Files
SingularityViewer/indra/llmath/lloctree.h
Latif Khalifa 170d9c7983 Made max octree range power of two.
Fixes crashes observed in "Forum" region in SL where some
avatars seem to be flying millions of meters up in the air.
2013-09-11 19:58:02 +02:00

1120 lines
27 KiB
C++

/**
* @file lloctree.h
* @brief Octree declaration.
*
* $LicenseInfo:firstyear=2005&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LL_LLOCTREE_H
#define LL_LLOCTREE_H
#include "lltreenode.h"
#include "v3math.h"
#include "llvector4a.h"
#include <vector>
#ifdef TIME_UTC
//Singu note: TIME_UTC is defined as '1' in time.h, and boost thread (1.49) tries to use it as an enum member.
#undef TIME_UTC
#endif
#include <boost/pool/pool.hpp>
#if LL_RELEASE_WITH_DEBUG_INFO || LL_DEBUG
#define OCT_ERRS LL_ERRS("OctreeErrors")
#define OCTREE_GUARD_CHECK
#else
#define OCT_ERRS LL_WARNS("OctreeErrors")
#endif
extern U32 gOctreeMaxCapacity;
extern U32 gOctreeReserveCapacity;
#if LL_DEBUG
#define LL_OCTREE_PARANOIA_CHECK 0
#else
#define LL_OCTREE_PARANOIA_CHECK 0
#endif
//#define LL_OCTREE_MAX_CAPACITY 128
template <class T> class LLOctreeNode;
#include "lltimer.h"
//#define LL_OCTREE_STATS
#define LL_OCTREE_POOLS
#ifdef LL_OCTREE_STATS
class OctreeStats : public LLSingleton<OctreeStats>
{
public:
OctreeStats() :
mPeriodNodesCreated(0),
mPeriodNodesDestroyed(0),
mPeriodAllocs(0),
mPeriodFrees(0),
mPeriodLargestSize(0),
mTotalNodes(0),
mTotalAllocs(0),
mTotalFrees(0),
mLargestSize(0),
mTotalSize(0)
{
mTotalTimer.reset();
mPeriodTimer.reset();
}
void addNode()
{
++mTotalNodes;
++mPeriodNodesCreated;
}
void removeNode()
{
--mTotalNodes;
++mPeriodNodesDestroyed;
}
void realloc(U32 old_count, U32 new_count)
{
if(new_count >= old_count)
mTotalSize+=new_count-old_count;
else
mTotalSize-=old_count-new_count;
if(mLargestSize < new_count)
mLargestSize = new_count;
if(mPeriodLargestSize < new_count)
mPeriodLargestSize = new_count;
++mTotalAllocs;
++mPeriodAllocs;
}
void free(U32 count)
{
mTotalSize-=count;
++mTotalFrees;
++mPeriodFrees;
}
void dump()
{
llinfos << llformat("Lifetime: Allocs:(+%u|-%u) Allocs/s: (+%lf|-%lf) Nodes: %u AccumSize: %llubytes Avg: %lf LargestSize: %u",
mTotalAllocs,
mTotalFrees,
F64(mTotalAllocs)/mTotalTimer.getElapsedTimeF64(),
F64(mTotalFrees)/mTotalTimer.getElapsedTimeF64(),
mTotalNodes,
mTotalSize*sizeof(LLPointer<LLRefCount>),
F64(mTotalSize)/F64(mTotalNodes),
mLargestSize
) << llendl;
llinfos << llformat("Timeslice: Allocs:(+%u|-%u) Allocs/s: (+%lf|-%lf) Nodes:(+%u|-%u) LargestSize: %u",
mPeriodAllocs,
mPeriodFrees,
F64(mPeriodAllocs)/mPeriodTimer.getElapsedTimeF64(),
F64(mPeriodFrees)/mPeriodTimer.getElapsedTimeF64(),
mPeriodNodesCreated,
mPeriodNodesDestroyed,
mPeriodLargestSize
) << llendl;
mPeriodNodesCreated=0;
mPeriodNodesDestroyed=0;
mPeriodAllocs=0;
mPeriodFrees=0;
mPeriodLargestSize=0;
mPeriodTimer.reset();
}
private:
//Accumulate per timer update
U32 mPeriodNodesCreated;
U32 mPeriodNodesDestroyed;
U32 mPeriodAllocs;
U32 mPeriodFrees;
U32 mPeriodLargestSize;
LLTimer mPeriodTimer;
//Accumulate through entire app lifetime:
U32 mTotalNodes;
U32 mTotalAllocs;
U32 mTotalFrees;
U32 mLargestSize;
U64 mTotalSize;
LLTimer mTotalTimer;
};
#endif //LL_OCTREE_STATS
template <class T>
class LLOctreeListener: public LLTreeListener<T>
{
public:
typedef LLTreeListener<T> BaseType;
typedef LLOctreeNode<T> oct_node;
virtual void handleChildAddition(const oct_node* parent, oct_node* child) = 0;
virtual void handleChildRemoval(const oct_node* parent, const oct_node* child) = 0;
};
template <class T>
class LLOctreeTraveler
{
public:
virtual void traverse(const LLOctreeNode<T>* node);
virtual void visit(const LLOctreeNode<T>* branch) = 0;
};
template <class T>
class LLOctreeTravelerDepthFirst : public LLOctreeTraveler<T>
{
public:
virtual void traverse(const LLOctreeNode<T>* node);
};
#ifdef OCTREE_GUARD_CHECK
struct OctreeGuard
{
template <typename T>
OctreeGuard(const LLOctreeNode<T>* node)
{mNode = (void*)node;getNodes().push_back(this);}
~OctreeGuard()
{llassert_always(getNodes().back() == this); getNodes().pop_back();}
template <typename T>
static bool checkGuarded(const LLOctreeNode<T>* node)
{
for(std::vector<OctreeGuard*>::const_iterator it=getNodes().begin();it != getNodes().end();++it)
{
if((*it)->mNode == node)
{
OCT_ERRS << "!!! MANIPULATING OCTREE BRANCH DURING ITERATION !!!" << llendl;
return true;
}
}
return false;
}
static std::vector<OctreeGuard*>& getNodes()
{
static std::vector<OctreeGuard*> gNodes;
return gNodes;
}
void* mNode;
};
#else
struct OctreeGuard
{
template <typename T>
OctreeGuard(const LLOctreeNode<T>* node) {}
~OctreeGuard() {}
template <typename T>
static bool checkGuarded(const LLOctreeNode<T>* node) {return false;}
};
#endif
template <class T>
class LLOctreeNode : public LLTreeNode<T>
{
public:
typedef LLOctreeTraveler<T> oct_traveler;
typedef LLTreeTraveler<T> tree_traveler;
typedef std::vector<LLPointer<T> > element_list;
typedef typename element_list::iterator element_iter;
typedef typename element_list::const_iterator const_element_iter;
typedef typename std::vector<LLTreeListener<T>*>::iterator tree_listener_iter;
typedef LLOctreeNode<T>** child_list;
typedef LLOctreeNode<T>** child_iter;
typedef LLTreeNode<T> BaseType;
typedef LLOctreeNode<T> oct_node;
typedef LLOctreeListener<T> oct_listener;
#ifdef LL_OCTREE_POOLS
struct octree_pool_alloc
{
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
static char * malloc(const std::size_t bytes)
{ return (char *)ll_aligned_malloc_16(bytes); }
static void free(char * const block)
{ ll_aligned_free_16(block); }
};
static boost::pool<octree_pool_alloc>& getPool(const std::size_t& size)
{
static boost::pool<octree_pool_alloc> sPool((std::size_t)LL_NEXT_ALIGNED_ADDRESS((char*)size),1200);
llassert_always((std::size_t)LL_NEXT_ALIGNED_ADDRESS((char*)size) == sPool.get_requested_size());
return sPool;
}
void* operator new(size_t size)
{
return getPool(size).malloc();
}
void operator delete(void* ptr)
{
getPool(sizeof(LLOctreeNode<T>)).free(ptr);
}
#else
void* operator new(size_t size)
{
return ll_aligned_malloc_16(size);
}
void operator delete(void* ptr)
{
ll_aligned_free_16(ptr);
}
#endif
LLOctreeNode( const LLVector4a& center,
const LLVector4a& size,
BaseType* parent,
U8 octant = 255)
: mParent((oct_node*)parent),
mOctant(octant)
{
#ifdef LL_OCTREE_STATS
OctreeStats::getInstance()->addNode();
#endif
if(gOctreeReserveCapacity)
mData.reserve(gOctreeReserveCapacity);
#ifdef LL_OCTREE_STATS
OctreeStats::getInstance()->realloc(0,mData.capacity());
#endif
//mData = NULL;
//mDataEnd = NULL;
mCenter = center;
mSize = size;
updateMinMax();
if ((mOctant == 255) && mParent)
{
mOctant = ((oct_node*) mParent)->getOctant(mCenter);
}
//mElementCount = 0;
clearChildren();
}
virtual ~LLOctreeNode()
{
#ifdef LL_OCTREE_STATS
OctreeStats::getInstance()->removeNode();
#endif
BaseType::destroyListeners();
//for (U32 i = 0; i < mElementCount; ++i)
for (U32 i = 0; i < mData.size(); ++i)
{
mData[i]->setBinIndex(-1);
mData[i] = NULL;
}
#ifdef LL_OCTREE_STATS
OctreeStats::getInstance()->free(mData.capacity());
#endif
//free(mData);
//mData = NULL;
//mDataEnd = NULL;
for (U32 i = 0; i < getChildCount(); i++)
{
delete getChild(i);
}
}
inline const BaseType* getParent() const { return mParent; }
inline void setParent(BaseType* parent) { mParent = (oct_node*) parent; }
inline const LLVector4a& getCenter() const { return mCenter; }
inline const LLVector4a& getSize() const { return mSize; }
inline void setCenter(const LLVector4a& center) { mCenter = center; }
inline void setSize(const LLVector4a& size) { mSize = size; }
inline oct_node* getNodeAt(T* data) { return getNodeAt(data->getPositionGroup(), data->getBinRadius()); }
inline U8 getOctant() const { return mOctant; }
inline const oct_node* getOctParent() const { return (const oct_node*) getParent(); }
inline oct_node* getOctParent() { return (oct_node*) getParent(); }
U8 getOctant(const LLVector4a& pos) const //get the octant pos is in
{
return (U8) (pos.greaterThan(mCenter).getGatheredBits() & 0x7);
}
inline bool isInside(const LLVector4a& pos, const F32& rad) const
{
return rad <= mSize[0]*2.f && isInside(pos);
}
inline bool isInside(T* data) const
{
return isInside(data->getPositionGroup(), data->getBinRadius());
}
bool isInside(const LLVector4a& pos) const
{
S32 gt = pos.greaterThan(mMax).getGatheredBits() & 0x7;
if (gt)
{
return false;
}
S32 lt = pos.lessEqual(mMin).getGatheredBits() & 0x7;
if (lt)
{
return false;
}
return true;
}
void updateMinMax()
{
mMax.setAdd(mCenter, mSize);
mMin.setSub(mCenter, mSize);
}
inline oct_listener* getOctListener(U32 index)
{
return (oct_listener*) BaseType::getListener(index);
}
inline bool contains(T* xform)
{
return contains(xform->getBinRadius());
}
bool contains(F32 radius)
{
if (mParent == NULL)
{ //root node contains nothing
return false;
}
F32 size = mSize[0];
F32 p_size = size * 2.f;
return (radius <= 0.001f && size <= 0.001f) ||
(radius <= p_size && radius > size);
}
static void pushCenter(LLVector4a &center, const LLVector4a &size, const T* data)
{
const LLVector4a& pos = data->getPositionGroup();
LLVector4Logical gt = pos.greaterThan(center);
LLVector4a up;
up = _mm_and_ps(size, gt);
LLVector4a down;
down = _mm_andnot_ps(gt, size);
center.add(up);
center.sub(down);
}
void accept(oct_traveler* visitor) { visitor->visit(this); }
virtual bool isLeaf() const { return mChildCount == 0; }
U32 getElementCount() const { return mData.size(); }
bool isEmpty() const { return mData.size() == 0; }
//element_list& getData() { return mData; }
//const element_list& getData() const { return mData; }
element_iter getDataBegin() { return mData.begin(); }
element_iter getDataEnd() { return mData.end(); }
const_element_iter getDataBegin() const { return mData.begin(); }
const_element_iter getDataEnd() const { return mData.end(); }
U32 getChildCount() const { return mChildCount; }
oct_node* getChild(U32 index) { return mChild[index]; }
const oct_node* getChild(U32 index) const { return mChild[index]; }
child_list& getChildren() { return mChild; }
const child_list& getChildren() const { return mChild; }
void accept(tree_traveler* visitor) const { visitor->visit(this); }
void accept(oct_traveler* visitor) const { visitor->visit(this); }
void validateChildMap()
{
for (U32 i = 0; i < 8; i++)
{
U8 idx = mChildMap[i];
if (idx != 255)
{
LLOctreeNode<T>* child = mChild[idx];
if (child->getOctant() != i)
{
llerrs << "Invalid child map, bad octant data." << llendl;
}
if (getOctant(child->getCenter()) != child->getOctant())
{
llerrs << "Invalid child octant compared to position data." << llendl;
}
}
}
}
oct_node* getNodeAt(const LLVector4a& pos, const F32& rad)
{
LLOctreeNode<T>* node = this;
if (node->isInside(pos, rad))
{
//do a quick search by octant
U8 octant = node->getOctant(pos);
//traverse the tree until we find a node that has no node
//at the appropriate octant or is smaller than the object.
//by definition, that node is the smallest node that contains
// the data
U8 next_node = node->mChildMap[octant];
while (next_node != 255 && node->getSize()[0] >= rad)
{
node = node->getChild(next_node);
octant = node->getOctant(pos);
next_node = node->mChildMap[octant];
}
}
else if (!node->contains(rad) && node->getParent())
{ //if we got here, data does not exist in this node
return ((LLOctreeNode<T>*) node->getParent())->getNodeAt(pos, rad);
}
return node;
}
virtual bool insert(T* data)
{
OctreeGuard::checkGuarded(this);
if (data == NULL || data->getBinIndex() != -1)
{
OCT_ERRS << "!!! INVALID ELEMENT ADDED TO OCTREE BRANCH !!!" << llendl;
return false;
}
LLOctreeNode<T>* parent = getOctParent();
//is it here?
if (isInside(data->getPositionGroup()))
{
if (((getElementCount() < gOctreeMaxCapacity && contains(data->getBinRadius())) ||
(data->getBinRadius() > getSize()[0] && parent && parent->getElementCount() >= gOctreeMaxCapacity)))
{ //it belongs here
/*mElementCount++;
#ifdef LL_OCTREE_STATS
OctreeStats::getInstance()->realloc(mElementCount-1,mElementCount);
#endif
mData = (element_list) realloc(mData, sizeof(LLPointer<T>)*mElementCount);
//avoid unref on uninitialized memory
memset(mData+mElementCount-1, 0, sizeof(LLPointer<T>));
mData[mElementCount-1] = data;
mDataEnd = mData + mElementCount;
data->setBinIndex(mElementCount-1);*/
#ifdef LL_OCTREE_STATS
U32 old_cap = mData.capacity();
#endif
data->setBinIndex(mData.size());
mData.push_back(data);
#ifdef LL_OCTREE_STATS
if(old_cap != mData.capacity())
OctreeStats::getInstance()->realloc(old_cap,mData.capacity());
#endif
BaseType::insert(data);
return true;
}
else
{
//find a child to give it to
oct_node* child = NULL;
for (U32 i = 0; i < getChildCount(); i++)
{
child = getChild(i);
if (child->isInside(data->getPositionGroup()))
{
child->insert(data);
return false;
}
}
//it's here, but no kids are in the right place, make a new kid
LLVector4a center = getCenter();
LLVector4a size = getSize();
size.mul(0.5f);
//push center in direction of data
LLOctreeNode<T>::pushCenter(center, size, data);
// handle case where floating point number gets too small
LLVector4a val;
val.setSub(center, getCenter());
val.setAbs(val);
S32 lt = val.lessThan(LLVector4a::getEpsilon()).getGatheredBits() & 0x7;
if( lt == 0x7 )
{
/*mElementCount++;
#ifdef LL_OCTREE_STATS
OctreeStats::getInstance()->realloc(mElementCount-1,mElementCount);
#endif
mData = (element_list) realloc(mData, sizeof(LLPointer<T>)*mElementCount);
//avoid unref on uninitialized memory
memset(mData+mElementCount-1, 0, sizeof(LLPointer<T>));
mData[mElementCount-1] = data;
mDataEnd = mData + mElementCount;
data->setBinIndex(mElementCount-1);*/
#ifdef LL_OCTREE_STATS
U32 old_cap = mData.capacity();
#endif
data->setBinIndex(mData.size());
mData.push_back(data);
#ifdef LL_OCTREE_STATS
if(old_cap != mData.capacity())
OctreeStats::getInstance()->realloc(old_cap,mData.capacity());
#endif
BaseType::insert(data);
return true;
}
#if LL_OCTREE_PARANOIA_CHECK
if (getChildCount() == 8)
{
//this really isn't possible, something bad has happened
OCT_ERRS << "Octree detected floating point error and gave up." << llendl;
return false;
}
//make sure no existing node matches this position
for (U32 i = 0; i < getChildCount(); i++)
{
if (mChild[i]->getCenter().equals3(center))
{
OCT_ERRS << "Octree detected duplicate child center and gave up." << llendl;
return false;
}
}
#endif
//make the new kid
child = new LLOctreeNode<T>(center, size, this);
addChild(child);
child->insert(data);
}
}
else
{
//it's not in here, give it to the root
OCT_ERRS << "Octree insertion failed, starting over from root!" << llendl;
oct_node* node = this;
while (parent)
{
node = parent;
parent = node->getOctParent();
}
if(node != this)
{
node->insert(data);
}
}
return false;
}
void _remove(T* data, S32 i)
{ //precondition -- mElementCount > 0, idx is in range [0, mElementCount)
OctreeGuard::checkGuarded(this);
//mElementCount--;
data->setBinIndex(-1);
/* if (mElementCount > 0)
{
if (mElementCount != i)
{
mData[i] = mData[mElementCount]; //might unref data, do not access data after this point
mData[i]->setBinIndex(i);
}
mData[mElementCount] = NULL; //needed for unref
#ifdef LL_OCTREE_STATS
OctreeStats::getInstance()->realloc(mElementCount+1,mElementCount);
#endif
mData = (element_list) realloc(mData, sizeof(LLPointer<T>)*mElementCount);
mDataEnd = mData+mElementCount;
}
else
{
mData[0] = NULL; //needed for unref
#ifdef LL_OCTREE_STATS
OctreeStats::getInstance()->free(1);
#endif
free(mData);
mData = NULL;
mDataEnd = NULL;
}*/
if(mData.size())
{
if((mData.size()-1)!=i)
{
mData[i] = mData[mData.size()-1];
mData[i]->setBinIndex(i);
}
#ifdef LL_OCTREE_STATS
U32 old_cap = mData.capacity();
#endif
mData.pop_back();
if( mData.size() == gOctreeReserveCapacity ||
(mData.size() > gOctreeReserveCapacity && mData.capacity() > gOctreeReserveCapacity + mData.size() - 1 - (mData.size() - gOctreeReserveCapacity - 1) % 4))
{
//Shrink to lowest possible (reserve)+4*i size.. Say reserve is 5, here are [size,capacity] pairs. [10,13],[9,9],[8,9],[7,9],[6,9],[5,5],[4,5],[3,5],[2,5],[1,5],[0,5]
//For Windows: We always assume vs2010 or later, which support this c++11 feature with no configuration needed.
//For GCC: __cplusplus >= 201103L indicates C++11 support. __GXX_EXPERIMENTAL_CXX0X being set indicates experimental c++0x support. C++11 support replaces C++0x support.
// std::vector::shrink_to_fit was added to GCCs C++0x implementation in version 4.5.0.
#if defined(LL_WINDOWS) || __cplusplus >= 201103L || (defined(__GXX_EXPERIMENTAL_CXX0X) && __GNUC_MINOR__ >= 5)
mData.shrink_to_fit();
#else
std::vector<LLPointer<T> >(mData.begin(), mData.end()).swap(mData); //Need to confirm this works on OSX..
#endif
}
#ifdef LL_OCTREE_STATS
if(old_cap != mData.capacity())
OctreeStats::getInstance()->realloc(old_cap,mData.capacity());
#endif
}
this->notifyRemoval(data);
checkAlive();
}
bool remove(T* data)
{
OctreeGuard::checkGuarded(this);
S32 i = data->getBinIndex();
//if (i >= 0 && i < mElementCount)
if (i >= 0 && i < (S32)mData.size())
{
if (mData[i] == data)
{ //found it
_remove(data, i);
llassert(data->getBinIndex() == -1);
return true;
}
}
if (isInside(data))
{
oct_node* dest = getNodeAt(data);
if (dest != this)
{
bool ret = dest->remove(data);
llassert(data->getBinIndex() == -1);
return ret;
}
}
//SHE'S GONE MISSING...
//none of the children have it, let's just brute force this bastard out
//starting with the root node (UGLY CODE COMETH!)
oct_node* parent = getOctParent();
oct_node* node = this;
while (parent != NULL)
{
node = parent;
parent = node->getOctParent();
}
//node is now root
llwarns << "!!! OCTREE REMOVING ELEMENT BY ADDRESS, SEVERE PERFORMANCE PENALTY |||" << llendl;
node->removeByAddress(data);
llassert(data->getBinIndex() == -1);
return true;
}
void removeByAddress(T* data)
{
OctreeGuard::checkGuarded(this);
//for (U32 i = 0; i < mElementCount; ++i)
for (U32 i = 0; i < mData.size(); ++i)
{
if (mData[i] == data)
{ //we have data
_remove(data, i);
llwarns << "FOUND!" << llendl;
return;
}
}
for (U32 i = 0; i < getChildCount(); i++)
{ //we don't contain data, so pass this guy down
LLOctreeNode<T>* child = (LLOctreeNode<T>*) getChild(i);
child->removeByAddress(data);
}
}
void clearChildren()
{
OctreeGuard::checkGuarded(this);
mChildCount = 0;
U32* foo = (U32*) mChildMap;
foo[0] = foo[1] = 0xFFFFFFFF;
}
void validate()
{
#if LL_OCTREE_PARANOIA_CHECK
for (U32 i = 0; i < getChildCount(); i++)
{
mChild[i]->validate();
if (mChild[i]->getParent() != this)
{
llerrs << "Octree child has invalid parent." << llendl;
}
}
#endif
}
virtual bool balance()
{
return false;
}
void destroy()
{
for (U32 i = 0; i < getChildCount(); i++)
{
mChild[i]->destroy();
delete mChild[i];
}
}
void addChild(oct_node* child, BOOL silent = FALSE)
{
#if LL_OCTREE_PARANOIA_CHECK
if (child->getSize().equals3(getSize()))
{
OCT_ERRS << "Child size is same as parent size!" << llendl;
}
for (U32 i = 0; i < getChildCount(); i++)
{
if(!mChild[i]->getSize().equals3(child->getSize()))
{
OCT_ERRS <<"Invalid octree child size." << llendl;
}
if (mChild[i]->getCenter().equals3(child->getCenter()))
{
OCT_ERRS <<"Duplicate octree child position." << llendl;
}
}
if (mChild.size() >= 8)
{
OCT_ERRS <<"Octree node has too many children... why?" << llendl;
}
#endif
OctreeGuard::checkGuarded(this);
mChildMap[child->getOctant()] = mChildCount;
mChild[mChildCount] = child;
++mChildCount;
child->setParent(this);
if (!silent)
{
for (U32 i = 0; i < this->getListenerCount(); i++)
{
oct_listener* listener = getOctListener(i);
listener->handleChildAddition(this, child);
}
}
}
void removeChild(S32 index, BOOL destroy = FALSE)
{
OctreeGuard::checkGuarded(this);
for (U32 i = 0; i < this->getListenerCount(); i++)
{
oct_listener* listener = getOctListener(i);
listener->handleChildRemoval(this, getChild(index));
}
if (destroy)
{
mChild[index]->destroy();
delete mChild[index];
}
--mChildCount;
mChild[index] = mChild[mChildCount];
//rebuild child map
U32* foo = (U32*) mChildMap;
foo[0] = foo[1] = 0xFFFFFFFF;
for (U32 i = 0; i < mChildCount; ++i)
{
mChildMap[mChild[i]->getOctant()] = i;
}
checkAlive();
}
void checkAlive()
{
if (getChildCount() == 0 && getElementCount() == 0)
{
oct_node* parent = getOctParent();
if (parent)
{
parent->deleteChild(this);
}
}
}
void deleteChild(oct_node* node)
{
for (U32 i = 0; i < getChildCount(); i++)
{
if (getChild(i) == node)
{
removeChild(i, TRUE);
return;
}
}
OCT_ERRS << "Octree failed to delete requested child." << llendl;
}
protected:
typedef enum
{
CENTER = 0,
SIZE = 1,
MAX = 2,
MIN = 3
} eDName;
LLVector4a mCenter;
LLVector4a mSize;
LLVector4a mMax;
LLVector4a mMin;
oct_node* mParent;
U8 mOctant;
LLOctreeNode<T>* mChild[8];
U8 mChildMap[8];
U32 mChildCount;
element_list mData;
//element_iter mDataEnd;
//U32 mElementCount;
};
//just like a regular node, except it might expand on insert and compress on balance
template <class T>
class LLOctreeRoot : public LLOctreeNode<T>
{
public:
typedef LLOctreeNode<T> BaseType;
typedef LLOctreeNode<T> oct_node;
LLOctreeRoot(const LLVector4a& center,
const LLVector4a& size,
BaseType* parent)
: BaseType(center, size, parent)
{
}
bool balance()
{
if (this->getChildCount() == 1 &&
!(this->mChild[0]->isLeaf()) &&
this->mChild[0]->getElementCount() == 0)
{ //if we have only one child and that child is an empty branch, make that child the root
oct_node* child = this->mChild[0];
//make the root node look like the child
this->setCenter(this->mChild[0]->getCenter());
this->setSize(this->mChild[0]->getSize());
this->updateMinMax();
//reset root node child list
this->clearChildren();
//copy the child's children into the root node silently
//(don't notify listeners of addition)
for (U32 i = 0; i < child->getChildCount(); i++)
{
this->addChild(child->getChild(i), TRUE);
}
//destroy child
child->clearChildren();
delete child;
return false;
}
return true;
}
// LLOctreeRoot::insert
bool insert(T* data)
{
if (data == NULL)
{
OCT_ERRS << "!!! INVALID ELEMENT ADDED TO OCTREE ROOT !!!" << llendl;
return false;
}
if (data->getBinRadius() > 4096.0)
{
OCT_ERRS << "!!! ELEMENT EXCEEDS MAXIMUM SIZE IN OCTREE ROOT !!!" << llendl;
return false;
}
LLVector4a MAX_MAG;
MAX_MAG.splat(4096.f * 4096.f); // Singu note: SVC-2941 FIRE-11593 (original range was 1024 * 1024)
const LLVector4a& v = data->getPositionGroup();
LLVector4a val;
val.setSub(v, BaseType::mCenter);
val.setAbs(val);
S32 lt = val.lessThan(MAX_MAG).getGatheredBits() & 0x7;
if (lt != 0x7)
{
//OCT_ERRS << "!!! ELEMENT EXCEEDS RANGE OF SPATIAL PARTITION !!!" << llendl;
return false;
}
if (this->getSize()[0] > data->getBinRadius() && this->isInside(data->getPositionGroup()))
{
//we got it, just act like a branch
oct_node* node = this->getNodeAt(data);
if (node == this)
{
LLOctreeNode<T>::insert(data);
}
else
{
node->insert(data);
}
}
else if (this->getChildCount() == 0)
{
//first object being added, just wrap it up
while (!(this->getSize()[0] > data->getBinRadius() && this->isInside(data->getPositionGroup())))
{
LLVector4a center, size;
center = this->getCenter();
size = this->getSize();
LLOctreeNode<T>::pushCenter(center, size, data);
this->setCenter(center);
size.mul(2.f);
this->setSize(size);
this->updateMinMax();
}
LLOctreeNode<T>::insert(data);
}
else
{
while (!(this->getSize()[0] > data->getBinRadius() && this->isInside(data->getPositionGroup())))
{
//the data is outside the root node, we need to grow
LLVector4a center(this->getCenter());
LLVector4a size(this->getSize());
//expand this node
LLVector4a newcenter(center);
LLOctreeNode<T>::pushCenter(newcenter, size, data);
this->setCenter(newcenter);
LLVector4a size2 = size;
size2.mul(2.f);
this->setSize(size2);
this->updateMinMax();
//copy our children to a new branch
LLOctreeNode<T>* newnode = new LLOctreeNode<T>(center, size, this);
for (U32 i = 0; i < this->getChildCount(); i++)
{
LLOctreeNode<T>* child = this->getChild(i);
newnode->addChild(child);
}
//clear our children and add the root copy
this->clearChildren();
this->addChild(newnode);
}
//insert the data
insert(data);
}
return false;
}
};
//========================
// LLOctreeTraveler
//========================
template <class T>
void LLOctreeTraveler<T>::traverse(const LLOctreeNode<T>* node)
{
node->accept(this);
for (U32 i = 0; i < node->getChildCount(); i++)
{
traverse(node->getChild(i));
}
}
template <class T>
void LLOctreeTravelerDepthFirst<T>::traverse(const LLOctreeNode<T>* node)
{
for (U32 i = 0; i < node->getChildCount(); i++)
{
traverse(node->getChild(i));
}
node->accept(this);
}
#endif