408 lines
9.3 KiB
C++
408 lines
9.3 KiB
C++
/**
|
|
* @file v3math.cpp
|
|
* @brief LLVector3 class implementation.
|
|
*
|
|
* $LicenseInfo:firstyear=2000&license=viewerlgpl$
|
|
* Second Life Viewer Source Code
|
|
* Copyright (C) 2010, Linden Research, Inc.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation;
|
|
* version 2.1 of the License only.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
|
|
* $/LicenseInfo$
|
|
*/
|
|
|
|
#include "linden_common.h"
|
|
|
|
#include "v3math.h"
|
|
|
|
//#include "vmath.h"
|
|
#include "v2math.h"
|
|
#include "v4math.h"
|
|
#include "m4math.h"
|
|
#include "m3math.h"
|
|
#include "llquaternion.h"
|
|
#include "llquantize.h"
|
|
#include "v3dmath.h"
|
|
|
|
// LLVector3
|
|
// WARNING: Don't use these for global const definitions!
|
|
// For example:
|
|
// const LLQuaternion(0.5f * F_PI, LLVector3::zero);
|
|
// at the top of a *.cpp file might not give you what you think.
|
|
const LLVector3 LLVector3::zero(0,0,0);
|
|
const LLVector3 LLVector3::x_axis(1.f, 0, 0);
|
|
const LLVector3 LLVector3::y_axis(0, 1.f, 0);
|
|
const LLVector3 LLVector3::z_axis(0, 0, 1.f);
|
|
const LLVector3 LLVector3::x_axis_neg(-1.f, 0, 0);
|
|
const LLVector3 LLVector3::y_axis_neg(0, -1.f, 0);
|
|
const LLVector3 LLVector3::z_axis_neg(0, 0, -1.f);
|
|
const LLVector3 LLVector3::all_one(1.f,1.f,1.f);
|
|
|
|
|
|
// Clamps each values to range (min,max).
|
|
// Returns TRUE if data changed.
|
|
BOOL LLVector3::clamp(F32 min, F32 max)
|
|
{
|
|
BOOL ret = FALSE;
|
|
|
|
if (mV[0] < min) { mV[0] = min; ret = TRUE; }
|
|
if (mV[1] < min) { mV[1] = min; ret = TRUE; }
|
|
if (mV[2] < min) { mV[2] = min; ret = TRUE; }
|
|
|
|
if (mV[0] > max) { mV[0] = max; ret = TRUE; }
|
|
if (mV[1] > max) { mV[1] = max; ret = TRUE; }
|
|
if (mV[2] > max) { mV[2] = max; ret = TRUE; }
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Clamps length to an upper limit.
|
|
// Returns TRUE if the data changed
|
|
BOOL LLVector3::clampLength( F32 length_limit )
|
|
{
|
|
BOOL changed = FALSE;
|
|
|
|
F32 len = length();
|
|
if (std::isfinite(len))
|
|
{
|
|
if ( len > length_limit)
|
|
{
|
|
normalize();
|
|
if (length_limit < 0.f)
|
|
{
|
|
length_limit = 0.f;
|
|
}
|
|
mV[0] *= length_limit;
|
|
mV[1] *= length_limit;
|
|
mV[2] *= length_limit;
|
|
changed = TRUE;
|
|
}
|
|
}
|
|
else
|
|
{ // this vector may still be salvagable
|
|
F32 max_abs_component = 0.f;
|
|
for (S32 i = 0; i < 3; ++i)
|
|
{
|
|
F32 abs_component = fabs(mV[i]);
|
|
if (std::isfinite(abs_component))
|
|
{
|
|
if (abs_component > max_abs_component)
|
|
{
|
|
max_abs_component = abs_component;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// no it can't be salvaged --> clear it
|
|
clear();
|
|
changed = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
if (!changed)
|
|
{
|
|
// yes it can be salvaged -->
|
|
// bring the components down before we normalize
|
|
mV[0] /= max_abs_component;
|
|
mV[1] /= max_abs_component;
|
|
mV[2] /= max_abs_component;
|
|
normalize();
|
|
|
|
if (length_limit < 0.f)
|
|
{
|
|
length_limit = 0.f;
|
|
}
|
|
mV[0] *= length_limit;
|
|
mV[1] *= length_limit;
|
|
mV[2] *= length_limit;
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
BOOL LLVector3::clamp(const LLVector3 &min_vec, const LLVector3 &max_vec)
|
|
{
|
|
BOOL ret = FALSE;
|
|
|
|
if (mV[0] < min_vec[0]) { mV[0] = min_vec[0]; ret = TRUE; }
|
|
if (mV[1] < min_vec[1]) { mV[1] = min_vec[1]; ret = TRUE; }
|
|
if (mV[2] < min_vec[2]) { mV[2] = min_vec[2]; ret = TRUE; }
|
|
|
|
if (mV[0] > max_vec[0]) { mV[0] = max_vec[0]; ret = TRUE; }
|
|
if (mV[1] > max_vec[1]) { mV[1] = max_vec[1]; ret = TRUE; }
|
|
if (mV[2] > max_vec[2]) { mV[2] = max_vec[2]; ret = TRUE; }
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
// Sets all values to absolute value of their original values
|
|
// Returns TRUE if data changed
|
|
BOOL LLVector3::abs()
|
|
{
|
|
BOOL ret = FALSE;
|
|
|
|
if (mV[0] < 0.f) { mV[0] = -mV[0]; ret = TRUE; }
|
|
if (mV[1] < 0.f) { mV[1] = -mV[1]; ret = TRUE; }
|
|
if (mV[2] < 0.f) { mV[2] = -mV[2]; ret = TRUE; }
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Quatizations
|
|
void LLVector3::quantize16(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz)
|
|
{
|
|
F32 x = mV[VX];
|
|
F32 y = mV[VY];
|
|
F32 z = mV[VZ];
|
|
|
|
x = U16_to_F32(F32_to_U16(x, lowerxy, upperxy), lowerxy, upperxy);
|
|
y = U16_to_F32(F32_to_U16(y, lowerxy, upperxy), lowerxy, upperxy);
|
|
z = U16_to_F32(F32_to_U16(z, lowerz, upperz), lowerz, upperz);
|
|
|
|
mV[VX] = x;
|
|
mV[VY] = y;
|
|
mV[VZ] = z;
|
|
}
|
|
|
|
void LLVector3::quantize8(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz)
|
|
{
|
|
mV[VX] = U8_to_F32(F32_to_U8(mV[VX], lowerxy, upperxy), lowerxy, upperxy);;
|
|
mV[VY] = U8_to_F32(F32_to_U8(mV[VY], lowerxy, upperxy), lowerxy, upperxy);
|
|
mV[VZ] = U8_to_F32(F32_to_U8(mV[VZ], lowerz, upperz), lowerz, upperz);
|
|
}
|
|
|
|
|
|
void LLVector3::snap(S32 sig_digits)
|
|
{
|
|
mV[VX] = snap_to_sig_figs(mV[VX], sig_digits);
|
|
mV[VY] = snap_to_sig_figs(mV[VY], sig_digits);
|
|
mV[VZ] = snap_to_sig_figs(mV[VZ], sig_digits);
|
|
}
|
|
|
|
const LLVector3& LLVector3::rotVec(const LLMatrix3 &mat)
|
|
{
|
|
*this = *this * mat;
|
|
return *this;
|
|
}
|
|
|
|
const LLVector3& LLVector3::rotVec(const LLQuaternion &q)
|
|
{
|
|
*this = *this * q;
|
|
return *this;
|
|
}
|
|
|
|
const LLVector3& LLVector3::transVec(const LLMatrix4& mat)
|
|
{
|
|
setVec(
|
|
mV[VX] * mat.mMatrix[VX][VX] +
|
|
mV[VY] * mat.mMatrix[VX][VY] +
|
|
mV[VZ] * mat.mMatrix[VX][VZ] +
|
|
mat.mMatrix[VX][VW],
|
|
|
|
mV[VX] * mat.mMatrix[VY][VX] +
|
|
mV[VY] * mat.mMatrix[VY][VY] +
|
|
mV[VZ] * mat.mMatrix[VY][VZ] +
|
|
mat.mMatrix[VY][VW],
|
|
|
|
mV[VX] * mat.mMatrix[VZ][VX] +
|
|
mV[VY] * mat.mMatrix[VZ][VY] +
|
|
mV[VZ] * mat.mMatrix[VZ][VZ] +
|
|
mat.mMatrix[VZ][VW]);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
const LLVector3& LLVector3::rotVec(F32 angle, const LLVector3 &vec)
|
|
{
|
|
if ( !vec.isExactlyZero() && angle )
|
|
{
|
|
*this = *this * LLQuaternion(angle, vec);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
const LLVector3& LLVector3::rotVec(F32 angle, F32 x, F32 y, F32 z)
|
|
{
|
|
LLVector3 vec(x, y, z);
|
|
if ( !vec.isExactlyZero() && angle )
|
|
{
|
|
*this = *this * LLQuaternion(angle, vec);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
const LLVector3& LLVector3::scaleVec(const LLVector3& vec)
|
|
{
|
|
mV[VX] *= vec.mV[VX];
|
|
mV[VY] *= vec.mV[VY];
|
|
mV[VZ] *= vec.mV[VZ];
|
|
|
|
return *this;
|
|
}
|
|
|
|
LLVector3 LLVector3::scaledVec(const LLVector3& vec) const
|
|
{
|
|
LLVector3 ret = LLVector3(*this);
|
|
ret.scaleVec(vec);
|
|
return ret;
|
|
}
|
|
|
|
const LLVector3& LLVector3::set(const LLVector3d &vec)
|
|
{
|
|
mV[0] = (F32)vec.mdV[0];
|
|
mV[1] = (F32)vec.mdV[1];
|
|
mV[2] = (F32)vec.mdV[2];
|
|
return (*this);
|
|
}
|
|
|
|
const LLVector3& LLVector3::set(const LLVector4 &vec)
|
|
{
|
|
mV[0] = vec.mV[0];
|
|
mV[1] = vec.mV[1];
|
|
mV[2] = vec.mV[2];
|
|
return (*this);
|
|
}
|
|
|
|
const LLVector3& LLVector3::setVec(const LLVector3d &vec)
|
|
{
|
|
mV[0] = (F32)vec.mdV[0];
|
|
mV[1] = (F32)vec.mdV[1];
|
|
mV[2] = (F32)vec.mdV[2];
|
|
return (*this);
|
|
}
|
|
|
|
const LLVector3& LLVector3::setVec(const LLVector4 &vec)
|
|
{
|
|
mV[0] = vec.mV[0];
|
|
mV[1] = vec.mV[1];
|
|
mV[2] = vec.mV[2];
|
|
return (*this);
|
|
}
|
|
|
|
LLVector3::LLVector3(const LLVector2 &vec)
|
|
{
|
|
mV[VX] = (F32)vec.mV[VX];
|
|
mV[VY] = (F32)vec.mV[VY];
|
|
mV[VZ] = 0;
|
|
}
|
|
|
|
LLVector3::LLVector3(const LLVector3d &vec)
|
|
{
|
|
mV[VX] = (F32)vec.mdV[VX];
|
|
mV[VY] = (F32)vec.mdV[VY];
|
|
mV[VZ] = (F32)vec.mdV[VZ];
|
|
}
|
|
|
|
LLVector3::LLVector3(const LLVector4 &vec)
|
|
{
|
|
mV[VX] = (F32)vec.mV[VX];
|
|
mV[VY] = (F32)vec.mV[VY];
|
|
mV[VZ] = (F32)vec.mV[VZ];
|
|
}
|
|
|
|
LLVector3::LLVector3(const LLSD& sd)
|
|
{
|
|
setValue(sd);
|
|
}
|
|
|
|
LLSD LLVector3::getValue() const
|
|
{
|
|
LLSD ret;
|
|
ret[0] = mV[0];
|
|
ret[1] = mV[1];
|
|
ret[2] = mV[2];
|
|
return ret;
|
|
}
|
|
|
|
void LLVector3::setValue(const LLSD& sd)
|
|
{
|
|
mV[0] = (F32) sd[0].asReal();
|
|
mV[1] = (F32) sd[1].asReal();
|
|
mV[2] = (F32) sd[2].asReal();
|
|
}
|
|
|
|
const LLVector3& operator*=(LLVector3 &a, const LLQuaternion &rot)
|
|
{
|
|
const F32 rw = - rot.mQ[VX] * a.mV[VX] - rot.mQ[VY] * a.mV[VY] - rot.mQ[VZ] * a.mV[VZ];
|
|
const F32 rx = rot.mQ[VW] * a.mV[VX] + rot.mQ[VY] * a.mV[VZ] - rot.mQ[VZ] * a.mV[VY];
|
|
const F32 ry = rot.mQ[VW] * a.mV[VY] + rot.mQ[VZ] * a.mV[VX] - rot.mQ[VX] * a.mV[VZ];
|
|
const F32 rz = rot.mQ[VW] * a.mV[VZ] + rot.mQ[VX] * a.mV[VY] - rot.mQ[VY] * a.mV[VX];
|
|
|
|
a.mV[VX] = - rw * rot.mQ[VX] + rx * rot.mQ[VW] - ry * rot.mQ[VZ] + rz * rot.mQ[VY];
|
|
a.mV[VY] = - rw * rot.mQ[VY] + ry * rot.mQ[VW] - rz * rot.mQ[VX] + rx * rot.mQ[VZ];
|
|
a.mV[VZ] = - rw * rot.mQ[VZ] + rz * rot.mQ[VW] - rx * rot.mQ[VY] + ry * rot.mQ[VX];
|
|
|
|
return a;
|
|
}
|
|
|
|
// static
|
|
BOOL LLVector3::parseVector3(const std::string& buf, LLVector3* value)
|
|
{
|
|
if( buf.empty() || value == NULL)
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
LLVector3 v;
|
|
S32 count = sscanf( buf.c_str(), "%f %f %f", v.mV + 0, v.mV + 1, v.mV + 2 );
|
|
if( 3 == count )
|
|
{
|
|
value->setVec( v );
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
// Displacement from query point to nearest neighbor point on bounding box.
|
|
// Returns zero vector for points within or on the box.
|
|
LLVector3 point_to_box_offset(LLVector3& pos, const LLVector3* box)
|
|
{
|
|
LLVector3 offset;
|
|
for (S32 k=0; k<3; k++)
|
|
{
|
|
offset[k] = 0;
|
|
if (pos[k] < box[0][k])
|
|
{
|
|
offset[k] = pos[k] - box[0][k];
|
|
}
|
|
else if (pos[k] > box[1][k])
|
|
{
|
|
offset[k] = pos[k] - box[1][k];
|
|
}
|
|
}
|
|
return offset;
|
|
}
|
|
|
|
bool box_valid_and_non_zero(const LLVector3* box)
|
|
{
|
|
if (!box[0].isFinite() || !box[1].isFinite())
|
|
{
|
|
return false;
|
|
}
|
|
LLVector3 zero_vec;
|
|
zero_vec.clear();
|
|
if ((box[0] != zero_vec) || (box[1] != zero_vec))
|
|
{
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|