Files
SingularityViewer/indra/llxml/llxmlnode.cpp
Lirusaito 2653567d82 Sync with alchemy
Moves some constants out of llavatarconstants.h
8ebf8f4608bd: Change various const constants to constexpr
e07d5d43ba30: CID-143595
30b6935fc66d: CID-143595
acc96f9051cb: Fix a memory leak in viewer side baking initial wearable setup
Sync llmodel.*

Changesets assimilated:
f8f7706c2902: CID-143554 - fix out of bounds access
223eb65adce4: CID-143554 - Chase
2ceb49aaa133: CID-42838, CID-42930, CID-42933, CID-42938, CID-42940, CID-42945, CID-42948, CID-56111, CID-83907
d220005d9f23: Missing null check before deref
31dbb0f3b6ee: CID-42571 CID-42576 CID-42578
49caf082e65c: change unordered_map to flat_map
Doesn't cause as many problems as a hashmap when it comes to assumptions in the
LLUI system.
f93f5e881484: "update" linux cef
downgrade to fix javascript problems
cba818dd9269: Various null checks and etc.
1b4c6bc483bb: CID-42847, CID-42854, CID-42886, CID-42921, CID-42922, CID-42923, CID-42924, CID-42925,
CID-42927, CID-42928, CID-83871, CID-83876, CID-83878, CID-83880, CID-83900, CID-143573
0fe90cd9ec24: Various file size related things
a79f6f653dca: CID-42918 - Initialize member pointers in LLFloaterGodTools
0b70d600d978: Tweak LLFloaterBuyLand initializations
e8b173ffe813: CID-42854 - Additional fix to LLDrawInfo
b5d745cf3fde: Fix signage
4f2e2f384781: Initialize and cleanup various class member variables.
CID-42899, CID-42900, CID-42902, CID-42903, CID-42904, CID-42905, CID-42909, CID-42910,
CID-42911, CID-42912, CID-42913, CID-42967, CID-83853, CID-83898, CID-83890, CID-143584
9851a3e39b4c: Fix platform specific include directories
5c074e84f1be: Initialize and clenaup various more class member variables.
CID-42885, CID-42853, CID-42894, CID-42895, CID-42896, CID-83908, CID-143574, CID-143575,
CID-143576, CID-143576, CID-143578
ac262854ac92: Brace sub-object in initialization to make our intentions clear to clang
358da477d4c1: More double brace init
c3850119314a: Initialize various member pointers in panels
CID-83902, CID-83903, CID-83905, CID-83909, CID-83911, CID-83912, CID-143572
2016-03-30 21:06:47 -04:00

3393 lines
78 KiB
C++

/**
* @file llxmlnode.cpp
* @author Tom Yedwab
* @brief LLXMLNode implementation
*
* $LicenseInfo:firstyear=2005&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#include "linden_common.h"
#include <iostream>
#include <map>
#include "llxmlnode.h"
#include "v3color.h"
#include "v4color.h"
#include "v4coloru.h"
#include "v3math.h"
#include "v3dmath.h"
#include "v4math.h"
#include "llquaternion.h"
#include "llstring.h"
#include "lluuid.h"
//#include "lldir.h" // Do not need.
// static
BOOL LLXMLNode::sStripEscapedStrings = TRUE;
BOOL LLXMLNode::sStripWhitespaceValues = FALSE;
LLXMLNode::LLXMLNode() :
mID(""),
mParser(NULL),
mIsAttribute(FALSE),
mVersionMajor(0),
mVersionMinor(0),
mLength(0),
mPrecision(64),
mType(TYPE_CONTAINER),
mEncoding(ENCODING_DEFAULT),
mLineNumber(-1),
mParent(NULL),
mChildren(NULL),
mAttributes(),
mPrev(NULL),
mNext(NULL),
mName(NULL),
mValue(""),
mDefault(NULL)
{
}
LLXMLNode::LLXMLNode(const char* name, BOOL is_attribute) :
mID(""),
mParser(NULL),
mIsAttribute(is_attribute),
mVersionMajor(0),
mVersionMinor(0),
mLength(0),
mPrecision(64),
mType(TYPE_CONTAINER),
mEncoding(ENCODING_DEFAULT),
mLineNumber(-1),
mParent(NULL),
mChildren(NULL),
mAttributes(),
mPrev(NULL),
mNext(NULL),
mValue(""),
mDefault(NULL)
{
mName = gStringTable.addStringEntry(name);
}
LLXMLNode::LLXMLNode(LLStringTableEntry* name, BOOL is_attribute) :
mID(""),
mParser(NULL),
mIsAttribute(is_attribute),
mVersionMajor(0),
mVersionMinor(0),
mLength(0),
mPrecision(64),
mType(TYPE_CONTAINER),
mEncoding(ENCODING_DEFAULT),
mLineNumber(-1),
mParent(NULL),
mChildren(NULL),
mAttributes(),
mPrev(NULL),
mNext(NULL),
mName(name),
mValue(""),
mDefault(NULL)
{
}
// copy constructor (except for the children)
LLXMLNode::LLXMLNode(const LLXMLNode& rhs) :
mID(rhs.mID),
mIsAttribute(rhs.mIsAttribute),
mVersionMajor(rhs.mVersionMajor),
mVersionMinor(rhs.mVersionMinor),
mLength(rhs.mLength),
mPrecision(rhs.mPrecision),
mType(rhs.mType),
mEncoding(rhs.mEncoding),
mLineNumber(0),
mParser(NULL),
mParent(NULL),
mChildren(NULL),
mAttributes(),
mPrev(NULL),
mNext(NULL),
mName(rhs.mName),
mValue(rhs.mValue),
mDefault(rhs.mDefault)
{
}
// returns a new copy of this node and all its children
LLXMLNodePtr LLXMLNode::deepCopy()
{
LLXMLNodePtr newnode = LLXMLNodePtr(new LLXMLNode(*this));
if (mChildren.notNull())
{
for (LLXMLChildList::iterator iter = mChildren->map.begin();
iter != mChildren->map.end(); ++iter)
{
LLXMLNodePtr temp_ptr_for_gcc(iter->second->deepCopy());
newnode->addChild(temp_ptr_for_gcc);
}
}
for (LLXMLAttribList::iterator iter = mAttributes.begin();
iter != mAttributes.end(); ++iter)
{
LLXMLNodePtr temp_ptr_for_gcc(iter->second->deepCopy());
newnode->addChild(temp_ptr_for_gcc);
}
return newnode;
}
// virtual
LLXMLNode::~LLXMLNode()
{
// Strictly speaking none of this should be required execept 'delete mChildren'...
// Sadly, that's only true if we hadn't had reference-counted smart pointers linked
// in three different directions. This entire class is a frightening, hard-to-maintain
// mess.
if (mChildren.notNull())
{
for (LLXMLChildList::iterator iter = mChildren->map.begin();
iter != mChildren->map.end(); ++iter)
{
LLXMLNodePtr child = iter->second;
child->mParent = NULL;
child->mNext = NULL;
child->mPrev = NULL;
}
mChildren->map.clear();
mChildren->head = NULL;
mChildren->tail = NULL;
mChildren = NULL;
}
for (LLXMLAttribList::iterator iter = mAttributes.begin();
iter != mAttributes.end(); ++iter)
{
LLXMLNodePtr attr = iter->second;
attr->mParent = NULL;
attr->mNext = NULL;
attr->mPrev = NULL;
}
llassert(mParent == NULL);
mDefault = NULL;
}
BOOL LLXMLNode::isNull()
{
return (mName == NULL);
}
// protected
BOOL LLXMLNode::removeChild(LLXMLNode *target_child)
{
if (!target_child)
{
return FALSE;
}
if (target_child->mIsAttribute)
{
LLXMLAttribList::iterator children_itr = mAttributes.find(target_child->mName);
if (children_itr != mAttributes.end())
{
target_child->mParent = NULL;
mAttributes.erase(children_itr);
return TRUE;
}
}
else if (mChildren.notNull())
{
LLXMLChildList::iterator children_itr = mChildren->map.find(target_child->mName);
while (children_itr != mChildren->map.end())
{
if (target_child == children_itr->second)
{
if (target_child == mChildren->head)
{
mChildren->head = target_child->mNext;
}
if (target_child == mChildren->tail)
{
mChildren->tail = target_child->mPrev;
}
LLXMLNodePtr prev = target_child->mPrev;
LLXMLNodePtr next = target_child->mNext;
if (prev.notNull()) prev->mNext = next;
if (next.notNull()) next->mPrev = prev;
target_child->mPrev = NULL;
target_child->mNext = NULL;
target_child->mParent = NULL;
mChildren->map.erase(children_itr);
if (mChildren->map.empty())
{
mChildren = NULL;
}
return TRUE;
}
else if (children_itr->first != target_child->mName)
{
break;
}
else
{
++children_itr;
}
}
}
return FALSE;
}
void LLXMLNode::addChild(LLXMLNodePtr& new_child, LLXMLNodePtr after_child)
{
if (new_child->mParent != NULL)
{
if (new_child->mParent == this)
{
return;
}
new_child->mParent->removeChild(new_child);
}
new_child->mParent = this;
if (new_child->mIsAttribute)
{
mAttributes.insert(std::make_pair(new_child->mName, new_child));
}
else
{
if (mChildren.isNull())
{
mChildren = new LLXMLChildren();
mChildren->head = new_child;
mChildren->tail = new_child;
}
mChildren->map.insert(std::make_pair(new_child->mName, new_child));
// if after_child is specified, it damn well better be in the list of children
// for this node. I'm not going to assert that, because it would be expensive,
// but don't specify that parameter if you didn't get the value for it from the
// list of children of this node!
if (after_child.isNull())
{
if (mChildren->tail != new_child)
{
mChildren->tail->mNext = new_child;
new_child->mPrev = mChildren->tail;
mChildren->tail = new_child;
}
}
// if after_child == parent, then put new_child at beginning
else if (after_child == this)
{
// add to front of list
new_child->mNext = mChildren->head;
if (mChildren->head)
{
mChildren->head->mPrev = new_child;
mChildren->head = new_child;
}
else // no children
{
mChildren->head = new_child;
mChildren->tail = new_child;
}
}
else
{
if (after_child->mNext.notNull())
{
// if after_child was not the last item, fix up some pointers
after_child->mNext->mPrev = new_child;
new_child->mNext = after_child->mNext;
}
new_child->mPrev = after_child;
after_child->mNext = new_child;
if (mChildren->tail == after_child)
{
mChildren->tail = new_child;
}
}
}
new_child->updateDefault();
}
// virtual
LLXMLNodePtr LLXMLNode::createChild(const char* name, BOOL is_attribute)
{
return createChild(gStringTable.addStringEntry(name), is_attribute);
}
// virtual
LLXMLNodePtr LLXMLNode::createChild(LLStringTableEntry* name, BOOL is_attribute)
{
LLXMLNodePtr ret(new LLXMLNode(name, is_attribute));
ret->mID.clear();
addChild(ret);
return ret;
}
BOOL LLXMLNode::deleteChild(LLXMLNode *child)
{
if (removeChild(child))
{
return TRUE;
}
return FALSE;
}
void LLXMLNode::setParent(LLXMLNodePtr& new_parent)
{
if (new_parent.notNull())
{
LLXMLNodePtr this_ptr(this);
new_parent->addChild(this_ptr);
}
else
{
if (mParent != NULL)
{
LLXMLNodePtr old_parent = mParent;
mParent = NULL;
old_parent->removeChild(this);
}
}
}
void LLXMLNode::updateDefault()
{
if (mParent != NULL && !mParent->mDefault.isNull())
{
mDefault = NULL;
// Find default value in parent's default tree
if (!mParent->mDefault.isNull())
{
findDefault(mParent->mDefault);
}
}
if (mChildren.notNull())
{
LLXMLChildList::const_iterator children_itr;
LLXMLChildList::const_iterator children_end = mChildren->map.end();
for (children_itr = mChildren->map.begin(); children_itr != children_end; ++children_itr)
{
LLXMLNodePtr child = (*children_itr).second;
child->updateDefault();
}
}
}
void XMLCALL StartXMLNode(void *userData,
const XML_Char *name,
const XML_Char **atts)
{
// Create a new node
LLXMLNode *new_node_ptr = new LLXMLNode(name, FALSE);
LLXMLNodePtr new_node = new_node_ptr;
new_node->mID.clear();
LLXMLNodePtr ptr_new_node = new_node;
// Set the parent-child relationship with the current active node
LLXMLNode* parent = (LLXMLNode *)userData;
if (NULL == parent)
{
LL_WARNS() << "parent (userData) is NULL; aborting function" << LL_ENDL;
return;
}
new_node_ptr->mParser = parent->mParser;
new_node_ptr->setLineNumber(XML_GetCurrentLineNumber(*new_node_ptr->mParser));
// Set the current active node to the new node
XML_Parser *parser = parent->mParser;
XML_SetUserData(*parser, (void *)new_node_ptr);
// Parse attributes
U32 pos = 0;
while (atts[pos] != NULL)
{
std::string attr_name = atts[pos];
std::string attr_value = atts[pos+1];
// Special cases
if ('i' == attr_name[0] && "id" == attr_name)
{
new_node->mID = attr_value;
}
else if ('v' == attr_name[0] && "version" == attr_name)
{
U32 version_major = 0;
U32 version_minor = 0;
if (sscanf(attr_value.c_str(), "%d.%d", &version_major, &version_minor) > 0)
{
new_node->mVersionMajor = version_major;
new_node->mVersionMinor = version_minor;
}
}
else if (('s' == attr_name[0] && "size" == attr_name) || ('l' == attr_name[0] && "length" == attr_name))
{
U32 length;
if (sscanf(attr_value.c_str(), "%d", &length) > 0)
{
new_node->mLength = length;
}
}
else if ('p' == attr_name[0] && "precision" == attr_name)
{
U32 precision;
if (sscanf(attr_value.c_str(), "%d", &precision) > 0)
{
new_node->mPrecision = precision;
}
}
else if ('t' == attr_name[0] && "type" == attr_name)
{
if ("boolean" == attr_value)
{
new_node->mType = LLXMLNode::TYPE_BOOLEAN;
}
else if ("integer" == attr_value)
{
new_node->mType = LLXMLNode::TYPE_INTEGER;
}
else if ("float" == attr_value)
{
new_node->mType = LLXMLNode::TYPE_FLOAT;
}
else if ("string" == attr_value)
{
new_node->mType = LLXMLNode::TYPE_STRING;
}
else if ("uuid" == attr_value)
{
new_node->mType = LLXMLNode::TYPE_UUID;
}
else if ("noderef" == attr_value)
{
new_node->mType = LLXMLNode::TYPE_NODEREF;
}
}
else if ('e' == attr_name[0] && "encoding" == attr_name)
{
if ("decimal" == attr_value)
{
new_node->mEncoding = LLXMLNode::ENCODING_DECIMAL;
}
else if ("hex" == attr_value)
{
new_node->mEncoding = LLXMLNode::ENCODING_HEX;
}
/*else if (attr_value == "base32")
{
new_node->mEncoding = LLXMLNode::ENCODING_BASE32;
}*/
}
// only one attribute child per description
LLXMLNodePtr attr_node;
if (!new_node->getAttribute(attr_name.c_str(), attr_node, FALSE))
{
attr_node = new LLXMLNode(attr_name.c_str(), TRUE);
attr_node->setLineNumber(XML_GetCurrentLineNumber(*new_node_ptr->mParser));
}
attr_node->setValue(attr_value);
new_node->addChild(attr_node);
pos += 2;
}
if (parent)
{
parent->addChild(new_node);
}
}
void XMLCALL EndXMLNode(void *userData,
const XML_Char *name)
{
// [FUGLY] Set the current active node to the current node's parent
LLXMLNode *node = (LLXMLNode *)userData;
XML_Parser *parser = node->mParser;
XML_SetUserData(*parser, (void *)node->mParent);
// SJB: total hack:
if (LLXMLNode::sStripWhitespaceValues)
{
std::string value = node->getValue();
BOOL is_empty = TRUE;
for (std::string::size_type s = 0; s < value.length(); s++)
{
char c = value[s];
if (c != ' ' && c != '\t' && c != '\n')
{
is_empty = FALSE;
break;
}
}
if (is_empty)
{
value.clear();
node->setValue(value);
}
}
// Singu note: moved here from XMLData.
if (LLXMLNode::sStripEscapedStrings)
{
std::string value = node->getValue();
int len = value.length();
if (len > 1 && value[0] == '"' && value[len - 1] == '"')
{
// Special-case: Escaped string.
std::string unescaped_string;
for (S32 pos = 1; pos < len - 1; ++pos)
{
if (value[pos] == '\\' && value[pos + 1] == '\\')
{
unescaped_string += '\\';
++pos;
}
else if (value[pos] == '\\' && value[pos + 1] == '"')
{
unescaped_string += '"';
++pos;
}
else
{
unescaped_string += value[pos];
}
}
value += unescaped_string;
node->setValue(value);
}
}
}
void XMLCALL XMLData(void *userData,
const XML_Char *s,
int len)
{
LLXMLNode* current_node = (LLXMLNode *)userData;
std::string value = current_node->getValue();
#if 0
// Apparently also Lindens who write XML parsers can't read documentation.
// "A single block of contiguous text free of markup may still result in a sequence
// of calls to this handler. In other words, if you're searching for a pattern in
// the text, it may be split across calls to this handler."
// (http://sepp.oetiker.ch/expat-1.95.6-rs.SEPP/expat-1.95.6/doc/reference.html#XML_SetCharacterDataHandler)
//
// In other words, this is not guaranteed to work at all -- Aleric.
if (LLXMLNode::sStripEscapedStrings)
{
if (s[0] == '\"' && s[len-1] == '\"')
{
// Special-case: Escaped string.
std::string unescaped_string;
for (S32 pos=1; pos<len-1; ++pos)
{
if (s[pos] == '\\' && s[pos+1] == '\\')
{
unescaped_string.append("\\");
++pos;
}
else if (s[pos] == '\\' && s[pos+1] == '\"')
{
unescaped_string.append("\"");
++pos;
}
else
{
unescaped_string.append(&s[pos], 1);
}
}
value.append(unescaped_string);
current_node->setValue(value);
return;
}
}
#endif
value.append(std::string(s, len));
current_node->setValue(value);
}
// static
bool LLXMLNode::updateNode(
LLXMLNodePtr& node,
LLXMLNodePtr& update_node)
{
if (!node || !update_node)
{
LL_WARNS() << "Node invalid" << LL_ENDL;
return FALSE;
}
//update the node value
node->mValue = update_node->mValue;
//update all attribute values
LLXMLAttribList::const_iterator itor;
for(itor = update_node->mAttributes.begin(); itor != update_node->mAttributes.end(); ++itor)
{
const LLStringTableEntry* attribNameEntry = (*itor).first;
LLXMLNodePtr updateAttribNode = (*itor).second;
LLXMLNodePtr attribNode;
node->getAttribute(attribNameEntry, attribNode, 0);
if (attribNode)
{
attribNode->mValue = updateAttribNode->mValue;
}
}
//update all of node's children with updateNodes children that match name
LLXMLNodePtr child = node->getFirstChild();
LLXMLNodePtr last_child = child;
LLXMLNodePtr updateChild;
for (updateChild = update_node->getFirstChild(); updateChild.notNull();
updateChild = updateChild->getNextSibling())
{
while(child.notNull())
{
std::string nodeName;
std::string updateName;
updateChild->getAttributeString("name", updateName);
child->getAttributeString("name", nodeName);
//if it's a combobox there's no name, but there is a value
if (updateName.empty())
{
updateChild->getAttributeString("value", updateName);
child->getAttributeString("value", nodeName);
}
if ((nodeName != "") && (updateName == nodeName))
{
updateNode(child, updateChild);
last_child = child;
child = child->getNextSibling();
if (child.isNull())
{
child = node->getFirstChild();
}
break;
}
child = child->getNextSibling();
if (child.isNull())
{
child = node->getFirstChild();
}
if (child == last_child)
{
break;
}
}
}
return TRUE;
}
// static
LLXMLNodePtr LLXMLNode::replaceNode(LLXMLNodePtr node, LLXMLNodePtr update_node)
{
if (!node || !update_node)
{
LL_WARNS() << "Node invalid" << LL_ENDL;
return node;
}
LLXMLNodePtr cloned_node = update_node->deepCopy();
node->mParent->addChild(cloned_node, node); // add after node
LLXMLNodePtr parent = node->mParent;
parent->removeChild(node);
parent->updateDefault();
return cloned_node;
}
// static
bool LLXMLNode::parseFile(const std::string& filename, LLXMLNodePtr& node, LLXMLNode* defaults_tree)
{
// Read file
LL_DEBUGS("XMLNode") << "parsing XML file: " << filename << LL_ENDL;
LLFILE* fp = LLFile::fopen(filename, "rb"); /* Flawfinder: ignore */
if (fp == NULL)
{
node = NULL ;
return false;
}
fseek(fp, 0, SEEK_END);
size_t length = ftell(fp);
fseek(fp, 0, SEEK_SET);
U8* buffer = new U8[length+1];
size_t nread = fread(buffer, 1, length, fp);
buffer[nread] = 0;
fclose(fp);
bool rv = parseBuffer(buffer, nread, node, defaults_tree);
delete [] buffer;
return rv;
}
// static
bool LLXMLNode::parseBuffer(
U8* buffer,
U32 length,
LLXMLNodePtr& node,
LLXMLNode* defaults)
{
// Init
XML_Parser my_parser = XML_ParserCreate(NULL);
XML_SetElementHandler(my_parser, StartXMLNode, EndXMLNode);
XML_SetCharacterDataHandler(my_parser, XMLData);
// Create a root node
LLXMLNode *file_node_ptr = new LLXMLNode("XML", FALSE);
LLXMLNodePtr file_node = file_node_ptr;
file_node->mParser = &my_parser;
XML_SetUserData(my_parser, (void *)file_node_ptr);
// Do the parsing
if (XML_Parse(my_parser, (const char *)buffer, length, TRUE) != XML_STATUS_OK)
{
LL_WARNS() << "Error parsing xml error code: "
<< XML_ErrorString(XML_GetErrorCode(my_parser))
<< " on line " << XML_GetCurrentLineNumber(my_parser)
<< LL_ENDL;
}
// Deinit
XML_ParserFree(my_parser);
if (!file_node->mChildren || file_node->mChildren->map.size() != 1)
{
LL_WARNS() << "Parse failure - wrong number of top-level nodes xml."
<< LL_ENDL;
node = NULL ;
return false;
}
LLXMLNode *return_node = file_node->mChildren->map.begin()->second;
return_node->setDefault(defaults);
return_node->updateDefault();
node = return_node;
return true;
}
// static
bool LLXMLNode::parseStream(
std::istream& str,
LLXMLNodePtr& node,
LLXMLNode* defaults)
{
// Init
XML_Parser my_parser = XML_ParserCreate(NULL);
XML_SetElementHandler(my_parser, StartXMLNode, EndXMLNode);
XML_SetCharacterDataHandler(my_parser, XMLData);
// Create a root node
LLXMLNode *file_node_ptr = new LLXMLNode("XML", FALSE);
LLXMLNodePtr file_node = file_node_ptr;
file_node->mParser = &my_parser;
XML_SetUserData(my_parser, (void *)file_node_ptr);
const int BUFSIZE = 1024;
U8* buffer = new U8[BUFSIZE];
while(str.good())
{
str.read((char*)buffer, BUFSIZE);
int count = (int)str.gcount();
if (XML_Parse(my_parser, (const char *)buffer, count, !str.good()) != XML_STATUS_OK)
{
LL_WARNS() << "Error parsing xml error code: "
<< XML_ErrorString(XML_GetErrorCode(my_parser))
<< " on lne " << XML_GetCurrentLineNumber(my_parser)
<< LL_ENDL;
break;
}
}
delete [] buffer;
// Deinit
XML_ParserFree(my_parser);
if (!file_node->mChildren || file_node->mChildren->map.size() != 1)
{
LL_WARNS() << "Parse failure - wrong number of top-level nodes xml."
<< LL_ENDL;
node = NULL;
return false;
}
LLXMLNode *return_node = file_node->mChildren->map.begin()->second;
return_node->setDefault(defaults);
return_node->updateDefault();
node = return_node;
return true;
}
BOOL LLXMLNode::isFullyDefault()
{
if (mDefault.isNull())
{
return FALSE;
}
BOOL has_default_value = (mValue == mDefault->mValue);
BOOL has_default_attribute = (mIsAttribute == mDefault->mIsAttribute);
BOOL has_default_type = mIsAttribute || (mType == mDefault->mType);
BOOL has_default_encoding = mIsAttribute || (mEncoding == mDefault->mEncoding);
BOOL has_default_precision = mIsAttribute || (mPrecision == mDefault->mPrecision);
BOOL has_default_length = mIsAttribute || (mLength == mDefault->mLength);
if (has_default_value
&& has_default_type
&& has_default_encoding
&& has_default_precision
&& has_default_length
&& has_default_attribute)
{
if (mChildren.notNull())
{
LLXMLChildList::const_iterator children_itr;
LLXMLChildList::const_iterator children_end = mChildren->map.end();
for (children_itr = mChildren->map.begin(); children_itr != children_end; ++children_itr)
{
LLXMLNodePtr child = (*children_itr).second;
if (!child->isFullyDefault())
{
return FALSE;
}
}
}
return TRUE;
}
return FALSE;
}
// static
bool LLXMLNode::getLayeredXMLNode(LLXMLNodePtr& root,
const std::vector<std::string>& paths)
{
if (paths.empty()) return false;
std::string filename = paths.front();
if (filename.empty())
{
return false;
}
if (!LLXMLNode::parseFile(filename, root, NULL))
{
LL_WARNS() << "Problem reading UI description file: " << filename << LL_ENDL;
return false;
}
LLXMLNodePtr updateRoot;
std::vector<std::string>::const_iterator itor;
// We've already dealt with the first item, skip that one
for (itor = paths.begin() + 1; itor != paths.end(); ++itor)
{
std::string layer_filename = *itor;
if(layer_filename.empty() || layer_filename == filename)
{
// no localized version of this file, that's ok, keep looking
continue;
}
if (!LLXMLNode::parseFile(layer_filename, updateRoot, NULL))
{
LL_WARNS() << "Problem reading localized UI description file: " << layer_filename << LL_ENDL;
return false;
}
std::string nodeName;
std::string updateName;
updateRoot->getAttributeString("name", updateName);
root->getAttributeString("name", nodeName);
if (updateName == nodeName)
{
LLXMLNode::updateNode(root, updateRoot);
}
}
return true;
}
// static
void LLXMLNode::writeHeaderToFile(LLFILE *out_file)
{
fprintf(out_file, "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"yes\" ?>\n");
}
void LLXMLNode::writeToFile(LLFILE *out_file, const std::string& indent, bool use_type_decorations)
{
if (isFullyDefault())
{
// Don't write out nodes that are an exact match to defaults
return;
}
std::ostringstream ostream;
writeToOstream(ostream, indent, use_type_decorations);
std::string outstring = ostream.str();
size_t written = fwrite(outstring.c_str(), 1, outstring.length(), out_file);
if (written != outstring.length())
{
LL_WARNS() << "Short write" << LL_ENDL;
}
}
void LLXMLNode::writeToOstream(std::ostream& output_stream, const std::string& indent, bool use_type_decorations)
{
if (isFullyDefault())
{
// Don't write out nodes that are an exact match to defaults
return;
}
BOOL has_default_type = mDefault.isNull()?FALSE:(mType == mDefault->mType);
BOOL has_default_encoding = mDefault.isNull()?FALSE:(mEncoding == mDefault->mEncoding);
BOOL has_default_precision = mDefault.isNull()?FALSE:(mPrecision == mDefault->mPrecision);
BOOL has_default_length = mDefault.isNull()?FALSE:(mLength == mDefault->mLength);
// stream the name
output_stream << indent << "<" << mName->mString << "\n";
if (use_type_decorations)
{
// ID
if (mID != "")
{
output_stream << indent << " id=\"" << mID << "\"\n";
}
// Type
if (!has_default_type)
{
switch (mType)
{
case TYPE_BOOLEAN:
output_stream << indent << " type=\"boolean\"\n";
break;
case TYPE_INTEGER:
output_stream << indent << " type=\"integer\"\n";
break;
case TYPE_FLOAT:
output_stream << indent << " type=\"float\"\n";
break;
case TYPE_STRING:
output_stream << indent << " type=\"string\"\n";
break;
case TYPE_UUID:
output_stream << indent << " type=\"uuid\"\n";
break;
case TYPE_NODEREF:
output_stream << indent << " type=\"noderef\"\n";
break;
default:
// default on switch(enum) eliminates a warning on linux
break;
};
}
// Encoding
if (!has_default_encoding)
{
switch (mEncoding)
{
case ENCODING_DECIMAL:
output_stream << indent << " encoding=\"decimal\"\n";
break;
case ENCODING_HEX:
output_stream << indent << " encoding=\"hex\"\n";
break;
/*case ENCODING_BASE32:
output_stream << indent << " encoding=\"base32\"\n";
break;*/
default:
// default on switch(enum) eliminates a warning on linux
break;
};
}
// Precision
if (!has_default_precision && (mType == TYPE_INTEGER || mType == TYPE_FLOAT))
{
output_stream << indent << " precision=\"" << mPrecision << "\"\n";
}
// Version
if (mVersionMajor > 0 || mVersionMinor > 0)
{
output_stream << indent << " version=\"" << mVersionMajor << "." << mVersionMinor << "\"\n";
}
// Array length
if (!has_default_length && mLength > 0)
{
output_stream << indent << " length=\"" << mLength << "\"\n";
}
}
{
// Write out attributes
LLXMLAttribList::const_iterator attr_itr;
LLXMLAttribList::const_iterator attr_end = mAttributes.end();
for (attr_itr = mAttributes.begin(); attr_itr != attr_end; ++attr_itr)
{
LLXMLNodePtr child = (*attr_itr).second;
if (child->mDefault.isNull() || child->mDefault->mValue != child->mValue)
{
std::string attr = child->mName->mString;
if (use_type_decorations
&& (attr == "id" ||
attr == "type" ||
attr == "encoding" ||
attr == "precision" ||
attr == "version" ||
attr == "length"))
{
continue; // skip built-in attributes
}
std::string attr_str = llformat(" %s=\"%s\"",
attr.c_str(),
escapeXML(child->mValue).c_str());
output_stream << indent << attr_str << "\n";
}
}
}
// erase last \n before attaching final > or />
output_stream.seekp(-1, std::ios::cur);
if (mChildren.isNull() && mValue == "")
{
output_stream << " />\n";
return;
}
else
{
output_stream << ">\n";
if (mChildren.notNull())
{
// stream non-attributes
std::string next_indent = indent + " ";
for (LLXMLNode* child = getFirstChild(); child; child = child->getNextSibling())
{
child->writeToOstream(output_stream, next_indent, use_type_decorations);
}
}
if (!mValue.empty())
{
std::string contents = getTextContents();
output_stream << indent << " " << escapeXML(contents) << "\n";
}
output_stream << indent << "</" << mName->mString << ">\n";
}
}
void LLXMLNode::findName(const std::string& name, LLXMLNodeList &results)
{
LLStringTableEntry* name_entry = gStringTable.checkStringEntry(name);
if (name_entry == mName)
{
results.insert(std::make_pair(this->mName->mString, this));
return;
}
if (mChildren.notNull())
{
LLXMLChildList::const_iterator children_itr;
LLXMLChildList::const_iterator children_end = mChildren->map.end();
for (children_itr = mChildren->map.begin(); children_itr != children_end; ++children_itr)
{
LLXMLNodePtr child = (*children_itr).second;
child->findName(name_entry, results);
}
}
}
void LLXMLNode::findName(LLStringTableEntry* name, LLXMLNodeList &results)
{
if (name == mName)
{
results.insert(std::make_pair(this->mName->mString, this));
return;
}
if (mChildren.notNull())
{
LLXMLChildList::const_iterator children_itr;
LLXMLChildList::const_iterator children_end = mChildren->map.end();
for (children_itr = mChildren->map.begin(); children_itr != children_end; ++children_itr)
{
LLXMLNodePtr child = (*children_itr).second;
child->findName(name, results);
}
}
}
void LLXMLNode::findID(const std::string& id, LLXMLNodeList &results)
{
if (id == mID)
{
results.insert(std::make_pair(this->mName->mString, this));
return;
}
if (mChildren.notNull())
{
LLXMLChildList::const_iterator children_itr;
LLXMLChildList::const_iterator children_end = mChildren->map.end();
for (children_itr = mChildren->map.begin(); children_itr != children_end; ++children_itr)
{
LLXMLNodePtr child = (*children_itr).second;
child->findID(id, results);
}
}
}
void LLXMLNode::scrubToTree(LLXMLNode *tree)
{
if (!tree || tree->mChildren.isNull())
{
return;
}
if (mChildren.notNull())
{
std::vector<LLXMLNodePtr> to_delete_list;
LLXMLChildList::iterator itor = mChildren->map.begin();
while (itor != mChildren->map.end())
{
LLXMLNodePtr child = itor->second;
LLXMLNodePtr child_tree = NULL;
// Look for this child in the default's children
bool found = false;
LLXMLChildList::iterator itor2 = tree->mChildren->map.begin();
while (itor2 != tree->mChildren->map.end())
{
if (child->mName == itor2->second->mName)
{
child_tree = itor2->second;
found = true;
}
++itor2;
}
if (!found)
{
to_delete_list.push_back(child);
}
else
{
child->scrubToTree(child_tree);
}
++itor;
}
std::vector<LLXMLNodePtr>::iterator itor3;
for (itor3=to_delete_list.begin(); itor3!=to_delete_list.end(); ++itor3)
{
LLXMLNodePtr ptr;
(*itor3)->setParent(ptr);
}
}
}
bool LLXMLNode::getChild(const char* name, LLXMLNodePtr& node, BOOL use_default_if_missing)
{
return getChild(gStringTable.checkStringEntry(name), node, use_default_if_missing);
}
bool LLXMLNode::getChild(const LLStringTableEntry* name, LLXMLNodePtr& node, BOOL use_default_if_missing)
{
if (mChildren.notNull())
{
LLXMLChildList::const_iterator child_itr = mChildren->map.find(name);
if (child_itr != mChildren->map.end())
{
node = (*child_itr).second;
return true;
}
}
if (use_default_if_missing && !mDefault.isNull())
{
return mDefault->getChild(name, node, FALSE);
}
node = NULL;
return false;
}
void LLXMLNode::getChildren(const char* name, LLXMLNodeList &children, BOOL use_default_if_missing) const
{
getChildren(gStringTable.checkStringEntry(name), children, use_default_if_missing);
}
void LLXMLNode::getChildren(const LLStringTableEntry* name, LLXMLNodeList &children, BOOL use_default_if_missing) const
{
if (mChildren.notNull())
{
LLXMLChildList::const_iterator child_itr = mChildren->map.find(name);
if (child_itr != mChildren->map.end())
{
LLXMLChildList::const_iterator children_end = mChildren->map.end();
while (child_itr != children_end)
{
LLXMLNodePtr child = (*child_itr).second;
if (name != child->mName)
{
break;
}
children.insert(std::make_pair(child->mName->mString, child));
child_itr++;
}
}
}
if (children.size() == 0 && use_default_if_missing && !mDefault.isNull())
{
mDefault->getChildren(name, children, FALSE);
}
}
// recursively walks the tree and returns all children at all nesting levels matching the name
void LLXMLNode::getDescendants(const LLStringTableEntry* name, LLXMLNodeList &children) const
{
if (mChildren.notNull())
{
for (LLXMLChildList::const_iterator child_itr = mChildren->map.begin();
child_itr != mChildren->map.end(); ++child_itr)
{
LLXMLNodePtr child = (*child_itr).second;
if (name == child->mName)
{
children.insert(std::make_pair(child->mName->mString, child));
}
// and check each child as well
child->getDescendants(name, children);
}
}
}
bool LLXMLNode::getAttribute(const char* name, LLXMLNodePtr& node, BOOL use_default_if_missing)
{
return getAttribute(gStringTable.checkStringEntry(name), node, use_default_if_missing);
}
bool LLXMLNode::getAttribute(const LLStringTableEntry* name, LLXMLNodePtr& node, BOOL use_default_if_missing)
{
LLXMLAttribList::const_iterator child_itr = mAttributes.find(name);
if (child_itr != mAttributes.end())
{
node = (*child_itr).second;
return true;
}
if (use_default_if_missing && !mDefault.isNull())
{
return mDefault->getAttribute(name, node, FALSE);
}
return false;
}
bool LLXMLNode::setAttributeString(const char* attr, const std::string& value)
{
LLStringTableEntry* name = gStringTable.checkStringEntry(attr);
LLXMLAttribList::const_iterator child_itr = mAttributes.find(name);
if (child_itr != mAttributes.end())
{
LLXMLNodePtr node = (*child_itr).second;
node->setValue(value);
return true;
}
return false;
}
BOOL LLXMLNode::hasAttribute(const char* name )
{
LLXMLNodePtr node;
return getAttribute(name, node);
}
// the structure of these getAttribute_ functions is ugly, but it's because the
// underlying system is based on BOOL and LLString; if we change
// so that they're based on more generic mechanisms, these will be
// simplified.
bool LLXMLNode::getAttribute_bool(const char* name, bool& value )
{
LLXMLNodePtr node;
if (!getAttribute(name, node))
{
return false;
}
BOOL temp;
bool retval = node->getBoolValue(1, &temp);
value = temp;
return retval;
}
BOOL LLXMLNode::getAttributeBOOL(const char* name, BOOL& value )
{
LLXMLNodePtr node;
return (getAttribute(name, node) && node->getBoolValue(1, &value));
}
BOOL LLXMLNode::getAttributeU8(const char* name, U8& value )
{
LLXMLNodePtr node;
return (getAttribute(name, node) && node->getByteValue(1, &value));
}
BOOL LLXMLNode::getAttributeS8(const char* name, S8& value )
{
LLXMLNodePtr node;
S32 val = 0;
if (!(getAttribute(name, node) && node->getIntValue(1, &val)))
{
return false;
}
value = val;
return true;
}
BOOL LLXMLNode::getAttributeU16(const char* name, U16& value )
{
LLXMLNodePtr node;
U32 val = 0;
if (!(getAttribute(name, node) && node->getUnsignedValue(1, &val)))
{
return false;
}
value = val;
return true;
}
BOOL LLXMLNode::getAttributeS16(const char* name, S16& value )
{
LLXMLNodePtr node;
S32 val = 0;
if (!(getAttribute(name, node) && node->getIntValue(1, &val)))
{
return false;
}
value = val;
return true;
}
BOOL LLXMLNode::getAttributeU32(const char* name, U32& value )
{
LLXMLNodePtr node;
return (getAttribute(name, node) && node->getUnsignedValue(1, &value));
}
BOOL LLXMLNode::getAttributeS32(const char* name, S32& value )
{
LLXMLNodePtr node;
return (getAttribute(name, node) && node->getIntValue(1, &value));
}
BOOL LLXMLNode::getAttributeF32(const char* name, F32& value )
{
LLXMLNodePtr node;
return (getAttribute(name, node) && node->getFloatValue(1, &value));
}
BOOL LLXMLNode::getAttributeF64(const char* name, F64& value )
{
LLXMLNodePtr node;
return (getAttribute(name, node) && node->getDoubleValue(1, &value));
}
BOOL LLXMLNode::getAttributeColor(const char* name, LLColor4& value )
{
LLXMLNodePtr node;
return (getAttribute(name, node) && node->getFloatValue(4, value.mV));
}
BOOL LLXMLNode::getAttributeColor4(const char* name, LLColor4& value )
{
LLXMLNodePtr node;
return (getAttribute(name, node) && node->getFloatValue(4, value.mV));
}
BOOL LLXMLNode::getAttributeColor4U(const char* name, LLColor4U& value )
{
LLXMLNodePtr node;
return (getAttribute(name, node) && node->getByteValue(4, value.mV));
}
BOOL LLXMLNode::getAttributeVector3(const char* name, LLVector3& value )
{
LLXMLNodePtr node;
return (getAttribute(name, node) && node->getFloatValue(3, value.mV));
}
BOOL LLXMLNode::getAttributeVector3d(const char* name, LLVector3d& value )
{
LLXMLNodePtr node;
return (getAttribute(name, node) && node->getDoubleValue(3, value.mdV));
}
BOOL LLXMLNode::getAttributeQuat(const char* name, LLQuaternion& value )
{
LLXMLNodePtr node;
return (getAttribute(name, node) && node->getFloatValue(4, value.mQ));
}
BOOL LLXMLNode::getAttributeUUID(const char* name, LLUUID& value )
{
LLXMLNodePtr node;
return (getAttribute(name, node) && node->getUUIDValue(1, &value));
}
BOOL LLXMLNode::getAttributeString(const char* name, std::string& value )
{
LLXMLNodePtr node;
if (!getAttribute(name, node))
{
return false;
}
value = node->getValue();
return true;
}
LLXMLNodePtr LLXMLNode::getRoot()
{
if (mParent == NULL)
{
return this;
}
return mParent->getRoot();
}
/*static */
const char *LLXMLNode::skipWhitespace(const char *str)
{
// skip whitespace characters
while (str[0] == ' ' || str[0] == '\t' || str[0] == '\n') ++str;
return str;
}
/*static */
const char *LLXMLNode::skipNonWhitespace(const char *str)
{
// skip non-whitespace characters
while (str[0] != ' ' && str[0] != '\t' && str[0] != '\n' && str[0] != 0) ++str;
return str;
}
/*static */
const char *LLXMLNode::parseInteger(const char *str, U64 *dest, BOOL *is_negative, U32 precision, Encoding encoding)
{
*dest = 0;
*is_negative = FALSE;
str = skipWhitespace(str);
if (str[0] == 0) return NULL;
if (encoding == ENCODING_DECIMAL || encoding == ENCODING_DEFAULT)
{
if (str[0] == '+')
{
++str;
}
if (str[0] == '-')
{
*is_negative = TRUE;
++str;
}
str = skipWhitespace(str);
U64 ret = 0;
while (str[0] >= '0' && str[0] <= '9')
{
ret *= 10;
ret += str[0] - '0';
++str;
}
if (str[0] == '.')
{
// If there is a fractional part, skip it
str = skipNonWhitespace(str);
}
*dest = ret;
return str;
}
if (encoding == ENCODING_HEX)
{
U64 ret = 0;
str = skipWhitespace(str);
for (U32 pos=0; pos<(precision/4); ++pos)
{
ret <<= 4;
str = skipWhitespace(str);
if (str[0] >= '0' && str[0] <= '9')
{
ret += str[0] - '0';
}
else if (str[0] >= 'a' && str[0] <= 'f')
{
ret += str[0] - 'a' + 10;
}
else if (str[0] >= 'A' && str[0] <= 'F')
{
ret += str[0] - 'A' + 10;
}
else
{
return NULL;
}
++str;
}
*dest = ret;
return str;
}
return NULL;
}
// 25 elements - decimal expansions of 1/(2^n), multiplied by 10 each iteration
const U64 float_coeff_table[] =
{ 5, 25, 125, 625, 3125,
15625, 78125, 390625, 1953125, 9765625,
48828125, 244140625, 1220703125, 6103515625LL, 30517578125LL,
152587890625LL, 762939453125LL, 3814697265625LL, 19073486328125LL, 95367431640625LL,
476837158203125LL, 2384185791015625LL, 11920928955078125LL, 59604644775390625LL, 298023223876953125LL };
// 36 elements - decimal expansions of 1/(2^n) after the last 28, truncated, no multiply each iteration
const U64 float_coeff_table_2[] =
{ 149011611938476562LL,74505805969238281LL,
37252902984619140LL, 18626451492309570LL, 9313225746154785LL, 4656612873077392LL,
2328306436538696LL, 1164153218269348LL, 582076609134674LL, 291038304567337LL,
145519152283668LL, 72759576141834LL, 36379788070917LL, 18189894035458LL,
9094947017729LL, 4547473508864LL, 2273736754432LL, 1136868377216LL,
568434188608LL, 284217094304LL, 142108547152LL, 71054273576LL,
35527136788LL, 17763568394LL, 8881784197LL, 4440892098LL,
2220446049LL, 1110223024LL, 555111512LL, 277555756LL,
138777878, 69388939, 34694469, 17347234,
8673617, 4336808, 2168404, 1084202,
542101, 271050, 135525, 67762,
};
/*static */
const char *LLXMLNode::parseFloat(const char *str, F64 *dest, U32 precision, Encoding encoding)
{
str = skipWhitespace(str);
if (str[0] == 0) return NULL;
if (encoding == ENCODING_DECIMAL || encoding == ENCODING_DEFAULT)
{
str = skipWhitespace(str);
if (memcmp(str, "inf", 3) == 0)
{
*(U64 *)dest = 0x7FF0000000000000ll;
return str + 3;
}
if (memcmp(str, "-inf", 4) == 0)
{
*(U64 *)dest = 0xFFF0000000000000ll;
return str + 4;
}
if (memcmp(str, "1.#INF", 6) == 0)
{
*(U64 *)dest = 0x7FF0000000000000ll;
return str + 6;
}
if (memcmp(str, "-1.#INF", 7) == 0)
{
*(U64 *)dest = 0xFFF0000000000000ll;
return str + 7;
}
F64 negative = 1.0f;
if (str[0] == '+')
{
++str;
}
if (str[0] == '-')
{
negative = -1.0f;
++str;
}
const char* base_str = str;
str = skipWhitespace(str);
// Parse the integer part of the expression
U64 int_part = 0;
while (str[0] >= '0' && str[0] <= '9')
{
int_part *= 10;
int_part += U64(str[0] - '0');
++str;
}
U64 f_part = 0;//, f_decimal = 1;
if (str[0] == '.')
{
++str;
U64 remainder = 0;
U32 pos = 0;
// Parse the decimal part of the expression
while (str[0] >= '0' && str[0] <= '9' && pos < 25)
{
remainder = (remainder*10) + U64(str[0] - '0');
f_part <<= 1;
//f_decimal <<= 1;
// Check the n'th bit
if (remainder >= float_coeff_table[pos])
{
remainder -= float_coeff_table[pos];
f_part |= 1;
}
++pos;
++str;
}
if (pos == 25)
{
// Drop any excessive digits
while (str[0] >= '0' && str[0] <= '9')
{
++str;
}
}
else
{
while (pos < 25)
{
remainder *= 10;
f_part <<= 1;
//f_decimal <<= 1;
// Check the n'th bit
if (remainder >= float_coeff_table[pos])
{
remainder -= float_coeff_table[pos];
f_part |= 1;
}
++pos;
}
}
pos = 0;
while (pos < 36)
{
f_part <<= 1;
//f_decimal <<= 1;
if (remainder >= float_coeff_table_2[pos])
{
remainder -= float_coeff_table_2[pos];
f_part |= 1;
}
++pos;
}
}
F64 ret = F64(int_part) + (F64(f_part)/F64(1LL<<61));
F64 exponent = 1.f;
if (str[0] == 'e')
{
// Scientific notation!
++str;
U64 exp;
BOOL is_negative;
str = parseInteger(str, &exp, &is_negative, 64, ENCODING_DECIMAL);
if (str == NULL)
{
exp = 1;
}
F64 exp_d = F64(exp) * (is_negative?-1:1);
exponent = pow(10.0, exp_d);
}
if (str == base_str)
{
// no digits parsed
return NULL;
}
else
{
*dest = ret*negative*exponent;
return str;
}
}
if (encoding == ENCODING_HEX)
{
U64 bytes_dest;
BOOL is_negative;
str = parseInteger(str, (U64 *)&bytes_dest, &is_negative, precision, ENCODING_HEX);
// Upcast to F64
switch (precision)
{
case 32:
{
U32 short_dest = (U32)bytes_dest;
F32 ret_val = *(F32 *)&short_dest;
*dest = ret_val;
}
break;
case 64:
*dest = *(F64 *)&bytes_dest;
break;
default:
return NULL;
}
return str;
}
return NULL;
}
U32 LLXMLNode::getBoolValue(U32 expected_length, BOOL *array)
{
llassert(array);
// Check type - accept booleans or strings
if (mType != TYPE_BOOLEAN && mType != TYPE_STRING && mType != TYPE_UNKNOWN)
{
return 0;
}
std::string *str_array = new std::string[expected_length];
U32 length = getStringValue(expected_length, str_array);
U32 ret_length = 0;
for (U32 i=0; i<length; ++i)
{
LLStringUtil::toLower(str_array[i]);
if (str_array[i] == "false")
{
array[ret_length++] = FALSE;
}
else if (str_array[i] == "true")
{
array[ret_length++] = TRUE;
}
}
delete[] str_array;
#if LL_DEBUG
if (ret_length != expected_length)
{
LL_DEBUGS() << "LLXMLNode::getBoolValue() failed for node named '"
<< mName->mString << "' -- expected " << expected_length << " but "
<< "only found " << ret_length << LL_ENDL;
}
#endif
return ret_length;
}
U32 LLXMLNode::getByteValue(U32 expected_length, U8 *array, Encoding encoding)
{
llassert(array);
// Check type - accept bytes or integers (below 256 only)
if (mType != TYPE_INTEGER
&& mType != TYPE_UNKNOWN)
{
return 0;
}
if (mLength > 0 && mLength != expected_length)
{
LL_WARNS() << "XMLNode::getByteValue asked for " << expected_length
<< " elements, while node has " << mLength << LL_ENDL;
return 0;
}
if (encoding == ENCODING_DEFAULT)
{
encoding = mEncoding;
}
const char *value_string = mValue.c_str();
U32 i;
for (i=0; i<expected_length; ++i)
{
U64 value;
BOOL is_negative;
value_string = parseInteger(value_string, &value, &is_negative, 8, encoding);
if (value_string == NULL)
{
break;
}
if (value > 255 || is_negative)
{
LL_WARNS() << "getByteValue: Value outside of valid range." << LL_ENDL;
break;
}
array[i] = U8(value);
}
#if LL_DEBUG
if (i != expected_length)
{
LL_DEBUGS() << "LLXMLNode::getByteValue() failed for node named '"
<< mName->mString << "' -- expected " << expected_length << " but "
<< "only found " << i << LL_ENDL;
}
#endif
return i;
}
U32 LLXMLNode::getIntValue(U32 expected_length, S32 *array, Encoding encoding)
{
llassert(array);
// Check type - accept bytes or integers
if (mType != TYPE_INTEGER && mType != TYPE_UNKNOWN)
{
return 0;
}
if (mLength > 0 && mLength != expected_length)
{
LL_WARNS() << "XMLNode::getIntValue asked for " << expected_length
<< " elements, while node has " << mLength << LL_ENDL;
return 0;
}
if (encoding == ENCODING_DEFAULT)
{
encoding = mEncoding;
}
const char *value_string = mValue.c_str();
U32 i = 0;
for (i=0; i<expected_length; ++i)
{
U64 value;
BOOL is_negative;
value_string = parseInteger(value_string, &value, &is_negative, 32, encoding);
if (value_string == NULL)
{
break;
}
if (value > 0x7fffffff)
{
LL_WARNS() << "getIntValue: Value outside of valid range." << LL_ENDL;
break;
}
array[i] = S32(value) * (is_negative?-1:1);
}
#if LL_DEBUG
if (i != expected_length)
{
LL_DEBUGS() << "LLXMLNode::getIntValue() failed for node named '"
<< mName->mString << "' -- expected " << expected_length << " but "
<< "only found " << i << LL_ENDL;
}
#endif
return i;
}
U32 LLXMLNode::getUnsignedValue(U32 expected_length, U32 *array, Encoding encoding)
{
llassert(array);
// Check type - accept bytes or integers
if (mType != TYPE_INTEGER && mType != TYPE_UNKNOWN)
{
return 0;
}
if (mLength > 0 && mLength != expected_length)
{
LL_WARNS() << "XMLNode::getUnsignedValue asked for " << expected_length
<< " elements, while node has " << mLength << LL_ENDL;
return 0;
}
if (encoding == ENCODING_DEFAULT)
{
encoding = mEncoding;
}
const char *value_string = mValue.c_str();
U32 i = 0;
// Int type
for (i=0; i<expected_length; ++i)
{
U64 value;
BOOL is_negative;
value_string = parseInteger(value_string, &value, &is_negative, 32, encoding);
if (value_string == NULL)
{
break;
}
if (is_negative || value > 0xffffffff)
{
LL_WARNS() << "getUnsignedValue: Value outside of valid range." << LL_ENDL;
break;
}
array[i] = U32(value);
}
#if LL_DEBUG
if (i != expected_length)
{
LL_DEBUGS() << "LLXMLNode::getUnsignedValue() failed for node named '"
<< mName->mString << "' -- expected " << expected_length << " but "
<< "only found " << i << LL_ENDL;
}
#endif
return i;
}
U32 LLXMLNode::getLongValue(U32 expected_length, U64 *array, Encoding encoding)
{
llassert(array);
// Check type - accept bytes or integers
if (mType != TYPE_INTEGER && mType != TYPE_UNKNOWN)
{
return 0;
}
if (mLength > 0 && mLength != expected_length)
{
LL_WARNS() << "XMLNode::getLongValue asked for " << expected_length << " elements, while node has " << mLength << LL_ENDL;
return 0;
}
if (encoding == ENCODING_DEFAULT)
{
encoding = mEncoding;
}
const char *value_string = mValue.c_str();
U32 i = 0;
// Int type
for (i=0; i<expected_length; ++i)
{
U64 value;
BOOL is_negative;
value_string = parseInteger(value_string, &value, &is_negative, 64, encoding);
if (value_string == NULL)
{
break;
}
if (is_negative)
{
LL_WARNS() << "getLongValue: Value outside of valid range." << LL_ENDL;
break;
}
array[i] = value;
}
#if LL_DEBUG
if (i != expected_length)
{
LL_DEBUGS() << "LLXMLNode::getLongValue() failed for node named '"
<< mName->mString << "' -- expected " << expected_length << " but "
<< "only found " << i << LL_ENDL;
}
#endif
return i;
}
U32 LLXMLNode::getFloatValue(U32 expected_length, F32 *array, Encoding encoding)
{
llassert(array);
// Check type - accept only floats or doubles
if (mType != TYPE_FLOAT && mType != TYPE_UNKNOWN)
{
return 0;
}
if (mLength > 0 && mLength != expected_length)
{
LL_WARNS() << "XMLNode::getFloatValue asked for " << expected_length << " elements, while node has " << mLength << LL_ENDL;
return 0;
}
if (encoding == ENCODING_DEFAULT)
{
encoding = mEncoding;
}
const char *value_string = mValue.c_str();
U32 i;
for (i=0; i<expected_length; ++i)
{
F64 value;
value_string = parseFloat(value_string, &value, 32, encoding);
if (value_string == NULL)
{
break;
}
array[i] = F32(value);
}
#if LL_DEBUG
if (i != expected_length)
{
LL_DEBUGS() << "LLXMLNode::getFloatValue() failed for node named '"
<< mName->mString << "' -- expected " << expected_length << " but "
<< "only found " << i << LL_ENDL;
}
#endif
return i;
}
U32 LLXMLNode::getDoubleValue(U32 expected_length, F64 *array, Encoding encoding)
{
llassert(array);
// Check type - accept only floats or doubles
if (mType != TYPE_FLOAT && mType != TYPE_UNKNOWN)
{
return 0;
}
if (mLength > 0 && mLength != expected_length)
{
LL_WARNS() << "XMLNode::getDoubleValue asked for " << expected_length << " elements, while node has " << mLength << LL_ENDL;
return 0;
}
if (encoding == ENCODING_DEFAULT)
{
encoding = mEncoding;
}
const char *value_string = mValue.c_str();
U32 i;
for (i=0; i<expected_length; ++i)
{
F64 value;
value_string = parseFloat(value_string, &value, 64, encoding);
if (value_string == NULL)
{
break;
}
array[i] = value;
}
#if LL_DEBUG
if (i != expected_length)
{
LL_DEBUGS() << "LLXMLNode::getDoubleValue() failed for node named '"
<< mName->mString << "' -- expected " << expected_length << " but "
<< "only found " << i << LL_ENDL;
}
#endif
return i;
}
U32 LLXMLNode::getStringValue(U32 expected_length, std::string *array)
{
llassert(array);
// Can always return any value as a string
if (mLength > 0 && mLength != expected_length)
{
LL_WARNS() << "XMLNode::getStringValue asked for " << expected_length << " elements, while node has " << mLength << LL_ENDL;
return 0;
}
U32 num_returned_strings = 0;
// Array of strings is whitespace-separated
const std::string sep(" \n\t");
std::string::size_type n = 0;
std::string::size_type m = 0;
while(1)
{
if (num_returned_strings >= expected_length)
{
break;
}
n = mValue.find_first_not_of(sep, m);
m = mValue.find_first_of(sep, n);
if (m == std::string::npos)
{
break;
}
array[num_returned_strings++] = mValue.substr(n,m-n);
}
if (n != std::string::npos && num_returned_strings < expected_length)
{
array[num_returned_strings++] = mValue.substr(n);
}
#if LL_DEBUG
if (num_returned_strings != expected_length)
{
LL_DEBUGS() << "LLXMLNode::getStringValue() failed for node named '"
<< mName->mString << "' -- expected " << expected_length << " but "
<< "only found " << num_returned_strings << LL_ENDL;
}
#endif
return num_returned_strings;
}
U32 LLXMLNode::getUUIDValue(U32 expected_length, LLUUID *array)
{
llassert(array);
// Check type
if (mType != TYPE_UUID && mType != TYPE_UNKNOWN)
{
return 0;
}
const char *value_string = mValue.c_str();
U32 i;
for (i=0; i<expected_length; ++i)
{
LLUUID uuid_value;
value_string = skipWhitespace(value_string);
if (strlen(value_string) < (UUID_STR_LENGTH-1)) /* Flawfinder: ignore */
{
break;
}
char uuid_string[UUID_STR_LENGTH]; /* Flawfinder: ignore */
memcpy(uuid_string, value_string, (UUID_STR_LENGTH-1)); /* Flawfinder: ignore */
uuid_string[(UUID_STR_LENGTH-1)] = 0;
if (!LLUUID::parseUUID(std::string(uuid_string), &uuid_value))
{
break;
}
value_string = &value_string[(UUID_STR_LENGTH-1)];
array[i] = uuid_value;
}
#if LL_DEBUG
if (i != expected_length)
{
LL_DEBUGS() << "LLXMLNode::getUUIDValue() failed for node named '"
<< mName->mString << "' -- expected " << expected_length << " but "
<< "only found " << i << LL_ENDL;
}
#endif
return i;
}
U32 LLXMLNode::getNodeRefValue(U32 expected_length, LLXMLNode **array)
{
llassert(array);
// Check type
if (mType != TYPE_NODEREF && mType != TYPE_UNKNOWN)
{
return 0;
}
std::string *string_array = new std::string[expected_length];
U32 num_strings = getStringValue(expected_length, string_array);
U32 num_returned_refs = 0;
LLXMLNodePtr root = getRoot();
for (U32 strnum=0; strnum<num_strings; ++strnum)
{
LLXMLNodeList node_list;
root->findID(string_array[strnum], node_list);
if (node_list.empty())
{
LL_WARNS() << "XML: Could not find node ID: " << string_array[strnum] << LL_ENDL;
}
else if (node_list.size() > 1)
{
LL_WARNS() << "XML: Node ID not unique: " << string_array[strnum] << LL_ENDL;
}
else
{
LLXMLNodeList::const_iterator list_itr = node_list.begin();
if (list_itr != node_list.end())
{
LLXMLNode* child = (*list_itr).second;
array[num_returned_refs++] = child;
}
}
}
delete[] string_array;
return num_returned_refs;
}
void LLXMLNode::setBoolValue(U32 length, const BOOL *array)
{
if (length == 0) return;
std::string new_value;
for (U32 pos=0; pos<length; ++pos)
{
if (pos > 0)
{
new_value = llformat("%s %s", new_value.c_str(), array[pos]?"true":"false");
}
else
{
new_value = array[pos]?"true":"false";
}
}
mValue = new_value;
mEncoding = ENCODING_DEFAULT;
mLength = length;
mType = TYPE_BOOLEAN;
}
void LLXMLNode::setByteValue(U32 length, const U8* const array, Encoding encoding)
{
if (length == 0) return;
std::string new_value;
if (encoding == ENCODING_DEFAULT || encoding == ENCODING_DECIMAL)
{
for (U32 pos=0; pos<length; ++pos)
{
if (pos > 0)
{
new_value.append(llformat(" %u", array[pos]));
}
else
{
new_value = llformat("%u", array[pos]);
}
}
}
if (encoding == ENCODING_HEX)
{
for (U32 pos=0; pos<length; ++pos)
{
if (pos > 0 && pos % 16 == 0)
{
new_value.append(llformat(" %02X", array[pos]));
}
else
{
new_value.append(llformat("%02X", array[pos]));
}
}
}
// TODO -- Handle Base32
mValue = new_value;
mEncoding = encoding;
mLength = length;
mType = TYPE_INTEGER;
mPrecision = 8;
}
void LLXMLNode::setIntValue(U32 length, const S32 *array, Encoding encoding)
{
if (length == 0) return;
std::string new_value;
if (encoding == ENCODING_DEFAULT || encoding == ENCODING_DECIMAL)
{
for (U32 pos=0; pos<length; ++pos)
{
if (pos > 0)
{
new_value.append(llformat(" %d", array[pos]));
}
else
{
new_value = llformat("%d", array[pos]);
}
}
mValue = new_value;
}
else if (encoding == ENCODING_HEX)
{
for (U32 pos=0; pos<length; ++pos)
{
if (pos > 0 && pos % 16 == 0)
{
new_value.append(llformat(" %08X", ((U32 *)array)[pos]));
}
else
{
new_value.append(llformat("%08X", ((U32 *)array)[pos]));
}
}
mValue = new_value;
}
else
{
mValue = new_value;
}
// TODO -- Handle Base32
mEncoding = encoding;
mLength = length;
mType = TYPE_INTEGER;
mPrecision = 32;
}
void LLXMLNode::setUnsignedValue(U32 length, const U32* array, Encoding encoding)
{
if (length == 0) return;
std::string new_value;
if (encoding == ENCODING_DEFAULT || encoding == ENCODING_DECIMAL)
{
for (U32 pos=0; pos<length; ++pos)
{
if (pos > 0)
{
new_value.append(llformat(" %u", array[pos]));
}
else
{
new_value = llformat("%u", array[pos]);
}
}
}
if (encoding == ENCODING_HEX)
{
for (U32 pos=0; pos<length; ++pos)
{
if (pos > 0 && pos % 16 == 0)
{
new_value.append(llformat(" %08X", array[pos]));
}
else
{
new_value.append(llformat("%08X", array[pos]));
}
}
mValue = new_value;
}
// TODO -- Handle Base32
mValue = new_value;
mEncoding = encoding;
mLength = length;
mType = TYPE_INTEGER;
mPrecision = 32;
}
#if LL_WINDOWS
#define PU64 "I64u"
#else
#define PU64 "llu"
#endif
void LLXMLNode::setLongValue(U32 length, const U64* array, Encoding encoding)
{
if (length == 0) return;
std::string new_value;
if (encoding == ENCODING_DEFAULT || encoding == ENCODING_DECIMAL)
{
for (U32 pos=0; pos<length; ++pos)
{
if (pos > 0)
{
new_value.append(llformat(" %" PU64, array[pos]));
}
else
{
new_value = llformat("%" PU64, array[pos]);
}
}
mValue = new_value;
}
if (encoding == ENCODING_HEX)
{
for (U32 pos=0; pos<length; ++pos)
{
U32 upper_32 = U32(array[pos]>>32);
U32 lower_32 = U32(array[pos]&0xffffffff);
if (pos > 0 && pos % 8 == 0)
{
new_value.append(llformat(" %08X%08X", upper_32, lower_32));
}
else
{
new_value.append(llformat("%08X%08X", upper_32, lower_32));
}
}
mValue = new_value;
}
else
{
mValue = new_value;
}
// TODO -- Handle Base32
mEncoding = encoding;
mLength = length;
mType = TYPE_INTEGER;
mPrecision = 64;
}
void LLXMLNode::setFloatValue(U32 length, const F32 *array, Encoding encoding, U32 precision)
{
if (length == 0) return;
std::string new_value;
if (encoding == ENCODING_DEFAULT || encoding == ENCODING_DECIMAL)
{
std::string format_string;
if (precision > 0)
{
if (precision > 25)
{
precision = 25;
}
format_string = llformat( "%%.%dg", precision);
}
else
{
format_string = llformat( "%%g");
}
for (U32 pos=0; pos<length; ++pos)
{
if (pos > 0)
{
new_value.append(" ");
new_value.append(llformat(format_string.c_str(), array[pos]));
}
else
{
new_value.assign(llformat(format_string.c_str(), array[pos]));
}
}
mValue = new_value;
}
else if (encoding == ENCODING_HEX)
{
U32 *byte_array = (U32 *)array;
setUnsignedValue(length, byte_array, ENCODING_HEX);
}
else
{
mValue = new_value;
}
mEncoding = encoding;
mLength = length;
mType = TYPE_FLOAT;
mPrecision = 32;
}
void LLXMLNode::setDoubleValue(U32 length, const F64 *array, Encoding encoding, U32 precision)
{
if (length == 0) return;
std::string new_value;
if (encoding == ENCODING_DEFAULT || encoding == ENCODING_DECIMAL)
{
std::string format_string;
if (precision > 0)
{
if (precision > 25)
{
precision = 25;
}
format_string = llformat( "%%.%dg", precision);
}
else
{
format_string = llformat( "%%g");
}
for (U32 pos=0; pos<length; ++pos)
{
if (pos > 0)
{
new_value.append(" ");
new_value.append(llformat(format_string.c_str(), array[pos]));
}
else
{
new_value.assign(llformat(format_string.c_str(), array[pos]));
}
}
mValue = new_value;
}
if (encoding == ENCODING_HEX)
{
U64 *byte_array = (U64 *)array;
setLongValue(length, byte_array, ENCODING_HEX);
}
else
{
mValue = new_value;
}
// TODO -- Handle Base32
mEncoding = encoding;
mLength = length;
mType = TYPE_FLOAT;
mPrecision = 64;
}
// static
std::string LLXMLNode::escapeXML(const std::string& xml)
{
std::string out;
for (std::string::size_type i = 0; i < xml.size(); ++i)
{
char c = xml[i];
switch(c)
{
case '"': out.append("&quot;"); break;
case '\'': out.append("&apos;"); break;
case '&': out.append("&amp;"); break;
case '<': out.append("&lt;"); break;
case '>': out.append("&gt;"); break;
default: out.push_back(c); break;
}
}
return out;
}
// Replace '--' with '- -', see http://en.wikipedia.org/wiki/XML#Comments
// static
std::string LLXMLNode::commentEscape(std::string const& comment)
{
std::string result = comment;
std::string::size_type off = std::string::npos;
while ((off = result.rfind("--", off)) != std::string::npos)
{
result.replace(off, 2, "- -");
}
return result;
}
void LLXMLNode::setStringValue(U32 length, const std::string *strings)
{
if (length == 0) return;
std::string new_value;
for (U32 pos=0; pos<length; ++pos)
{
// *NOTE: Do not escape strings here - do it on output
new_value.append( strings[pos] );
if (pos < length-1) new_value.append(" ");
}
mValue = new_value;
mEncoding = ENCODING_DEFAULT;
mLength = length;
mType = TYPE_STRING;
}
void LLXMLNode::setUUIDValue(U32 length, const LLUUID *array)
{
if (length == 0) return;
std::string new_value;
for (U32 pos=0; pos<length; ++pos)
{
new_value.append(array[pos].asString());
if (pos < length-1) new_value.append(" ");
}
mValue = new_value;
mEncoding = ENCODING_DEFAULT;
mLength = length;
mType = TYPE_UUID;
}
void LLXMLNode::setNodeRefValue(U32 length, const LLXMLNode **array)
{
if (length == 0) return;
std::string new_value;
for (U32 pos=0; pos<length; ++pos)
{
if (array[pos]->mID != "")
{
new_value.append(array[pos]->mID);
}
else
{
new_value.append("(null)");
}
if (pos < length-1) new_value.append(" ");
}
mValue = new_value;
mEncoding = ENCODING_DEFAULT;
mLength = length;
mType = TYPE_NODEREF;
}
void LLXMLNode::setValue(const std::string& value)
{
if (TYPE_CONTAINER == mType)
{
mType = TYPE_UNKNOWN;
}
mValue = value;
}
void LLXMLNode::setDefault(LLXMLNode *default_node)
{
mDefault = default_node;
}
void LLXMLNode::findDefault(LLXMLNode *defaults_list)
{
if (defaults_list)
{
LLXMLNodeList children;
defaults_list->getChildren(mName->mString, children);
LLXMLNodeList::const_iterator children_itr;
LLXMLNodeList::const_iterator children_end = children.end();
for (children_itr = children.begin(); children_itr != children_end; ++children_itr)
{
LLXMLNode* child = (*children_itr).second;
if (child->mVersionMajor == mVersionMajor &&
child->mVersionMinor == mVersionMinor)
{
mDefault = child;
return;
}
}
}
mDefault = NULL;
}
BOOL LLXMLNode::deleteChildren(const std::string& name)
{
U32 removed_count = 0;
LLXMLNodeList node_list;
findName(name, node_list);
if (!node_list.empty())
{
// TODO -- use multimap::find()
// TODO -- need to watch out for invalid iterators
LLXMLNodeList::iterator children_itr;
for (children_itr = node_list.begin(); children_itr != node_list.end(); ++children_itr)
{
LLXMLNode* child = (*children_itr).second;
if (deleteChild(child))
{
removed_count++;
}
}
}
return removed_count > 0 ? TRUE : FALSE;
}
BOOL LLXMLNode::deleteChildren(LLStringTableEntry* name)
{
U32 removed_count = 0;
LLXMLNodeList node_list;
findName(name, node_list);
if (!node_list.empty())
{
// TODO -- use multimap::find()
// TODO -- need to watch out for invalid iterators
LLXMLNodeList::iterator children_itr;
for (children_itr = node_list.begin(); children_itr != node_list.end(); ++children_itr)
{
LLXMLNode* child = (*children_itr).second;
if (deleteChild(child))
{
removed_count++;
}
}
}
return removed_count > 0 ? TRUE : FALSE;
}
void LLXMLNode::setAttributes(LLXMLNode::ValueType type, U32 precision, LLXMLNode::Encoding encoding, U32 length)
{
mType = type;
mEncoding = encoding;
mPrecision = precision;
mLength = length;
}
void LLXMLNode::setName(const std::string& name)
{
setName(gStringTable.addStringEntry(name));
}
void LLXMLNode::setName(LLStringTableEntry* name)
{
LLXMLNode* old_parent = mParent;
if (mParent)
{
// we need to remove and re-add to the parent so that
// the multimap key agrees with this node's name
mParent->removeChild(this);
}
mName = name;
if (old_parent)
{
LLXMLNodePtr this_ptr(this);
old_parent->addChild(this_ptr);
}
}
// Unused
// void LLXMLNode::appendValue(const std::string& value)
// {
// mValue.append(value);
// }
U32 LLXMLNode::getChildCount() const
{
if (mChildren.notNull())
{
return mChildren->map.size();
}
return 0;
}
// ***************************************************
// UNIT TESTING
// ***************************************************
U32 get_rand(U32 max_value)
{
U32 random_num = rand() + ((U32)rand() << 16);
return (random_num % max_value);
}
LLXMLNode *get_rand_node(LLXMLNode *node)
{
if (node->mChildren.notNull())
{
U32 num_children = node->mChildren->map.size();
if (get_rand(2) == 0)
{
while (true)
{
S32 child_num = S32(get_rand(num_children*2)) - num_children;
LLXMLChildList::iterator itor = node->mChildren->map.begin();
while (child_num > 0)
{
--child_num;
++itor;
}
if (!itor->second->mIsAttribute)
{
return get_rand_node(itor->second);
}
}
}
}
return node;
}
void LLXMLNode::createUnitTest(S32 max_num_children)
{
// Random ID
std::string rand_id;
U32 rand_id_len = get_rand(10)+5;
for (U32 pos = 0; pos<rand_id_len; ++pos)
{
char c = 'a' + get_rand(26);
rand_id.append(1, c);
}
mID = rand_id;
if (max_num_children < 2)
{
setStringValue(1, &mID);
return;
}
// Checksums
U32 integer_checksum = 0;
U64 long_checksum = 0;
U32 bool_true_count = 0;
LLUUID uuid_checksum;
U32 noderef_checksum = 0;
U32 float_checksum = 0;
// Create a random number of children
U32 num_children = get_rand(max_num_children)+1;
for (U32 child_num=0; child_num<num_children; ++child_num)
{
// Random Name
std::string child_name;
U32 child_name_len = get_rand(10)+5;
for (U32 pos = 0; pos<child_name_len; ++pos)
{
char c = 'a' + get_rand(26);
child_name.append(1, c);
}
LLXMLNode *new_child = createChild(child_name.c_str(), FALSE);
// Random ID
std::string child_id;
U32 child_id_len = get_rand(10)+5;
for (U32 pos=0; pos<child_id_len; ++pos)
{
char c = 'a' + get_rand(26);
child_id.append(1, c);
}
new_child->mID = child_id;
// Random Length
U32 array_size = get_rand(28)+1;
// Random Encoding
Encoding new_encoding = get_rand(2)?ENCODING_DECIMAL:ENCODING_HEX;
// Random Type
int type = get_rand(8);
switch (type)
{
case 0: // TYPE_CONTAINER
new_child->createUnitTest(max_num_children/2);
break;
case 1: // TYPE_BOOLEAN
{
BOOL random_bool_values[30];
for (U32 value=0; value<array_size; ++value)
{
random_bool_values[value] = get_rand(2);
if (random_bool_values[value])
{
++bool_true_count;
}
}
new_child->setBoolValue(array_size, random_bool_values);
}
break;
case 2: // TYPE_INTEGER (32-bit)
{
U32 random_int_values[30];
for (U32 value=0; value<array_size; ++value)
{
random_int_values[value] = get_rand(0xffffffff);
integer_checksum ^= random_int_values[value];
}
new_child->setUnsignedValue(array_size, random_int_values, new_encoding);
}
break;
case 3: // TYPE_INTEGER (64-bit)
{
U64 random_int_values[30];
for (U64 value=0; value<array_size; ++value)
{
random_int_values[value] = (U64(get_rand(0xffffffff)) << 32) + get_rand(0xffffffff);
long_checksum ^= random_int_values[value];
}
new_child->setLongValue(array_size, random_int_values, new_encoding);
}
break;
case 4: // TYPE_FLOAT (32-bit)
{
F32 random_float_values[30];
for (U32 value=0; value<array_size; ++value)
{
S32 exponent = get_rand(256) - 128;
S32 fractional_part = get_rand(0xffffffff);
S32 sign = get_rand(2) * 2 - 1;
random_float_values[value] = F32(fractional_part) / F32(0xffffffff) * exp(F32(exponent)) * F32(sign);
U32 *float_bits = &((U32 *)random_float_values)[value];
if (*float_bits == 0x80000000)
{
*float_bits = 0x00000000;
}
float_checksum ^= (*float_bits & 0xfffff000);
}
new_child->setFloatValue(array_size, random_float_values, new_encoding, 12);
}
break;
case 5: // TYPE_FLOAT (64-bit)
{
F64 random_float_values[30];
for (U32 value=0; value<array_size; ++value)
{
S32 exponent = get_rand(2048) - 1024;
S32 fractional_part = get_rand(0xffffffff);
S32 sign = get_rand(2) * 2 - 1;
random_float_values[value] = F64(fractional_part) / F64(0xffffffff) * exp(F64(exponent)) * F64(sign);
U64 *float_bits = &((U64 *)random_float_values)[value];
if (*float_bits == 0x8000000000000000ll)
{
*float_bits = 0x0000000000000000ll;
}
float_checksum ^= ((*float_bits & 0xfffffff000000000ll) >> 32);
}
new_child->setDoubleValue(array_size, random_float_values, new_encoding, 12);
}
break;
case 6: // TYPE_UUID
{
LLUUID random_uuid_values[30];
for (U32 value=0; value<array_size; ++value)
{
random_uuid_values[value].generate();
for (S32 byte=0; byte<UUID_BYTES; ++byte)
{
uuid_checksum.mData[byte] ^= random_uuid_values[value].mData[byte];
}
}
new_child->setUUIDValue(array_size, random_uuid_values);
}
break;
case 7: // TYPE_NODEREF
{
LLXMLNode *random_node_array[30];
LLXMLNode *root = getRoot();
for (U32 value=0; value<array_size; ++value)
{
random_node_array[value] = get_rand_node(root);
const char *node_name = random_node_array[value]->mName->mString;
for (U32 pos=0; pos<strlen(node_name); ++pos) /* Flawfinder: ignore */
{
U32 hash_contrib = U32(node_name[pos]) << ((pos % 4) * 8);
noderef_checksum ^= hash_contrib;
}
}
new_child->setNodeRefValue(array_size, (const LLXMLNode **)random_node_array);
}
break;
}
}
createChild("integer_checksum", TRUE)->setUnsignedValue(1, &integer_checksum, LLXMLNode::ENCODING_HEX);
createChild("long_checksum", TRUE)->setLongValue(1, &long_checksum, LLXMLNode::ENCODING_HEX);
createChild("bool_true_count", TRUE)->setUnsignedValue(1, &bool_true_count, LLXMLNode::ENCODING_HEX);
createChild("uuid_checksum", TRUE)->setUUIDValue(1, &uuid_checksum);
createChild("noderef_checksum", TRUE)->setUnsignedValue(1, &noderef_checksum, LLXMLNode::ENCODING_HEX);
createChild("float_checksum", TRUE)->setUnsignedValue(1, &float_checksum, LLXMLNode::ENCODING_HEX);
}
BOOL LLXMLNode::performUnitTest(std::string &error_buffer)
{
if (mChildren.isNull())
{
error_buffer.append(llformat("ERROR Node %s: No children found.\n", mName->mString));
return FALSE;
}
// Checksums
U32 integer_checksum = 0;
U32 bool_true_count = 0;
LLUUID uuid_checksum;
U32 noderef_checksum = 0;
U32 float_checksum = 0;
U64 long_checksum = 0;
LLXMLChildList::iterator itor;
for (itor=mChildren->map.begin(); itor!=mChildren->map.end(); ++itor)
{
LLXMLNode *node = itor->second;
if (node->mIsAttribute)
{
continue;
}
if (node->mType == TYPE_CONTAINER)
{
if (!node->performUnitTest(error_buffer))
{
error_buffer.append(llformat("Child test failed for %s.\n", mName->mString));
//return FALSE;
}
continue;
}
if (node->mLength < 1 || node->mLength > 30)
{
error_buffer.append(llformat("ERROR Node %s: Invalid array length %d, child %s.\n", mName->mString, node->mLength, node->mName->mString));
return FALSE;
}
switch (node->mType)
{
case TYPE_CONTAINER:
case TYPE_UNKNOWN:
break;
case TYPE_BOOLEAN:
{
BOOL bool_array[30];
if (node->getBoolValue(node->mLength, bool_array) < node->mLength)
{
error_buffer.append(llformat("ERROR Node %s: Could not read boolean array, child %s.\n", mName->mString, node->mName->mString));
return FALSE;
}
for (U32 pos=0; pos<(U32)node->mLength; ++pos)
{
if (bool_array[pos])
{
++bool_true_count;
}
}
}
break;
case TYPE_INTEGER:
{
if (node->mPrecision == 32)
{
U32 integer_array[30];
if (node->getUnsignedValue(node->mLength, integer_array, node->mEncoding) < node->mLength)
{
error_buffer.append(llformat("ERROR Node %s: Could not read integer array, child %s.\n", mName->mString, node->mName->mString));
return FALSE;
}
for (U32 pos=0; pos<(U32)node->mLength; ++pos)
{
integer_checksum ^= integer_array[pos];
}
}
else
{
U64 integer_array[30];
if (node->getLongValue(node->mLength, integer_array, node->mEncoding) < node->mLength)
{
error_buffer.append(llformat("ERROR Node %s: Could not read long integer array, child %s.\n", mName->mString, node->mName->mString));
return FALSE;
}
for (U32 pos=0; pos<(U32)node->mLength; ++pos)
{
long_checksum ^= integer_array[pos];
}
}
}
break;
case TYPE_FLOAT:
{
if (node->mPrecision == 32)
{
F32 float_array[30];
if (node->getFloatValue(node->mLength, float_array, node->mEncoding) < node->mLength)
{
error_buffer.append(llformat("ERROR Node %s: Could not read float array, child %s.\n", mName->mString, node->mName->mString));
return FALSE;
}
for (U32 pos=0; pos<(U32)node->mLength; ++pos)
{
U32 float_bits = ((U32 *)float_array)[pos];
float_checksum ^= (float_bits & 0xfffff000);
}
}
else
{
F64 float_array[30];
if (node->getDoubleValue(node->mLength, float_array, node->mEncoding) < node->mLength)
{
error_buffer.append(llformat("ERROR Node %s: Could not read float array, child %s.\n", mName->mString, node->mName->mString));
return FALSE;
}
for (U32 pos=0; pos<(U32)node->mLength; ++pos)
{
U64 float_bits = ((U64 *)float_array)[pos];
float_checksum ^= ((float_bits & 0xfffffff000000000ll) >> 32);
}
}
}
break;
case TYPE_STRING:
break;
case TYPE_UUID:
{
LLUUID uuid_array[30];
if (node->getUUIDValue(node->mLength, uuid_array) < node->mLength)
{
error_buffer.append(llformat("ERROR Node %s: Could not read uuid array, child %s.\n", mName->mString, node->mName->mString));
return FALSE;
}
for (U32 pos=0; pos<(U32)node->mLength; ++pos)
{
for (S32 byte=0; byte<UUID_BYTES; ++byte)
{
uuid_checksum.mData[byte] ^= uuid_array[pos].mData[byte];
}
}
}
break;
case TYPE_NODEREF:
{
LLXMLNode *node_array[30];
if (node->getNodeRefValue(node->mLength, node_array) < node->mLength)
{
error_buffer.append(llformat("ERROR Node %s: Could not read node ref array, child %s.\n", mName->mString, node->mName->mString));
return FALSE;
}
for (U32 pos=0; pos<node->mLength; ++pos)
{
const char *node_name = node_array[pos]->mName->mString;
for (U32 pos2=0; pos2<strlen(node_name); ++pos2) /* Flawfinder: ignore */
{
U32 hash_contrib = U32(node_name[pos2]) << ((pos2 % 4) * 8);
noderef_checksum ^= hash_contrib;
}
}
}
break;
}
}
LLXMLNodePtr checksum_node;
// Compare checksums
{
U32 node_integer_checksum = 0;
if (!getAttribute("integer_checksum", checksum_node, FALSE) ||
checksum_node->getUnsignedValue(1, &node_integer_checksum, ENCODING_HEX) != 1)
{
error_buffer.append(llformat("ERROR Node %s: Integer checksum missing.\n", mName->mString));
return FALSE;
}
if (node_integer_checksum != integer_checksum)
{
error_buffer.append(llformat("ERROR Node %s: Integer checksum mismatch: read %X / calc %X.\n", mName->mString, node_integer_checksum, integer_checksum));
return FALSE;
}
}
{
U64 node_long_checksum = 0;
if (!getAttribute("long_checksum", checksum_node, FALSE) ||
checksum_node->getLongValue(1, &node_long_checksum, ENCODING_HEX) != 1)
{
error_buffer.append(llformat("ERROR Node %s: Long Integer checksum missing.\n", mName->mString));
return FALSE;
}
if (node_long_checksum != long_checksum)
{
U32 *pp1 = (U32 *)&node_long_checksum;
U32 *pp2 = (U32 *)&long_checksum;
error_buffer.append(llformat("ERROR Node %s: Long Integer checksum mismatch: read %08X%08X / calc %08X%08X.\n", mName->mString, pp1[1], pp1[0], pp2[1], pp2[0]));
return FALSE;
}
}
{
U32 node_bool_true_count = 0;
if (!getAttribute("bool_true_count", checksum_node, FALSE) ||
checksum_node->getUnsignedValue(1, &node_bool_true_count, ENCODING_HEX) != 1)
{
error_buffer.append(llformat("ERROR Node %s: Boolean checksum missing.\n", mName->mString));
return FALSE;
}
if (node_bool_true_count != bool_true_count)
{
error_buffer.append(llformat("ERROR Node %s: Boolean checksum mismatch: read %X / calc %X.\n", mName->mString, node_bool_true_count, bool_true_count));
return FALSE;
}
}
{
LLUUID node_uuid_checksum;
if (!getAttribute("uuid_checksum", checksum_node, FALSE) ||
checksum_node->getUUIDValue(1, &node_uuid_checksum) != 1)
{
error_buffer.append(llformat("ERROR Node %s: UUID checksum missing.\n", mName->mString));
return FALSE;
}
if (node_uuid_checksum != uuid_checksum)
{
error_buffer.append(llformat("ERROR Node %s: UUID checksum mismatch: read %s / calc %s.\n", mName->mString, node_uuid_checksum.asString().c_str(), uuid_checksum.asString().c_str()));
return FALSE;
}
}
{
U32 node_noderef_checksum = 0;
if (!getAttribute("noderef_checksum", checksum_node, FALSE) ||
checksum_node->getUnsignedValue(1, &node_noderef_checksum, ENCODING_HEX) != 1)
{
error_buffer.append(llformat("ERROR Node %s: Node Ref checksum missing.\n", mName->mString));
return FALSE;
}
if (node_noderef_checksum != noderef_checksum)
{
error_buffer.append(llformat("ERROR Node %s: Node Ref checksum mismatch: read %X / calc %X.\n", mName->mString, node_noderef_checksum, noderef_checksum));
return FALSE;
}
}
{
U32 node_float_checksum = 0;
if (!getAttribute("float_checksum", checksum_node, FALSE) ||
checksum_node->getUnsignedValue(1, &node_float_checksum, ENCODING_HEX) != 1)
{
error_buffer.append(llformat("ERROR Node %s: Float checksum missing.\n", mName->mString));
return FALSE;
}
if (node_float_checksum != float_checksum)
{
error_buffer.append(llformat("ERROR Node %s: Float checksum mismatch: read %X / calc %X.\n", mName->mString, node_float_checksum, float_checksum));
return FALSE;
}
}
return TRUE;
}
LLXMLNodePtr LLXMLNode::getFirstChild() const
{
if (mChildren.isNull()) return NULL;
LLXMLNodePtr ret = mChildren->head;
return ret;
}
LLXMLNodePtr LLXMLNode::getNextSibling() const
{
LLXMLNodePtr ret = mNext;
return ret;
}
std::string LLXMLNode::getSanitizedValue() const
{
if (mIsAttribute)
{
return getValue() ;
}
else
{
return getTextContents();
}
}
std::string LLXMLNode::getTextContents() const
{
std::string msg;
std::string contents = mValue;
std::string::size_type n = contents.find_first_not_of(" \t\n");
if (n != std::string::npos && contents[n] == '\"')
{
// Case 1: node has quoted text
S32 num_lines = 0;
while(1)
{
// mContents[n] == '"'
++n;
std::string::size_type t = n;
std::string::size_type m = 0;
// fix-up escaped characters
while(1)
{
m = contents.find_first_of("\\\"", t); // find first \ or "
if ((m == std::string::npos) || (contents[m] == '\"'))
{
break;
}
contents.erase(m,1);
t = m+1;
}
if (m == std::string::npos)
{
break;
}
// mContents[m] == '"'
num_lines++;
msg += contents.substr(n,m-n) + "\n";
n = contents.find_first_of("\"", m+1);
if (n == std::string::npos)
{
if (num_lines == 1)
{
msg.erase(msg.size()-1); // remove "\n" if only one line
}
break;
}
}
}
else
{
// Case 2: node has embedded text (beginning and trailing whitespace trimmed)
std::string::size_type start = mValue.find_first_not_of(" \t\n");
if (start != mValue.npos)
{
std::string::size_type end = mValue.find_last_not_of(" \t\n");
if (end != mValue.npos)
{
msg = mValue.substr(start, end+1-start);
}
else
{
msg = mValue.substr(start);
}
}
// Convert any internal CR to LF
msg = utf8str_removeCRLF(msg);
}
return msg;
}
void LLXMLNode::setLineNumber(S32 line_number)
{
mLineNumber = line_number;
}
S32 LLXMLNode::getLineNumber()
{
return mLineNumber;
}