Files
SingularityViewer/indra/llmath/llcamera.cpp
Siana Gearz fcd37f3a45 Linuxy fixes
2011-08-01 19:55:57 +02:00

678 lines
17 KiB
C++

/**
* @file llcamera.cpp
* @brief Implementation of the LLCamera class.
*
* $LicenseInfo:firstyear=2000&license=viewergpl$
*
* Copyright (c) 2000-2009, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "llmath.h"
#include "llcamera.h"
// ---------------- Constructors and destructors ----------------
LLCamera::LLCamera() :
LLCoordFrame(),
mView(DEFAULT_FIELD_OF_VIEW),
mAspect(DEFAULT_ASPECT_RATIO),
mViewHeightInPixels( -1 ), // invalid height
mNearPlane(DEFAULT_NEAR_PLANE),
mFarPlane(DEFAULT_FAR_PLANE),
mFixedDistance(-1.f),
mPlaneCount(6),
mFrustumCornerDist(0.f)
{
calculateFrustumPlanes();
}
LLCamera::LLCamera(F32 vertical_fov_rads, F32 aspect_ratio, S32 view_height_in_pixels, F32 near_plane, F32 far_plane) :
LLCoordFrame(),
mViewHeightInPixels(view_height_in_pixels),
mFixedDistance(-1.f),
mPlaneCount(6),
mFrustumCornerDist(0.f)
{
mAspect = llclamp(aspect_ratio, MIN_ASPECT_RATIO, MAX_ASPECT_RATIO);
mNearPlane = llclamp(near_plane, MIN_NEAR_PLANE, MAX_NEAR_PLANE);
if(far_plane < 0) far_plane = DEFAULT_FAR_PLANE;
mFarPlane = llclamp(far_plane, MIN_FAR_PLANE, MAX_FAR_PLANE);
setView(vertical_fov_rads);
}
LLCamera::~LLCamera()
{
}
// ---------------- LLCamera::getFoo() member functions ----------------
F32 LLCamera::getMinView() const
{
// minimum vertical fov needs to be constrained in narrow windows.
return mAspect > 1
? MIN_FIELD_OF_VIEW // wide views
: MIN_FIELD_OF_VIEW * 1/mAspect; // clamps minimum width in narrow views
}
F32 LLCamera::getMaxView() const
{
// maximum vertical fov needs to be constrained in wide windows.
return mAspect > 1
? MAX_FIELD_OF_VIEW / mAspect // clamps maximum width in wide views
: MAX_FIELD_OF_VIEW; // narrow views
}
// ---------------- LLCamera::setFoo() member functions ----------------
void LLCamera::setUserClipPlane(const LLPlane& plane)
{
mPlaneCount = 7;
mAgentPlanes[6] = plane;
mPlaneMask[6] = plane.calcPlaneMask();
}
void LLCamera::disableUserClipPlane()
{
mPlaneCount = 6;
}
void LLCamera::setView(F32 vertical_fov_rads)
{
mView = llclamp(vertical_fov_rads, MIN_FIELD_OF_VIEW, MAX_FIELD_OF_VIEW);
calculateFrustumPlanes();
}
void LLCamera::setViewHeightInPixels(S32 height)
{
mViewHeightInPixels = height;
// Don't really need to do this, but update the pixel meter ratio with it.
calculateFrustumPlanes();
}
void LLCamera::setAspect(F32 aspect_ratio)
{
mAspect = llclamp(aspect_ratio, MIN_ASPECT_RATIO, MAX_ASPECT_RATIO);
calculateFrustumPlanes();
}
void LLCamera::setNear(F32 near_plane)
{
mNearPlane = llclamp(near_plane, MIN_NEAR_PLANE, MAX_NEAR_PLANE);
calculateFrustumPlanes();
}
void LLCamera::setFar(F32 far_plane)
{
mFarPlane = llclamp(far_plane, MIN_FAR_PLANE, MAX_FAR_PLANE);
calculateFrustumPlanes();
}
// ---------------- read/write to buffer ----------------
size_t LLCamera::writeFrustumToBuffer(char *buffer) const
{
memcpy(buffer, &mView, sizeof(F32)); /* Flawfinder: ignore */
buffer += sizeof(F32);
memcpy(buffer, &mAspect, sizeof(F32)); /* Flawfinder: ignore */
buffer += sizeof(F32);
memcpy(buffer, &mNearPlane, sizeof(F32)); /* Flawfinder: ignore */
buffer += sizeof(F32);
memcpy(buffer, &mFarPlane, sizeof(F32)); /* Flawfinder: ignore */
return 4*sizeof(F32);
}
size_t LLCamera::readFrustumFromBuffer(const char *buffer)
{
memcpy(&mView, buffer, sizeof(F32)); /* Flawfinder: ignore */
buffer += sizeof(F32);
memcpy(&mAspect, buffer, sizeof(F32)); /* Flawfinder: ignore */
buffer += sizeof(F32);
memcpy(&mNearPlane, buffer, sizeof(F32)); /* Flawfinder: ignore */
buffer += sizeof(F32);
memcpy(&mFarPlane, buffer, sizeof(F32)); /* Flawfinder: ignore */
return 4*sizeof(F32);
}
// ---------------- test methods ----------------
S32 LLCamera::AABBInFrustum(const LLVector4a &center, const LLVector4a& radius)
{
static const LLVector4a scaler[] = {
LLVector4a(-1,-1,-1),
LLVector4a( 1,-1,-1),
LLVector4a(-1, 1,-1),
LLVector4a( 1, 1,-1),
LLVector4a(-1,-1, 1),
LLVector4a( 1,-1, 1),
LLVector4a(-1, 1, 1),
LLVector4a( 1, 1, 1)
};
U8 mask = 0;
bool result = false;
LLVector4a rscale, maxp, minp;
LLSimdScalar d;
for (U32 i = 0; i < mPlaneCount; i++)
{
mask = mPlaneMask[i];
if (mask != 0xff)
{
const LLPlane& p(mAgentPlanes[i]);
p.getAt<3>(d);
rscale.setMul(radius, scaler[mask]);
minp.setSub(center, rscale);
d = -d;
if (p.dot3(minp).getF32() > d)
{
return 0;
}
if(!result)
{
maxp.setAdd(center, rscale);
result = (p.dot3(maxp).getF32() > d);
}
}
}
return result?1:2;
}
S32 LLCamera::AABBInFrustumNoFarClip(const LLVector4a& center, const LLVector4a& radius)
{
static const LLVector4a scaler[] = {
LLVector4a(-1,-1,-1),
LLVector4a( 1,-1,-1),
LLVector4a(-1, 1,-1),
LLVector4a( 1, 1,-1),
LLVector4a(-1,-1, 1),
LLVector4a( 1,-1, 1),
LLVector4a(-1, 1, 1),
LLVector4a( 1, 1, 1)
};
U8 mask = 0;
bool result = false;
LLVector4a rscale, maxp, minp;
LLSimdScalar d;
for (U32 i = 0; i < mPlaneCount; i++)
{
mask = mPlaneMask[i];
if ((i != 5) && (mask != 0xff))
{
const LLPlane& p(mAgentPlanes[i]);
p.getAt<3>(d);
rscale.setMul(radius, scaler[mask]);
minp.setSub(center, rscale);
d = -d;
if (p.dot3(minp).getF32() > d)
{
return 0;
}
if(!result)
{
maxp.setAdd(center, rscale);
result = (p.dot3(maxp).getF32() > d);
}
}
}
return result?1:2;
}
int LLCamera::sphereInFrustumQuick(const LLVector3 &sphere_center, const F32 radius)
{
LLVector3 dist = sphere_center-mFrustCenter;
float dsq = dist * dist;
float rsq = mFarPlane*0.5f + radius;
rsq *= rsq;
if (dsq < rsq)
{
return 1;
}
return 0;
}
// HACK: This version is still around because the version below doesn't work
// unless the agent planes are initialized.
// Return 1 if sphere is in frustum, 2 if fully in frustum, otherwise 0.
// NOTE: 'center' is in absolute frame.
int LLCamera::sphereInFrustumOld(const LLVector3 &sphere_center, const F32 radius) const
{
// Returns 1 if sphere is in frustum, 0 if not.
// modified so that default view frust is along X with Z vertical
F32 x, y, z, rightDist, leftDist, topDist, bottomDist;
// Subtract the view position
//LLVector3 relative_center;
//relative_center = sphere_center - getOrigin();
LLVector3 rel_center(sphere_center);
rel_center -= mOrigin;
bool all_in = TRUE;
// Transform relative_center.x to camera frame
x = mXAxis * rel_center;
if (x < MIN_NEAR_PLANE - radius)
{
return 0;
}
else if (x < MIN_NEAR_PLANE + radius)
{
all_in = FALSE;
}
if (x > mFarPlane + radius)
{
return 0;
}
else if (x > mFarPlane - radius)
{
all_in = FALSE;
}
// Transform relative_center.y to camera frame
y = mYAxis * rel_center;
// distance to plane is the dot product of (x, y, 0) * plane_normal
rightDist = x * mLocalPlanes[PLANE_RIGHT][VX] + y * mLocalPlanes[PLANE_RIGHT][VY];
if (rightDist < -radius)
{
return 0;
}
else if (rightDist < radius)
{
all_in = FALSE;
}
leftDist = x * mLocalPlanes[PLANE_LEFT][VX] + y * mLocalPlanes[PLANE_LEFT][VY];
if (leftDist < -radius)
{
return 0;
}
else if (leftDist < radius)
{
all_in = FALSE;
}
// Transform relative_center.y to camera frame
z = mZAxis * rel_center;
topDist = x * mLocalPlanes[PLANE_TOP][VX] + z * mLocalPlanes[PLANE_TOP][VZ];
if (topDist < -radius)
{
return 0;
}
else if (topDist < radius)
{
all_in = FALSE;
}
bottomDist = x * mLocalPlanes[PLANE_BOTTOM][VX] + z * mLocalPlanes[PLANE_BOTTOM][VZ];
if (bottomDist < -radius)
{
return 0;
}
else if (bottomDist < radius)
{
all_in = FALSE;
}
if (all_in)
{
return 2;
}
return 1;
}
// HACK: This (presumably faster) version only currently works if you set up the
// frustum planes using GL. At some point we should get those planes through another
// mechanism, and then we can get rid of the "old" version above.
// Return 1 if sphere is in frustum, 2 if fully in frustum, otherwise 0.
// NOTE: 'center' is in absolute frame.
int LLCamera::sphereInFrustum(const LLVector3 &sphere_center, const F32 radius) const
{
// Returns 1 if sphere is in frustum, 0 if not.
bool res = false;
for (int i = 0; i < 6; i++)
{
if (mPlaneMask[i] != 0xff)
{
float d = mAgentPlanes[i].dist(sphere_center);
if (d > radius)
{
return 0;
}
res = res || (d > -radius);
}
}
return res?1:2;
}
// return height of a sphere of given radius, located at center, in pixels
F32 LLCamera::heightInPixels(const LLVector3 &center, F32 radius ) const
{
if (radius == 0.f) return 0.f;
// If height initialized
if (mViewHeightInPixels > -1)
{
// Convert sphere to coord system with 0,0,0 at camera
LLVector3 vec = center - mOrigin;
// Compute distance to sphere
F32 dist = vec.magVec();
// Calculate angle of whole object
F32 angle = 2.0f * (F32) atan2(radius, dist);
// Calculate fraction of field of view
F32 fraction_of_fov = angle / mView;
// Compute number of pixels tall, based on vertical field of view
return (fraction_of_fov * mViewHeightInPixels);
}
else
{
// return invalid height
return -1.0f;
}
}
// If pos is visible, return the distance from pos to the camera.
// Use fudge distance to scale rad against top/bot/left/right planes
// Otherwise, return -distance
F32 LLCamera::visibleDistance(const LLVector3 &pos, F32 rad, F32 fudgedist, U32 planemask) const
{
if (mFixedDistance > 0)
{
return mFixedDistance;
}
LLVector3 dvec = pos - mOrigin;
// Check visibility
F32 dist = dvec.magVec();
if (dist > rad)
{
F32 dp,tdist;
dp = dvec * mXAxis;
if (dp < -rad)
return -dist;
rad *= fudgedist;
LLVector3 tvec(pos);
for (int p=0; p<PLANE_NUM; p++)
{
if (!(planemask & (1<<p)))
continue;
tdist = -(mWorldPlanes[p].dist(tvec));
if (tdist > rad)
return -dist;
}
}
return dist;
}
// Like visibleDistance, except uses mHorizPlanes[], which are left and right
// planes perpindicular to (0,0,1) in world space
F32 LLCamera::visibleHorizDistance(const LLVector3 &pos, F32 rad, F32 fudgedist, U32 planemask) const
{
if (mFixedDistance > 0)
{
return mFixedDistance;
}
LLVector3 dvec = pos - mOrigin;
// Check visibility
F32 dist = dvec.magVec();
if (dist > rad)
{
rad *= fudgedist;
LLVector3 tvec(pos);
for (int p=0; p<HORIZ_PLANE_NUM; p++)
{
if (!(planemask & (1<<p)))
continue;
F32 tdist = -(mHorizPlanes[p].dist(tvec));
if (tdist > rad)
return -dist;
}
}
return dist;
}
// ---------------- friends and operators ----------------
std::ostream& operator<<(std::ostream &s, const LLCamera &C)
{
s << "{ \n";
s << " Center = " << C.getOrigin() << "\n";
s << " AtAxis = " << C.getXAxis() << "\n";
s << " LeftAxis = " << C.getYAxis() << "\n";
s << " UpAxis = " << C.getZAxis() << "\n";
s << " View = " << C.getView() << "\n";
s << " Aspect = " << C.getAspect() << "\n";
s << " NearPlane = " << C.mNearPlane << "\n";
s << " FarPlane = " << C.mFarPlane << "\n";
s << " TopPlane = " << C.mLocalPlanes[LLCamera::PLANE_TOP][VX] << " "
<< C.mLocalPlanes[LLCamera::PLANE_TOP][VY] << " "
<< C.mLocalPlanes[LLCamera::PLANE_TOP][VZ] << "\n";
s << " BottomPlane = " << C.mLocalPlanes[LLCamera::PLANE_BOTTOM][VX] << " "
<< C.mLocalPlanes[LLCamera::PLANE_BOTTOM][VY] << " "
<< C.mLocalPlanes[LLCamera::PLANE_BOTTOM][VZ] << "\n";
s << " LeftPlane = " << C.mLocalPlanes[LLCamera::PLANE_LEFT][VX] << " "
<< C.mLocalPlanes[LLCamera::PLANE_LEFT][VY] << " "
<< C.mLocalPlanes[LLCamera::PLANE_LEFT][VZ] << "\n";
s << " RightPlane = " << C.mLocalPlanes[LLCamera::PLANE_RIGHT][VX] << " "
<< C.mLocalPlanes[LLCamera::PLANE_RIGHT][VY] << " "
<< C.mLocalPlanes[LLCamera::PLANE_RIGHT][VZ] << "\n";
s << "}";
return s;
}
// ---------------- private member functions ----------------
void LLCamera::calculateFrustumPlanes()
{
// The planes only change when any of the frustum descriptions change.
// They are not affected by changes of the position of the Frustum
// because they are known in the view frame and the position merely
// provides information on how to get from the absolute frame to the
// view frame.
F32 left,right,top,bottom;
top = mFarPlane * (F32)tanf(0.5f * mView);
bottom = -top;
left = top * mAspect;
right = -left;
calculateFrustumPlanes(left, right, top, bottom);
}
LLPlane planeFromPoints(LLVector3 p1, LLVector3 p2, LLVector3 p3)
{
LLVector3 n = ((p2-p1)%(p3-p1));
n.normVec();
return LLPlane(p1, n);
}
void LLCamera::ignoreAgentFrustumPlane(S32 idx)
{
if (idx < 0 || idx > (S32) mPlaneCount)
{
return;
}
mPlaneMask[idx] = 0xff;
mAgentPlanes[idx].clear();
}
void LLCamera::calcAgentFrustumPlanes(LLVector3* frust)
{
for (int i = 0; i < 8; i++)
{
mAgentFrustum[i] = frust[i];
}
mFrustumCornerDist = (frust[5] - getOrigin()).magVec();
//frust contains the 8 points of the frustum, calculate 6 planes
//order of planes is important, keep most likely to fail in the front of the list
//near - frust[0], frust[1], frust[2]
mAgentPlanes[2] = planeFromPoints(frust[0], frust[1], frust[2]);
//far
mAgentPlanes[5] = planeFromPoints(frust[5], frust[4], frust[6]);
//left
mAgentPlanes[0] = planeFromPoints(frust[4], frust[0], frust[7]);
//right
mAgentPlanes[1] = planeFromPoints(frust[1], frust[5], frust[6]);
//top
mAgentPlanes[4] = planeFromPoints(frust[3], frust[2], frust[6]);
//bottom
mAgentPlanes[3] = planeFromPoints(frust[1], frust[0], frust[4]);
//cache plane octant facing mask for use in AABBInFrustum
for (U32 i = 0; i < mPlaneCount; i++)
{
mPlaneMask[i] = mAgentPlanes[i].calcPlaneMask();
}
}
void LLCamera::calculateFrustumPlanes(F32 left, F32 right, F32 top, F32 bottom)
{
LLVector3 a, b, c;
// For each plane we need to define 3 points (LLVector3's) in camera view space.
// The order in which we pass the points to planeFromPoints() matters, because the
// plane normal has a degeneracy of 2; we want it pointing _into_ the frustum.
a.setVec(0.0f, 0.0f, 0.0f);
b.setVec(mFarPlane, right, top);
c.setVec(mFarPlane, right, bottom);
mLocalPlanes[PLANE_RIGHT].setVec(a, b, c);
c.setVec(mFarPlane, left, top);
mLocalPlanes[PLANE_TOP].setVec(a, c, b);
b.setVec(mFarPlane, left, bottom);
mLocalPlanes[PLANE_LEFT].setVec(a, b, c);
c.setVec(mFarPlane, right, bottom);
mLocalPlanes[PLANE_BOTTOM].setVec( a, c, b);
//calculate center and radius squared of frustum in world absolute coordinates
static LLVector3 const X_AXIS(1.f, 0.f, 0.f);
mFrustCenter = X_AXIS*mFarPlane*0.5f;
mFrustCenter = transformToAbsolute(mFrustCenter);
mFrustRadiusSquared = mFarPlane*0.5f;
mFrustRadiusSquared *= mFrustRadiusSquared * 1.05f; //pad radius squared by 5%
}
// x and y are in WINDOW space, so x = Y-Axis (left/right), y= Z-Axis(Up/Down)
void LLCamera::calculateFrustumPlanesFromWindow(F32 x1, F32 y1, F32 x2, F32 y2)
{
F32 bottom, top, left, right;
F32 view_height = (F32)tanf(0.5f * mView) * mFarPlane;
F32 view_width = view_height * mAspect;
left = x1 * -2.f * view_width;
right = x2 * -2.f * view_width;
bottom = y1 * 2.f * view_height;
top = y2 * 2.f * view_height;
calculateFrustumPlanes(left, right, top, bottom);
}
void LLCamera::calculateWorldFrustumPlanes()
{
F32 d;
LLVector3 center = mOrigin - mXAxis*mNearPlane;
mWorldPlanePos = center;
LLVector3 pnorm;
for (int p=0; p<4; p++)
{
mLocalPlanes[p].getVector3(pnorm);
LLVector3 norm = rotateToAbsolute(pnorm);
norm.normVec();
d = -(center * norm);
mWorldPlanes[p] = LLPlane(norm, d);
}
// horizontal planes, perpindicular to (0,0,1);
LLVector3 zaxis(0, 0, 1.0f);
F32 yaw = getYaw();
{
LLVector3 tnorm;
mLocalPlanes[PLANE_LEFT].getVector3(tnorm);
tnorm.rotVec(yaw, zaxis);
d = -(mOrigin * tnorm);
mHorizPlanes[HORIZ_PLANE_LEFT] = LLPlane(tnorm, d);
}
{
LLVector3 tnorm;
mLocalPlanes[PLANE_RIGHT].getVector3(tnorm);
tnorm.rotVec(yaw, zaxis);
d = -(mOrigin * tnorm);
mHorizPlanes[HORIZ_PLANE_RIGHT] = LLPlane(tnorm, d);
}
}
// NOTE: this is the OpenGL matrix that will transform the default OpenGL view
// (-Z=at, Y=up) to the default view of the LLCamera class (X=at, Z=up):
//
// F32 cfr_transform = { 0.f, 0.f, -1.f, 0.f, // -Z becomes X
// -1.f, 0.f, 0.f, 0.f, // -X becomes Y
// 0.f, 1.f, 0.f, 0.f, // Y becomes Z
// 0.f, 0.f, 0.f, 1.f };