594 lines
23 KiB
C++
594 lines
23 KiB
C++
/**
|
|
* @file llvector4a.inl
|
|
* @brief LLVector4a inline function implementations
|
|
*
|
|
* $LicenseInfo:firstyear=2010&license=viewerlgpl$
|
|
* Second Life Viewer Source Code
|
|
* Copyright (C) 2010, Linden Research, Inc.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation;
|
|
* version 2.1 of the License only.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
|
|
* $/LicenseInfo$
|
|
*/
|
|
|
|
////////////////////////////////////
|
|
// LOAD/STORE
|
|
////////////////////////////////////
|
|
|
|
// Load from 16-byte aligned src array (preferred method of loading)
|
|
inline void LLVector4a::load4a(const F32* src)
|
|
{
|
|
mQ = _mm_load_ps(src);
|
|
}
|
|
|
|
// Load from unaligned src array (NB: Significantly slower than load4a)
|
|
inline void LLVector4a::loadua(const F32* src)
|
|
{
|
|
mQ = _mm_loadu_ps(src);
|
|
}
|
|
|
|
// Load only three floats beginning at address 'src'. Slowest method.
|
|
inline void LLVector4a::load3(const F32* src)
|
|
{
|
|
// mQ = { 0.f, src[2], src[1], src[0] } = { W, Z, Y, X }
|
|
// NB: This differs from the convention of { Z, Y, X, W }
|
|
mQ = _mm_set_ps(0.f, src[2], src[1], src[0]);
|
|
}
|
|
|
|
// Store to a 16-byte aligned memory address
|
|
inline void LLVector4a::store4a(F32* dst) const
|
|
{
|
|
_mm_store_ps(dst, mQ);
|
|
}
|
|
|
|
////////////////////////////////////
|
|
// BASIC GET/SET
|
|
////////////////////////////////////
|
|
|
|
// Return a "this" as an F32 pointer. Do not use unless you have a very good reason. (Not sure? Ask Falcon)
|
|
F32* LLVector4a::getF32ptr()
|
|
{
|
|
return (F32*) &mQ;
|
|
}
|
|
|
|
// Return a "this" as a const F32 pointer. Do not use unless you have a very good reason. (Not sure? Ask Falcon)
|
|
const F32* const LLVector4a::getF32ptr() const
|
|
{
|
|
return (const F32* const) &mQ;
|
|
}
|
|
|
|
// Read-only access a single float in this vector. Do not use in proximity to any function call that manipulates
|
|
// the data at the whole vector level or you will incur a substantial penalty. Consider using the splat functions instead
|
|
inline F32 LLVector4a::operator[](const S32 idx) const
|
|
{
|
|
return ((F32*)&mQ)[idx];
|
|
}
|
|
|
|
// Prefer this method for read-only access to a single element. Prefer the templated version if the elem is known at compile time.
|
|
inline LLSimdScalar LLVector4a::getScalarAt(const S32 idx) const
|
|
{
|
|
// Return appropriate LLQuad. It will be cast to LLSimdScalar automatically (should be effectively a nop)
|
|
switch (idx)
|
|
{
|
|
case 0:
|
|
return mQ;
|
|
case 1:
|
|
return _mm_shuffle_ps(mQ, mQ, _MM_SHUFFLE(1, 1, 1, 1));
|
|
case 2:
|
|
return _mm_shuffle_ps(mQ, mQ, _MM_SHUFFLE(2, 2, 2, 2));
|
|
case 3:
|
|
default:
|
|
return _mm_shuffle_ps(mQ, mQ, _MM_SHUFFLE(3, 3, 3, 3));
|
|
}
|
|
}
|
|
|
|
// Prefer this method for read-only access to a single element. Prefer the templated version if the elem is known at compile time.
|
|
template <int N> LL_FORCE_INLINE LLSimdScalar LLVector4a::getScalarAt() const
|
|
{
|
|
return _mm_shuffle_ps(mQ, mQ, _MM_SHUFFLE(N, N, N, N));
|
|
}
|
|
|
|
template<> LL_FORCE_INLINE LLSimdScalar LLVector4a::getScalarAt<0>() const
|
|
{
|
|
return mQ;
|
|
}
|
|
|
|
// Set to an x, y, z and optional w provided
|
|
inline void LLVector4a::set(F32 x, F32 y, F32 z, F32 w)
|
|
{
|
|
mQ = _mm_set_ps(w, z, y, x);
|
|
}
|
|
|
|
// Set to all zeros
|
|
inline void LLVector4a::clear()
|
|
{
|
|
mQ = LLVector4a::getZero().mQ;
|
|
}
|
|
|
|
inline void LLVector4a::splat(const F32 x)
|
|
{
|
|
mQ = _mm_set1_ps(x);
|
|
}
|
|
|
|
inline void LLVector4a::splat(const LLSimdScalar& x)
|
|
{
|
|
mQ = _mm_shuffle_ps( x.getQuad(), x.getQuad(), _MM_SHUFFLE(0,0,0,0) );
|
|
}
|
|
|
|
// Set all 4 elements to element N of src, with N known at compile time
|
|
template <int N> void LLVector4a::splat(const LLVector4a& src)
|
|
{
|
|
mQ = _mm_shuffle_ps(src.mQ, src.mQ, _MM_SHUFFLE(N, N, N, N) );
|
|
}
|
|
|
|
// Set all 4 elements to element i of v, with i NOT known at compile time
|
|
inline void LLVector4a::splat(const LLVector4a& v, U32 i)
|
|
{
|
|
switch (i)
|
|
{
|
|
case 0:
|
|
mQ = _mm_shuffle_ps(v.mQ, v.mQ, _MM_SHUFFLE(0, 0, 0, 0));
|
|
break;
|
|
case 1:
|
|
mQ = _mm_shuffle_ps(v.mQ, v.mQ, _MM_SHUFFLE(1, 1, 1, 1));
|
|
break;
|
|
case 2:
|
|
mQ = _mm_shuffle_ps(v.mQ, v.mQ, _MM_SHUFFLE(2, 2, 2, 2));
|
|
break;
|
|
case 3:
|
|
mQ = _mm_shuffle_ps(v.mQ, v.mQ, _MM_SHUFFLE(3, 3, 3, 3));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Select bits from sourceIfTrue and sourceIfFalse according to bits in mask
|
|
inline void LLVector4a::setSelectWithMask( const LLVector4Logical& mask, const LLVector4a& sourceIfTrue, const LLVector4a& sourceIfFalse )
|
|
{
|
|
// ((( sourceIfTrue ^ sourceIfFalse ) & mask) ^ sourceIfFalse )
|
|
// E.g., sourceIfFalse = 1010b, sourceIfTrue = 0101b, mask = 1100b
|
|
// (sourceIfTrue ^ sourceIfFalse) = 1111b --> & mask = 1100b --> ^ sourceIfFalse = 0110b,
|
|
// as expected (01 from sourceIfTrue, 10 from sourceIfFalse)
|
|
// Courtesy of Mark++, http://markplusplus.wordpress.com/2007/03/14/fast-sse-select-operation/
|
|
mQ = _mm_xor_ps( sourceIfFalse, _mm_and_ps( mask, _mm_xor_ps( sourceIfTrue, sourceIfFalse ) ) );
|
|
}
|
|
|
|
////////////////////////////////////
|
|
// ALGEBRAIC
|
|
////////////////////////////////////
|
|
|
|
// Set this to the element-wise (a + b)
|
|
inline void LLVector4a::setAdd(const LLVector4a& a, const LLVector4a& b)
|
|
{
|
|
mQ = _mm_add_ps(a.mQ, b.mQ);
|
|
}
|
|
|
|
// Set this to element-wise (a - b)
|
|
inline void LLVector4a::setSub(const LLVector4a& a, const LLVector4a& b)
|
|
{
|
|
mQ = _mm_sub_ps(a.mQ, b.mQ);
|
|
}
|
|
|
|
// Set this to element-wise multiply (a * b)
|
|
inline void LLVector4a::setMul(const LLVector4a& a, const LLVector4a& b)
|
|
{
|
|
mQ = _mm_mul_ps(a.mQ, b.mQ);
|
|
}
|
|
|
|
// Set this to element-wise quotient (a / b)
|
|
inline void LLVector4a::setDiv(const LLVector4a& a, const LLVector4a& b)
|
|
{
|
|
mQ = _mm_div_ps( a.mQ, b.mQ );
|
|
}
|
|
|
|
// Set this to the element-wise absolute value of src
|
|
inline void LLVector4a::setAbs(const LLVector4a& src)
|
|
{
|
|
static const LL_ALIGN_16(U32 F_ABS_MASK_4A[4]) = { 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF };
|
|
mQ = _mm_and_ps(src.mQ, *reinterpret_cast<const LLQuad*>(F_ABS_MASK_4A));
|
|
}
|
|
|
|
// Add to each component in this vector the corresponding component in rhs
|
|
inline void LLVector4a::add(const LLVector4a& rhs)
|
|
{
|
|
mQ = _mm_add_ps(mQ, rhs.mQ);
|
|
}
|
|
|
|
// Subtract from each component in this vector the corresponding component in rhs
|
|
inline void LLVector4a::sub(const LLVector4a& rhs)
|
|
{
|
|
mQ = _mm_sub_ps(mQ, rhs.mQ);
|
|
}
|
|
|
|
// Multiply each component in this vector by the corresponding component in rhs
|
|
inline void LLVector4a::mul(const LLVector4a& rhs)
|
|
{
|
|
mQ = _mm_mul_ps(mQ, rhs.mQ);
|
|
}
|
|
|
|
// Divide each component in this vector by the corresponding component in rhs
|
|
inline void LLVector4a::div(const LLVector4a& rhs)
|
|
{
|
|
// TODO: Check accuracy, maybe add divFast
|
|
mQ = _mm_div_ps(mQ, rhs.mQ);
|
|
}
|
|
|
|
// Multiply this vector by x in a scalar fashion
|
|
inline void LLVector4a::mul(const F32 x)
|
|
{
|
|
LLVector4a t;
|
|
t.splat(x);
|
|
|
|
mQ = _mm_mul_ps(mQ, t.mQ);
|
|
}
|
|
|
|
// Set this to (a x b) (geometric cross-product)
|
|
inline void LLVector4a::setCross3(const LLVector4a& a, const LLVector4a& b)
|
|
{
|
|
// Vectors are stored in memory in w, z, y, x order from high to low
|
|
// Set vector1 = { a[W], a[X], a[Z], a[Y] }
|
|
const LLQuad vector1 = _mm_shuffle_ps( a.mQ, a.mQ, _MM_SHUFFLE( 3, 0, 2, 1 ));
|
|
// Set vector2 = { b[W], b[Y], b[X], b[Z] }
|
|
const LLQuad vector2 = _mm_shuffle_ps( b.mQ, b.mQ, _MM_SHUFFLE( 3, 1, 0, 2 ));
|
|
// mQ = { a[W]*b[W], a[X]*b[Y], a[Z]*b[X], a[Y]*b[Z] }
|
|
mQ = _mm_mul_ps( vector1, vector2 );
|
|
// vector3 = { a[W], a[Y], a[X], a[Z] }
|
|
const LLQuad vector3 = _mm_shuffle_ps( a.mQ, a.mQ, _MM_SHUFFLE( 3, 1, 0, 2 ));
|
|
// vector4 = { b[W], b[X], b[Z], b[Y] }
|
|
const LLQuad vector4 = _mm_shuffle_ps( b.mQ, b.mQ, _MM_SHUFFLE( 3, 0, 2, 1 ));
|
|
// mQ = { 0, a[X]*b[Y] - a[Y]*b[X], a[Z]*b[X] - a[X]*b[Z], a[Y]*b[Z] - a[Z]*b[Y] }
|
|
mQ = _mm_sub_ps( mQ, _mm_mul_ps( vector3, vector4 ));
|
|
}
|
|
|
|
/* This function works, but may be slightly slower than the one below on older machines
|
|
inline void LLVector4a::setAllDot3(const LLVector4a& a, const LLVector4a& b)
|
|
{
|
|
// ab = { a[W]*b[W], a[Z]*b[Z], a[Y]*b[Y], a[X]*b[X] }
|
|
const LLQuad ab = _mm_mul_ps( a.mQ, b.mQ );
|
|
// yzxw = { a[W]*b[W], a[Z]*b[Z], a[X]*b[X], a[Y]*b[Y] }
|
|
const LLQuad wzxy = _mm_shuffle_ps( ab, ab, _MM_SHUFFLE(3, 2, 0, 1 ));
|
|
// xPlusY = { 2*a[W]*b[W], 2 * a[Z] * b[Z], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] }
|
|
const LLQuad xPlusY = _mm_add_ps(ab, wzxy);
|
|
// xPlusYSplat = { a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] }
|
|
const LLQuad xPlusYSplat = _mm_movelh_ps(xPlusY, xPlusY);
|
|
// zSplat = { a[Z]*b[Z], a[Z]*b[Z], a[Z]*b[Z], a[Z]*b[Z] }
|
|
const LLQuad zSplat = _mm_shuffle_ps( ab, ab, _MM_SHUFFLE( 2, 2, 2, 2 ));
|
|
// mQ = { a[Z] * b[Z] + a[Y] * b[Y] + a[X] * b[X], same, same, same }
|
|
mQ = _mm_add_ps(zSplat, xPlusYSplat);
|
|
}*/
|
|
|
|
// Set all elements to the dot product of the x, y, and z elements in a and b
|
|
inline void LLVector4a::setAllDot3(const LLVector4a& a, const LLVector4a& b)
|
|
{
|
|
// ab = { a[W]*b[W], a[Z]*b[Z], a[Y]*b[Y], a[X]*b[X] }
|
|
const LLQuad ab = _mm_mul_ps( a.mQ, b.mQ );
|
|
// yzxw = { a[W]*b[W], a[Z]*b[Z], a[X]*b[X], a[Y]*b[Y] }
|
|
const __m128i wzxy = _mm_shuffle_epi32(_mm_castps_si128(ab), _MM_SHUFFLE(3, 2, 0, 1 ));
|
|
// xPlusY = { 2*a[W]*b[W], 2 * a[Z] * b[Z], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] }
|
|
const LLQuad xPlusY = _mm_add_ps(ab, _mm_castsi128_ps(wzxy));
|
|
// xPlusYSplat = { a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] }
|
|
const LLQuad xPlusYSplat = _mm_movelh_ps(xPlusY, xPlusY);
|
|
// zSplat = { a[Z]*b[Z], a[Z]*b[Z], a[Z]*b[Z], a[Z]*b[Z] }
|
|
const __m128i zSplat = _mm_shuffle_epi32(_mm_castps_si128(ab), _MM_SHUFFLE( 2, 2, 2, 2 ));
|
|
// mQ = { a[Z] * b[Z] + a[Y] * b[Y] + a[X] * b[X], same, same, same }
|
|
mQ = _mm_add_ps(_mm_castsi128_ps(zSplat), xPlusYSplat);
|
|
}
|
|
|
|
// Set all elements to the dot product of the x, y, z, and w elements in a and b
|
|
inline void LLVector4a::setAllDot4(const LLVector4a& a, const LLVector4a& b)
|
|
{
|
|
// ab = { a[W]*b[W], a[Z]*b[Z], a[Y]*b[Y], a[X]*b[X] }
|
|
const LLQuad ab = _mm_mul_ps( a.mQ, b.mQ );
|
|
// yzxw = { a[W]*b[W], a[Z]*b[Z], a[X]*b[X], a[Y]*b[Y] }
|
|
const __m128i zwxy = _mm_shuffle_epi32(_mm_castps_si128(ab), _MM_SHUFFLE(2, 3, 0, 1 ));
|
|
// zPlusWandXplusY = { a[W]*b[W] + a[Z]*b[Z], a[Z] * b[Z] + a[W]*b[W], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] }
|
|
const LLQuad zPlusWandXplusY = _mm_add_ps(ab, _mm_castsi128_ps(zwxy));
|
|
// xPlusYSplat = { a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] }
|
|
const LLQuad xPlusYSplat = _mm_movelh_ps(zPlusWandXplusY, zPlusWandXplusY);
|
|
const LLQuad zPlusWSplat = _mm_movehl_ps(zPlusWandXplusY, zPlusWandXplusY);
|
|
|
|
// mQ = { a[W]*b[W] + a[Z] * b[Z] + a[Y] * b[Y] + a[X] * b[X], same, same, same }
|
|
mQ = _mm_add_ps(xPlusYSplat, zPlusWSplat);
|
|
}
|
|
|
|
// Return the 3D dot product of this vector and b
|
|
inline LLSimdScalar LLVector4a::dot3(const LLVector4a& b) const
|
|
{
|
|
const LLQuad ab = _mm_mul_ps( mQ, b.mQ );
|
|
const LLQuad splatY = _mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128(ab), _MM_SHUFFLE(1, 1, 1, 1) ) );
|
|
const LLQuad splatZ = _mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128(ab), _MM_SHUFFLE(2, 2, 2, 2) ) );
|
|
const LLQuad xPlusY = _mm_add_ps( ab, splatY );
|
|
return _mm_add_ps( xPlusY, splatZ );
|
|
}
|
|
|
|
// Return the 4D dot product of this vector and b
|
|
inline LLSimdScalar LLVector4a::dot4(const LLVector4a& b) const
|
|
{
|
|
// ab = { w, z, y, x }
|
|
const LLQuad ab = _mm_mul_ps( mQ, b.mQ );
|
|
// upperProdsInLowerElems = { y, x, y, x }
|
|
const LLQuad upperProdsInLowerElems = _mm_movehl_ps( ab, ab );
|
|
// sumOfPairs = { w+y, z+x, 2y, 2x }
|
|
const LLQuad sumOfPairs = _mm_add_ps( upperProdsInLowerElems, ab );
|
|
// shuffled = { z+x, z+x, z+x, z+x }
|
|
const LLQuad shuffled = _mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( sumOfPairs ), _MM_SHUFFLE(1, 1, 1, 1) ) );
|
|
return _mm_add_ss( sumOfPairs, shuffled );
|
|
}
|
|
|
|
// Normalize this vector with respect to the x, y, and z components only. Accurate to 22 bites of precision. W component is destroyed
|
|
// Note that this does not consider zero length vectors!
|
|
inline void LLVector4a::normalize3()
|
|
{
|
|
// lenSqrd = a dot a
|
|
LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this );
|
|
// rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 }
|
|
const LLQuad rsqrt = _mm_rsqrt_ps(lenSqrd.mQ);
|
|
static const LLQuad half = { 0.5f, 0.5f, 0.5f, 0.5f };
|
|
static const LLQuad three = {3.f, 3.f, 3.f, 3.f };
|
|
// Now we do one round of Newton-Raphson approximation to get full accuracy
|
|
// According to the Newton-Raphson method, given a first 'w' for the root of f(x) = 1/x^2 - a (i.e., x = 1/sqrt(a))
|
|
// the next better approximation w[i+1] = w - f(w)/f'(w) = w - (1/w^2 - a)/(-2*w^(-3))
|
|
// w[i+1] = w + 0.5 * (1/w^2 - a) * w^3 = w + 0.5 * (w - a*w^3) = 1.5 * w - 0.5 * a * w^3
|
|
// = 0.5 * w * (3 - a*w^2)
|
|
// Our first approx is w = rsqrt. We need out = a * w[i+1] (this is the input vector 'a', not the 'a' from the above formula
|
|
// which is actually lenSqrd). So out = a * [0.5*rsqrt * (3 - lenSqrd*rsqrt*rsqrt)]
|
|
const LLQuad AtimesRsqrt = _mm_mul_ps( lenSqrd.mQ, rsqrt );
|
|
const LLQuad AtimesRsqrtTimesRsqrt = _mm_mul_ps( AtimesRsqrt, rsqrt );
|
|
const LLQuad threeMinusAtimesRsqrtTimesRsqrt = _mm_sub_ps(three, AtimesRsqrtTimesRsqrt );
|
|
const LLQuad nrApprox = _mm_mul_ps(half, _mm_mul_ps(rsqrt, threeMinusAtimesRsqrtTimesRsqrt));
|
|
mQ = _mm_mul_ps( mQ, nrApprox );
|
|
}
|
|
|
|
// Normalize this vector with respect to all components. Accurate to 22 bites of precision.
|
|
// Note that this does not consider zero length vectors!
|
|
inline void LLVector4a::normalize4()
|
|
{
|
|
// lenSqrd = a dot a
|
|
LLVector4a lenSqrd; lenSqrd.setAllDot4( *this, *this );
|
|
// rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 }
|
|
const LLQuad rsqrt = _mm_rsqrt_ps(lenSqrd.mQ);
|
|
static const LLQuad half = { 0.5f, 0.5f, 0.5f, 0.5f };
|
|
static const LLQuad three = {3.f, 3.f, 3.f, 3.f };
|
|
// Now we do one round of Newton-Raphson approximation to get full accuracy
|
|
// According to the Newton-Raphson method, given a first 'w' for the root of f(x) = 1/x^2 - a (i.e., x = 1/sqrt(a))
|
|
// the next better approximation w[i+1] = w - f(w)/f'(w) = w - (1/w^2 - a)/(-2*w^(-3))
|
|
// w[i+1] = w + 0.5 * (1/w^2 - a) * w^3 = w + 0.5 * (w - a*w^3) = 1.5 * w - 0.5 * a * w^3
|
|
// = 0.5 * w * (3 - a*w^2)
|
|
// Our first approx is w = rsqrt. We need out = a * w[i+1] (this is the input vector 'a', not the 'a' from the above formula
|
|
// which is actually lenSqrd). So out = a * [0.5*rsqrt * (3 - lenSqrd*rsqrt*rsqrt)]
|
|
const LLQuad AtimesRsqrt = _mm_mul_ps( lenSqrd.mQ, rsqrt );
|
|
const LLQuad AtimesRsqrtTimesRsqrt = _mm_mul_ps( AtimesRsqrt, rsqrt );
|
|
const LLQuad threeMinusAtimesRsqrtTimesRsqrt = _mm_sub_ps(three, AtimesRsqrtTimesRsqrt );
|
|
const LLQuad nrApprox = _mm_mul_ps(half, _mm_mul_ps(rsqrt, threeMinusAtimesRsqrtTimesRsqrt));
|
|
mQ = _mm_mul_ps( mQ, nrApprox );
|
|
}
|
|
|
|
// Normalize this vector with respect to the x, y, and z components only. Accurate to 22 bites of precision. W component is destroyed
|
|
// Note that this does not consider zero length vectors!
|
|
inline LLSimdScalar LLVector4a::normalize3withLength()
|
|
{
|
|
// lenSqrd = a dot a
|
|
LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this );
|
|
// rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 }
|
|
const LLQuad rsqrt = _mm_rsqrt_ps(lenSqrd.mQ);
|
|
static const LLQuad half = { 0.5f, 0.5f, 0.5f, 0.5f };
|
|
static const LLQuad three = {3.f, 3.f, 3.f, 3.f };
|
|
// Now we do one round of Newton-Raphson approximation to get full accuracy
|
|
// According to the Newton-Raphson method, given a first 'w' for the root of f(x) = 1/x^2 - a (i.e., x = 1/sqrt(a))
|
|
// the next better approximation w[i+1] = w - f(w)/f'(w) = w - (1/w^2 - a)/(-2*w^(-3))
|
|
// w[i+1] = w + 0.5 * (1/w^2 - a) * w^3 = w + 0.5 * (w - a*w^3) = 1.5 * w - 0.5 * a * w^3
|
|
// = 0.5 * w * (3 - a*w^2)
|
|
// Our first approx is w = rsqrt. We need out = a * w[i+1] (this is the input vector 'a', not the 'a' from the above formula
|
|
// which is actually lenSqrd). So out = a * [0.5*rsqrt * (3 - lenSqrd*rsqrt*rsqrt)]
|
|
const LLQuad AtimesRsqrt = _mm_mul_ps( lenSqrd.mQ, rsqrt );
|
|
const LLQuad AtimesRsqrtTimesRsqrt = _mm_mul_ps( AtimesRsqrt, rsqrt );
|
|
const LLQuad threeMinusAtimesRsqrtTimesRsqrt = _mm_sub_ps(three, AtimesRsqrtTimesRsqrt );
|
|
const LLQuad nrApprox = _mm_mul_ps(half, _mm_mul_ps(rsqrt, threeMinusAtimesRsqrtTimesRsqrt));
|
|
mQ = _mm_mul_ps( mQ, nrApprox );
|
|
return _mm_sqrt_ss(lenSqrd);
|
|
}
|
|
|
|
// Normalize this vector with respect to the x, y, and z components only. Accurate only to 10-12 bits of precision. W component is destroyed
|
|
// Note that this does not consider zero length vectors!
|
|
inline void LLVector4a::normalize3fast()
|
|
{
|
|
LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this );
|
|
const LLQuad approxRsqrt = _mm_rsqrt_ps(lenSqrd.mQ);
|
|
mQ = _mm_mul_ps( mQ, approxRsqrt );
|
|
}
|
|
|
|
// Return true if this vector is normalized with respect to x,y,z up to tolerance
|
|
inline LLBool32 LLVector4a::isNormalized3( F32 tolerance ) const
|
|
{
|
|
static LL_ALIGN_16(const U32 ones[4]) = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
|
|
LLSimdScalar tol = _mm_load_ss( &tolerance );
|
|
tol = _mm_mul_ss( tol, tol );
|
|
LLVector4a lenSquared; lenSquared.setAllDot3( *this, *this );
|
|
lenSquared.sub( *reinterpret_cast<const LLVector4a*>(ones) );
|
|
lenSquared.setAbs(lenSquared);
|
|
return _mm_comile_ss( lenSquared, tol );
|
|
}
|
|
|
|
// Return true if this vector is normalized with respect to all components up to tolerance
|
|
inline LLBool32 LLVector4a::isNormalized4( F32 tolerance ) const
|
|
{
|
|
static LL_ALIGN_16(const U32 ones[4]) = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
|
|
LLSimdScalar tol = _mm_load_ss( &tolerance );
|
|
tol = _mm_mul_ss( tol, tol );
|
|
LLVector4a lenSquared; lenSquared.setAllDot4( *this, *this );
|
|
lenSquared.sub( *reinterpret_cast<const LLVector4a*>(ones) );
|
|
lenSquared.setAbs(lenSquared);
|
|
return _mm_comile_ss( lenSquared, tol );
|
|
}
|
|
|
|
// Set all elements to the length of vector 'v'
|
|
inline void LLVector4a::setAllLength3( const LLVector4a& v )
|
|
{
|
|
LLVector4a lenSqrd;
|
|
lenSqrd.setAllDot3(v, v);
|
|
|
|
mQ = _mm_sqrt_ps(lenSqrd.mQ);
|
|
}
|
|
|
|
// Get this vector's length
|
|
inline LLSimdScalar LLVector4a::getLength3() const
|
|
{
|
|
return _mm_sqrt_ss( dot3( (const LLVector4a)mQ ) );
|
|
}
|
|
|
|
// Set the components of this vector to the minimum of the corresponding components of lhs and rhs
|
|
inline void LLVector4a::setMin(const LLVector4a& lhs, const LLVector4a& rhs)
|
|
{
|
|
mQ = _mm_min_ps(lhs.mQ, rhs.mQ);
|
|
}
|
|
|
|
// Set the components of this vector to the maximum of the corresponding components of lhs and rhs
|
|
inline void LLVector4a::setMax(const LLVector4a& lhs, const LLVector4a& rhs)
|
|
{
|
|
mQ = _mm_max_ps(lhs.mQ, rhs.mQ);
|
|
}
|
|
|
|
// Set this to (c * lhs) + rhs * ( 1 - c)
|
|
inline void LLVector4a::setLerp(const LLVector4a& lhs, const LLVector4a& rhs, F32 c)
|
|
{
|
|
LLVector4a a = lhs;
|
|
a.mul(c);
|
|
|
|
LLVector4a b = rhs;
|
|
b.mul(1.f-c);
|
|
|
|
setAdd(a, b);
|
|
}
|
|
|
|
inline LLBool32 LLVector4a::isFinite3() const
|
|
{
|
|
static LL_ALIGN_16(const U32 nanOrInfMask[4]) = { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 };
|
|
const __m128i nanOrInfMaskV = *reinterpret_cast<const __m128i*> (nanOrInfMask);
|
|
const __m128i maskResult = _mm_and_si128( _mm_castps_si128(mQ), nanOrInfMaskV );
|
|
const LLVector4Logical equalityCheck = _mm_castsi128_ps(_mm_cmpeq_epi32( maskResult, nanOrInfMaskV ));
|
|
return !equalityCheck.areAnySet( LLVector4Logical::MASK_XYZ );
|
|
}
|
|
|
|
inline LLBool32 LLVector4a::isFinite4() const
|
|
{
|
|
static LL_ALIGN_16(const U32 nanOrInfMask[4]) = { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 };
|
|
const __m128i nanOrInfMaskV = *reinterpret_cast<const __m128i*> (nanOrInfMask);
|
|
const __m128i maskResult = _mm_and_si128( _mm_castps_si128(mQ), nanOrInfMaskV );
|
|
const LLVector4Logical equalityCheck = _mm_castsi128_ps(_mm_cmpeq_epi32( maskResult, nanOrInfMaskV ));
|
|
return !equalityCheck.areAnySet( LLVector4Logical::MASK_XYZW );
|
|
}
|
|
|
|
inline void LLVector4a::setRotatedInv( const LLRotation& rot, const LLVector4a& vec )
|
|
{
|
|
LLRotation inv; inv.setTranspose( rot );
|
|
setRotated( inv, vec );
|
|
}
|
|
|
|
inline void LLVector4a::setRotatedInv( const LLQuaternion2& quat, const LLVector4a& vec )
|
|
{
|
|
LLQuaternion2 invRot; invRot.setConjugate( quat );
|
|
setRotated(invRot, vec);
|
|
}
|
|
|
|
inline void LLVector4a::clamp( const LLVector4a& low, const LLVector4a& high )
|
|
{
|
|
const LLVector4Logical highMask = greaterThan( high );
|
|
const LLVector4Logical lowMask = lessThan( low );
|
|
|
|
setSelectWithMask( highMask, high, *this );
|
|
setSelectWithMask( lowMask, low, *this );
|
|
}
|
|
|
|
|
|
////////////////////////////////////
|
|
// LOGICAL
|
|
////////////////////////////////////
|
|
// The functions in this section will compare the elements in this vector
|
|
// to those in rhs and return an LLVector4Logical with all bits set in elements
|
|
// where the comparison was true and all bits unset in elements where the comparison
|
|
// was false. See llvector4logica.h
|
|
////////////////////////////////////
|
|
// WARNING: Other than equals3 and equals4, these functions do NOT account
|
|
// for floating point tolerance. You should include the appropriate tolerance
|
|
// in the inputs.
|
|
////////////////////////////////////
|
|
|
|
inline LLVector4Logical LLVector4a::greaterThan(const LLVector4a& rhs) const
|
|
{
|
|
return _mm_cmpgt_ps(mQ, rhs.mQ);
|
|
}
|
|
|
|
inline LLVector4Logical LLVector4a::lessThan(const LLVector4a& rhs) const
|
|
{
|
|
return _mm_cmplt_ps(mQ, rhs.mQ);
|
|
}
|
|
|
|
inline LLVector4Logical LLVector4a::greaterEqual(const LLVector4a& rhs) const
|
|
{
|
|
return _mm_cmpge_ps(mQ, rhs.mQ);
|
|
}
|
|
|
|
inline LLVector4Logical LLVector4a::lessEqual(const LLVector4a& rhs) const
|
|
{
|
|
return _mm_cmple_ps(mQ, rhs.mQ);
|
|
}
|
|
|
|
inline LLVector4Logical LLVector4a::equal(const LLVector4a& rhs) const
|
|
{
|
|
return _mm_cmpeq_ps(mQ, rhs.mQ);
|
|
}
|
|
|
|
// Returns true if this and rhs are componentwise equal up to the specified absolute tolerance
|
|
inline bool LLVector4a::equals4(const LLVector4a& rhs, F32 tolerance ) const
|
|
{
|
|
LLVector4a diff; diff.setSub( *this, rhs );
|
|
diff.setAbs( diff );
|
|
const LLQuad tol = _mm_set1_ps( tolerance );
|
|
const LLQuad cmp = _mm_cmplt_ps( diff, tol );
|
|
return (_mm_movemask_ps( cmp ) & LLVector4Logical::MASK_XYZW) == LLVector4Logical::MASK_XYZW;
|
|
}
|
|
|
|
inline bool LLVector4a::equals3(const LLVector4a& rhs, F32 tolerance ) const
|
|
{
|
|
LLVector4a diff; diff.setSub( *this, rhs );
|
|
diff.setAbs( diff );
|
|
const LLQuad tol = _mm_set1_ps( tolerance );
|
|
const LLQuad t = _mm_cmplt_ps( diff, tol );
|
|
return (_mm_movemask_ps( t ) & LLVector4Logical::MASK_XYZ) == LLVector4Logical::MASK_XYZ;
|
|
|
|
}
|
|
|
|
////////////////////////////////////
|
|
// OPERATORS
|
|
////////////////////////////////////
|
|
|
|
// Do NOT add aditional operators without consulting someone with SSE experience
|
|
inline const LLVector4a& LLVector4a::operator= ( const LLVector4a& rhs )
|
|
{
|
|
mQ = rhs.mQ;
|
|
return *this;
|
|
}
|
|
|
|
inline const LLVector4a& LLVector4a::operator= ( const LLQuad& rhs )
|
|
{
|
|
mQ = rhs;
|
|
return *this;
|
|
}
|
|
|
|
inline LLVector4a::operator LLQuad() const
|
|
{
|
|
return mQ;
|
|
}
|