char> > tokenizer;
boost::char_separator<char> sep("\r\n");
tokenizer tokens(str, sep);
tokenizer::iterator iter = tokens.begin();
mLineNumber = 0;
mJoints.clear();
std::vector<S32> parent_joints;
//--------------------------------------------------------------------
// consume hierarchy
//--------------------------------------------------------------------
if (iter == tokens.end())
return E_ST_EOF;
line = (*(iter++));
err_line++;
if ( !strstr(line.c_str(), "HIERARCHY") )
{
// llinfos << line << llendl;
return E_ST_NO_HIER;
}
//--------------------------------------------------------------------
// consume joints
//--------------------------------------------------------------------
while (TRUE)
{
//----------------------------------------------------------------
// get next line
//----------------------------------------------------------------
if (iter == tokens.end())
return E_ST_EOF;
line = (*(iter++));
err_line++;
//----------------------------------------------------------------
// consume }
//----------------------------------------------------------------
if ( strstr(line.c_str(), "}") )
{
if (parent_joints.size() > 0)
{
parent_joints.pop_back();
}
continue;
}
//----------------------------------------------------------------
// if MOTION, break out
//----------------------------------------------------------------
if ( strstr(line.c_str(), "MOTION") )
break;
//----------------------------------------------------------------
// it must be either ROOT or JOINT or EndSite
//----------------------------------------------------------------
if ( strstr(line.c_str(), "ROOT") )
{
}
else if ( strstr(line.c_str(), "JOINT") )
{
}
else if ( strstr(line.c_str(), "End Site") )
{
iter++; // {
iter++; // OFFSET
S32 depth = 0;
for (S32 j = (S32)parent_joints.size() - 1; j >= 0; j--)
{
Joint *joint = mJoints[parent_joints[j]];
if (depth > joint->mChildTreeMaxDepth)
{
joint->mChildTreeMaxDepth = depth;
}
depth++;
}
continue;
}
else
{
strncpy(error_text, line.c_str(), 127); /* Flawfinder: ignore */
return E_ST_NO_JOINT;
}
//----------------------------------------------------------------
// get the joint name
//----------------------------------------------------------------
char jointName[80]; /* Flawfinder: ignore */
if ( sscanf(line.c_str(), "%*s %79s", jointName) != 1 ) /* Flawfinder: ignore */
{
strncpy(error_text, line.c_str(), 127); /* Flawfinder: ignore */
return E_ST_NO_NAME;
}
//---------------------------------------------------------------
// we require the root joint be "hip" - DEV-26188
//---------------------------------------------------------------
const char* FORCED_ROOT_NAME = "hip";
if ( (mJoints.size() == 0 ) && ( !strstr(jointName, FORCED_ROOT_NAME) ) )
{
strncpy(error_text, line.c_str(), 127); /* Flawfinder: ignore */
return E_ST_BAD_ROOT;
}
//----------------------------------------------------------------
// add a set of keyframes for this joint
//----------------------------------------------------------------
mJoints.push_back( new Joint( jointName ) );
Joint *joint = mJoints.back();
S32 depth = 1;
for (S32 j = (S32)parent_joints.size() - 1; j >= 0; j--)
{
Joint *pjoint = mJoints[parent_joints[j]];
if (depth > pjoint->mChildTreeMaxDepth)
{
pjoint->mChildTreeMaxDepth = depth;
}
depth++;
}
//----------------------------------------------------------------
// get next line
//----------------------------------------------------------------
if (iter == tokens.end())
{
return E_ST_EOF;
}
line = (*(iter++));
err_line++;
//----------------------------------------------------------------
// it must be {
//----------------------------------------------------------------
if ( !strstr(line.c_str(), "{") )
{
strncpy(error_text, line.c_str(), 127); /*Flawfinder: ignore*/
return E_ST_NO_OFFSET;
}
else
{
parent_joints.push_back((S32)mJoints.size() - 1);
}
//----------------------------------------------------------------
// get next line
//----------------------------------------------------------------
if (iter == tokens.end())
{
return E_ST_EOF;
}
line = (*(iter++));
err_line++;
//----------------------------------------------------------------
// it must be OFFSET
//----------------------------------------------------------------
if ( !strstr(line.c_str(), "OFFSET") )
{
strncpy(error_text, line.c_str(), 127); /*Flawfinder: ignore*/
return E_ST_NO_OFFSET;
}
//----------------------------------------------------------------
// get next line
//----------------------------------------------------------------
if (iter == tokens.end())
{
return E_ST_EOF;
}
line = (*(iter++));
err_line++;
//----------------------------------------------------------------
// it must be CHANNELS
//----------------------------------------------------------------
if ( !strstr(line.c_str(), "CHANNELS") )
{
strncpy(error_text, line.c_str(), 127); /*Flawfinder: ignore*/
return E_ST_NO_CHANNELS;
}
//----------------------------------------------------------------
// get rotation order
//----------------------------------------------------------------
const char *p = line.c_str();
for (S32 i=0; i<3; i++)
{
p = strstr(p, "rotation");
if (!p)
{
strncpy(error_text, line.c_str(), 127); /*Flawfinder: ignore*/
return E_ST_NO_ROTATION;
}
const char axis = *(p - 1);
if ((axis != 'X') && (axis != 'Y') && (axis != 'Z'))
{
strncpy(error_text, line.c_str(), 127); /*Flawfinder: ignore*/
return E_ST_NO_AXIS;
}
joint->mOrder[i] = axis;
p++;
}
}
//--------------------------------------------------------------------
// consume motion
//--------------------------------------------------------------------
if ( !strstr(line.c_str(), "MOTION") )
{
strncpy(error_text, line.c_str(), 127); /*Flawfinder: ignore*/
return E_ST_NO_MOTION;
}
//--------------------------------------------------------------------
// get number of frames
//--------------------------------------------------------------------
if (iter == tokens.end())
{
return E_ST_EOF;
}
line = (*(iter++));
err_line++;
if ( !strstr(line.c_str(), "Frames:") )
{
strncpy(error_text, line.c_str(), 127); /*Flawfinder: ignore*/
return E_ST_NO_FRAMES;
}
if ( sscanf(line.c_str(), "Frames: %d", &mNumFrames) != 1 )
{
strncpy(error_text, line.c_str(), 127); /*Flawfinder: ignore*/
return E_ST_NO_FRAMES;
}
//--------------------------------------------------------------------
// get frame time
//--------------------------------------------------------------------
if (iter == tokens.end())
{
return E_ST_EOF;
}
line = (*(iter++));
err_line++;
if ( !strstr(line.c_str(), "Frame Time:") )
{
strncpy(error_text, line.c_str(), 127); /*Flawfinder: ignore*/
return E_ST_NO_FRAME_TIME;
}
if ( sscanf(line.c_str(), "Frame Time: %f", &mFrameTime) != 1 )
{
strncpy(error_text, line.c_str(), 127); /*Flawfinder: ignore*/
return E_ST_NO_FRAME_TIME;
}
mDuration = (F32)mNumFrames * mFrameTime;
if (!mLoop)
{
mLoopOutPoint = mDuration;
}
//--------------------------------------------------------------------
// load frames
//--------------------------------------------------------------------
for (S32 i=0; i<mNumFrames; i++)
{
// get next line
if (iter == tokens.end())
{
return E_ST_EOF;
}
line = (*(iter++));
err_line++;
// read and store values
const char *p = line.c_str();
for (U32 j=0; j<mJoints.size(); j++)
{
Joint *joint = mJoints[j];
joint->mKeys.push_back( Key() );
Key &key = joint->mKeys.back();
// get 3 pos values for root joint only
if (j==0)
{
if ( sscanf(p, "%f %f %f", key.mPos, key.mPos+1, key.mPos+2) != 3 )
{
strncpy(error_text, line.c_str(), 127); /*Flawfinder: ignore*/
return E_ST_NO_POS;
}
}
// skip to next 3 values in the line
p = find_next_whitespace(p);
if (!p)
{
strncpy(error_text, line.c_str(), 127); /*Flawfinder: ignore*/
return E_ST_NO_ROT;
}
p = find_next_whitespace(++p);
if (!p)
{
strncpy(error_text, line.c_str(), 127); /*Flawfinder: ignore*/
return E_ST_NO_ROT;
}
p = find_next_whitespace(++p);
if (!p)
{
strncpy(error_text, line.c_str(), 127); /*Flawfinder: ignore*/
return E_ST_NO_ROT;
}
// get 3 rot values for joint
F32 rot[3];
if ( sscanf(p, " %f %f %f", rot, rot+1, rot+2) != 3 )
{
strncpy(error_text, line.c_str(), 127); /*Flawfinder: ignore*/
return E_ST_NO_ROT;
}
p++;
key.mRot[ joint->mOrder[0]-'X' ] = rot[0];
key.mRot[ joint->mOrder[1]-'X' ] = rot[1];
key.mRot[ joint->mOrder[2]-'X' ] = rot[2];
}
}
return E_ST_OK;
}
//------------------------------------------------------------------------
// LLBVHLoader::applyTranslation()
//------------------------------------------------------------------------
void LLBVHLoader::applyTranslations()
{
JointVector::iterator ji;
for (ji = mJoints.begin(); ji != mJoints.end(); ++ji )
{
Joint *joint = *ji;
//----------------------------------------------------------------
// Look for a translation for this joint.
// If none, skip to next joint
//----------------------------------------------------------------
TranslationMap::iterator ti = mTranslations.find( joint->mName );
if ( ti == mTranslations.end() )
{
continue;
}
Translation &trans = ti->second;
//----------------------------------------------------------------
// Set the ignore flag if necessary
//----------------------------------------------------------------
if ( trans.mIgnore )
{
//llinfos << "NOTE: Ignoring " << joint->mName.c_str() << llendl;
joint->mIgnore = TRUE;
continue;
}
//----------------------------------------------------------------
// Set the output name
//----------------------------------------------------------------
if ( ! trans.mOutName.empty() )
{
//llinfos << "NOTE: Changing " << joint->mName.c_str() << " to " << trans.mOutName.c_str() << llendl;
joint->mOutName = trans.mOutName;
}
//----------------------------------------------------------------
// Set the ignorepos flag if necessary
//----------------------------------------------------------------
if ( joint->mOutName == std::string("mPelvis") )
{
joint->mIgnorePositions = FALSE;
}
//----------------------------------------------------------------
// Set the relativepos flags if necessary
//----------------------------------------------------------------
if ( trans.mRelativePositionKey )
{
// llinfos << "NOTE: Removing 1st position offset from all keys for " << joint->mOutName.c_str() << llendl;
joint->mRelativePositionKey = TRUE;
}
if ( trans.mRelativeRotationKey )
{
// llinfos << "NOTE: Removing 1st rotation from all keys for " << joint->mOutName.c_str() << llendl;
joint->mRelativeRotationKey = TRUE;
}
if ( trans.mRelativePosition.magVec() > 0.0f )
{
joint->mRelativePosition = trans.mRelativePosition;
// llinfos << "NOTE: Removing " <<
// joint->mRelativePosition.mV[0] << " " <<
// joint->mRelativePosition.mV[1] << " " <<
// joint->mRelativePosition.mV[2] <<
// " from all position keys in " <<
// joint->mOutName.c_str() << llendl;
}
//----------------------------------------------------------------
// Set change of coordinate frame
//----------------------------------------------------------------
joint->mFrameMatrix = trans.mFrameMatrix;
joint->mOffsetMatrix = trans.mOffsetMatrix;
//----------------------------------------------------------------
// Set mergeparent name
//----------------------------------------------------------------
if ( ! trans.mMergeParentName.empty() )
{
// llinfos << "NOTE: Merging " << joint->mOutName.c_str() <<
// " with parent " <<
// trans.mMergeParentName.c_str() << llendl;
joint->mMergeParentName = trans.mMergeParentName;
}
//----------------------------------------------------------------
// Set mergechild name
//----------------------------------------------------------------
if ( ! trans.mMergeChildName.empty() )
{
// llinfos << "NOTE: Merging " << joint->mName.c_str() <<
// " with child " << trans.mMergeChildName.c_str() << llendl;
joint->mMergeChildName = trans.mMergeChildName;
}
//----------------------------------------------------------------
// Set joint priority
//----------------------------------------------------------------
joint->mPriority = mPriority + trans.mPriorityModifier;
}
}
//-----------------------------------------------------------------------------
// LLBVHLoader::optimize()
//-----------------------------------------------------------------------------
void LLBVHLoader::optimize()
{
//RN: assumes motion blend, which is the default now
if (!mLoop && mEaseIn + mEaseOut > mDuration && mDuration != 0.f)
{
F32 factor = mDuration / (mEaseIn + mEaseOut);
mEaseIn *= factor;
mEaseOut *= factor;
}
JointVector::iterator ji;
for (ji = mJoints.begin(); ji != mJoints.end(); ++ji)
{
Joint *joint = *ji;
BOOL pos_changed = FALSE;
BOOL rot_changed = FALSE;
if ( ! joint->mIgnore )
{
joint->mNumPosKeys = 0;
joint->mNumRotKeys = 0;
LLQuaternion::Order order = bvhStringToOrder( joint->mOrder );
KeyVector::iterator first_key = joint->mKeys.begin();
// no keys?
if (first_key == joint->mKeys.end())
{
joint->mIgnore = TRUE;
continue;
}
LLVector3 first_frame_pos(first_key->mPos);
LLQuaternion first_frame_rot = mayaQ( first_key->mRot[0], first_key->mRot[1], first_key->mRot[2], order);
// skip first key
KeyVector::iterator ki = joint->mKeys.begin();
if (joint->mKeys.size() == 1)
{
// *FIX: use single frame to move pelvis
// if only one keyframe force output for this joint
rot_changed = TRUE;
}
else
{
// if more than one keyframe, use first frame as reference and skip to second
first_key->mIgnorePos = TRUE;
first_key->mIgnoreRot = TRUE;
++ki;
}
KeyVector::iterator ki_prev = ki;
KeyVector::iterator ki_last_good_pos = ki;
KeyVector::iterator ki_last_good_rot = ki;
S32 numPosFramesConsidered = 2;
S32 numRotFramesConsidered = 2;
F32 rot_threshold = ROTATION_KEYFRAME_THRESHOLD / llmax((F32)joint->mChildTreeMaxDepth * 0.33f, 1.f);
double diff_max = 0;
KeyVector::iterator ki_max = ki;
for (; ki != joint->mKeys.end(); ++ki)
{
if (ki_prev == ki_last_good_pos)
{
joint->mNumPosKeys++;
if (dist_vec_squared(LLVector3(ki_prev->mPos), first_frame_pos) > POSITION_MOTION_THRESHOLD_SQUARED)
{
pos_changed = TRUE;
}
}
else
{
//check position for noticeable effect
LLVector3 test_pos(ki_prev->mPos);
LLVector3 last_good_pos(ki_last_good_pos->mPos);
LLVector3 current_pos(ki->mPos);
LLVector3 interp_pos = lerp(current_pos, last_good_pos, 1.f / (F32)numPosFramesConsidered);
if (dist_vec_squared(current_pos, first_frame_pos) > POSITION_MOTION_THRESHOLD_SQUARED)
{
pos_changed = TRUE;
}
if (dist_vec_squared(interp_pos, test_pos) < POSITION_KEYFRAME_THRESHOLD_SQUARED)
{
ki_prev->mIgnorePos = TRUE;
numPosFramesConsidered++;
}
else
{
numPosFramesConsidered = 2;
ki_last_good_pos = ki_prev;
joint->mNumPosKeys++;
}
}
if (ki_prev == ki_last_good_rot)
{
joint->mNumRotKeys++;
LLQuaternion test_rot = mayaQ( ki_prev->mRot[0], ki_prev->mRot[1], ki_prev->mRot[2], order);
F32 x_delta = dist_vec(LLVector3::x_axis * first_frame_rot, LLVector3::x_axis * test_rot);
F32 y_delta = dist_vec(LLVector3::y_axis * first_frame_rot, LLVector3::y_axis * test_rot);
F32 rot_test = x_delta + y_delta;
if (rot_test > ROTATION_MOTION_THRESHOLD)
{
rot_changed = TRUE;
}
}
else
{
//check rotation for noticeable effect
LLQuaternion test_rot = mayaQ( ki_prev->mRot[0], ki_prev->mRot[1], ki_prev->mRot[2], order);
LLQuaternion last_good_rot = mayaQ( ki_last_good_rot->mRot[0], ki_last_good_rot->mRot[1], ki_last_good_rot->mRot[2], order);
LLQuaternion current_rot = mayaQ( ki->mRot[0], ki->mRot[1], ki->mRot[2], order);
LLQuaternion interp_rot = lerp(1.f / (F32)numRotFramesConsidered, current_rot, last_good_rot);
F32 x_delta;
F32 y_delta;
F32 rot_test;
// Test if the rotation has changed significantly since the very first frame. If false
// for all frames, then we'll just throw out this joint's rotation entirely.
x_delta = dist_vec(LLVector3::x_axis * first_frame_rot, LLVector3::x_axis * test_rot);
y_delta = dist_vec(LLVector3::y_axis * first_frame_rot, LLVector3::y_axis * test_rot);
rot_test = x_delta + y_delta;
if (rot_test > ROTATION_MOTION_THRESHOLD)
{
rot_changed = TRUE;
}
x_delta = dist_vec(LLVector3::x_axis * interp_rot, LLVector3::x_axis * test_rot);
y_delta = dist_vec(LLVector3::y_axis * interp_rot, LLVector3::y_axis * test_rot);
rot_test = x_delta + y_delta;
// Draw a line between the last good keyframe and current. Test the distance between the last frame (current-1, i.e. ki_prev)
// and the line. If it's greater than some threshold, then it represents a significant frame and we want to include it.
if (rot_test >= rot_threshold ||
(ki+1 == joint->mKeys.end() && numRotFramesConsidered > 2))
{
// Add the current test keyframe (which is technically the previous key, i.e. ki_prev).
numRotFramesConsidered = 2;
ki_last_good_rot = ki_prev;
joint->mNumRotKeys++;
// Add another keyframe between the last good keyframe and current, at whatever point was the most "significant" (i.e.
// had the largest deviation from the earlier tests). Note that a more robust approach would be test all intermediate
// keyframes against the line between the last good keyframe and current, but we're settling for this other method
// because it's significantly faster.
if (diff_max > 0)
{
if (ki_max->mIgnoreRot == TRUE)
{
ki_max->mIgnoreRot = FALSE;
joint->mNumRotKeys++;
}
diff_max = 0;
}
}
else
{
// This keyframe isn't significant enough, throw it away.
ki_prev->mIgnoreRot = TRUE;
numRotFramesConsidered++;
// Store away the keyframe that has the largest deviation from the interpolated line, for insertion later.
if (rot_test > diff_max)
{
diff_max = rot_test;
ki_max = ki;
}
}
}
ki_prev = ki;
}
}
// don't output joints with no motion
if (!(pos_changed || rot_changed))
{
//llinfos << "Ignoring joint " << joint->mName << llendl;
joint->mIgnore = TRUE;
}
}
}
void LLBVHLoader::reset()
{
mLineNumber = 0;
mNumFrames = 0;
mFrameTime = 0.0f;
mDuration = 0.0f;
mPriority = 2;
mLoop = FALSE;
mLoopInPoint = 0.f;
mLoopOutPoint = 0.f;
mEaseIn = 0.3f;
mEaseOut = 0.3f;
mHand = 1;
mInitialized = FALSE;
mEmoteName = "";
}
//------------------------------------------------------------------------
// LLBVHLoader::getLine()
//------------------------------------------------------------------------
BOOL LLBVHLoader::getLine(apr_file_t* fp)
{
if (apr_file_eof(fp) == APR_EOF)
{
return FALSE;
}
if ( apr_file_gets(mLine, BVH_PARSER_LINE_SIZE, fp) == APR_SUCCESS)
{
mLineNumber++;
return TRUE;
}
return FALSE;
}
// returns required size of output buffer
U32 LLBVHLoader::getOutputSize()
{
LLDataPackerBinaryBuffer dp;
serialize(dp);
return dp.getCurrentSize();
}
// writes contents to datapacker
BOOL LLBVHLoader::serialize(LLDataPacker& dp)
{
JointVector::iterator ji;
KeyVector::iterator ki;
F32 time;
// count number of non-ignored joints
S32 numJoints = 0;
for (ji=mJoints.begin(); ji!=mJoints.end(); ++ji)
{
Joint *joint = *ji;
if ( ! joint->mIgnore )
numJoints++;
}
// print header
dp.packU16(KEYFRAME_MOTION_VERSION, "version");
dp.packU16(KEYFRAME_MOTION_SUBVERSION, "sub_version");
dp.packS32(mPriority, "base_priority");
dp.packF32(mDuration, "duration");
dp.packString(mEmoteName, "emote_name");
dp.packF32(mLoopInPoint, "loop_in_point");
dp.packF32(mLoopOutPoint, "loop_out_point");
dp.packS32(mLoop, "loop");
dp.packF32(mEaseIn, "ease_in_duration");
dp.packF32(mEaseOut, "ease_out_duration");
dp.packU32(mHand, "hand_pose");
dp.packU32(numJoints, "num_joints");
for ( ji = mJoints.begin();
ji != mJoints.end();
++ji )
{
Joint *joint = *ji;
// if ignored, skip it
if ( joint->mIgnore )
continue;
LLQuaternion first_frame_rot;
LLQuaternion fixup_rot;
dp.packString(joint->mOutName, "joint_name");
dp.packS32(joint->mPriority, "joint_priority");
// compute coordinate frame rotation
LLQuaternion frameRot( joint->mFrameMatrix );
LLQuaternion frameRotInv = ~frameRot;
LLQuaternion offsetRot( joint->mOffsetMatrix );
// find mergechild and mergeparent joints, if specified
LLQuaternion mergeParentRot;
LLQuaternion mergeChildRot;
Joint *mergeParent = NULL;
Joint *mergeChild = NULL;
JointVector::iterator mji;
for (mji=mJoints.begin(); mji!=mJoints.end(); ++mji)
{
Joint *mjoint = *mji;
if ( !joint->mMergeParentName.empty() && (mjoint->mName == joint->mMergeParentName) )
{
mergeParent = *mji;
}
if ( !joint->mMergeChildName.empty() && (mjoint->mName == joint->mMergeChildName) )
{
mergeChild = *mji;
}
}
dp.packS32(joint->mNumRotKeys, "num_rot_keys");
LLQuaternion::Order order = bvhStringToOrder( joint->mOrder );
S32 outcount = 0;
S32 frame = 1;
for ( ki = joint->mKeys.begin();
ki != joint->mKeys.end();
++ki )
{
if ((frame == 1) && joint->mRelativeRotationKey)
{
first_frame_rot = mayaQ( ki->mRot[0], ki->mRot[1], ki->mRot[2], order);
fixup_rot.shortestArc(LLVector3::z_axis * first_frame_rot * frameRot, LLVector3::z_axis);
}
if (ki->mIgnoreRot)
{
frame++;
continue;
}
time = (F32)frame * mFrameTime;
if (mergeParent)
{
mergeParentRot = mayaQ( mergeParent->mKeys[frame-1].mRot[0],
mergeParent->mKeys[frame-1].mRot[1],
mergeParent->mKeys[frame-1].mRot[2],
bvhStringToOrder(mergeParent->mOrder) );
LLQuaternion parentFrameRot( mergeParent->mFrameMatrix );
LLQuaternion parentOffsetRot( mergeParent->mOffsetMatrix );
mergeParentRot = ~parentFrameRot * mergeParentRot * parentFrameRot * parentOffsetRot;
}
else
{
mergeParentRot.loadIdentity();
}
if (mergeChild)
{
mergeChildRot = mayaQ( mergeChild->mKeys[frame-1].mRot[0],
mergeChild->mKeys[frame-1].mRot[1],
mergeChild->mKeys[frame-1].mRot[2],
bvhStringToOrder(mergeChild->mOrder) );
LLQuaternion childFrameRot( mergeChild->mFrameMatrix );
LLQuaternion childOffsetRot( mergeChild->mOffsetMatrix );
mergeChildRot = ~childFrameRot * mergeChildRot * childFrameRot * childOffsetRot;
}
else
{
mergeChildRot.loadIdentity();
}
LLQuaternion inRot = mayaQ( ki->mRot[0], ki->mRot[1], ki->mRot[2], order);
LLQuaternion outRot = frameRotInv* mergeChildRot * inRot * mergeParentRot * ~first_frame_rot * frameRot * offsetRot;
U16 time_short = F32_to_U16(time, 0.f, mDuration);
dp.packU16(time_short, "time");
U16 x, y, z;
LLVector3 rot_vec = outRot.packToVector3();
rot_vec.quantize16(-1.f, 1.f, -1.f, 1.f);
x = F32_to_U16(rot_vec.mV[VX], -1.f, 1.f);
y = F32_to_U16(rot_vec.mV[VY], -1.f, 1.f);
z = F32_to_U16(rot_vec.mV[VZ], -1.f, 1.f);
dp.packU16(x, "rot_angle_x");
dp.packU16(y, "rot_angle_y");
dp.packU16(z, "rot_angle_z");
outcount++;
frame++;
}
// output position keys (only for 1st joint)
if ( ji == mJoints.begin() && !joint->mIgnorePositions )
{
dp.packS32(joint->mNumPosKeys, "num_pos_keys");
LLVector3 relPos = joint->mRelativePosition;
LLVector3 relKey;
frame = 1;
for ( ki = joint->mKeys.begin();
ki != joint->mKeys.end();
++ki )
{
if ((frame == 1) && joint->mRelativePositionKey)
{
relKey.setVec(ki->mPos);
}
if (ki->mIgnorePos)
{
frame++;
continue;
}
time = (F32)frame * mFrameTime;
LLVector3 inPos = (LLVector3(ki->mPos) - relKey) * ~first_frame_rot;// * fixup_rot;
LLVector3 outPos = inPos * frameRot * offsetRot;
outPos *= INCHES_TO_METERS;
outPos -= relPos;
outPos.clamp(-LL_MAX_PELVIS_OFFSET, LL_MAX_PELVIS_OFFSET);
U16 time_short = F32_to_U16(time, 0.f, mDuration);
dp.packU16(time_short, "time");
U16 x, y, z;
outPos.quantize16(-LL_MAX_PELVIS_OFFSET, LL_MAX_PELVIS_OFFSET, -LL_MAX_PELVIS_OFFSET, LL_MAX_PELVIS_OFFSET);
x = F32_to_U16(outPos.mV[VX], -LL_MAX_PELVIS_OFFSET, LL_MAX_PELVIS_OFFSET);
y = F32_to_U16(outPos.mV[VY], -LL_MAX_PELVIS_OFFSET, LL_MAX_PELVIS_OFFSET);
z = F32_to_U16(outPos.mV[VZ], -LL_MAX_PELVIS_OFFSET, LL_MAX_PELVIS_OFFSET);
dp.packU16(x, "pos_x");
dp.packU16(y, "pos_y");
dp.packU16(z, "pos_z");
frame++;
}
}
else
{
dp.packS32(0, "num_pos_keys");
}
}
S32 num_constraints = (S32)mConstraints.size();
dp.packS32(num_constraints, "num_constraints");
for (ConstraintVector::iterator constraint_it = mConstraints.begin();
constraint_it != mConstraints.end();
constraint_it++)
{
U8 byte = constraint_it->mChainLength;
dp.packU8(byte, "chain_lenght");
byte = constraint_it->mConstraintType;
dp.packU8(byte, "constraint_type");
dp.packBinaryDataFixed((U8*)constraint_it->mSourceJointName, 16, "source_volume");
dp.packVector3(constraint_it->mSourceOffset, "source_offset");
dp.packBinaryDataFixed((U8*)constraint_it->mTargetJointName, 16, "target_volume");
dp.packVector3(constraint_it->mTargetOffset, "target_offset");
dp.packVector3(constraint_it->mTargetDir, "target_dir");
dp.packF32(constraint_it->mEaseInStart, "ease_in_start");
dp.packF32(constraint_it->mEaseInStop, "ease_in_stop");
dp.packF32(constraint_it->mEaseOutStart, "ease_out_start");
dp.packF32(constraint_it->mEaseOutStop, "ease_out_stop");
}
return TRUE;
}