Files
SingularityViewer/indra/llmath/m3math.cpp
2010-04-02 02:48:44 -03:00

621 lines
15 KiB
C++

/**
* @file m3math.cpp
* @brief LLMatrix3 class implementation.
*
* $LicenseInfo:firstyear=2000&license=viewergpl$
*
* Copyright (c) 2000-2009, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "linden_common.h"
//#include "vmath.h"
#include "v3math.h"
#include "v3dmath.h"
#include "v4math.h"
#include "m4math.h"
#include "m3math.h"
#include "llquaternion.h"
// LLMatrix3
// ji
// LLMatrix3 = |00 01 02 |
// |10 11 12 |
// |20 21 22 |
// LLMatrix3 = |fx fy fz | forward-axis
// |lx ly lz | left-axis
// |ux uy uz | up-axis
// Constructors
LLMatrix3::LLMatrix3(const LLQuaternion &q)
{
setRot(q);
}
LLMatrix3::LLMatrix3(const F32 angle, const LLVector3 &vec)
{
LLQuaternion quat(angle, vec);
setRot(quat);
}
LLMatrix3::LLMatrix3(const F32 angle, const LLVector3d &vec)
{
LLVector3 vec_f;
vec_f.setVec(vec);
LLQuaternion quat(angle, vec_f);
setRot(quat);
}
LLMatrix3::LLMatrix3(const F32 angle, const LLVector4 &vec)
{
LLQuaternion quat(angle, vec);
setRot(quat);
}
LLMatrix3::LLMatrix3(const F32 angle, const F32 x, const F32 y, const F32 z)
{
LLVector3 vec(x, y, z);
LLQuaternion quat(angle, vec);
setRot(quat);
}
LLMatrix3::LLMatrix3(const F32 roll, const F32 pitch, const F32 yaw)
{
setRot(roll,pitch,yaw);
}
// From Matrix and Quaternion FAQ
void LLMatrix3::getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const
{
F64 angle_x, angle_y, angle_z;
F64 cx, cy, cz; // cosine of angle_x, angle_y, angle_z
F64 sx, sz; // sine of angle_x, angle_y, angle_z
angle_y = asin(llclamp(mMatrix[2][0], -1.f, 1.f));
cy = cos(angle_y);
if (fabs(cy) > 0.005) // non-zero
{
// no gimbal lock
cx = mMatrix[2][2] / cy;
sx = - mMatrix[2][1] / cy;
angle_x = (F32) atan2(sx, cx);
cz = mMatrix[0][0] / cy;
sz = - mMatrix[1][0] / cy;
angle_z = (F32) atan2(sz, cz);
}
else
{
// yup, gimbal lock
angle_x = 0;
// some tricky math thereby avoided, see article
cz = mMatrix[1][1];
sz = mMatrix[0][1];
angle_z = atan2(sz, cz);
}
*roll = (F32)angle_x;
*pitch = (F32)angle_y;
*yaw = (F32)angle_z;
}
// Clear and Assignment Functions
const LLMatrix3& LLMatrix3::setIdentity()
{
mMatrix[0][0] = 1.f;
mMatrix[0][1] = 0.f;
mMatrix[0][2] = 0.f;
mMatrix[1][0] = 0.f;
mMatrix[1][1] = 1.f;
mMatrix[1][2] = 0.f;
mMatrix[2][0] = 0.f;
mMatrix[2][1] = 0.f;
mMatrix[2][2] = 1.f;
return (*this);
}
const LLMatrix3& LLMatrix3::clear()
{
mMatrix[0][0] = 0.f;
mMatrix[0][1] = 0.f;
mMatrix[0][2] = 0.f;
mMatrix[1][0] = 0.f;
mMatrix[1][1] = 0.f;
mMatrix[1][2] = 0.f;
mMatrix[2][0] = 0.f;
mMatrix[2][1] = 0.f;
mMatrix[2][2] = 0.f;
return (*this);
}
const LLMatrix3& LLMatrix3::setZero()
{
mMatrix[0][0] = 0.f;
mMatrix[0][1] = 0.f;
mMatrix[0][2] = 0.f;
mMatrix[1][0] = 0.f;
mMatrix[1][1] = 0.f;
mMatrix[1][2] = 0.f;
mMatrix[2][0] = 0.f;
mMatrix[2][1] = 0.f;
mMatrix[2][2] = 0.f;
return (*this);
}
// various useful mMatrix functions
const LLMatrix3& LLMatrix3::transpose()
{
// transpose the matrix
F32 temp;
temp = mMatrix[VX][VY]; mMatrix[VX][VY] = mMatrix[VY][VX]; mMatrix[VY][VX] = temp;
temp = mMatrix[VX][VZ]; mMatrix[VX][VZ] = mMatrix[VZ][VX]; mMatrix[VZ][VX] = temp;
temp = mMatrix[VY][VZ]; mMatrix[VY][VZ] = mMatrix[VZ][VY]; mMatrix[VZ][VY] = temp;
return *this;
}
F32 LLMatrix3::determinant() const
{
// Is this a useful method when we assume the matrices are valid rotation
// matrices throughout this implementation?
return mMatrix[0][0] * (mMatrix[1][1] * mMatrix[2][2] - mMatrix[1][2] * mMatrix[2][1]) +
mMatrix[0][1] * (mMatrix[1][2] * mMatrix[2][0] - mMatrix[1][0] * mMatrix[2][2]) +
mMatrix[0][2] * (mMatrix[1][0] * mMatrix[2][1] - mMatrix[1][1] * mMatrix[2][0]);
}
// inverts this matrix
void LLMatrix3::invert()
{
// fails silently if determinant is zero too small
F32 det = determinant();
const F32 VERY_SMALL_DETERMINANT = 0.000001f;
if (fabs(det) > VERY_SMALL_DETERMINANT)
{
// invertiable
LLMatrix3 t(*this);
mMatrix[VX][VX] = ( t.mMatrix[VY][VY] * t.mMatrix[VZ][VZ] - t.mMatrix[VY][VZ] * t.mMatrix[VZ][VY] ) / det;
mMatrix[VY][VX] = ( t.mMatrix[VY][VZ] * t.mMatrix[VZ][VX] - t.mMatrix[VY][VX] * t.mMatrix[VZ][VZ] ) / det;
mMatrix[VZ][VX] = ( t.mMatrix[VY][VX] * t.mMatrix[VZ][VY] - t.mMatrix[VY][VY] * t.mMatrix[VZ][VX] ) / det;
mMatrix[VX][VY] = ( t.mMatrix[VZ][VY] * t.mMatrix[VX][VZ] - t.mMatrix[VZ][VZ] * t.mMatrix[VX][VY] ) / det;
mMatrix[VY][VY] = ( t.mMatrix[VZ][VZ] * t.mMatrix[VX][VX] - t.mMatrix[VZ][VX] * t.mMatrix[VX][VZ] ) / det;
mMatrix[VZ][VY] = ( t.mMatrix[VZ][VX] * t.mMatrix[VX][VY] - t.mMatrix[VZ][VY] * t.mMatrix[VX][VX] ) / det;
mMatrix[VX][VZ] = ( t.mMatrix[VX][VY] * t.mMatrix[VY][VZ] - t.mMatrix[VX][VZ] * t.mMatrix[VY][VY] ) / det;
mMatrix[VY][VZ] = ( t.mMatrix[VX][VZ] * t.mMatrix[VY][VX] - t.mMatrix[VX][VX] * t.mMatrix[VY][VZ] ) / det;
mMatrix[VZ][VZ] = ( t.mMatrix[VX][VX] * t.mMatrix[VY][VY] - t.mMatrix[VX][VY] * t.mMatrix[VY][VX] ) / det;
}
}
// does not assume a rotation matrix, and does not divide by determinant, assuming results will be renormalized
const LLMatrix3& LLMatrix3::adjointTranspose()
{
LLMatrix3 adjoint_transpose;
adjoint_transpose.mMatrix[VX][VX] = mMatrix[VY][VY] * mMatrix[VZ][VZ] - mMatrix[VY][VZ] * mMatrix[VZ][VY] ;
adjoint_transpose.mMatrix[VY][VX] = mMatrix[VY][VZ] * mMatrix[VZ][VX] - mMatrix[VY][VX] * mMatrix[VZ][VZ] ;
adjoint_transpose.mMatrix[VZ][VX] = mMatrix[VY][VX] * mMatrix[VZ][VY] - mMatrix[VY][VY] * mMatrix[VZ][VX] ;
adjoint_transpose.mMatrix[VX][VY] = mMatrix[VZ][VY] * mMatrix[VX][VZ] - mMatrix[VZ][VZ] * mMatrix[VX][VY] ;
adjoint_transpose.mMatrix[VY][VY] = mMatrix[VZ][VZ] * mMatrix[VX][VX] - mMatrix[VZ][VX] * mMatrix[VX][VZ] ;
adjoint_transpose.mMatrix[VZ][VY] = mMatrix[VZ][VX] * mMatrix[VX][VY] - mMatrix[VZ][VY] * mMatrix[VX][VX] ;
adjoint_transpose.mMatrix[VX][VZ] = mMatrix[VX][VY] * mMatrix[VY][VZ] - mMatrix[VX][VZ] * mMatrix[VY][VY] ;
adjoint_transpose.mMatrix[VY][VZ] = mMatrix[VX][VZ] * mMatrix[VY][VX] - mMatrix[VX][VX] * mMatrix[VY][VZ] ;
adjoint_transpose.mMatrix[VZ][VZ] = mMatrix[VX][VX] * mMatrix[VY][VY] - mMatrix[VX][VY] * mMatrix[VY][VX] ;
*this = adjoint_transpose;
return *this;
}
// SJB: This code is correct for a logicly stored (non-transposed) matrix;
// Our matrices are stored transposed, OpenGL style, so this generates the
// INVERSE quaternion (-x, -y, -z, w)!
// Because we use similar logic in LLQuaternion::getMatrix3,
// we are internally consistant so everything works OK :)
LLQuaternion LLMatrix3::quaternion() const
{
LLQuaternion quat;
F32 tr, s, q[4];
U32 i, j, k;
U32 nxt[3] = {1, 2, 0};
tr = mMatrix[0][0] + mMatrix[1][1] + mMatrix[2][2];
// check the diagonal
if (tr > 0.f)
{
s = (F32)sqrt (tr + 1.f);
quat.mQ[VS] = s / 2.f;
s = 0.5f / s;
quat.mQ[VX] = (mMatrix[1][2] - mMatrix[2][1]) * s;
quat.mQ[VY] = (mMatrix[2][0] - mMatrix[0][2]) * s;
quat.mQ[VZ] = (mMatrix[0][1] - mMatrix[1][0]) * s;
}
else
{
// diagonal is negative
i = 0;
if (mMatrix[1][1] > mMatrix[0][0])
i = 1;
if (mMatrix[2][2] > mMatrix[i][i])
i = 2;
j = nxt[i];
k = nxt[j];
s = (F32)sqrt ((mMatrix[i][i] - (mMatrix[j][j] + mMatrix[k][k])) + 1.f);
q[i] = s * 0.5f;
if (s != 0.f)
s = 0.5f / s;
q[3] = (mMatrix[j][k] - mMatrix[k][j]) * s;
q[j] = (mMatrix[i][j] + mMatrix[j][i]) * s;
q[k] = (mMatrix[i][k] + mMatrix[k][i]) * s;
quat.setQuat(q);
}
return quat;
}
// These functions take Rotation arguments
const LLMatrix3& LLMatrix3::setRot(const F32 angle, const F32 x, const F32 y, const F32 z)
{
setRot(LLQuaternion(angle,x,y,z));
return *this;
}
const LLMatrix3& LLMatrix3::setRot(const F32 angle, const LLVector3 &vec)
{
setRot(LLQuaternion(angle, vec));
return *this;
}
const LLMatrix3& LLMatrix3::setRot(const F32 roll, const F32 pitch, const F32 yaw)
{
// Rotates RH about x-axis by 'roll' then
// rotates RH about the old y-axis by 'pitch' then
// rotates RH about the original z-axis by 'yaw'.
// .
// /|\ yaw axis
// | __.
// ._ ___| /| pitch axis
// _||\ \\ |-. /
// \|| \_______\_|__\_/_______
// | _ _ o o o_o_o_o o /_\_ ________\ roll axis
// // /_______/ /__________> /
// /_,-' // /
// /__,-'
F32 cx, sx, cy, sy, cz, sz;
F32 cxsy, sxsy;
cx = (F32)cos(roll); //A
sx = (F32)sin(roll); //B
cy = (F32)cos(pitch); //C
sy = (F32)sin(pitch); //D
cz = (F32)cos(yaw); //E
sz = (F32)sin(yaw); //F
cxsy = cx * sy; //AD
sxsy = sx * sy; //BD
mMatrix[0][0] = cy * cz;
mMatrix[1][0] = -cy * sz;
mMatrix[2][0] = sy;
mMatrix[0][1] = sxsy * cz + cx * sz;
mMatrix[1][1] = -sxsy * sz + cx * cz;
mMatrix[2][1] = -sx * cy;
mMatrix[0][2] = -cxsy * cz + sx * sz;
mMatrix[1][2] = cxsy * sz + sx * cz;
mMatrix[2][2] = cx * cy;
return *this;
}
const LLMatrix3& LLMatrix3::setRot(const LLQuaternion &q)
{
*this = q.getMatrix3();
return *this;
}
const LLMatrix3& LLMatrix3::setRows(const LLVector3 &fwd, const LLVector3 &left, const LLVector3 &up)
{
mMatrix[0][0] = fwd.mV[0];
mMatrix[0][1] = fwd.mV[1];
mMatrix[0][2] = fwd.mV[2];
mMatrix[1][0] = left.mV[0];
mMatrix[1][1] = left.mV[1];
mMatrix[1][2] = left.mV[2];
mMatrix[2][0] = up.mV[0];
mMatrix[2][1] = up.mV[1];
mMatrix[2][2] = up.mV[2];
return *this;
}
const LLMatrix3& LLMatrix3::setRow( U32 rowIndex, const LLVector3& row )
{
llassert( rowIndex >= 0 && rowIndex < NUM_VALUES_IN_MAT3 );
mMatrix[rowIndex][0] = row[0];
mMatrix[rowIndex][1] = row[1];
mMatrix[rowIndex][2] = row[2];
return *this;
}
const LLMatrix3& LLMatrix3::setCol( U32 colIndex, const LLVector3& col )
{
llassert( colIndex >= 0 && colIndex < NUM_VALUES_IN_MAT3 );
mMatrix[0][colIndex] = col[0];
mMatrix[1][colIndex] = col[1];
mMatrix[2][colIndex] = col[2];
return *this;
}
// Rotate exisitng mMatrix
const LLMatrix3& LLMatrix3::rotate(const F32 angle, const F32 x, const F32 y, const F32 z)
{
LLMatrix3 mat(angle, x, y, z);
*this *= mat;
return *this;
}
const LLMatrix3& LLMatrix3::rotate(const F32 angle, const LLVector3 &vec)
{
LLMatrix3 mat(angle, vec);
*this *= mat;
return *this;
}
const LLMatrix3& LLMatrix3::rotate(const F32 roll, const F32 pitch, const F32 yaw)
{
LLMatrix3 mat(roll, pitch, yaw);
*this *= mat;
return *this;
}
const LLMatrix3& LLMatrix3::rotate(const LLQuaternion &q)
{
LLMatrix3 mat(q);
*this *= mat;
return *this;
}
void LLMatrix3::add(const LLMatrix3& other_matrix)
{
for (S32 i = 0; i < 3; ++i)
{
for (S32 j = 0; j < 3; ++j)
{
mMatrix[i][j] += other_matrix.mMatrix[i][j];
}
}
}
LLVector3 LLMatrix3::getFwdRow() const
{
return LLVector3(mMatrix[VX]);
}
LLVector3 LLMatrix3::getLeftRow() const
{
return LLVector3(mMatrix[VY]);
}
LLVector3 LLMatrix3::getUpRow() const
{
return LLVector3(mMatrix[VZ]);
}
const LLMatrix3& LLMatrix3::orthogonalize()
{
LLVector3 x_axis(mMatrix[VX]);
LLVector3 y_axis(mMatrix[VY]);
LLVector3 z_axis(mMatrix[VZ]);
x_axis.normVec();
y_axis -= x_axis * (x_axis * y_axis);
y_axis.normVec();
z_axis = x_axis % y_axis;
setRows(x_axis, y_axis, z_axis);
return (*this);
}
// LLMatrix3 Operators
LLMatrix3 operator*(const LLMatrix3 &a, const LLMatrix3 &b)
{
U32 i, j;
LLMatrix3 mat;
for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
{
mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] +
a.mMatrix[j][1] * b.mMatrix[1][i] +
a.mMatrix[j][2] * b.mMatrix[2][i];
}
}
return mat;
}
/* Not implemented to help enforce code consistency with the syntax of
row-major notation. This is a Good Thing.
LLVector3 operator*(const LLMatrix3 &a, const LLVector3 &b)
{
LLVector3 vec;
// matrix operates "from the left" on column vector
vec.mV[VX] = a.mMatrix[VX][VX] * b.mV[VX] +
a.mMatrix[VX][VY] * b.mV[VY] +
a.mMatrix[VX][VZ] * b.mV[VZ];
vec.mV[VY] = a.mMatrix[VY][VX] * b.mV[VX] +
a.mMatrix[VY][VY] * b.mV[VY] +
a.mMatrix[VY][VZ] * b.mV[VZ];
vec.mV[VZ] = a.mMatrix[VZ][VX] * b.mV[VX] +
a.mMatrix[VZ][VY] * b.mV[VY] +
a.mMatrix[VZ][VZ] * b.mV[VZ];
return vec;
}
*/
LLVector3 operator*(const LLVector3 &a, const LLMatrix3 &b)
{
// matrix operates "from the right" on row vector
return LLVector3(
a.mV[VX] * b.mMatrix[VX][VX] +
a.mV[VY] * b.mMatrix[VY][VX] +
a.mV[VZ] * b.mMatrix[VZ][VX],
a.mV[VX] * b.mMatrix[VX][VY] +
a.mV[VY] * b.mMatrix[VY][VY] +
a.mV[VZ] * b.mMatrix[VZ][VY],
a.mV[VX] * b.mMatrix[VX][VZ] +
a.mV[VY] * b.mMatrix[VY][VZ] +
a.mV[VZ] * b.mMatrix[VZ][VZ] );
}
LLVector3d operator*(const LLVector3d &a, const LLMatrix3 &b)
{
// matrix operates "from the right" on row vector
return LLVector3d(
a.mdV[VX] * b.mMatrix[VX][VX] +
a.mdV[VY] * b.mMatrix[VY][VX] +
a.mdV[VZ] * b.mMatrix[VZ][VX],
a.mdV[VX] * b.mMatrix[VX][VY] +
a.mdV[VY] * b.mMatrix[VY][VY] +
a.mdV[VZ] * b.mMatrix[VZ][VY],
a.mdV[VX] * b.mMatrix[VX][VZ] +
a.mdV[VY] * b.mMatrix[VY][VZ] +
a.mdV[VZ] * b.mMatrix[VZ][VZ] );
}
bool operator==(const LLMatrix3 &a, const LLMatrix3 &b)
{
U32 i, j;
for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
{
if (a.mMatrix[j][i] != b.mMatrix[j][i])
return FALSE;
}
}
return TRUE;
}
bool operator!=(const LLMatrix3 &a, const LLMatrix3 &b)
{
U32 i, j;
for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
{
if (a.mMatrix[j][i] != b.mMatrix[j][i])
return TRUE;
}
}
return FALSE;
}
const LLMatrix3& operator*=(LLMatrix3 &a, const LLMatrix3 &b)
{
U32 i, j;
LLMatrix3 mat;
for (i = 0; i < NUM_VALUES_IN_MAT3; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT3; j++)
{
mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] +
a.mMatrix[j][1] * b.mMatrix[1][i] +
a.mMatrix[j][2] * b.mMatrix[2][i];
}
}
a = mat;
return a;
}
const LLMatrix3& operator*=(LLMatrix3 &a, F32 scalar )
{
for( U32 i = 0; i < NUM_VALUES_IN_MAT3; ++i )
{
for( U32 j = 0; j < NUM_VALUES_IN_MAT3; ++j )
{
a.mMatrix[i][j] *= scalar;
}
}
return a;
}
std::ostream& operator<<(std::ostream& s, const LLMatrix3 &a)
{
s << "{ "
<< a.mMatrix[VX][VX] << ", " << a.mMatrix[VX][VY] << ", " << a.mMatrix[VX][VZ] << "; "
<< a.mMatrix[VY][VX] << ", " << a.mMatrix[VY][VY] << ", " << a.mMatrix[VY][VZ] << "; "
<< a.mMatrix[VZ][VX] << ", " << a.mMatrix[VZ][VY] << ", " << a.mMatrix[VZ][VZ]
<< " }";
return s;
}