Files
SingularityViewer/indra/newview/pipeline.cpp

11426 lines
297 KiB
C++

/**
* @file pipeline.cpp
* @brief Rendering pipeline.
*
* $LicenseInfo:firstyear=2005&license=viewergpl$
*
* Copyright (c) 2005-2009, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "pipeline.h"
// library includes
#include "llaudioengine.h" // For MAX_BUFFERS for debugging.
#include "imageids.h"
#include "llerror.h"
#include "llviewercontrol.h"
#include "llfasttimer.h"
#include "llfontgl.h"
#include "llmemory.h"
#include "llnamevalue.h"
#include "llpointer.h"
#include "llprimitive.h"
#include "llvolume.h"
#include "material_codes.h"
#include "timing.h"
#include "v3color.h"
#include "llui.h"
#include "llglheaders.h"
#include "llrender.h"
#include "llwindow.h"
#include "llpostprocess.h"
// newview includes
#include "llagent.h"
#include "llagentcamera.h"
#include "lldrawable.h"
#include "lldrawpoolalpha.h"
#include "lldrawpoolavatar.h"
#include "lldrawpoolground.h"
#include "lldrawpoolbump.h"
#include "lldrawpooltree.h"
#include "lldrawpoolwater.h"
#include "llface.h"
#include "llfeaturemanager.h"
#include "llfloatertelehub.h"
#include "llframestats.h"
#include "llgldbg.h"
#include "llhudmanager.h"
#include "llhudnametag.h"
#include "llhudtext.h"
#include "lllightconstants.h"
#include "llmeshrepository.h"
#include "llresmgr.h"
#include "llselectmgr.h"
#include "llsky.h"
#include "lltracker.h"
#include "lltool.h"
#include "lltoolmgr.h"
#include "llviewercamera.h"
#include "llviewermediafocus.h"
#include "llviewertexturelist.h"
#include "llviewerobject.h"
#include "llviewerobjectlist.h"
#include "llviewerparcelmgr.h"
#include "llviewerregion.h" // for audio debugging.
#include "llviewerstats.h"
#include "llviewerwindow.h" // For getSpinAxis
#include "llvoavatar.h"
#include "llvoground.h"
#include "llvosky.h"
#include "llvotree.h"
#include "llvovolume.h"
#include "llvosurfacepatch.h"
#include "llvowater.h"
#include "llvotree.h"
#include "llvopartgroup.h"
#include "llworld.h"
#include "llcubemap.h"
#include "lldebugmessagebox.h"
#include "llviewershadermgr.h"
#include "llviewerjoystick.h"
#include "llviewerdisplay.h"
#include "llwlparammanager.h"
#include "llwaterparammanager.h"
#include "llspatialpartition.h"
#include "llmutelist.h"
#include "llfloatertools.h"
#include "llpanelface.h"
// [RLVa:KB] - Checked: 2011-05-22 (RLVa-1.3.1a)
#include "rlvhandler.h"
#include "rlvlocks.h"
// [/RLVa:KB]
void check_stack_depth(S32 stack_depth)
{
if (gDebugGL || gDebugSession)
{
GLint depth;
glGetIntegerv(GL_MODELVIEW_STACK_DEPTH, &depth);
if (depth != stack_depth)
{
if (gDebugSession)
{
ll_fail("GL matrix stack corrupted.");
}
else
{
llerrs << "GL matrix stack corrupted!" << llendl;
}
}
}
}
#ifdef _DEBUG
// Debug indices is disabled for now for debug performance - djs 4/24/02
//#define DEBUG_INDICES
#else
//#define DEBUG_INDICES
#endif
bool gShiftFrame = false;
const F32 BACKLIGHT_DAY_MAGNITUDE_AVATAR = 0.2f;
const F32 BACKLIGHT_NIGHT_MAGNITUDE_AVATAR = 0.1f;
const F32 BACKLIGHT_DAY_MAGNITUDE_OBJECT = 0.1f;
const F32 BACKLIGHT_NIGHT_MAGNITUDE_OBJECT = 0.08f;
const S32 MAX_ACTIVE_OBJECT_QUIET_FRAMES = 40;
const S32 MAX_OFFSCREEN_GEOMETRY_CHANGES_PER_FRAME = 10;
const U32 REFLECTION_MAP_RES = 128;
const U32 DEFERRED_VB_MASK = LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0 | LLVertexBuffer::MAP_TEXCOORD1;
// Max number of occluders to search for. JC
const S32 MAX_OCCLUDER_COUNT = 2;
extern S32 gBoxFrame;
//extern BOOL gHideSelectedObjects;
extern BOOL gDisplaySwapBuffers;
extern BOOL gDebugGL;
// hack counter for rendering a fixed number of frames after toggling
// fullscreen to work around DEV-5361
static S32 sDelayedVBOEnable = 0;
BOOL gAvatarBacklight = FALSE;
BOOL gDebugPipeline = FALSE;
LLPipeline gPipeline;
const LLMatrix4* gGLLastMatrix = NULL;
LLFastTimer::DeclareTimer FTM_RENDER_GEOMETRY("Geometry");
LLFastTimer::DeclareTimer FTM_RENDER_GRASS("Grass");
LLFastTimer::DeclareTimer FTM_RENDER_INVISIBLE("Invisible");
LLFastTimer::DeclareTimer FTM_RENDER_OCCLUSION("Occlusion");
LLFastTimer::DeclareTimer FTM_RENDER_SHINY("Shiny");
LLFastTimer::DeclareTimer FTM_RENDER_SIMPLE("Simple");
LLFastTimer::DeclareTimer FTM_RENDER_TERRAIN("Terrain");
LLFastTimer::DeclareTimer FTM_RENDER_TREES("Trees");
LLFastTimer::DeclareTimer FTM_RENDER_UI("UI");
LLFastTimer::DeclareTimer FTM_RENDER_WATER("Water");
LLFastTimer::DeclareTimer FTM_RENDER_WL_SKY("Windlight Sky");
LLFastTimer::DeclareTimer FTM_RENDER_ALPHA("Alpha Objects");
LLFastTimer::DeclareTimer FTM_RENDER_CHARACTERS("Avatars");
LLFastTimer::DeclareTimer FTM_RENDER_BUMP("Bump");
LLFastTimer::DeclareTimer FTM_RENDER_MATERIALS("Materials");
LLFastTimer::DeclareTimer FTM_RENDER_FULLBRIGHT("Fullbright");
LLFastTimer::DeclareTimer FTM_RENDER_GLOW("Glow");
LLFastTimer::DeclareTimer FTM_GEO_UPDATE("Geo Update");
LLFastTimer::DeclareTimer FTM_PIPELINE_CREATE("Pipeline Create");
LLFastTimer::DeclareTimer FTM_POOLRENDER("RenderPool");
LLFastTimer::DeclareTimer FTM_POOLS("Pools");
LLFastTimer::DeclareTimer FTM_DEFERRED_POOLRENDER("RenderPool (Deferred)");
LLFastTimer::DeclareTimer FTM_DEFERRED_POOLS("Pools (Deferred)");
LLFastTimer::DeclareTimer FTM_POST_DEFERRED_POOLRENDER("RenderPool (Post)");
LLFastTimer::DeclareTimer FTM_POST_DEFERRED_POOLS("Pools (Post)");
LLFastTimer::DeclareTimer FTM_RENDER_BLOOM_FBO("First FBO");
LLFastTimer::DeclareTimer FTM_STATESORT("Sort Draw State");
LLFastTimer::DeclareTimer FTM_PIPELINE("Pipeline");
LLFastTimer::DeclareTimer FTM_CLIENT_COPY("Client Copy");
LLFastTimer::DeclareTimer FTM_RENDER_DEFERRED("Deferred Shading");
static LLFastTimer::DeclareTimer FTM_STATESORT_DRAWABLE("Sort Drawables");
static LLFastTimer::DeclareTimer FTM_STATESORT_POSTSORT("Post Sort");
//static LLStaticHashedString sTint("tint");
//static LLStaticHashedString sAmbiance("ambiance");
//static LLStaticHashedString sAlphaScale("alpha_scale");
static LLStaticHashedString sNormMat("norm_mat");
//static LLStaticHashedString sOffset("offset");
static LLStaticHashedString sScreenRes("screenRes");
static LLStaticHashedString sDelta("delta");
static LLStaticHashedString sDistFactor("dist_factor");
static LLStaticHashedString sKern("kern");
static LLStaticHashedString sKernScale("kern_scale");
//----------------------------------------
std::string gPoolNames[] =
{
// Correspond to LLDrawpool enum render type
"NONE",
"POOL_SIMPLE",
"POOL_GROUND",
"POOL_FULLBRIGHT",
"POOL_BUMP",
"POOL_MATERIALS",
"POOL_TERRAIN",
"POOL_TREE", // Singu Note: Before sky for zcull.
"POOL_ALPHA_MASK",
"POOL_FULLBRIGHT_ALPHA_MASK",
"POOL_SKY",
"POOL_WL_SKY",
"POOL_GRASS",
"POOL_INVISIBLE",
"POOL_AVATAR",
"POOL_VOIDWATER",
"POOL_WATER",
"POOL_GLOW",
"POOL_ALPHA",
"POOL_INVALID_OUCH_CATASTROPHE_ERROR"
};
void drawBox(const LLVector3& c, const LLVector3& r);
void drawBoxOutline(const LLVector3& pos, const LLVector3& size);
U32 nhpo2(U32 v);
LLVertexBuffer* ll_create_cube_vb(U32 type_mask, U32 usage);
glh::matrix4f glh_get_current_modelview()
{
return glh::matrix4f(gGLModelView.getF32ptr());
}
glh::matrix4f glh_get_current_projection()
{
return glh::matrix4f(gGLProjection.getF32ptr());
}
glh::matrix4f glh_get_last_modelview()
{
return glh::matrix4f(gGLLastModelView.getF32ptr());
}
glh::matrix4f glh_get_last_projection()
{
return glh::matrix4f(gGLLastProjection.getF32ptr());
}
void glh_set_current_modelview(const glh::matrix4f& mat)
{
gGLModelView.loadu(mat.m);
}
void glh_set_current_projection(glh::matrix4f& mat)
{
gGLProjection.loadu(mat.m);
}
glh::matrix4f gl_ortho(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat znear, GLfloat zfar)
{
glh::matrix4f ret(
2.f/(right-left), 0.f, 0.f, -(right+left)/(right-left),
0.f, 2.f/(top-bottom), 0.f, -(top+bottom)/(top-bottom),
0.f, 0.f, -2.f/(zfar-znear), -(zfar+znear)/(zfar-znear),
0.f, 0.f, 0.f, 1.f);
return ret;
}
void display_update_camera(bool tiling=false);
//----------------------------------------
S32 LLPipeline::sCompiles = 0;
BOOL LLPipeline::sPickAvatar = TRUE;
BOOL LLPipeline::sDynamicLOD = TRUE;
BOOL LLPipeline::sShowHUDAttachments = TRUE;
BOOL LLPipeline::sRenderMOAPBeacons = FALSE;
BOOL LLPipeline::sRenderPhysicalBeacons = TRUE;
BOOL LLPipeline::sRenderScriptedBeacons = FALSE;
BOOL LLPipeline::sRenderScriptedTouchBeacons = TRUE;
BOOL LLPipeline::sRenderParticleBeacons = FALSE;
BOOL LLPipeline::sRenderSoundBeacons = FALSE;
BOOL LLPipeline::sRenderBeacons = FALSE;
BOOL LLPipeline::sRenderHighlight = TRUE;
LLRender::eTexIndex LLPipeline::sRenderHighlightTextureChannel = LLRender::DIFFUSE_MAP;
BOOL LLPipeline::sForceOldBakedUpload = FALSE;
S32 LLPipeline::sUseOcclusion = 0;
BOOL LLPipeline::sDelayVBUpdate = FALSE;
BOOL LLPipeline::sAutoMaskAlphaDeferred = TRUE;
BOOL LLPipeline::sAutoMaskAlphaNonDeferred = FALSE;
BOOL LLPipeline::sDisableShaders = FALSE;
BOOL LLPipeline::sRenderBump = TRUE;
BOOL LLPipeline::sBakeSunlight = FALSE;
BOOL LLPipeline::sNoAlpha = FALSE;
BOOL LLPipeline::sUseFarClip = TRUE;
BOOL LLPipeline::sShadowRender = FALSE;
BOOL LLPipeline::sSkipUpdate = FALSE;
BOOL LLPipeline::sWaterReflections = FALSE;
BOOL LLPipeline::sRenderGlow = FALSE;
BOOL LLPipeline::sReflectionRender = FALSE;
BOOL LLPipeline::sImpostorRender = FALSE;
BOOL LLPipeline::sImpostorRenderAlphaDepthPass = FALSE;
BOOL LLPipeline::sUnderWaterRender = FALSE;
BOOL LLPipeline::sTextureBindTest = FALSE;
BOOL LLPipeline::sRenderFrameTest = FALSE;
BOOL LLPipeline::sRenderAttachedLights = TRUE;
BOOL LLPipeline::sRenderAttachedParticles = TRUE;
BOOL LLPipeline::sRenderDeferred = FALSE;
BOOL LLPipeline::sMemAllocationThrottled = FALSE;
S32 LLPipeline::sVisibleLightCount = 0;
F32 LLPipeline::sMinRenderSize = 0.f;
BOOL LLPipeline::sRenderingHUDs;
static LLCullResult* sCull = NULL;
static const U32 gl_cube_face[] =
{
GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB,
};
void validate_framebuffer_object();
bool addDeferredAttachments(LLRenderTarget& target)
{
//static const LLCachedControl<bool> SHPrecisionDeferredNormals("SHPrecisionDeferredNormals",false); //DEAD
return target.addColorAttachment(GL_SRGB8_ALPHA8) && //specular
target.addColorAttachment(GL_RGB10_A2); //normal+z
}
LLPipeline::LLPipeline() :
mBackfaceCull(FALSE),
mBatchCount(0),
mMatrixOpCount(0),
mTextureMatrixOps(0),
mMaxBatchSize(0),
mMinBatchSize(0),
mMeanBatchSize(0),
mTrianglesDrawn(0),
mNumVisibleNodes(0),
mVerticesRelit(0),
mLightingChanges(0),
mGeometryChanges(0),
mNumVisibleFaces(0),
mInitialized(FALSE),
mVertexShadersEnabled(FALSE),
mVertexShadersLoaded(0),
mTransformFeedbackPrimitives(0),
mRenderDebugFeatureMask(0),
mRenderDebugMask(0),
mOldRenderDebugMask(0),
mMeshDirtyQueryObject(0),
mGroupQ1Locked(false),
mGroupQ2Locked(false),
mResetVertexBuffers(false),
mLastRebuildPool(NULL),
mAlphaPool(NULL),
mSkyPool(NULL),
mTerrainPool(NULL),
mWaterPool(NULL),
mGroundPool(NULL),
mSimplePool(NULL),
mGrassPool(NULL),
mAlphaMaskPool(NULL),
mFullbrightAlphaMaskPool(NULL),
mFullbrightPool(NULL),
mInvisiblePool(NULL),
mGlowPool(NULL),
mBumpPool(NULL),
mMaterialsPool(NULL),
mWLSkyPool(NULL),
mLightMask(0),
mLightMovingMask(0),
mLightingDetail(0)
{
mNoiseMap = 0;
mTrueNoiseMap = 0;
mLightFunc = 0;
}
void LLPipeline::init()
{
refreshCachedSettings();
bool can_defer = LLFeatureManager::getInstance()->isFeatureAvailable("RenderDeferred");
LLRenderTarget::sUseFBO = gSavedSettings.getBOOL("RenderUseFBO") || (gSavedSettings.getBOOL("RenderDeferred") && can_defer);
gOctreeMaxCapacity = gSavedSettings.getU32("OctreeMaxNodeCapacity");
gOctreeReserveCapacity = llmin(gSavedSettings.getU32("OctreeReserveNodeCapacity"),U32(512));
sDynamicLOD = gSavedSettings.getBOOL("RenderDynamicLOD");
sRenderBump = gSavedSettings.getBOOL("RenderObjectBump");
LLVertexBuffer::sUseStreamDraw = gSavedSettings.getBOOL("ShyotlRenderUseStreamVBO");
LLVertexBuffer::sUseVAO = gSavedSettings.getBOOL("RenderUseVAO") && gSavedSettings.getBOOL("VertexShaderEnable"); //Temporary workaround for vaos being broken when shaders are off
LLVertexBuffer::sPreferStreamDraw = gSavedSettings.getBOOL("RenderPreferStreamDraw");
sRenderAttachedLights = gSavedSettings.getBOOL("RenderAttachedLights");
sRenderAttachedParticles = gSavedSettings.getBOOL("RenderAttachedParticles");
mInitialized = TRUE;
stop_glerror();
//create render pass pools
getPool(LLDrawPool::POOL_ALPHA);
getPool(LLDrawPool::POOL_SIMPLE);
getPool(LLDrawPool::POOL_ALPHA_MASK);
getPool(LLDrawPool::POOL_FULLBRIGHT_ALPHA_MASK);
getPool(LLDrawPool::POOL_GRASS);
getPool(LLDrawPool::POOL_FULLBRIGHT);
getPool(LLDrawPool::POOL_INVISIBLE);
getPool(LLDrawPool::POOL_BUMP);
getPool(LLDrawPool::POOL_MATERIALS);
getPool(LLDrawPool::POOL_GLOW);
LLViewerStats::getInstance()->mTrianglesDrawnStat.reset();
resetFrameStats();
if (gSavedSettings.getBOOL("DisableAllRenderFeatures"))
{
clearAllRenderDebugFeatures();
}
else
{
setAllRenderDebugFeatures(); // By default, all debugging features on
}
clearAllRenderDebugDisplays(); // All debug displays off
if (gSavedSettings.getBOOL("DisableAllRenderTypes"))
{
clearAllRenderTypes();
}
else
{
setAllRenderTypes(); // By default, all rendering types start enabled
// Don't turn on ground when this is set
// Mac Books with intel 950s need this
if(!gSavedSettings.getBOOL("RenderGround"))
{
toggleRenderType(RENDER_TYPE_GROUND);
}
}
// make sure RenderPerformanceTest persists (hackity hack hack)
// disables non-object rendering (UI, sky, water, etc)
if (gSavedSettings.getBOOL("RenderPerformanceTest"))
{
gSavedSettings.setBOOL("RenderPerformanceTest", FALSE);
gSavedSettings.setBOOL("RenderPerformanceTest", TRUE);
}
mOldRenderDebugMask = mRenderDebugMask;
mBackfaceCull = TRUE;
stop_glerror();
// Enable features
LLViewerShaderMgr::instance()->setShaders();
stop_glerror();
for (U32 i = 0; i < 2; ++i)
{
mSpotLightFade[i] = 1.f;
}
setLightingDetail(-1);
gSavedSettings.getControl("RenderAutoMaskAlphaDeferred")->getCommitSignal()->connect(boost::bind(&LLPipeline::refreshCachedSettings));
gSavedSettings.getControl("RenderAutoMaskAlphaNonDeferred")->getCommitSignal()->connect(boost::bind(&LLPipeline::refreshCachedSettings));
gSavedSettings.getControl("RenderUseFarClip")->getCommitSignal()->connect(boost::bind(&LLPipeline::refreshCachedSettings));
gSavedSettings.getControl("RenderAvatarMaxVisible")->getCommitSignal()->connect(boost::bind(&LLPipeline::refreshCachedSettings));
//gSavedSettings.getControl("RenderDelayVBUpdate")->getCommitSignal()->connect(boost::bind(&LLPipeline::refreshCachedSettings));
gSavedSettings.getControl("UseOcclusion")->getCommitSignal()->connect(boost::bind(&LLPipeline::refreshCachedSettings));
gSavedSettings.getControl("VertexShaderEnable")->getCommitSignal()->connect(boost::bind(&LLPipeline::refreshCachedSettings));
gSavedSettings.getControl("RenderDeferred")->getCommitSignal()->connect(boost::bind(&LLPipeline::refreshCachedSettings));
gSavedSettings.getControl("RenderFSAASamples")->getCommitSignal()->connect(boost::bind(&LLPipeline::refreshCachedSettings));
gSavedSettings.getControl("RenderAvatarVP")->getCommitSignal()->connect(boost::bind(&LLPipeline::refreshCachedSettings));
gSavedSettings.getControl("WindLightUseAtmosShaders")->getCommitSignal()->connect(boost::bind(&LLPipeline::refreshCachedSettings));
}
LLPipeline::~LLPipeline()
{
}
void LLPipeline::cleanup()
{
assertInitialized();
mGroupQ1.clear() ;
mGroupQ2.clear() ;
for(pool_set_t::iterator iter = mPools.begin();
iter != mPools.end(); )
{
pool_set_t::iterator curiter = iter++;
LLDrawPool* poolp = *curiter;
if (poolp->isFacePool())
{
LLFacePool* face_pool = (LLFacePool*) poolp;
if (face_pool->mReferences.empty())
{
mPools.erase(curiter);
removeFromQuickLookup( poolp );
delete poolp;
}
}
else
{
mPools.erase(curiter);
removeFromQuickLookup( poolp );
delete poolp;
}
}
if (!mTerrainPools.empty())
{
llwarns << "Terrain Pools not cleaned up" << llendl;
}
if (!mTreePools.empty())
{
llwarns << "Tree Pools not cleaned up" << llendl;
}
delete mAlphaPool;
mAlphaPool = NULL;
delete mSkyPool;
mSkyPool = NULL;
delete mTerrainPool;
mTerrainPool = NULL;
delete mWaterPool;
mWaterPool = NULL;
delete mGroundPool;
mGroundPool = NULL;
delete mSimplePool;
mSimplePool = NULL;
delete mFullbrightPool;
mFullbrightPool = NULL;
delete mInvisiblePool;
mInvisiblePool = NULL;
delete mGlowPool;
mGlowPool = NULL;
delete mBumpPool;
mBumpPool = NULL;
// don't delete wl sky pool it was handled above in the for loop
//delete mWLSkyPool;
mWLSkyPool = NULL;
releaseGLBuffers();
mFaceSelectImagep = NULL;
mMovedBridge.clear();
mInitialized = FALSE;
mDeferredVB = NULL;
mCubeVB = NULL;
}
//============================================================================
void LLPipeline::destroyGL()
{
stop_glerror();
unloadShaders();
mHighlightFaces.clear();
resetDrawOrders();
resetVertexBuffers();
releaseGLBuffers();
if (LLVertexBuffer::sEnableVBOs)
{
// render 30 frames after switching to work around DEV-5361
if(!LLRenderTarget::sUseFBO)
{
sDelayedVBOEnable = 30;
LLVertexBuffer::sEnableVBOs = FALSE;
}
}
if (mMeshDirtyQueryObject)
{
glDeleteQueriesARB(1, &mMeshDirtyQueryObject);
mMeshDirtyQueryObject = 0;
}
}
static LLFastTimer::DeclareTimer FTM_RESIZE_SCREEN_TEXTURE("Resize Screen Texture");
//static
void LLPipeline::throttleNewMemoryAllocation(BOOL disable)
{
if(sMemAllocationThrottled != disable)
{
sMemAllocationThrottled = disable ;
if(sMemAllocationThrottled)
{
//send out notification
LLNotification::Params params("LowMemory");
LLNotifications::instance().add(params);
//release some memory.
}
}
}
void LLPipeline::resizeScreenTexture()
{
LLFastTimer ft(FTM_RESIZE_SCREEN_TEXTURE);
if (gPipeline.canUseVertexShaders() && assertInitialized())
{
GLuint resX = gViewerWindow->getWorldViewWidthRaw();
GLuint resY = gViewerWindow->getWorldViewHeightRaw();
// [RLVa:KB] - Checked: 2014-02-23 (RLVa-1.4.10)
U32 resMod = gSavedSettings.getU32("RenderResolutionDivisor"), resAdjustedX = resX, resAdjustedY = resY;
if ( (resMod > 1) && (resMod < resX) && (resMod < resY) )
{
resAdjustedX /= resMod;
resAdjustedY /= resMod;
}
if ( (resAdjustedX != mScreen.getWidth()) || (resAdjustedY != mScreen.getHeight()) )
// [/RLVa:KB]
// if ((resX != mScreen.getWidth()) || (resY != mScreen.getHeight()))
{
releaseScreenBuffers();
if (!allocateScreenBuffer(resX,resY))
{
#if PROBABLE_FALSE_DISABLES_OF_ALM_HERE
//FAILSAFE: screen buffer allocation failed, disable deferred rendering if it's enabled
//NOTE: if the session closes successfully after this call, deferred rendering will be
// disabled on future sessions
if (LLPipeline::sRenderDeferred)
{
gSavedSettings.setBOOL("RenderDeferred", FALSE);
LLPipeline::refreshCachedSettings();
}
#endif
}
}
}
}
void LLPipeline::allocatePhysicsBuffer()
{
GLuint resX = gViewerWindow->getWorldViewWidthRaw();
GLuint resY = gViewerWindow->getWorldViewHeightRaw();
if (mPhysicsDisplay.getWidth() != resX || mPhysicsDisplay.getHeight() != resY)
{
mPhysicsDisplay.allocate(resX, resY, GL_RGBA, TRUE, FALSE, LLTexUnit::TT_RECT_TEXTURE, FALSE);
}
}
bool LLPipeline::allocateScreenBuffer(U32 resX, U32 resY)
{
refreshCachedSettings();
bool save_settings = sRenderDeferred;
if (save_settings)
{
// Set this flag in case we crash while resizing window or allocating space for deferred rendering targets
gSavedSettings.setBOOL("RenderInitError", TRUE);
gSavedSettings.saveToFile( gSavedSettings.getString("ClientSettingsFile"), TRUE );
}
eFBOStatus ret = doAllocateScreenBuffer(resX, resY);
if (save_settings)
{
// don't disable shaders on next session
gSavedSettings.setBOOL("RenderInitError", FALSE);
gSavedSettings.saveToFile( gSavedSettings.getString("ClientSettingsFile"), TRUE );
}
if (ret == FBO_FAILURE)
{ //FAILSAFE: screen buffer allocation failed, disable deferred rendering if it's enabled
//NOTE: if the session closes successfully after this call, deferred rendering will be
// disabled on future sessions
if (LLPipeline::sRenderDeferred)
{
gSavedSettings.setBOOL("RenderDeferred", FALSE);
LLPipeline::refreshCachedSettings();
}
}
return ret == FBO_SUCCESS_FULLRES;
}
LLPipeline::eFBOStatus LLPipeline::doAllocateScreenBuffer(U32 resX, U32 resY)
{
refreshCachedSettings();
static const LLCachedControl<U32> RenderFSAASamples("RenderFSAASamples",0);
U32 samples = RenderFSAASamples.get() - RenderFSAASamples.get() % 2; //Must be multipe of 2.
//try to allocate screen buffers at requested resolution and samples
// - on failure, shrink number of samples and try again
// - if not multisampled, shrink resolution and try again (favor X resolution over Y)
// Make sure to call "releaseScreenBuffers" after each failure to cleanup the partially loaded state
eFBOStatus ret = FBO_SUCCESS_FULLRES;
if (!allocateScreenBuffer(resX, resY, samples))
{
//failed to allocate at requested specification, return false
ret = FBO_FAILURE;
releaseScreenBuffers();
//reduce number of samples
while (samples > 0)
{
samples /= 2;
if (allocateScreenBuffer(resX, resY, samples))
{ //success
return FBO_SUCCESS_LOWRES;
}
releaseScreenBuffers();
}
samples = 0;
//reduce resolution
while (resY > 0 && resX > 0)
{
resY /= 2;
if (allocateScreenBuffer(resX, resY, samples))
{
return FBO_SUCCESS_LOWRES;
}
releaseScreenBuffers();
resX /= 2;
if (allocateScreenBuffer(resX, resY, samples))
{
return FBO_SUCCESS_LOWRES;
}
releaseScreenBuffers();
}
llwarns << "Unable to allocate screen buffer at any resolution!" << llendl;
}
return ret;
}
bool LLPipeline::allocateScreenBuffer(U32 resX, U32 resY, U32 samples)
{
refreshCachedSettings();
U32 res_mod = gSavedSettings.getU32("RenderResolutionDivisor");
if (res_mod > 1 && res_mod < resX && res_mod < resY)
{
resX /= res_mod;
resY /= res_mod;
}
mSampleBuffer.release();
mScreen.release();
mDeferredDownsampledDepth.release();
if (LLPipeline::sRenderDeferred)
{
static const LLCachedControl<S32> shadow_detail("RenderShadowDetail",0);
static const LLCachedControl<bool> ssao ("RenderDeferredSSAO",false);
static const LLCachedControl<bool> RenderDepthOfField("RenderDepthOfField",false);
static const LLCachedControl<F32> RenderShadowResolutionScale("RenderShadowResolutionScale",1.0f);
static const LLCachedControl<F32> RenderSSAOResolutionScale("SHRenderSSAOResolutionScale",.5f);
const U32 occlusion_divisor = 3;
//allocate deferred rendering color buffers
if (!mDeferredScreen.allocate(resX, resY, GL_SRGB8_ALPHA8, TRUE, TRUE, LLTexUnit::TT_RECT_TEXTURE, FALSE)) return false;
if (!mDeferredDepth.allocate(resX, resY, 0, TRUE, FALSE, LLTexUnit::TT_RECT_TEXTURE, FALSE)) return false;
if (!mOcclusionDepth.allocate(resX/occlusion_divisor, resY/occlusion_divisor, 0, TRUE, FALSE, LLTexUnit::TT_RECT_TEXTURE, FALSE)) return false;
if (!addDeferredAttachments(mDeferredScreen)) return false;
GLuint screenFormat = GL_RGBA16;
if (gGLManager.mIsATI)
{
screenFormat = GL_RGBA12;
}
if (gGLManager.mGLVersion < 4.f && gGLManager.mIsNVIDIA)
{
screenFormat = GL_RGBA16F_ARB;
}
if (!mScreen.allocate(resX, resY, screenFormat, FALSE, FALSE, LLTexUnit::TT_RECT_TEXTURE, FALSE)) return false;
if (samples > 0)
{
if (!mFXAABuffer.allocate(resX, resY, GL_RGBA, FALSE, FALSE, LLTexUnit::TT_TEXTURE, FALSE)) return false;
}
else
{
mFXAABuffer.release();
}
if (shadow_detail > 0 || ssao || RenderDepthOfField || samples > 0)
{ //only need mDeferredLight for shadows OR ssao OR dof OR fxaa
if (!mDeferredLight.allocate(resX, resY, GL_RGBA, FALSE, FALSE, LLTexUnit::TT_RECT_TEXTURE, FALSE)) return false;
if(ssao)
{
F32 scale = llclamp(RenderSSAOResolutionScale.get(),.01f,1.f);
if( scale < 1.f && !mDeferredDownsampledDepth.allocate(llceil(F32(resX)*scale), llceil(F32(resY)*scale), 0, TRUE, FALSE, LLTexUnit::TT_RECT_TEXTURE, FALSE) ) return false;
}
}
else
{
mDeferredLight.release();
}
F32 scale = RenderShadowResolutionScale;
if (shadow_detail > 0)
{ //allocate 4 sun shadow maps
U32 sun_shadow_map_width = ((U32(resX*scale)+1)&~1); // must be even to avoid a stripe in the horizontal shadow blur
for (U32 i = 0; i < 4; i++)
{
if (!mShadow[i].allocate(sun_shadow_map_width,U32(resY*scale), 0, TRUE, FALSE, LLTexUnit::TT_TEXTURE)) return false;
if (!mShadowOcclusion[i].allocate(mShadow[i].getWidth()/occlusion_divisor, mShadow[i].getHeight()/occlusion_divisor, 0, TRUE, FALSE, LLTexUnit::TT_TEXTURE)) return false;
}
}
else
{
for (U32 i = 0; i < 4; i++)
{
mShadow[i].release();
mShadowOcclusion[i].release();
}
}
U32 width = (U32) (resX*scale);
U32 height = width;
if (shadow_detail > 1)
{ //allocate two spot shadow maps
U32 spot_shadow_map_width = width;
for (U32 i = 4; i < 6; i++)
{
if (!mShadow[i].allocate(spot_shadow_map_width, height, 0, TRUE, FALSE)) return false;
if (!mShadowOcclusion[i].allocate(mShadow[i].getWidth()/occlusion_divisor, mShadow[i].getHeight()/occlusion_divisor, 0, TRUE, FALSE)) return false;
}
}
else
{
for (U32 i = 4; i < 6; i++)
{
mShadow[i].release();
mShadowOcclusion[i].release();
}
}
//HACK make screenbuffer allocations start failing after 30 seconds
if (gSavedSettings.getBOOL("SimulateFBOFailure"))
{
return false;
}
}
else
{
mDeferredLight.release();
for (U32 i = 0; i < 6; i++)
{
mShadow[i].release();
mShadowOcclusion[i].release();
}
mFXAABuffer.release();
mScreen.release();
mDeferredScreen.release(); //make sure to release any render targets that share a depth buffer with mDeferredScreen first
mDeferredDepth.release();
mDeferredDownsampledDepth.release();
mOcclusionDepth.release();
if (!mScreen.allocate(resX, resY, GL_RGBA, TRUE, TRUE, LLTexUnit::TT_RECT_TEXTURE, FALSE)) return false;
if(samples > 1 && mScreen.getFBO())
{
if(mSampleBuffer.allocate(resX,resY,GL_RGBA,TRUE,TRUE,LLTexUnit::TT_RECT_TEXTURE,FALSE,samples))
mScreen.setSampleBuffer(&mSampleBuffer);
else
{
mSampleBuffer.release();
return false;
}
}
}
if (LLPipeline::sRenderDeferred)
{ //share depth buffer between deferred targets
mDeferredScreen.shareDepthBuffer(mScreen);
/*for (U32 i = 0; i < 3; i++)
{ //share stencil buffer with screen space lightmap to stencil out sky
if (mDeferredLight[i].getTexture(0))
{
mDeferredScreen.shareDepthBuffer(mDeferredLight[i]);
}
}*/
}
gGL.getTexUnit(0)->disable();
stop_glerror();
return true;
}
//static
void LLPipeline::updateRenderDeferred()
{
sRenderDeferred = (gSavedSettings.getBOOL("RenderDeferred") &&
LLRenderTarget::sUseFBO &&
LLFeatureManager::getInstance()->isFeatureAvailable("RenderDeferred") &&
gSavedSettings.getBOOL("RenderObjectBump") &&
gSavedSettings.getBOOL("VertexShaderEnable") &&
gSavedSettings.getBOOL("RenderAvatarVP") &&
gSavedSettings.getBOOL("WindLightUseAtmosShaders") &&
!gUseWireframe);
if (sRenderDeferred)
{ //must render glow when rendering deferred since post effect pass is needed to present any lighting at all
sRenderGlow = TRUE;
}
}
//static
void LLPipeline::refreshCachedSettings()
{
LLPipeline::sAutoMaskAlphaDeferred = gSavedSettings.getBOOL("RenderAutoMaskAlphaDeferred");
LLPipeline::sAutoMaskAlphaNonDeferred = gSavedSettings.getBOOL("RenderAutoMaskAlphaNonDeferred");
LLPipeline::sUseFarClip = gSavedSettings.getBOOL("RenderUseFarClip");
LLVOAvatar::sMaxVisible = (U32)gSavedSettings.getS32("RenderAvatarMaxVisible");
//LLPipeline::sDelayVBUpdate = gSavedSettings.getBOOL("RenderDelayVBUpdate");
LLPipeline::sUseOcclusion =
(!gUseWireframe
&& LLGLSLShader::sNoFixedFunction
&& LLFeatureManager::getInstance()->isFeatureAvailable("UseOcclusion")
&& gSavedSettings.getBOOL("UseOcclusion")
&& gGLManager.mHasOcclusionQuery) ? 2 : 0;
updateRenderDeferred();
}
void LLPipeline::releaseGLBuffers()
{
assertInitialized();
if (mNoiseMap)
{
LLImageGL::deleteTextures(1, &mNoiseMap);
mNoiseMap = 0;
}
if (mTrueNoiseMap)
{
LLImageGL::deleteTextures(1, &mTrueNoiseMap);
mTrueNoiseMap = 0;
}
releaseLUTBuffers();
mWaterRef.release();
mWaterDis.release();
for (U32 i = 0; i < 2; i++)
{
mGlow[i].release();
}
releaseScreenBuffers();
gBumpImageList.destroyGL();
LLVOAvatar::resetImpostors();
if(LLPostProcess::instanceExists())
LLPostProcess::getInstance()->destroyGL();
}
void LLPipeline::releaseLUTBuffers()
{
if (mLightFunc)
{
LLImageGL::deleteTextures(1, &mLightFunc);
mLightFunc = 0;
}
}
void LLPipeline::releaseScreenBuffers()
{
mScreen.release();
mFXAABuffer.release();
mPhysicsDisplay.release();
mDeferredScreen.release();
mDeferredDepth.release();
mDeferredDownsampledDepth.release();
mDeferredLight.release();
mOcclusionDepth.release();
//mHighlight.release();
for (U32 i = 0; i < 6; i++)
{
mShadow[i].release();
mShadowOcclusion[i].release();
}
mSampleBuffer.release();
}
void LLPipeline::createGLBuffers()
{
stop_glerror();
assertInitialized();
updateRenderDeferred();
bool materials_in_water = false;
#if MATERIALS_IN_REFLECTIONS
materials_in_water = gSavedSettings.getS32("RenderWaterMaterials");
#endif
if (LLPipeline::sWaterReflections)
{ //water reflection texture
U32 res = (U32) llmax(gSavedSettings.getS32("RenderWaterRefResolution"), 512);
// Set up SRGB targets if we're doing deferred-path reflection rendering
//
if (LLPipeline::sRenderDeferred && materials_in_water)
{
mWaterRef.allocate(res,res,GL_SRGB8_ALPHA8,TRUE,FALSE);
//always use FBO for mWaterDis so it can be used for avatar texture bakes
mWaterDis.allocate(res,res,GL_SRGB8_ALPHA8,TRUE,FALSE,LLTexUnit::TT_TEXTURE, true);
}
else
{
mWaterRef.allocate(res,res,GL_RGBA,TRUE,FALSE);
//always use FBO for mWaterDis so it can be used for avatar texture bakes
mWaterDis.allocate(res,res,GL_RGBA,TRUE,FALSE,LLTexUnit::TT_TEXTURE, true);
}
}
stop_glerror();
GLuint resX = gViewerWindow->getWorldViewWidthRaw();
GLuint resY = gViewerWindow->getWorldViewHeightRaw();
if (LLPipeline::sRenderGlow)
{ //screen space glow buffers
const U32 glow_res = llmax(1,
llmin(512, 1 << gSavedSettings.getS32("RenderGlowResolutionPow")));
glClearColor(0,0,0,0);
gGL.setColorMask(true, true);
for (U32 i = 0; i < 2; i++)
{
if(mGlow[i].allocate(512,glow_res,GL_RGBA,FALSE,FALSE))
{
mGlow[i].bindTarget();
mGlow[i].clear();
mGlow[i].flush();
}
}
allocateScreenBuffer(resX,resY);
}
if (sRenderDeferred)
{
if (!mNoiseMap)
{
const U32 noiseRes = 128;
LLVector3 noise[noiseRes*noiseRes];
F32 scaler = gSavedSettings.getF32("RenderDeferredNoise")/100.f;
for (U32 i = 0; i < noiseRes*noiseRes; ++i)
{
noise[i] = LLVector3(ll_frand()-0.5f, ll_frand()-0.5f, 0.f);
noise[i].normVec();
noise[i].mV[2] = ll_frand()*scaler+1.f-scaler/2.f;
}
LLImageGL::generateTextures(1, &mNoiseMap);
gGL.getTexUnit(0)->bindManual(LLTexUnit::TT_TEXTURE, mNoiseMap);
LLImageGL::setManualImage(LLTexUnit::getInternalType(LLTexUnit::TT_TEXTURE), 0, GL_RGB16F_ARB, noiseRes, noiseRes, GL_RGB, GL_FLOAT, noise, false);
gGL.getTexUnit(0)->setTextureFilteringOption(LLTexUnit::TFO_POINT);
}
if (!mTrueNoiseMap)
{
const U32 noiseRes = 128;
F32 noise[noiseRes*noiseRes*3];
for (U32 i = 0; i < noiseRes*noiseRes*3; i++)
{
noise[i] = ll_frand()*2.0-1.0;
}
LLImageGL::generateTextures(1, &mTrueNoiseMap);
gGL.getTexUnit(0)->bindManual(LLTexUnit::TT_TEXTURE, mTrueNoiseMap);
LLImageGL::setManualImage(LLTexUnit::getInternalType(LLTexUnit::TT_TEXTURE), 0, GL_RGB16F_ARB, noiseRes, noiseRes, GL_RGB,GL_FLOAT, noise, false);
gGL.getTexUnit(0)->setTextureFilteringOption(LLTexUnit::TFO_POINT);
}
createLUTBuffers();
}
gBumpImageList.restoreGL();
}
void LLPipeline::createLUTBuffers()
{
if (sRenderDeferred)
{
if (!mLightFunc)
{
U32 lightResX = gSavedSettings.getU32("RenderSpecularResX");
U32 lightResY = gSavedSettings.getU32("RenderSpecularResY");
//U8* ls = new U8[lightResX*lightResY];
F32* ls = new F32[lightResX*lightResY];
//static const LLCachedControl<F32> specExp("RenderSpecularExponent");
// Calculate the (normalized) Blinn-Phong specular lookup texture.
for (U32 y = 0; y < lightResY; ++y)
{
for (U32 x = 0; x < lightResX; ++x)
{
ls[y*lightResX+x] = 0;
F32 sa = (F32) x/(lightResX-1);
F32 spec = (F32) y/(lightResY-1);
F32 n = spec * spec * 368;//specExp;
// Nothing special here. Just your typical blinn-phong term.
spec = powf(sa, n);
// Apply our normalization function.
// Note: This is the full equation that applies the full normalization curve, not an approximation.
// This is fine, given we only need to create our LUT once per buffer initialization.
// The only trade off is we have a really low dynamic range.
// This means we have to account for things not being able to exceed 0 to 1 in our shaders.
spec *= (((n + 2) * (n + 4)) / (8 * F_PI * (powf(2, -n/2) + n)));
// Always sample at a 1.0/2.2 curve.
// This "Gamma corrects" our specular term, boosting our lower exponent reflections.
ls[y*lightResX+x] = spec;
// Easy fix for our dynamic range problem: divide by 6 here, multiply by 6 in our shaders.
// This allows for our specular term to exceed a value of 1 in our shaders.
// This is something that can be important for energy conserving specular models where higher exponents can result in highlights that exceed a range of 0 to 1.
// Technically, we could just use an R16F texture, but driver support for R16F textures can be somewhat spotty at times.
// This works remarkably well for higher specular exponents, though banding can sometimes be seen on lower exponents.
// Combined with a bit of noise and trilinear filtering, the banding is hardly noticable.
//ls[y*lightResX+x] = (U8)(llclamp(spec * (1.f / 6), 0.f, 1.f) * 255);
}
}
U32 pix_format = GL_R16F;
#if LL_DARWIN
// Need to work around limited precision with 10.6.8 and older drivers
//
pix_format = GL_R32F;
#endif
LLImageGL::generateTextures(1, &mLightFunc);
gGL.getTexUnit(0)->bindManual(LLTexUnit::TT_TEXTURE, mLightFunc);
LLImageGL::setManualImage(LLTexUnit::getInternalType(LLTexUnit::TT_TEXTURE), 0, pix_format, lightResX, lightResY, GL_RED, GL_FLOAT, ls, false);
//LLImageGL::setManualImage(LLTexUnit::getInternalType(LLTexUnit::TT_TEXTURE), 0, GL_UNSIGNED_BYTE, lightResX, lightResY, GL_RED, GL_UNSIGNED_BYTE, ls, false);
gGL.getTexUnit(0)->setTextureAddressMode(LLTexUnit::TAM_CLAMP);
gGL.getTexUnit(0)->setTextureFilteringOption(LLTexUnit::TFO_TRILINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
delete [] ls;
}
}
}
void LLPipeline::restoreGL()
{
assertInitialized();
if (mVertexShadersEnabled)
{
LLViewerShaderMgr::instance()->setShaders();
}
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
part->restoreGL();
}
}
}
resetLocalLights(); //Default all gl light parameters. Fixes light brightness problems on fullscren toggle
}
BOOL LLPipeline::canUseVertexShaders()
{
static const std::string vertex_shader_enable_feature_string = "VertexShaderEnable";
if (sDisableShaders ||
!gGLManager.mHasVertexShader ||
!gGLManager.mHasFragmentShader ||
!LLFeatureManager::getInstance()->isFeatureAvailable(vertex_shader_enable_feature_string) ||
(assertInitialized() && mVertexShadersLoaded != 1) )
{
return FALSE;
}
else
{
return TRUE;
}
}
BOOL LLPipeline::canUseWindLightShaders() const
{
return (!LLPipeline::sDisableShaders &&
gWLSkyProgram.mProgramObject != 0 &&
LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_WINDLIGHT) > 1);
}
BOOL LLPipeline::canUseWindLightShadersOnObjects() const
{
return (canUseWindLightShaders()
&& LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_OBJECT) > 0);
}
BOOL LLPipeline::canUseAntiAliasing() const
{
return TRUE;
}
void LLPipeline::unloadShaders()
{
LLViewerShaderMgr::instance()->unloadShaders();
mVertexShadersLoaded = 0;
}
void LLPipeline::assertInitializedDoError()
{
llerrs << "LLPipeline used when uninitialized." << llendl;
}
//============================================================================
void LLPipeline::enableShadows(const BOOL enable_shadows)
{
//should probably do something here to wrangle shadows....
}
S32 LLPipeline::getMaxLightingDetail() const
{
/*if (mVertexShaderLevel[SHADER_OBJECT] >= LLDrawPoolSimple::SHADER_LEVEL_LOCAL_LIGHTS)
{
return 3;
}
else*/
{
return 1;
}
}
S32 LLPipeline::setLightingDetail(S32 level)
{
refreshCachedSettings();
if (level < 0)
{
if (gSavedSettings.getBOOL("RenderLocalLights"))
{
level = 1;
}
else
{
level = 0;
}
}
level = llclamp(level, 0, getMaxLightingDetail());
//Bugfix: If setshaders was called with RenderLocalLights off then enabling RenderLocalLights later will not work. Reloading shaders fixes this.
if (level != mLightingDetail && mVertexShadersLoaded)
{
LLViewerShaderMgr::instance()->setShaders();
}
mLightingDetail = level;
return mLightingDetail;
}
class LLOctreeDirtyTexture : public LLOctreeTraveler<LLDrawable>
{
public:
const std::set<LLViewerFetchedTexture*>& mTextures;
LLOctreeDirtyTexture(const std::set<LLViewerFetchedTexture*>& textures) : mTextures(textures) { }
virtual void visit(const LLOctreeNode<LLDrawable>* node)
{
LLSpatialGroup* group = (LLSpatialGroup*) node->getListener(0);
if (!group->isState(LLSpatialGroup::GEOM_DIRTY) && !group->isEmpty())
{
for (LLSpatialGroup::draw_map_t::iterator i = group->mDrawMap.begin(); i != group->mDrawMap.end(); ++i)
{
for (LLSpatialGroup::drawmap_elem_t::iterator j = i->second.begin(); j != i->second.end(); ++j)
{
LLDrawInfo* params = *j;
LLViewerFetchedTexture* tex = LLViewerTextureManager::staticCastToFetchedTexture(params->mTexture);
if (tex && mTextures.find(tex) != mTextures.end())
{
group->setState(LLSpatialGroup::GEOM_DIRTY);
}
}
}
}
for (LLSpatialGroup::bridge_list_t::iterator i = group->mBridgeList.begin(); i != group->mBridgeList.end(); ++i)
{
LLSpatialBridge* bridge = *i;
traverse(bridge->mOctree);
}
}
};
// Called when a texture changes # of channels (causes faces to move to alpha pool)
void LLPipeline::dirtyPoolObjectTextures(const std::set<LLViewerFetchedTexture*>& textures)
{
assertInitialized();
// *TODO: This is inefficient and causes frame spikes; need a better way to do this
// Most of the time is spent in dirty.traverse.
for (pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ++iter)
{
LLDrawPool *poolp = *iter;
if (poolp->isFacePool())
{
((LLFacePool*) poolp)->dirtyTextures(textures);
}
}
LLOctreeDirtyTexture dirty(textures);
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
dirty.traverse(part->mOctree);
}
}
}
}
LLDrawPool *LLPipeline::findPool(const U32 type, LLViewerTexture *tex0)
{
assertInitialized();
LLDrawPool *poolp = NULL;
switch( type )
{
case LLDrawPool::POOL_SIMPLE:
poolp = mSimplePool;
break;
case LLDrawPool::POOL_GRASS:
poolp = mGrassPool;
break;
case LLDrawPool::POOL_ALPHA_MASK:
poolp = mAlphaMaskPool;
break;
case LLDrawPool::POOL_FULLBRIGHT_ALPHA_MASK:
poolp = mFullbrightAlphaMaskPool;
break;
case LLDrawPool::POOL_FULLBRIGHT:
poolp = mFullbrightPool;
break;
case LLDrawPool::POOL_INVISIBLE:
poolp = mInvisiblePool;
break;
case LLDrawPool::POOL_GLOW:
poolp = mGlowPool;
break;
case LLDrawPool::POOL_TREE:
poolp = get_if_there(mTreePools, (uintptr_t)tex0, (LLDrawPool*)0 );
break;
case LLDrawPool::POOL_TERRAIN:
poolp = get_if_there(mTerrainPools, (uintptr_t)tex0, (LLDrawPool*)0 );
break;
case LLDrawPool::POOL_BUMP:
poolp = mBumpPool;
break;
case LLDrawPool::POOL_MATERIALS:
poolp = mMaterialsPool;
break;
case LLDrawPool::POOL_ALPHA:
poolp = mAlphaPool;
break;
case LLDrawPool::POOL_AVATAR:
break; // Do nothing
case LLDrawPool::POOL_SKY:
poolp = mSkyPool;
break;
case LLDrawPool::POOL_WATER:
poolp = mWaterPool;
break;
case LLDrawPool::POOL_GROUND:
poolp = mGroundPool;
break;
case LLDrawPool::POOL_WL_SKY:
poolp = mWLSkyPool;
break;
default:
llassert(0);
llerrs << "Invalid Pool Type in LLPipeline::findPool() type=" << type << llendl;
break;
}
return poolp;
}
LLDrawPool *LLPipeline::getPool(const U32 type, LLViewerTexture *tex0)
{
LLDrawPool *poolp = findPool(type, tex0);
if (poolp)
{
return poolp;
}
LLDrawPool *new_poolp = LLDrawPool::createPool(type, tex0);
addPool( new_poolp );
return new_poolp;
}
// static
LLDrawPool* LLPipeline::getPoolFromTE(const LLTextureEntry* te, LLViewerTexture* imagep)
{
U32 type = getPoolTypeFromTE(te, imagep);
return gPipeline.getPool(type, imagep);
}
//static
U32 LLPipeline::getPoolTypeFromTE(const LLTextureEntry* te, LLViewerTexture* imagep)
{
if (!te || !imagep)
{
return 0;
}
LLMaterial* mat = te->getMaterialParams().get();
bool color_alpha = te->getColor().mV[3] < 0.999f;
bool alpha = color_alpha;
if (imagep)
{
alpha = alpha || (imagep->getComponents() == 4 && imagep->getType() != LLViewerTexture::MEDIA_TEXTURE) || (imagep->getComponents() == 2);
}
if (alpha && mat)
{
switch (mat->getDiffuseAlphaMode())
{
case LLMaterial::DIFFUSE_ALPHA_MODE_BLEND:
alpha = true; // Material's alpha mode is set to blend. Toss it into the alpha draw pool.
break;
case LLMaterial::DIFFUSE_ALPHA_MODE_NONE: //alpha mode set to none, never go to alpha pool
case LLMaterial::DIFFUSE_ALPHA_MODE_EMISSIVE: //alpha mode set to emissive, never go to alpha pool
alpha = color_alpha;
break;
default: //alpha mode set to "mask", go to alpha pool if fullbright
alpha = color_alpha; // Material's alpha mode is set to mask, or default. Toss it into the opaque material draw pool.
break;
}
}
static const LLCachedControl<bool> alt_batching("SHAltBatching",true);
if(!alt_batching)
{
if (alpha)
{
return LLDrawPool::POOL_ALPHA;
}
else if ((te->getBumpmap() || te->getShiny()) && (!mat || mat->getNormalID().isNull()))
{
return LLDrawPool::POOL_BUMP;
}
else if (mat && !alpha)
{
return LLDrawPool::POOL_MATERIALS;
}
else
{
return LLDrawPool::POOL_SIMPLE;
}
}
else
{
static const LLCachedControl<bool> sh_fullbright_deferred("SHFullbrightDeferred",true);
//Bump goes into bump pool unless using deferred and there's a normal map that takes precedence.
bool legacy_bump = (!LLPipeline::sRenderDeferred || !mat || mat->getNormalID().isNull()) && LLPipeline::sRenderBump && te->getBumpmap() && te->getBumpmap() < 18;
if (alpha)
{
return LLDrawPool::POOL_ALPHA;
}
else if (mat && mat->getDiffuseAlphaMode() == LLMaterial::DIFFUSE_ALPHA_MODE_MASK)
{
if(!LLPipeline::sRenderDeferred || legacy_bump)
{
return te->getFullbright() ? LLDrawPool::POOL_FULLBRIGHT_ALPHA_MASK : LLDrawPool::POOL_ALPHA_MASK;
}
else if(te->getFullbright() && !mat->getEnvironmentIntensity() && !te->getShiny())
{
return LLDrawPool::POOL_FULLBRIGHT_ALPHA_MASK;
}
return LLDrawPool::POOL_MATERIALS;
}
else if (legacy_bump)
{
return LLDrawPool::POOL_BUMP;
}
else if(LLPipeline::sRenderDeferred && mat)
{
if(te->getFullbright() && !mat->getEnvironmentIntensity() && !te->getShiny())
{
return sh_fullbright_deferred ? LLDrawPool::POOL_FULLBRIGHT : LLDrawPool::POOL_SIMPLE;
}
return LLDrawPool::POOL_MATERIALS;
}
else if((sh_fullbright_deferred || !LLPipeline::sRenderDeferred) && te->getFullbright())
{
return (LLPipeline::sRenderBump && te->getShiny()) ? LLDrawPool::POOL_BUMP : LLDrawPool::POOL_FULLBRIGHT;
}
else if (!LLPipeline::sRenderDeferred && LLPipeline::sRenderBump && te->getShiny())
{
return LLDrawPool::POOL_BUMP; //Shiny goes into bump pool when not using deferred rendering.
}
else
{
return LLDrawPool::POOL_SIMPLE;
}
}
}
void LLPipeline::addPool(LLDrawPool *new_poolp)
{
assertInitialized();
mPools.insert(new_poolp);
addToQuickLookup( new_poolp );
}
void LLPipeline::allocDrawable(LLViewerObject *vobj)
{
if(!vobj)
{
llerrs << "Null object passed to allocDrawable!" << llendl;
}
LLDrawable *drawable = new LLDrawable();
vobj->mDrawable = drawable;
drawable->mVObjp = vobj;
//encompass completely sheared objects by taking
//the most extreme point possible (<1,1,0.5>)
drawable->setRadius(LLVector3(1,1,0.5f).scaleVec(vobj->getScale()).length());
if (vobj->isOrphaned())
{
drawable->setState(LLDrawable::FORCE_INVISIBLE);
}
drawable->updateXform(TRUE);
}
static LLFastTimer::DeclareTimer FTM_UNLINK("Unlink");
static LLFastTimer::DeclareTimer FTM_REMOVE_FROM_MOVE_LIST("Movelist");
static LLFastTimer::DeclareTimer FTM_REMOVE_FROM_SPATIAL_PARTITION("Spatial Partition");
static LLFastTimer::DeclareTimer FTM_REMOVE_FROM_LIGHT_SET("Light Set");
//static LLFastTimer::DeclareTimer FTM_REMOVE_FROM_HIGHLIGHT_SET("Highlight Set");
void LLPipeline::unlinkDrawable(LLDrawable *drawable)
{
LLFastTimer t(FTM_UNLINK);
assertInitialized();
LLPointer<LLDrawable> drawablep = drawable; // make sure this doesn't get deleted before we are done
// Based on flags, remove the drawable from the queues that it's on.
if (drawablep->isState(LLDrawable::ON_MOVE_LIST))
{
LLFastTimer t(FTM_REMOVE_FROM_MOVE_LIST);
LLDrawable::drawable_vector_t::iterator iter = std::find(mMovedList.begin(), mMovedList.end(), drawablep);
if (iter != mMovedList.end())
{
mMovedList.erase(iter);
}
}
if (drawablep->getSpatialGroup())
{
LLFastTimer t(FTM_REMOVE_FROM_SPATIAL_PARTITION);
if (!drawablep->getSpatialGroup()->mSpatialPartition->remove(drawablep, drawablep->getSpatialGroup()))
{
#ifdef LL_RELEASE_FOR_DOWNLOAD
llwarns << "Couldn't remove object from spatial group!" << llendl;
#else
llerrs << "Couldn't remove object from spatial group!" << llendl;
#endif
}
}
{
LLFastTimer t(FTM_REMOVE_FROM_LIGHT_SET);
mLights.erase(drawablep);
for (light_set_t::iterator iter = mNearbyLights.begin();
iter != mNearbyLights.end(); iter++)
{
if (iter->drawable == drawablep)
{
mNearbyLights.erase(iter);
break;
}
}
}
for (U32 i = 0; i < 2; ++i)
{
if (mShadowSpotLight[i] == drawablep)
{
mShadowSpotLight[i] = NULL;
}
if (mTargetShadowSpotLight[i] == drawablep)
{
mTargetShadowSpotLight[i] = NULL;
}
}
}
//static
void LLPipeline::removeMutedAVsLights(LLVOAvatar* muted_avatar)
{
LLFastTimer t(FTM_REMOVE_FROM_LIGHT_SET);
for (light_set_t::iterator iter = gPipeline.mNearbyLights.begin();
iter != gPipeline.mNearbyLights.end();)
{
if (iter->drawable->getVObj()->isAttachment() && iter->drawable->getVObj()->getAvatar() == muted_avatar)
{
gPipeline.mLights.erase(iter->drawable);
gPipeline.mNearbyLights.erase(iter++);
}
else ++iter;
}
}
U32 LLPipeline::addObject(LLViewerObject *vobj)
{
llassert_always(vobj);
if (gNoRender)
{
return 0;
}
static const LLCachedControl<bool> render_delay_creation("RenderDelayCreation",false);
if (!vobj->isAvatar() && render_delay_creation)
{
mCreateQ.push_back(vobj);
}
else
{
createObject(vobj);
}
return 1;
}
void LLPipeline::createObjects(F32 max_dtime)
{
LLFastTimer ftm(FTM_PIPELINE_CREATE);
LLTimer update_timer;
while (!mCreateQ.empty() && update_timer.getElapsedTimeF32() < max_dtime)
{
LLViewerObject* vobj = mCreateQ.front();
if (!vobj->isDead())
{
createObject(vobj);
}
mCreateQ.pop_front();
}
//for (LLViewerObject::vobj_list_t::iterator iter = mCreateQ.begin(); iter != mCreateQ.end(); ++iter)
//{
// createObject(*iter);
//}
//mCreateQ.clear();
}
void LLPipeline::createObject(LLViewerObject* vobj)
{
LLDrawable* drawablep = vobj->mDrawable;
if (!drawablep)
{
drawablep = vobj->createDrawable(this);
}
else
{
llerrs << "Redundant drawable creation!" << llendl;
}
llassert(drawablep);
if (vobj->getParent())
{
vobj->setDrawableParent(((LLViewerObject*)vobj->getParent())->mDrawable); // LLPipeline::addObject 1
}
else
{
vobj->setDrawableParent(NULL); // LLPipeline::addObject 2
}
markRebuild(drawablep, LLDrawable::REBUILD_ALL, TRUE);
static const LLCachedControl<bool> render_animate_res("RenderAnimateRes",false);
if (drawablep->getVOVolume() && render_animate_res)
{
// fun animated res
drawablep->updateXform(TRUE);
drawablep->clearState(LLDrawable::MOVE_UNDAMPED);
drawablep->setScale(LLVector3(0,0,0));
drawablep->makeActive();
}
}
void LLPipeline::resetFrameStats()
{
assertInitialized();
LLViewerStats::getInstance()->mTrianglesDrawnStat.addValue(mTrianglesDrawn/1000.f);
if (mBatchCount > 0)
{
mMeanBatchSize = gPipeline.mTrianglesDrawn/gPipeline.mBatchCount;
}
mTrianglesDrawn = 0;
sCompiles = 0;
mVerticesRelit = 0;
mLightingChanges = 0;
mGeometryChanges = 0;
mNumVisibleFaces = 0;
if (mOldRenderDebugMask != mRenderDebugMask)
{
gObjectList.clearDebugText();
mOldRenderDebugMask = mRenderDebugMask;
}
}
//external functions for asynchronous updating
void LLPipeline::updateMoveDampedAsync(LLDrawable* drawablep)
{
static const LLCachedControl<bool> freeze_time("FreezeTime",false);
if (freeze_time)
{
return;
}
if (!drawablep)
{
llerrs << "updateMove called with NULL drawablep" << llendl;
return;
}
if (drawablep->isState(LLDrawable::EARLY_MOVE))
{
return;
}
assertInitialized();
// update drawable now
drawablep->clearState(LLDrawable::MOVE_UNDAMPED); // force to DAMPED
drawablep->updateMove(); // returns done
drawablep->setState(LLDrawable::EARLY_MOVE); // flag says we already did an undamped move this frame
// Put on move list so that EARLY_MOVE gets cleared
if (!drawablep->isState(LLDrawable::ON_MOVE_LIST))
{
mMovedList.push_back(drawablep);
drawablep->setState(LLDrawable::ON_MOVE_LIST);
}
}
void LLPipeline::updateMoveNormalAsync(LLDrawable* drawablep)
{
static const LLCachedControl<bool> freeze_time("FreezeTime",false);
if (freeze_time)
{
return;
}
if (!drawablep)
{
llerrs << "updateMove called with NULL drawablep" << llendl;
return;
}
if (drawablep->isState(LLDrawable::EARLY_MOVE))
{
return;
}
assertInitialized();
// update drawable now
drawablep->setState(LLDrawable::MOVE_UNDAMPED); // force to UNDAMPED
drawablep->updateMove();
drawablep->setState(LLDrawable::EARLY_MOVE); // flag says we already did an undamped move this frame
// Put on move list so that EARLY_MOVE gets cleared
if (!drawablep->isState(LLDrawable::ON_MOVE_LIST))
{
mMovedList.push_back(drawablep);
drawablep->setState(LLDrawable::ON_MOVE_LIST);
}
}
void LLPipeline::updateMovedList(LLDrawable::drawable_vector_t& moved_list)
{
for (LLDrawable::drawable_vector_t::iterator iter = moved_list.begin();
iter != moved_list.end(); )
{
LLDrawable::drawable_vector_t::iterator curiter = iter++;
LLDrawable *drawablep = *curiter;
BOOL done = TRUE;
if (!drawablep->isDead() && (!drawablep->isState(LLDrawable::EARLY_MOVE)))
{
done = drawablep->updateMove();
}
drawablep->clearState(LLDrawable::EARLY_MOVE | LLDrawable::MOVE_UNDAMPED);
if (done)
{
if (drawablep->isRoot())
{
drawablep->makeStatic();
}
drawablep->clearState(LLDrawable::ON_MOVE_LIST);
if (drawablep->isState(LLDrawable::ANIMATED_CHILD))
{ //will likely not receive any future world matrix updates
// -- this keeps attachments from getting stuck in space and falling off your avatar
drawablep->clearState(LLDrawable::ANIMATED_CHILD);
markRebuild(drawablep, LLDrawable::REBUILD_VOLUME, TRUE);
if (drawablep->getVObj())
{
drawablep->getVObj()->dirtySpatialGroup(TRUE);
}
}
iter = moved_list.erase(curiter);
}
}
}
static LLFastTimer::DeclareTimer FTM_OCTREE_BALANCE("Balance Octree");
static LLFastTimer::DeclareTimer FTM_UPDATE_MOVE("Update Move");
void LLPipeline::updateMove()
{
LLFastTimer t(FTM_UPDATE_MOVE);
static const LLCachedControl<bool> freeze_time("FreezeTime",false);
if (freeze_time)
{
return;
}
assertInitialized();
{
static LLFastTimer::DeclareTimer ftm("Retexture");
LLFastTimer t(ftm);
for (LLDrawable::drawable_set_t::iterator iter = mRetexturedList.begin();
iter != mRetexturedList.end(); ++iter)
{
LLDrawable* drawablep = *iter;
if (drawablep && !drawablep->isDead())
{
drawablep->updateTexture();
}
}
mRetexturedList.clear();
}
{
static LLFastTimer::DeclareTimer ftm("Moved List");
LLFastTimer t(ftm);
updateMovedList(mMovedList);
}
//balance octrees
{
LLFastTimer ot(FTM_OCTREE_BALANCE);
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
part->mOctree->balance();
}
}
}
}
}
/////////////////////////////////////////////////////////////////////////////
// Culling and occlusion testing
/////////////////////////////////////////////////////////////////////////////
//static
F32 LLPipeline::calcPixelArea(LLVector3 center, LLVector3 size, LLCamera &camera)
{
LLVector3 lookAt = center - camera.getOrigin();
F32 dist = lookAt.length();
//ramp down distance for nearby objects
//shrink dist by dist/16.
if (dist < 16.f)
{
dist /= 16.f;
dist *= dist;
dist *= 16.f;
}
//get area of circle around node
F32 app_angle = atanf(size.length()/dist);
F32 radius = app_angle*LLDrawable::sCurPixelAngle;
return radius*radius * F_PI;
}
//static
F32 LLPipeline::calcPixelArea(const LLVector4a& center, const LLVector4a& size, LLCamera &camera)
{
LLVector4a origin;
origin.load3(camera.getOrigin().mV);
LLVector4a lookAt;
lookAt.setSub(center, origin);
F32 dist = lookAt.getLength3().getF32();
//ramp down distance for nearby objects
//shrink dist by dist/16.
if (dist < 16.f)
{
dist /= 16.f;
dist *= dist;
dist *= 16.f;
}
//get area of circle around node
F32 app_angle = atanf(size.getLength3().getF32()/dist);
F32 radius = app_angle*LLDrawable::sCurPixelAngle;
return radius*radius * F_PI;
}
void LLPipeline::grabReferences(LLCullResult& result)
{
sCull = &result;
}
void LLPipeline::clearReferences()
{
sCull = NULL;
mGroupSaveQ1.clear();
}
void check_references(LLSpatialGroup* group, LLDrawable* drawable)
{
for (LLSpatialGroup::element_iter i = group->getDataBegin(); i != group->getDataEnd(); ++i)
{
if (drawable == *i)
{
llerrs << "LLDrawable deleted while actively reference by LLPipeline." << llendl;
}
}
}
void check_references(LLDrawable* drawable, LLFace* face)
{
for (S32 i = 0; i < drawable->getNumFaces(); ++i)
{
if (drawable->getFace(i) == face)
{
llerrs << "LLFace deleted while actively referenced by LLPipeline." << llendl;
}
}
}
void check_references(LLSpatialGroup* group, LLFace* face)
{
for (LLSpatialGroup::element_iter i = group->getDataBegin(); i != group->getDataEnd(); ++i)
{
LLDrawable* drawable = *i;
check_references(drawable, face);
}
}
void LLPipeline::checkReferences(LLFace* face)
{
#if 0
if (sCull)
{
for (LLCullResult::sg_iterator iter = sCull->beginVisibleGroups(); iter != sCull->endVisibleGroups(); ++iter)
{
LLSpatialGroup* group = *iter;
check_references(group, face);
}
for (LLCullResult::sg_iterator iter = sCull->beginAlphaGroups(); iter != sCull->endAlphaGroups(); ++iter)
{
LLSpatialGroup* group = *iter;
check_references(group, face);
}
for (LLCullResult::sg_iterator iter = sCull->beginDrawableGroups(); iter != sCull->endDrawableGroups(); ++iter)
{
LLSpatialGroup* group = *iter;
check_references(group, face);
}
for (LLCullResult::drawable_iterator iter = sCull->beginVisibleList(); iter != sCull->endVisibleList(); ++iter)
{
LLDrawable* drawable = *iter;
check_references(drawable, face);
}
}
#endif
}
void LLPipeline::checkReferences(LLDrawable* drawable)
{
#if 0
if (sCull)
{
for (LLCullResult::sg_iterator iter = sCull->beginVisibleGroups(); iter != sCull->endVisibleGroups(); ++iter)
{
LLSpatialGroup* group = *iter;
check_references(group, drawable);
}
for (LLCullResult::sg_iterator iter = sCull->beginAlphaGroups(); iter != sCull->endAlphaGroups(); ++iter)
{
LLSpatialGroup* group = *iter;
check_references(group, drawable);
}
for (LLCullResult::sg_iterator iter = sCull->beginDrawableGroups(); iter != sCull->endDrawableGroups(); ++iter)
{
LLSpatialGroup* group = *iter;
check_references(group, drawable);
}
for (LLCullResult::drawable_iterator iter = sCull->beginVisibleList(); iter != sCull->endVisibleList(); ++iter)
{
if (drawable == *iter)
{
llerrs << "LLDrawable deleted while actively referenced by LLPipeline." << llendl;
}
}
}
#endif
}
void check_references(LLSpatialGroup* group, LLDrawInfo* draw_info)
{
for (LLSpatialGroup::draw_map_t::iterator i = group->mDrawMap.begin(); i != group->mDrawMap.end(); ++i)
{
LLSpatialGroup::drawmap_elem_t& draw_vec = i->second;
for (LLSpatialGroup::drawmap_elem_t::iterator j = draw_vec.begin(); j != draw_vec.end(); ++j)
{
LLDrawInfo* params = *j;
if (params == draw_info)
{
llerrs << "LLDrawInfo deleted while actively referenced by LLPipeline." << llendl;
}
}
}
}
void LLPipeline::checkReferences(LLDrawInfo* draw_info)
{
#if 0
if (sCull)
{
for (LLCullResult::sg_iterator iter = sCull->beginVisibleGroups(); iter != sCull->endVisibleGroups(); ++iter)
{
LLSpatialGroup* group = *iter;
check_references(group, draw_info);
}
for (LLCullResult::sg_iterator iter = sCull->beginAlphaGroups(); iter != sCull->endAlphaGroups(); ++iter)
{
LLSpatialGroup* group = *iter;
check_references(group, draw_info);
}
for (LLCullResult::sg_iterator iter = sCull->beginDrawableGroups(); iter != sCull->endDrawableGroups(); ++iter)
{
LLSpatialGroup* group = *iter;
check_references(group, draw_info);
}
}
#endif
}
void LLPipeline::checkReferences(LLSpatialGroup* group)
{
#if 0
if (sCull)
{
for (LLCullResult::sg_iterator iter = sCull->beginVisibleGroups(); iter != sCull->endVisibleGroups(); ++iter)
{
if (group == *iter)
{
llerrs << "LLSpatialGroup deleted while actively referenced by LLPipeline." << llendl;
}
}
for (LLCullResult::sg_iterator iter = sCull->beginAlphaGroups(); iter != sCull->endAlphaGroups(); ++iter)
{
if (group == *iter)
{
llerrs << "LLSpatialGroup deleted while actively referenced by LLPipeline." << llendl;
}
}
for (LLCullResult::sg_iterator iter = sCull->beginDrawableGroups(); iter != sCull->endDrawableGroups(); ++iter)
{
if (group == *iter)
{
llerrs << "LLSpatialGroup deleted while actively referenced by LLPipeline." << llendl;
}
}
}
#endif
}
BOOL LLPipeline::visibleObjectsInFrustum(LLCamera& camera)
{
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
if (hasRenderType(part->mDrawableType))
{
if (part->visibleObjectsInFrustum(camera))
{
return TRUE;
}
}
}
}
}
return FALSE;
}
BOOL LLPipeline::getVisibleExtents(LLCamera& camera, LLVector3& min, LLVector3& max)
{
const F32 X = 65536.f;
min = LLVector3(X,X,X);
max = LLVector3(-X,-X,-X);
U32 saved_camera_id = LLViewerCamera::sCurCameraID;
LLViewerCamera::sCurCameraID = LLViewerCamera::CAMERA_WORLD;
BOOL res = TRUE;
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
if (hasRenderType(part->mDrawableType))
{
if (!part->getVisibleExtents(camera, min, max))
{
res = FALSE;
}
}
}
}
}
LLViewerCamera::sCurCameraID = saved_camera_id;
return res;
}
static LLFastTimer::DeclareTimer FTM_CULL("Object Culling");
void LLPipeline::updateCull(LLCamera& camera, LLCullResult& result, S32 water_clip, LLPlane* planep)
{
LLFastTimer t(FTM_CULL);
grabReferences(result);
sCull->clear();
BOOL to_texture = LLPipeline::sUseOcclusion > 1 &&
!hasRenderType(LLPipeline::RENDER_TYPE_HUD) &&
LLViewerCamera::sCurCameraID == LLViewerCamera::CAMERA_WORLD &&
gPipeline.canUseVertexShaders() &&
sRenderGlow;
if (to_texture)
{
/*if (LLPipeline::sRenderDeferred)
{
mOcclusionDepth.bindTarget();
}
else*/
{
mScreen.bindTarget();
}
}
if (sUseOcclusion > 1)
{
gGL.setColorMask(false, false);
}
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.pushMatrix();
gGL.loadMatrix(gGLLastProjection.getF32ptr());
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.pushMatrix();
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLLastModelView.getF32ptr());
LLGLDisable blend(GL_BLEND);
LLGLDisable test(GL_ALPHA_TEST);
LLGLDisable stencil(GL_STENCIL_TEST);
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
//setup a clip plane in projection matrix for reflection renders (prevents flickering from occlusion culling)
LLViewerRegion* region = gAgent.getRegion();
LLPlane plane;
if (planep)
{
plane = *planep;
}
else
{
if (region)
{
LLVector3 pnorm;
F32 height = region->getWaterHeight();
if (water_clip < 0)
{ //camera is above water, clip plane points up
pnorm.setVec(0,0,1);
plane.setVec(pnorm, -height);
}
else if (water_clip > 0)
{ //camera is below water, clip plane points down
pnorm = LLVector3(0,0,-1);
plane.setVec(pnorm, height);
}
}
}
glh::matrix4f modelview = glh_get_last_modelview();
glh::matrix4f proj = glh_get_last_projection();
LLGLUserClipPlane clip(plane, modelview, proj, water_clip != 0 && LLPipeline::sReflectionRender);
LLGLDepthTest depth(GL_TRUE, GL_FALSE);
bool bound_shader = false;
if (gPipeline.canUseVertexShaders() && LLGLSLShader::sCurBoundShader == 0)
{ //if no shader is currently bound, use the occlusion shader instead of fixed function if we can
// (shadow render uses a special shader that clamps to clip planes)
bound_shader = true;
gOcclusionCubeProgram.bind();
}
if (sUseOcclusion > 1)
{
if (mCubeVB.isNull())
{ //cube VB will be used for issuing occlusion queries
mCubeVB = ll_create_cube_vb(LLVertexBuffer::MAP_VERTEX, GL_STATIC_DRAW_ARB);
}
mCubeVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
}
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
if (water_clip != 0)
{
LLPlane plane(LLVector3(0,0, (F32) -water_clip), (F32) water_clip*region->getWaterHeight());
camera.setUserClipPlane(plane);
}
else
{
camera.disableUserClipPlane();
}
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
if (hasRenderType(part->mDrawableType))
{
part->cull(camera);
}
}
}
}
if (bound_shader)
{
gOcclusionCubeProgram.unbind();
}
camera.disableUserClipPlane();
if (hasRenderType(LLPipeline::RENDER_TYPE_SKY) &&
gSky.mVOSkyp.notNull() &&
gSky.mVOSkyp->mDrawable.notNull())
{
gSky.mVOSkyp->mDrawable->setVisible(camera);
sCull->pushDrawable(gSky.mVOSkyp->mDrawable);
gSky.updateCull();
stop_glerror();
}
if (hasRenderType(LLPipeline::RENDER_TYPE_GROUND) &&
!gPipeline.canUseWindLightShaders() &&
gSky.mVOGroundp.notNull() &&
gSky.mVOGroundp->mDrawable.notNull() &&
!LLPipeline::sWaterReflections)
{
gSky.mVOGroundp->mDrawable->setVisible(camera);
sCull->pushDrawable(gSky.mVOGroundp->mDrawable);
}
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.popMatrix();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.popMatrix();
if (sUseOcclusion > 1)
{
gGL.setColorMask(true, false);
}
if (to_texture)
{
/*if (LLPipeline::sRenderDeferred)
{
mOcclusionDepth.flush();
}
else*/
{
mScreen.flush();
}
}
}
void LLPipeline::markNotCulled(LLSpatialGroup* group, LLCamera& camera)
{
if (group->isEmpty())
{
return;
}
group->setVisible();
if (LLViewerCamera::sCurCameraID == LLViewerCamera::CAMERA_WORLD)
{
group->updateDistance(camera);
}
const F32 MINIMUM_PIXEL_AREA = 16.f;
if (group->mPixelArea < MINIMUM_PIXEL_AREA)
{
return;
}
if (sMinRenderSize > 0.f &&
llmax(llmax(group->mBounds[1][0], group->mBounds[1][1]), group->mBounds[1][2]) < sMinRenderSize)
{
return;
}
assertInitialized();
if (!group->mSpatialPartition->mRenderByGroup)
{ //render by drawable
sCull->pushDrawableGroup(group);
}
else
{ //render by group
sCull->pushVisibleGroup(group);
}
mNumVisibleNodes++;
}
void LLPipeline::markOccluder(LLSpatialGroup* group)
{
if (sUseOcclusion > 1 && group && !group->isOcclusionState(LLSpatialGroup::ACTIVE_OCCLUSION))
{
LLSpatialGroup* parent = group->getParent();
if (!parent || !parent->isOcclusionState(LLSpatialGroup::OCCLUDED))
{ //only mark top most occluders as active occlusion
sCull->pushOcclusionGroup(group);
group->setOcclusionState(LLSpatialGroup::ACTIVE_OCCLUSION);
if (parent &&
!parent->isOcclusionState(LLSpatialGroup::ACTIVE_OCCLUSION) &&
parent->getElementCount() == 0 &&
parent->needsUpdate())
{
sCull->pushOcclusionGroup(group);
parent->setOcclusionState(LLSpatialGroup::ACTIVE_OCCLUSION);
}
}
}
}
void LLPipeline::downsampleDepthBuffer(LLRenderTarget& source, LLRenderTarget& dest, LLRenderTarget* scratch_space)
{
LLGLSLShader* last_shader = LLGLSLShader::sCurBoundShaderPtr;
LLGLSLShader* shader = NULL;
if (scratch_space)
{
scratch_space->copyContents(source,
0, 0, source.getWidth(), source.getHeight(),
0, 0, scratch_space->getWidth(), scratch_space->getHeight(), GL_DEPTH_BUFFER_BIT, GL_NEAREST);
}
dest.bindTarget();
dest.clear(GL_DEPTH_BUFFER_BIT);
if(mDeferredVB.isNull())
{
mDeferredVB = new LLVertexBuffer(DEFERRED_VB_MASK, 0);
mDeferredVB->allocateBuffer(8, 0, true);
LLStrider<LLVector3> vert;
mDeferredVB->getVertexStrider(vert);
vert[0].set(-1,1,0);
vert[1].set(-1,-3,0);
vert[2].set(3,1,0);
}
if (source.getUsage() == LLTexUnit::TT_RECT_TEXTURE)
{
shader = &gDownsampleDepthRectProgram;
shader->bind();
shader->uniform2f(sDelta, 1.f, 1.f);
shader->uniform2f(LLShaderMgr::DEFERRED_SCREEN_RES, source.getWidth(), source.getHeight());
}
else
{
shader = &gDownsampleDepthProgram;
shader->bind();
shader->uniform2f(sDelta, 1.f/source.getWidth(), 1.f/source.getHeight());
shader->uniform2f(LLShaderMgr::DEFERRED_SCREEN_RES, 1.f, 1.f);
}
gGL.getTexUnit(0)->bind(scratch_space ? scratch_space : &source, TRUE);
{
LLGLDepthTest depth(GL_TRUE, GL_TRUE, GL_ALWAYS);
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
}
dest.flush();
if (last_shader)
{
last_shader->bind();
}
else
{
shader->unbind();
}
}
void LLPipeline::doOcclusion(LLCamera& camera, LLRenderTarget& source, LLRenderTarget& dest, LLRenderTarget* scratch_space)
{
downsampleDepthBuffer(source, dest, scratch_space);
dest.bindTarget();
doOcclusion(camera);
dest.flush();
}
void LLPipeline::doOcclusion(LLCamera& camera)
{
if (LLGLSLShader::sNoFixedFunction && LLPipeline::sUseOcclusion > 1 && sCull->hasOcclusionGroups())
{
LLVertexBuffer::unbind();
if (hasRenderDebugMask(LLPipeline::RENDER_DEBUG_OCCLUSION))
{
gGL.setColorMask(true, false, false, false);
}
else
{
gGL.setColorMask(false, false);
}
LLGLDisable blend(GL_BLEND);
LLGLDisable test(GL_ALPHA_TEST);
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
LLGLDepthTest depth(GL_TRUE, GL_FALSE);
LLGLDisable cull(GL_CULL_FACE);
bool bind_shader = LLGLSLShader::sNoFixedFunction && LLGLSLShader::sCurBoundShader == 0;
if (bind_shader)
{
if (LLPipeline::sShadowRender)
{
gDeferredShadowCubeProgram.bind();
}
else
{
gOcclusionCubeProgram.bind();
}
}
if (mCubeVB.isNull())
{ //cube VB will be used for issuing occlusion queries
mCubeVB = ll_create_cube_vb(LLVertexBuffer::MAP_VERTEX, GL_STATIC_DRAW_ARB);
}
mCubeVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
for (LLCullResult::sg_iterator iter = sCull->beginOcclusionGroups(); iter != sCull->endOcclusionGroups(); ++iter)
{
LLSpatialGroup* group = *iter;
group->doOcclusion(&camera);
group->clearOcclusionState(LLSpatialGroup::ACTIVE_OCCLUSION);
}
if (bind_shader)
{
if (LLPipeline::sShadowRender)
{
gDeferredShadowCubeProgram.unbind();
}
else
{
gOcclusionCubeProgram.unbind();
}
}
gGL.setColorMask(true, false);
}
}
BOOL LLPipeline::updateDrawableGeom(LLDrawable* drawablep, BOOL priority)
{
BOOL update_complete = drawablep->updateGeometry(priority);
if (update_complete && assertInitialized())
{
drawablep->setState(LLDrawable::BUILT);
mGeometryChanges++;
}
return update_complete;
}
static LLFastTimer::DeclareTimer FTM_SEED_VBO_POOLS("Seed VBO Pool");
static LLFastTimer::DeclareTimer FTM_UPDATE_GL("Update GL");
void LLPipeline::updateGL()
{
{
LLFastTimer t(FTM_UPDATE_GL);
while (!LLGLUpdate::sGLQ.empty())
{
LLGLUpdate* glu = LLGLUpdate::sGLQ.front();
glu->updateGL();
glu->mInQ = FALSE;
LLGLUpdate::sGLQ.pop_front();
}
}
{ //seed VBO Pools
LLFastTimer t(FTM_SEED_VBO_POOLS);
LLVertexBuffer::seedPools();
}
}
void LLPipeline::clearRebuildGroups()
{
LLSpatialGroup::sg_vector_t hudGroups;
mGroupQ1Locked = true;
// Iterate through all drawables on the priority build queue,
for (LLSpatialGroup::sg_vector_t::iterator iter = mGroupQ1.begin();
iter != mGroupQ1.end(); ++iter)
{
LLSpatialGroup* group = *iter;
// If the group contains HUD objects, save the group
if (group->isHUDGroup())
{
hudGroups.push_back(group);
}
// Else, no HUD objects so clear the build state
else
{
group->clearState(LLSpatialGroup::IN_BUILD_Q1);
}
}
// Clear the group
//mGroupQ1.clear(); //Assign already clears...
// Copy the saved HUD groups back in
mGroupQ1.assign(hudGroups.begin(), hudGroups.end());
mGroupQ1Locked = false;
// Clear the HUD groups
hudGroups.clear();
mGroupQ2Locked = true;
for (LLSpatialGroup::sg_vector_t::iterator iter = mGroupQ2.begin();
iter != mGroupQ2.end(); ++iter)
{
LLSpatialGroup* group = *iter;
// If the group contains HUD objects, save the group
if (group->isHUDGroup())
{
hudGroups.push_back(group);
}
// Else, no HUD objects so clear the build state
else
{
group->clearState(LLSpatialGroup::IN_BUILD_Q2);
}
}
// Clear the group
//mGroupQ2.clear(); //Assign already clears...
// Copy the saved HUD groups back in
mGroupQ2.assign(hudGroups.begin(), hudGroups.end());
mGroupQ2Locked = false;
}
static LLFastTimer::DeclareTimer FTM_REBUILD_PRIORITY_GROUPS("Rebuild Priority Groups");
void LLPipeline::rebuildPriorityGroups()
{
LLFastTimer t(FTM_REBUILD_PRIORITY_GROUPS);
LLTimer update_timer;
assertInitialized();
gMeshRepo.notifyLoadedMeshes();
mGroupQ1Locked = true;
// Iterate through all drawables on the priority build queue,
for (LLSpatialGroup::sg_vector_t::iterator iter = mGroupQ1.begin();
iter != mGroupQ1.end(); ++iter)
{
LLSpatialGroup* group = *iter;
group->rebuildGeom();
group->clearState(LLSpatialGroup::IN_BUILD_Q1);
}
mGroupSaveQ1 = mGroupQ1;
mGroupQ1.clear();
mGroupQ1Locked = false;
}
static LLFastTimer::DeclareTimer FTM_REBUILD_GROUPS("Rebuild Groups");
void LLPipeline::rebuildGroups()
{
if (mGroupQ2.empty())
{
return;
}
LLFastTimer t(FTM_REBUILD_GROUPS);
mGroupQ2Locked = true;
// Iterate through some drawables on the non-priority build queue
S32 size = (S32) mGroupQ2.size();
S32 min_count = llclamp((S32) ((F32) (size * size)/4096*0.25f), 1, size);
S32 count = 0;
std::sort(mGroupQ2.begin(), mGroupQ2.end(), LLSpatialGroup::CompareUpdateUrgency());
LLSpatialGroup::sg_vector_t::iterator iter;
LLSpatialGroup::sg_vector_t::iterator last_iter = mGroupQ2.begin();
for (iter = mGroupQ2.begin();
iter != mGroupQ2.end() && count <= min_count; ++iter)
{
LLSpatialGroup* group = *iter;
last_iter = iter;
if (!group->isDead())
{
group->rebuildGeom();
if (group->mSpatialPartition->mRenderByGroup)
{
count++;
}
}
group->clearState(LLSpatialGroup::IN_BUILD_Q2);
}
mGroupQ2.erase(mGroupQ2.begin(), ++last_iter);
mGroupQ2Locked = false;
updateMovedList(mMovedBridge);
}
void LLPipeline::updateGeom(F32 max_dtime)
{
LLTimer update_timer;
LLPointer<LLDrawable> drawablep;
LLFastTimer t(FTM_GEO_UPDATE);
assertInitialized();
if (sDelayedVBOEnable > 0)
{
if (--sDelayedVBOEnable <= 0)
{
resetVertexBuffers();
LLVertexBuffer::sEnableVBOs = TRUE;
}
}
// notify various object types to reset internal cost metrics, etc.
// for now, only LLVOVolume does this to throttle LOD changes
LLVOVolume::preUpdateGeom();
// Iterate through all drawables on the priority build queue,
for (LLDrawable::drawable_list_t::iterator iter = mBuildQ1.begin();
iter != mBuildQ1.end();)
{
LLDrawable::drawable_list_t::iterator curiter = iter++;
LLDrawable* drawablep = *curiter;
if (drawablep && !drawablep->isDead())
{
if (drawablep->isState(LLDrawable::IN_REBUILD_Q2))
{
drawablep->clearState(LLDrawable::IN_REBUILD_Q2);
LLDrawable::drawable_list_t::iterator find = std::find(mBuildQ2.begin(), mBuildQ2.end(), drawablep);
if (find != mBuildQ2.end())
{
mBuildQ2.erase(find);
}
}
if (updateDrawableGeom(drawablep, TRUE))
{
drawablep->clearState(LLDrawable::IN_REBUILD_Q1);
mBuildQ1.erase(curiter);
}
}
else
{
mBuildQ1.erase(curiter);
}
}
// Iterate through some drawables on the non-priority build queue
S32 min_count = 16;
S32 size = (S32) mBuildQ2.size();
if (size > 1024)
{
min_count = llclamp((S32) (size * (F32) size/4096), 16, size);
}
S32 count = 0;
max_dtime = llmax(update_timer.getElapsedTimeF32()+0.001f, max_dtime);
LLSpatialGroup* last_group = NULL;
LLSpatialBridge* last_bridge = NULL;
for (LLDrawable::drawable_list_t::iterator iter = mBuildQ2.begin();
iter != mBuildQ2.end(); )
{
LLDrawable::drawable_list_t::iterator curiter = iter++;
LLDrawable* drawablep = *curiter;
LLSpatialBridge* bridge = drawablep->isRoot() ? drawablep->getSpatialBridge() :
drawablep->getParent()->getSpatialBridge();
if (drawablep->getSpatialGroup() != last_group &&
(!last_bridge || bridge != last_bridge) &&
(update_timer.getElapsedTimeF32() >= max_dtime) && count > min_count)
{
break;
}
//make sure updates don't stop in the middle of a spatial group
//to avoid thrashing (objects are enqueued by group)
last_group = drawablep->getSpatialGroup();
last_bridge = bridge;
BOOL update_complete = TRUE;
if (!drawablep->isDead())
{
update_complete = updateDrawableGeom(drawablep, FALSE);
count++;
}
if (update_complete)
{
drawablep->clearState(LLDrawable::IN_REBUILD_Q2);
mBuildQ2.erase(curiter);
}
}
updateMovedList(mMovedBridge);
}
void LLPipeline::markVisible(LLDrawable *drawablep, LLCamera& camera)
{
if(drawablep && !drawablep->isDead())
{
if (drawablep->isSpatialBridge())
{
const LLDrawable* root = ((LLSpatialBridge*) drawablep)->mDrawable;
llassert(root); // trying to catch a bad assumption
if (root && // // this test may not be needed, see above
root->getVObj()->isAttachment())
{
LLDrawable* rootparent = root->getParent();
static const LLCachedControl<bool> draw_orphans("ShyotlDrawOrphanAttachments",false);
if (rootparent) // this IS sometimes NULL
{
LLViewerObject *vobj = rootparent->getVObj();
llassert(vobj); // trying to catch a bad assumption
if (vobj) // this test may not be needed, see above
{
const LLVOAvatar* av = vobj->asAvatar();
if (av && av->isImpostor() )
{
return;
}
else if(!draw_orphans && (!av || av->isDead()))
return;
}
}
else if(!draw_orphans)
return;
}
sCull->pushBridge((LLSpatialBridge*) drawablep);
}
else
{
sCull->pushDrawable(drawablep);
}
drawablep->setVisible(camera);
}
}
void LLPipeline::markMoved(LLDrawable *drawablep, BOOL damped_motion)
{
if (!drawablep)
{
//llerrs << "Sending null drawable to moved list!" << llendl;
return;
}
if (drawablep->isDead())
{
llwarns << "Marking NULL or dead drawable moved!" << llendl;
return;
}
if (drawablep->getParent())
{
//ensure that parent drawables are moved first
markMoved(drawablep->getParent(), damped_motion);
}
assertInitialized();
if (!drawablep->isState(LLDrawable::ON_MOVE_LIST))
{
if (drawablep->isSpatialBridge())
{
mMovedBridge.push_back(drawablep);
}
else
{
mMovedList.push_back(drawablep);
}
drawablep->setState(LLDrawable::ON_MOVE_LIST);
}
if (damped_motion == FALSE)
{
drawablep->setState(LLDrawable::MOVE_UNDAMPED); // UNDAMPED trumps DAMPED
}
else if (drawablep->isState(LLDrawable::MOVE_UNDAMPED))
{
drawablep->clearState(LLDrawable::MOVE_UNDAMPED);
}
}
void LLPipeline::markShift(LLDrawable *drawablep)
{
if (!drawablep || drawablep->isDead())
{
return;
}
assertInitialized();
if (!drawablep->isState(LLDrawable::ON_SHIFT_LIST))
{
drawablep->getVObj()->setChanged(LLXform::SHIFTED | LLXform::SILHOUETTE);
if (drawablep->getParent())
{
markShift(drawablep->getParent());
}
mShiftList.push_back(drawablep);
drawablep->setState(LLDrawable::ON_SHIFT_LIST);
}
}
static LLFastTimer::DeclareTimer FTM_SHIFT_DRAWABLE("Shift Drawable");
static LLFastTimer::DeclareTimer FTM_SHIFT_OCTREE("Shift Octree");
static LLFastTimer::DeclareTimer FTM_SHIFT_HUD("Shift HUD");
void LLPipeline::shiftObjects(const LLVector3 &offset)
{
assertInitialized();
glClear(GL_DEPTH_BUFFER_BIT);
gDepthDirty = TRUE;
LLVector4a offseta;
offseta.load3(offset.mV);
{
LLFastTimer t(FTM_SHIFT_DRAWABLE);
for (LLDrawable::drawable_vector_t::iterator iter = mShiftList.begin();
iter != mShiftList.end(); iter++)
{
LLDrawable *drawablep = *iter;
if (drawablep->isDead())
{
continue;
}
drawablep->shiftPos(offseta);
drawablep->clearState(LLDrawable::ON_SHIFT_LIST);
}
mShiftList.resize(0);
}
{
LLFastTimer t(FTM_SHIFT_OCTREE);
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
part->shift(offseta);
}
}
}
}
{
LLFastTimer t(FTM_SHIFT_HUD);
LLHUDText::shiftAll(offset);
LLHUDNameTag::shiftAll(offset);
}
display_update_camera();
}
void LLPipeline::markTextured(LLDrawable *drawablep)
{
if (drawablep && !drawablep->isDead() && assertInitialized())
{
mRetexturedList.insert(drawablep);
}
}
void LLPipeline::markGLRebuild(LLGLUpdate* glu)
{
if (glu && !glu->mInQ)
{
LLGLUpdate::sGLQ.push_back(glu);
glu->mInQ = TRUE;
}
}
void LLPipeline::markPartitionMove(LLDrawable* drawable)
{
if (!drawable->isState(LLDrawable::PARTITION_MOVE) &&
!drawable->getPositionGroup().equals3(LLVector4a::getZero()))
{
drawable->setState(LLDrawable::PARTITION_MOVE);
mPartitionQ.push_back(drawable);
}
}
static LLFastTimer::DeclareTimer FTM_PROCESS_PARTITIONQ("PartitionQ");
void LLPipeline::processPartitionQ()
{
LLFastTimer t(FTM_PROCESS_PARTITIONQ);
for (LLDrawable::drawable_list_t::iterator iter = mPartitionQ.begin(); iter != mPartitionQ.end(); ++iter)
{
LLDrawable* drawable = *iter;
if (!drawable->isDead())
{
drawable->updateBinRadius();
drawable->movePartition();
}
drawable->clearState(LLDrawable::PARTITION_MOVE);
}
mPartitionQ.clear();
}
void LLPipeline::markMeshDirty(LLSpatialGroup* group)
{
mMeshDirtyGroup.push_back(group);
}
void LLPipeline::markRebuild(LLSpatialGroup* group, BOOL priority)
{
if (group && !group->isDead() && group->mSpatialPartition)
{
if (group->mSpatialPartition->mPartitionType == LLViewerRegion::PARTITION_HUD)
{
priority = TRUE;
}
if (priority)
{
if (!group->isState(LLSpatialGroup::IN_BUILD_Q1))
{
llassert_always(!mGroupQ1Locked);
mGroupQ1.push_back(group);
group->setState(LLSpatialGroup::IN_BUILD_Q1);
if (group->isState(LLSpatialGroup::IN_BUILD_Q2))
{
LLSpatialGroup::sg_vector_t::iterator iter = std::find(mGroupQ2.begin(), mGroupQ2.end(), group);
if (iter != mGroupQ2.end())
{
mGroupQ2.erase(iter);
}
group->clearState(LLSpatialGroup::IN_BUILD_Q2);
}
}
}
else if (!group->isState(LLSpatialGroup::IN_BUILD_Q2 | LLSpatialGroup::IN_BUILD_Q1))
{
llassert_always(!mGroupQ2Locked);
//llerrs << "Non-priority updates not yet supported!" << llendl;
/*if (std::find(mGroupQ2.begin(), mGroupQ2.end(), group) != mGroupQ2.end())
{
llerrs << "WTF?" << llendl;
}*/
mGroupQ2.push_back(group);
group->setState(LLSpatialGroup::IN_BUILD_Q2);
}
}
}
void LLPipeline::markRebuild(LLDrawable *drawablep, LLDrawable::EDrawableFlags flag, BOOL priority)
{
if (drawablep && !drawablep->isDead() && assertInitialized())
{
if (!drawablep->isState(LLDrawable::BUILT))
{
priority = TRUE;
}
if (priority)
{
if (!drawablep->isState(LLDrawable::IN_REBUILD_Q1))
{
mBuildQ1.push_back(drawablep);
drawablep->setState(LLDrawable::IN_REBUILD_Q1); // mark drawable as being in priority queue
}
}
else if (!drawablep->isState(LLDrawable::IN_REBUILD_Q2))
{
mBuildQ2.push_back(drawablep);
drawablep->setState(LLDrawable::IN_REBUILD_Q2); // need flag here because it is just a list
}
if (flag & (LLDrawable::REBUILD_VOLUME | LLDrawable::REBUILD_POSITION))
{
drawablep->getVObj()->setChanged(LLXform::SILHOUETTE);
}
drawablep->setState(flag);
}
}
static LLFastTimer::DeclareTimer FTM_RESET_DRAWORDER("Reset Draw Order");
void LLPipeline::stateSort(LLCamera& camera, LLCullResult &result)
{
if (hasAnyRenderType(LLPipeline::RENDER_TYPE_AVATAR,
LLPipeline::RENDER_TYPE_GROUND,
LLPipeline::RENDER_TYPE_TERRAIN,
LLPipeline::RENDER_TYPE_TREE,
LLPipeline::RENDER_TYPE_SKY,
LLPipeline::RENDER_TYPE_VOIDWATER,
LLPipeline::RENDER_TYPE_WATER,
LLPipeline::END_RENDER_TYPES))
{
//clear faces from face pools
LLFastTimer t(FTM_RESET_DRAWORDER);
gPipeline.resetDrawOrders();
}
LLFastTimer ftm(FTM_STATESORT);
//LLVertexBuffer::unbind();
grabReferences(result);
for (LLCullResult::sg_iterator iter = sCull->beginDrawableGroups(); iter != sCull->endDrawableGroups(); ++iter)
{
LLSpatialGroup* group = *iter;
group->checkOcclusion();
if (sUseOcclusion > 1 && group->isOcclusionState(LLSpatialGroup::OCCLUDED))
{
markOccluder(group);
}
else
{
group->setVisible();
OctreeGuard guard(group->mOctreeNode);
for (LLSpatialGroup::element_iter i = group->getDataBegin(); i != group->getDataEnd(); ++i)
{
markVisible(*i, camera);
}
if (!sDelayVBUpdate)
{ //rebuild mesh as soon as we know it's visible
group->rebuildMesh();
}
}
}
if (LLViewerCamera::sCurCameraID == LLViewerCamera::CAMERA_WORLD)
{
LLSpatialGroup* last_group = NULL;
for (LLCullResult::bridge_iterator i = sCull->beginVisibleBridge(); i != sCull->endVisibleBridge(); ++i)
{
LLCullResult::bridge_iterator cur_iter = i;
LLSpatialBridge* bridge = *cur_iter;
LLSpatialGroup* group = bridge->getSpatialGroup();
if (last_group == NULL)
{
last_group = group;
}
if (!bridge->isDead() && group && !group->isOcclusionState(LLSpatialGroup::OCCLUDED))
{
stateSort(bridge, camera);
}
if (LLViewerCamera::sCurCameraID == LLViewerCamera::CAMERA_WORLD &&
last_group != group && last_group->changeLOD())
{
last_group->mLastUpdateDistance = last_group->mDistance;
}
last_group = group;
}
if (LLViewerCamera::sCurCameraID == LLViewerCamera::CAMERA_WORLD &&
last_group && last_group->changeLOD())
{
last_group->mLastUpdateDistance = last_group->mDistance;
}
}
for (LLCullResult::sg_iterator iter = sCull->beginVisibleGroups(); iter != sCull->endVisibleGroups(); ++iter)
{
LLSpatialGroup* group = *iter;
group->checkOcclusion();
if (sUseOcclusion > 1 && group->isOcclusionState(LLSpatialGroup::OCCLUDED))
{
markOccluder(group);
}
else
{
group->setVisible();
stateSort(group, camera);
if (!sDelayVBUpdate)
{ //rebuild mesh as soon as we know it's visible
group->rebuildMesh();
}
}
}
{
LLFastTimer ftm(FTM_STATESORT_DRAWABLE);
for (LLCullResult::drawable_iterator iter = sCull->beginVisibleList();
iter != sCull->endVisibleList(); ++iter)
{
LLDrawable *drawablep = *iter;
if (!drawablep->isDead())
{
stateSort(drawablep, camera);
}
}
}
postSort(camera);
}
void LLPipeline::stateSort(LLSpatialGroup* group, LLCamera& camera)
{
if (!sSkipUpdate && group->changeLOD())
{
OctreeGuard guard(group->mOctreeNode);
for (LLSpatialGroup::element_iter i = group->getDataBegin(); i != group->getDataEnd(); ++i)
{
LLDrawable* drawablep = *i;
stateSort(drawablep, camera);
}
if (LLViewerCamera::sCurCameraID == LLViewerCamera::CAMERA_WORLD)
{ //avoid redundant stateSort calls
group->mLastUpdateDistance = group->mDistance;
}
}
}
void LLPipeline::stateSort(LLSpatialBridge* bridge, LLCamera& camera)
{
if (/*!sShadowRender && */!sSkipUpdate && bridge->getSpatialGroup()->changeLOD())
{
bool force_update = false;
bridge->updateDistance(camera, force_update);
}
}
void LLPipeline::stateSort(LLDrawable* drawablep, LLCamera& camera)
{
if (!drawablep
|| drawablep->isDead()
|| !hasRenderType(drawablep->getRenderType()))
{
return;
}
if (LLSelectMgr::getInstance()->mHideSelectedObjects)
{
// if (drawablep->getVObj().notNull() &&
// drawablep->getVObj()->isSelected())
// [RLVa:KB] - Checked: 2010-09-28 (RLVa-1.2.1f) | Modified: RLVa-1.2.1f
const LLViewerObject* pObj = drawablep->getVObj();
if ( (pObj) && (pObj->isSelected()) &&
( (!rlv_handler_t::isEnabled()) ||
( ((!pObj->isHUDAttachment()) || (!gRlvAttachmentLocks.isLockedAttachment(pObj->getRootEdit()))) &&
(gRlvHandler.canEdit(pObj)) ) ) )
// [/RLVa:KB]
{
return;
}
}
if (drawablep->isAvatar())
{ //don't draw avatars beyond render distance or if we don't have a spatial group.
if ((drawablep->getSpatialGroup() == NULL) ||
(drawablep->getSpatialGroup()->mDistance > LLVOAvatar::sRenderDistance))
{
return;
}
LLVOAvatar* avatarp = (LLVOAvatar*) drawablep->getVObj().get();
if (!avatarp->isVisible())
{
return;
}
}
assertInitialized();
if (hasRenderType(drawablep->mRenderType))
{
if (!drawablep->isState(LLDrawable::INVISIBLE|LLDrawable::FORCE_INVISIBLE))
{
drawablep->setVisible(camera, NULL, FALSE);
}
}
if (LLViewerCamera::sCurCameraID == LLViewerCamera::CAMERA_WORLD)
{
//llassert_always(drawablep->isVisible());
/*LLSpatialGroup* group = drawablep->getSpatialGroup();
if (!group || group->changeLOD())
{
if (drawablep->isVisible() && !sSkipUpdate)*/
if(!sSkipUpdate)
{
if (!drawablep->isActive())
{
bool force_update = false;
drawablep->updateDistance(camera, force_update);
}
else if (drawablep->isAvatar())
{
bool force_update = false;
drawablep->updateDistance(camera, force_update); // calls vobj->updateLOD() which calls LLVOAvatar::updateVisibility()
}
}
//}
}
if(!drawablep->getVOVolume())
{
for (LLDrawable::face_list_t::iterator iter = drawablep->mFaces.begin();
iter != drawablep->mFaces.end(); iter++)
{
LLFace* facep = *iter;
if (facep->hasGeometry())
{
if (facep->getPool())
{
facep->getPool()->enqueue(facep);
}
else
{
break;
}
}
}
}
mNumVisibleFaces += drawablep->getNumFaces();
}
void forAllDrawables(LLCullResult::sg_iterator begin,
LLCullResult::sg_iterator end,
void (*func)(LLDrawable*))
{
for (LLCullResult::sg_iterator i = begin; i != end; ++i)
{
OctreeGuard guard((*i)->mOctreeNode);
for (LLSpatialGroup::element_iter j = (*i)->getDataBegin(); j != (*i)->getDataEnd(); ++j)
{
func(*j);
}
}
}
void LLPipeline::forAllVisibleDrawables(void (*func)(LLDrawable*))
{
forAllDrawables(sCull->beginDrawableGroups(), sCull->endDrawableGroups(), func);
forAllDrawables(sCull->beginVisibleGroups(), sCull->endVisibleGroups(), func);
}
//function for creating scripted beacons
void renderScriptedBeacons(LLDrawable* drawablep)
{
LLViewerObject *vobj = drawablep->getVObj();
if (vobj
&& !vobj->isAvatar()
&& !vobj->getParent()
&& vobj->flagScripted())
{
if (gPipeline.sRenderBeacons)
{
static const LLCachedControl<S32> debug_beacon_line_width("DebugBeaconLineWidth",1);
gObjectList.addDebugBeacon(vobj->getPositionAgent(), "", LLColor4(1.f, 0.f, 0.f, 0.5f), LLColor4(1.f, 1.f, 1.f, 0.5f), debug_beacon_line_width);
}
if (gPipeline.sRenderHighlight)
{
S32 face_id;
S32 count = drawablep->getNumFaces();
for (face_id = 0; face_id < count; face_id++)
{
LLFace * facep = drawablep->getFace(face_id);
if (facep)
{
gPipeline.mHighlightFaces.push_back(facep);
}
}
}
}
}
void renderScriptedTouchBeacons(LLDrawable* drawablep)
{
LLViewerObject *vobj = drawablep->getVObj();
if (vobj
&& !vobj->isAvatar()
&& !vobj->getParent()
&& vobj->flagScripted()
&& vobj->flagHandleTouch())
{
if (gPipeline.sRenderBeacons)
{
static const LLCachedControl<S32> debug_beacon_line_width("DebugBeaconLineWidth",1);
gObjectList.addDebugBeacon(vobj->getPositionAgent(), "", LLColor4(1.f, 0.f, 0.f, 0.5f), LLColor4(1.f, 1.f, 1.f, 0.5f), debug_beacon_line_width);
}
if (gPipeline.sRenderHighlight)
{
S32 face_id;
S32 count = drawablep->getNumFaces();
for (face_id = 0; face_id < count; face_id++)
{
LLFace * facep = drawablep->getFace(face_id);
if (facep)
{
gPipeline.mHighlightFaces.push_back(facep);
}
}
}
}
}
void renderPhysicalBeacons(LLDrawable* drawablep)
{
LLViewerObject *vobj = drawablep->getVObj();
if (vobj
&& !vobj->isAvatar()
//&& !vobj->getParent()
&& vobj->flagUsePhysics())
{
if (gPipeline.sRenderBeacons)
{
static const LLCachedControl<S32> DebugBeaconLineWidth("DebugBeaconLineWidth",1);
gObjectList.addDebugBeacon(vobj->getPositionAgent(), "", LLColor4(0.f, 1.f, 0.f, 0.5f), LLColor4(1.f, 1.f, 1.f, 0.5f), DebugBeaconLineWidth);
}
if (gPipeline.sRenderHighlight)
{
S32 face_id;
S32 count = drawablep->getNumFaces();
for (face_id = 0; face_id < count; face_id++)
{
LLFace * facep = drawablep->getFace(face_id);
if (facep)
{
gPipeline.mHighlightFaces.push_back(facep);
}
}
}
}
}
void renderMOAPBeacons(LLDrawable* drawablep)
{
LLViewerObject *vobj = drawablep->getVObj();
if(!vobj || vobj->isAvatar())
return;
BOOL beacon=FALSE;
U8 tecount=vobj->getNumTEs();
for(int x=0;x<tecount;x++)
{
if(vobj->getTE(x)->hasMedia())
{
beacon=TRUE;
break;
}
}
if(beacon==TRUE)
{
if (gPipeline.sRenderBeacons)
{
static const LLCachedControl<S32> DebugBeaconLineWidth("DebugBeaconLineWidth",1);
gObjectList.addDebugBeacon(vobj->getPositionAgent(), "", LLColor4(1.f, 1.f, 1.f, 0.5f), LLColor4(1.f, 1.f, 1.f, 0.5f), DebugBeaconLineWidth);
}
if (gPipeline.sRenderHighlight)
{
S32 face_id;
S32 count = drawablep->getNumFaces();
for (face_id = 0; face_id < count; face_id++)
{
LLFace * facep = drawablep->getFace(face_id);
if (facep)
{
gPipeline.mHighlightFaces.push_back(facep);
}
}
}
}
}
void renderParticleBeacons(LLDrawable* drawablep)
{
// Look for attachments, objects, etc.
LLViewerObject *vobj = drawablep->getVObj();
if (vobj
&& vobj->isParticleSource())
{
if (gPipeline.sRenderBeacons)
{
LLColor4 light_blue(0.5f, 0.5f, 1.f, 0.5f);
static const LLCachedControl<S32> DebugBeaconLineWidth("DebugBeaconLineWidth",1);
gObjectList.addDebugBeacon(vobj->getPositionAgent(), "", light_blue, LLColor4(1.f, 1.f, 1.f, 0.5f), DebugBeaconLineWidth);
}
if (gPipeline.sRenderHighlight)
{
S32 face_id;
S32 count = drawablep->getNumFaces();
for (face_id = 0; face_id < count; face_id++)
{
LLFace * facep = drawablep->getFace(face_id);
if (facep)
{
gPipeline.mHighlightFaces.push_back(facep);
}
}
}
}
}
void renderSoundHighlights(LLDrawable* drawablep)
{
// Look for attachments, objects, etc.
LLViewerObject *vobj = drawablep->getVObj();
if (vobj && vobj->isAudioSource())
{
if (gPipeline.sRenderHighlight)
{
S32 face_id;
S32 count = drawablep->getNumFaces();
for (face_id = 0; face_id < count; face_id++)
{
LLFace * facep = drawablep->getFace(face_id);
if (facep)
{
gPipeline.mHighlightFaces.push_back(facep);
}
}
}
}
}
void updateParticleActivity(LLDrawable *drawablep);
void LLPipeline::postSort(LLCamera& camera)
{
LLFastTimer ftm(FTM_STATESORT_POSTSORT);
assertInitialized();
llpushcallstacks ;
//rebuild drawable geometry
for (LLCullResult::sg_iterator i = sCull->beginDrawableGroups(); i != sCull->endDrawableGroups(); ++i)
{
LLSpatialGroup* group = *i;
if (!sUseOcclusion ||
!group->isOcclusionState(LLSpatialGroup::OCCLUDED))
{
group->rebuildGeom();
}
}
llpushcallstacks ;
//rebuild groups
sCull->assertDrawMapsEmpty();
rebuildPriorityGroups();
llpushcallstacks ;
//build render map
for (LLCullResult::sg_iterator i = sCull->beginVisibleGroups(); i != sCull->endVisibleGroups(); ++i)
{
LLSpatialGroup* group = *i;
static LLCachedControl<F32> RenderAutoHideSurfaceAreaLimit("RenderAutoHideSurfaceAreaLimit", 0.f);
if (sUseOcclusion &&
group->isOcclusionState(LLSpatialGroup::OCCLUDED) ||
(RenderAutoHideSurfaceAreaLimit > 0.f &&
group->mSurfaceArea > RenderAutoHideSurfaceAreaLimit*llmax(group->mObjectBoxSize, 10.f)))
{
continue;
}
if (group->isState(LLSpatialGroup::NEW_DRAWINFO) && group->isState(LLSpatialGroup::GEOM_DIRTY))
{ //no way this group is going to be drawable without a rebuild
group->rebuildGeom();
}
for (LLSpatialGroup::draw_map_t::iterator j = group->mDrawMap.begin(); j != group->mDrawMap.end(); ++j)
{
LLSpatialGroup::drawmap_elem_t& src_vec = j->second;
if (!hasRenderType(j->first))
{
continue;
}
for (LLSpatialGroup::drawmap_elem_t::iterator k = src_vec.begin(); k != src_vec.end(); ++k)
{
if (sMinRenderSize > 0.f)
{
LLVector4a bounds;
bounds.setSub((*k)->mExtents[1],(*k)->mExtents[0]);
if (llmax(llmax(bounds[0], bounds[1]), bounds[2]) > sMinRenderSize)
{
sCull->pushDrawInfo(j->first, *k);
}
}
else
{
sCull->pushDrawInfo(j->first, *k);
}
}
}
if (hasRenderType(LLPipeline::RENDER_TYPE_PASS_ALPHA))
{
LLSpatialGroup::draw_map_t::iterator alpha = group->mDrawMap.find(LLRenderPass::PASS_ALPHA);
if (alpha != group->mDrawMap.end())
{ //store alpha groups for sorting
LLSpatialBridge* bridge = group->mSpatialPartition->asBridge();
if (LLViewerCamera::sCurCameraID == LLViewerCamera::CAMERA_WORLD)
{
if (bridge)
{
LLCamera trans_camera = bridge->transformCamera(camera);
group->updateDistance(trans_camera);
}
else
{
group->updateDistance(camera);
}
}
if (hasRenderType(LLDrawPool::POOL_ALPHA))
{
sCull->pushAlphaGroup(group);
}
}
}
}
//flush particle VB
LLVOPartGroup::sVB->flush();
/*bool use_transform_feedback = gTransformPositionProgram.mProgramObject && !mMeshDirtyGroup.empty();
if (use_transform_feedback)
{ //place a query around potential transform feedback code for synchronization
mTransformFeedbackPrimitives = 0;
if (!mMeshDirtyQueryObject)
{
glGenQueriesARB(1, &mMeshDirtyQueryObject);
}
glBeginQueryARB(GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, mMeshDirtyQueryObject);
}*/
//pack vertex buffers for groups that chose to delay their updates
for (LLSpatialGroup::sg_vector_t::iterator iter = mMeshDirtyGroup.begin(); iter != mMeshDirtyGroup.end(); ++iter)
{
(*iter)->rebuildMesh();
}
/*if (use_transform_feedback)
}*/
mMeshDirtyGroup.clear();
if (!sShadowRender)
{
std::sort(sCull->beginAlphaGroups(), sCull->endAlphaGroups(), LLSpatialGroup::CompareDepthGreater());
}
llpushcallstacks ;
forAllVisibleDrawables(updateParticleActivity); //for llfloateravatarlist
// only render if the flag is set. The flag is only set if we are in edit mode or the toggle is set in the menus
static const LLCachedControl<bool> beacons_visible("BeaconsVisible", false);
if (beacons_visible && !sShadowRender)
{
if (sRenderScriptedTouchBeacons)
{
// Only show the beacon on the root object.
forAllVisibleDrawables(renderScriptedTouchBeacons);
}
else
if (sRenderScriptedBeacons)
{
// Only show the beacon on the root object.
forAllVisibleDrawables(renderScriptedBeacons);
}
if (sRenderPhysicalBeacons)
{
// Only show the beacon on the root object.
forAllVisibleDrawables(renderPhysicalBeacons);
}
if(sRenderMOAPBeacons)
{
forAllVisibleDrawables(renderMOAPBeacons);
}
if (sRenderParticleBeacons)
{
forAllVisibleDrawables(renderParticleBeacons);
}
// If god mode, also show audio cues
if (sRenderSoundBeacons && gAudiop)
{
// Walk all sound sources and render out beacons for them. Note, this isn't done in the ForAllVisibleDrawables function, because some are not visible.
LLAudioEngine::source_map::iterator iter;
for (iter = gAudiop->mAllSources.begin(); iter != gAudiop->mAllSources.end(); ++iter)
{
LLAudioSource *sourcep = iter->second;
LLVector3d pos_global = sourcep->getPositionGlobal();
LLVector3 pos = gAgent.getPosAgentFromGlobal(pos_global);
if (gPipeline.sRenderBeacons)
{
//<NewShinyStuff>
LLAudioChannel* channel = sourcep->getChannel();
bool const is_playing = channel && channel->isPlaying();
S32 width = 2;
LLColor4 color = LLColor4(0.f, 0.f, 1.f, 0.5f); // Blue: Not playing and not muted.
if (is_playing)
{
static const LLCachedControl<S32> debug_beacon_line_width("DebugBeaconLineWidth",1);
llassert(!sourcep->isMuted());
F32 gain = sourcep->getGain() * channel->getSecondaryGain();
if (gain == 0.f)
{
color = LLColor4(1.f, 0.f, 0.f, 0.5f); // Red: Playing with gain == 0. This sucks up CPU, these should be muted.
}
else if (gain == 1.f)
{
color = LLColor4(0.f, 1.f, 0.f, 0.5f); // Green: Playing with gain == 1.
width = debug_beacon_line_width;
}
else
{
color = LLColor4(1.f, 1.f, 0.f, 0.5f); // Yellow: Playing with 0 < gain < 1.
width = 1 + gain * (debug_beacon_line_width - 1);
}
}
else if (sourcep->isMuted())
color = LLColor4(0.f, 1.f, 1.f, 0.5f); // Cyan: Muted sound source.
gObjectList.addDebugBeacon(pos, "", color, LLColor4(1.f, 1.f, 1.f, 0.5f), width);
//</NewShinyStuff>
//gObjectList.addDebugBeacon(pos, "", LLColor4(1.f, 1.f, 0.f, 0.5f), LLColor4(1.f, 1.f, 1.f, 0.5f), debug_beacon_line_width);
}
}
// now deal with highlights for all those seeable sound sources
forAllVisibleDrawables(renderSoundHighlights);
}
}
llpushcallstacks ;
// If managing your telehub, draw beacons at telehub and currently selected spawnpoint.
if (LLFloaterTelehub::renderBeacons())
{
LLFloaterTelehub::addBeacons();
}
if (!sShadowRender)
{
mSelectedFaces.clear();
LLPipeline::setRenderHighlightTextureChannel(gFloaterTools->getPanelFace()->getTextureChannelToEdit());
// Draw face highlights for selected faces.
if (LLSelectMgr::getInstance()->getTEMode())
{
struct f : public LLSelectedTEFunctor
{
virtual bool apply(LLViewerObject* object, S32 te)
{
if (object->mDrawable)
{
LLFace * facep = object->mDrawable->getFace(te);
if (facep)
{
gPipeline.mSelectedFaces.push_back(facep);
}
}
return true;
}
} func;
LLSelectMgr::getInstance()->getSelection()->applyToTEs(&func);
}
}
//LLSpatialGroup::sNoDelete = FALSE;
llpushcallstacks ;
}
void render_hud_elements()
{
LLFastTimer t(FTM_RENDER_UI);
gPipeline.disableLights();
LLGLDisable fog(GL_FOG);
LLGLSUIDefault gls_ui;
LLGLEnable stencil(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 255, 0xFFFFFFFF);
glStencilMask(0xFFFFFFFF);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
gGL.color4f(1,1,1,1);
if (LLGLSLShader::sNoFixedFunction)
{
gUIProgram.bind();
}
LLGLDepthTest depth(GL_TRUE, GL_FALSE);
if (!LLPipeline::sReflectionRender && gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_UI))
{
static const LLCachedControl<U32> RenderFSAASamples("RenderFSAASamples",0);
LLGLEnable multisample(RenderFSAASamples > 0 ? GL_MULTISAMPLE_ARB : 0);
gViewerWindow->renderSelections(FALSE, FALSE, FALSE); // For HUD version in render_ui_3d()
// Draw the tracking overlays
LLTracker::render3D();
// Show the property lines
LLWorld::getInstance()->renderPropertyLines();
LLViewerParcelMgr::getInstance()->render();
LLViewerParcelMgr::getInstance()->renderParcelCollision();
// Render name tags.
LLHUDObject::renderAll();
}
else if (gForceRenderLandFence)
{
// This is only set when not rendering the UI, for parcel snapshots
LLViewerParcelMgr::getInstance()->render();
}
else if (gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_HUD))
{
LLHUDText::renderAllHUD();
}
if (LLGLSLShader::sNoFixedFunction)
{
gUIProgram.unbind();
}
gGL.flush();
}
// Singu Note: Created to avoid redundant code.
void renderSelectedFaces(LLGLSLShader& shader, std::vector<LLFace*> &selected_faces, LLViewerTexture* tex, LLColor4 color, LLRender::eTexIndex channel, LLRender::eTexIndex active_channel = LLRender::NUM_TEXTURE_CHANNELS)
{
if ((LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_INTERFACE) > 0))
{
shader.bind();
}
bool active = active_channel == LLRender::NUM_TEXTURE_CHANNELS || channel == active_channel;
if(!active) //Draw 'faded out' overlay for selected faces that aren't applicable to current channel being edited.
color.mV[3] *= .5f;
for (std::vector<LLFace*>::iterator it = selected_faces.begin(); it != selected_faces.end(); ++it)
{
LLFace *facep = *it;
if (!facep || facep->getDrawable()->isDead())
{
llerrs << "Bad face on selection" << llendl;
return;
}
const LLTextureEntry* te = facep->getTextureEntry();
LLMaterial* mat = te ? te->getMaterialParams().get() : NULL;
if(channel == LLRender::DIFFUSE_MAP)
{
if(active || !mat ||
(active_channel == LLRender::NORMAL_MAP && mat->getNormalID().isNull()) ||
(active_channel == LLRender::SPECULAR_MAP && mat->getSpecularID().isNull()))
facep->renderSelected(tex, color);
}
else if(channel == LLRender::NORMAL_MAP)
{
if(mat && mat->getNormalID().notNull())
facep->renderSelected(tex, color);
}
else if(channel == LLRender::SPECULAR_MAP)
{
if(mat && mat->getSpecularID().notNull())
facep->renderSelected(tex, color);
}
}
if ((LLViewerShaderMgr::instance()->getVertexShaderLevel(LLViewerShaderMgr::SHADER_INTERFACE) > 0))
{
shader.unbind();
}
}
void LLPipeline::renderHighlights()
{
assertInitialized();
if(!hasRenderDebugFeatureMask(RENDER_DEBUG_FEATURE_SELECTED))
return; //Nothing to draw...
// Setup
if ( !mFaceSelectImagep)
{
mFaceSelectImagep = LLViewerTextureManager::getFetchedTexture(IMG_FACE_SELECT);
}
// Make sure the selection image gets downloaded and decoded
mFaceSelectImagep->addTextureStats((F32)MAX_IMAGE_AREA);
// Draw 3D UI elements here (before we clear the Z buffer in POOL_HUD)
// Render highlighted faces.
LLGLSPipelineAlpha gls_pipeline_alpha;
LLGLEnable color_mat(GL_COLOR_MATERIAL);
disableLights();
// Singu Note: Logic here changed, and behavior changed as well. Always draw overlays of some nature over all selected faces.
// Faces that wont undergo any change if the current active channel is edited should have a 'faded' overlay
// Temporary. If not deferred, then texcoord1 and texcoord2 are probably absent from face vbo, which LLFace::renderSelected piggybacks.
// Force to standard diffuse mode. Workaround would probably be to generate new face vbo data on the fly if required texcoord data is absent.
LLRender::eTexIndex active_channel = LLPipeline::sRenderDeferred ? sRenderHighlightTextureChannel : LLRender::NUM_TEXTURE_CHANNELS;
// Default diffuse mapping
renderSelectedFaces(gHighlightProgram, mSelectedFaces, mFaceSelectImagep, LLColor4(1.f,1.f,1.f,.5f), LLRender::DIFFUSE_MAP, active_channel);
// Paint 'em red!
renderSelectedFaces(gHighlightProgram, mHighlightFaces, LLViewerTexture::sNullImagep, LLColor4(1.f,0.f,0.f,.5f), LLRender::DIFFUSE_MAP);
// Normal mapping
if(active_channel == LLRender::NORMAL_MAP)
renderSelectedFaces(gHighlightNormalProgram, mSelectedFaces, mFaceSelectImagep, LLColor4(1.f, .5f, .5f, .5f), LLRender::NORMAL_MAP);
// Specular mapping
if(active_channel == LLRender::SPECULAR_MAP)
renderSelectedFaces(gHighlightSpecularProgram, mSelectedFaces, mFaceSelectImagep, LLColor4(0.f, .3f, 1.f, .8f), LLRender::SPECULAR_MAP);
mHighlightFaces.clear();
}
//debug use
U32 LLPipeline::sCurRenderPoolType = 0 ;
extern void check_blend_funcs();
void LLPipeline::renderGeom(LLCamera& camera, BOOL forceVBOUpdate)
{
LLFastTimer t(FTM_RENDER_GEOMETRY);
assertInitialized();
LLMatrix4a saved_modelview;
LLMatrix4a saved_projection;
//HACK: preserve/restore matrices around HUD render
if (gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_HUD))
{
saved_modelview = gGLModelView;
saved_projection = gGLProjection;
}
///////////////////////////////////////////
//
// Sync and verify GL state
//
//
stop_glerror();
gFrameStats.start(LLFrameStats::RENDER_SYNC);
LLVertexBuffer::unbind();
// Do verification of GL state
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
if (mRenderDebugMask & RENDER_DEBUG_VERIFY)
{
if (!verify())
{
llerrs << "Pipeline verification failed!" << llendl;
}
}
LLAppViewer::instance()->pingMainloopTimeout("Pipeline:ForceVBO");
gFrameStats.start(LLFrameStats::RENDER_GEOM);
// Initialize lots of GL state to "safe" values
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
gGL.matrixMode(LLRender::MM_TEXTURE);
gGL.loadIdentity();
gGL.matrixMode(LLRender::MM_MODELVIEW);
LLGLSPipeline gls_pipeline;
static const LLCachedControl<U32> RenderFSAASamples("RenderFSAASamples",0);
LLGLEnable multisample(RenderFSAASamples > 0 ? GL_MULTISAMPLE_ARB : 0);
LLGLState gls_color_material(GL_COLOR_MATERIAL, mLightingDetail < 2);
// Toggle backface culling for debugging
LLGLEnable cull_face(mBackfaceCull ? GL_CULL_FACE : 0);
// Set fog
BOOL use_fog = hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_FOG);
LLGLEnable fog_enable(use_fog &&
!gPipeline.canUseWindLightShadersOnObjects() ? GL_FOG : 0);
gSky.updateFog(camera.getFar());
if (!use_fog)
{
sUnderWaterRender = FALSE;
}
gGL.getTexUnit(0)->bind(LLViewerFetchedTexture::sDefaultImagep);
LLViewerFetchedTexture::sDefaultImagep->setAddressMode(LLTexUnit::TAM_WRAP);
//////////////////////////////////////////////
//
// Actually render all of the geometry
//
//
stop_glerror();
LLAppViewer::instance()->pingMainloopTimeout("Pipeline:RenderDrawPools");
for (pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ++iter)
{
LLDrawPool *poolp = *iter;
if (hasRenderType(poolp->getType()))
{
poolp->prerender();
}
}
{
LLFastTimer t(FTM_POOLS);
// HACK: don't calculate local lights if we're rendering the HUD!
// Removing this check will cause bad flickering when there are
// HUD elements being rendered AND the user is in flycam mode -nyx
if (!gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_HUD))
{
calcNearbyLights(camera);
setupHWLights(NULL);
}
BOOL occlude = sUseOcclusion > 1;
U32 cur_type = 0;
pool_set_t::iterator iter1 = mPools.begin();
while ( iter1 != mPools.end() )
{
LLDrawPool *poolp = *iter1;
cur_type = poolp->getType();
//debug use
sCurRenderPoolType = cur_type ;
if (occlude && cur_type >= LLDrawPool::POOL_GRASS)
{
occlude = FALSE;
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLModelView.getF32ptr());
LLGLSLShader::bindNoShader();
doOcclusion(camera);
}
pool_set_t::iterator iter2 = iter1;
if (hasRenderType(poolp->getType()) && poolp->getNumPasses() > 0)
{
LLFastTimer t(FTM_POOLRENDER);
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLModelView.getF32ptr());
for( S32 i = 0; i < poolp->getNumPasses(); i++ )
{
LLVertexBuffer::unbind();
if(gDebugGL)check_blend_funcs();
poolp->beginRenderPass(i);
for (iter2 = iter1; iter2 != mPools.end(); iter2++)
{
LLDrawPool *p = *iter2;
if (p->getType() != cur_type)
{
break;
}
p->render(i);
}
poolp->endRenderPass(i);
if(gDebugGL)check_blend_funcs();
LLVertexBuffer::unbind();
if (gDebugGL)
{
std::string msg = llformat("%s pass %d", gPoolNames[cur_type].c_str(), i);
LLGLState::checkStates(msg);
//LLGLState::checkTextureChannels(msg);
//LLGLState::checkClientArrays(msg);
}
}
}
else
{
// Skip all pools of this type
for (iter2 = iter1; iter2 != mPools.end(); iter2++)
{
LLDrawPool *p = *iter2;
if (p->getType() != cur_type)
{
break;
}
}
}
iter1 = iter2;
stop_glerror();
}
LLAppViewer::instance()->pingMainloopTimeout("Pipeline:RenderDrawPoolsEnd");
LLVertexBuffer::unbind();
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLModelView.getF32ptr());
if (occlude)
{
occlude = FALSE;
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLModelView.getF32ptr());
LLGLSLShader::bindNoShader();
doOcclusion(camera);
}
}
LLVertexBuffer::unbind();
LLGLState::checkStates();
//LLGLState::checkTextureChannels();
//LLGLState::checkClientArrays();
//stop_glerror();
//LLGLState::checkStates();
//LLGLState::checkTextureChannels();
//LLGLState::checkClientArrays();
if (!LLPipeline::sImpostorRender)
{
LLAppViewer::instance()->pingMainloopTimeout("Pipeline:RenderHighlights");
if (!sReflectionRender)
{
renderHighlights();
}
// Contains a list of the faces of objects that are physical or
// have touch-handlers.
mHighlightFaces.clear();
LLAppViewer::instance()->pingMainloopTimeout("Pipeline:RenderDebug");
renderDebug();
LLVertexBuffer::unbind();
if (!LLPipeline::sReflectionRender && !LLPipeline::sRenderDeferred)
{
if (gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_UI))
{
// Render debugging beacons.
gObjectList.renderObjectBeacons();
gObjectList.resetObjectBeacons();
}
else
{
// Make sure particle effects disappear
LLHUDObject::renderAllForTimer();
}
}
else
{
// Make sure particle effects disappear
LLHUDObject::renderAllForTimer();
}
LLAppViewer::instance()->pingMainloopTimeout("Pipeline:RenderGeomEnd");
//HACK: preserve/restore matrices around HUD render
if (gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_HUD))
{
gGLModelView = saved_modelview;
gGLProjection = saved_projection;
}
}
LLVertexBuffer::unbind();
LLGLState::checkStates();
//LLGLState::checkTextureChannels();
//LLGLState::checkClientArrays();
}
void LLPipeline::renderGeomDeferred(LLCamera& camera)
{
LLAppViewer::instance()->pingMainloopTimeout("Pipeline:RenderGeomDeferred");
LLFastTimer t(FTM_RENDER_GEOMETRY);
LLFastTimer t2(FTM_DEFERRED_POOLS);
LLGLEnable cull(GL_CULL_FACE);
LLGLEnable stencil(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 1, 0xFFFFFFFF);
stop_glerror();
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
stop_glerror();
for (pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ++iter)
{
LLDrawPool *poolp = *iter;
if (hasRenderType(poolp->getType()))
{
poolp->prerender();
}
}
static const LLCachedControl<U32> fsaa_samples("RenderFSAASamples",0);
LLGLEnable multisample(fsaa_samples > 0 ? GL_MULTISAMPLE_ARB : 0);
LLVertexBuffer::unbind();
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
U32 cur_type = 0;
gGL.setColorMask(true, true);
pool_set_t::iterator iter1 = mPools.begin();
while ( iter1 != mPools.end() )
{
LLDrawPool *poolp = *iter1;
cur_type = poolp->getType();
pool_set_t::iterator iter2 = iter1;
if (hasRenderType(poolp->getType()) && poolp->getNumDeferredPasses() > 0)
{
LLFastTimer t(FTM_DEFERRED_POOLRENDER);
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLModelView.getF32ptr());
for( S32 i = 0; i < poolp->getNumDeferredPasses(); i++ )
{
LLVertexBuffer::unbind();
poolp->beginDeferredPass(i);
for (iter2 = iter1; iter2 != mPools.end(); iter2++)
{
LLDrawPool *p = *iter2;
if (p->getType() != cur_type)
{
break;
}
p->renderDeferred(i);
}
poolp->endDeferredPass(i);
LLVertexBuffer::unbind();
if (gDebugGL || gDebugPipeline)
{
LLGLState::checkStates();
//LLGLState::checkTextureChannels();
//LLGLState::checkClientArrays();
}
}
}
else
{
// Skip all pools of this type
for (iter2 = iter1; iter2 != mPools.end(); iter2++)
{
LLDrawPool *p = *iter2;
if (p->getType() != cur_type)
{
break;
}
}
}
iter1 = iter2;
stop_glerror();
}
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLModelView.getF32ptr());
gGL.setColorMask(true, false);
}
void LLPipeline::renderGeomPostDeferred(LLCamera& camera, bool do_occlusion)
{
LLFastTimer t(FTM_POST_DEFERRED_POOLS);
U32 cur_type = 0;
LLGLEnable cull(GL_CULL_FACE);
static const LLCachedControl<U32> RenderFSAASamples("RenderFSAASamples",0);
LLGLEnable multisample(RenderFSAASamples > 0 ? GL_MULTISAMPLE_ARB : 0);
calcNearbyLights(camera);
setupHWLights(NULL);
gGL.setColorMask(true, false);
pool_set_t::iterator iter1 = mPools.begin();
BOOL occlude = LLPipeline::sUseOcclusion > 1 && do_occlusion;
while ( iter1 != mPools.end() )
{
LLDrawPool *poolp = *iter1;
cur_type = poolp->getType();
if (occlude && cur_type >= LLDrawPool::POOL_GRASS)
{
occlude = FALSE;
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLModelView.getF32ptr());
LLGLSLShader::bindNoShader();
doOcclusion(camera/*, mScreen, mOcclusionDepth, &mDeferredDepth*/);
gGL.setColorMask(true, false);
}
pool_set_t::iterator iter2 = iter1;
if (hasRenderType(poolp->getType()) && poolp->getNumPostDeferredPasses() > 0)
{
LLFastTimer t(FTM_POST_DEFERRED_POOLRENDER);
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLModelView.getF32ptr());
for( S32 i = 0; i < poolp->getNumPostDeferredPasses(); i++ )
{
LLVertexBuffer::unbind();
poolp->beginPostDeferredPass(i);
for (iter2 = iter1; iter2 != mPools.end(); iter2++)
{
LLDrawPool *p = *iter2;
if (p->getType() != cur_type)
{
break;
}
p->renderPostDeferred(i);
}
poolp->endPostDeferredPass(i);
LLVertexBuffer::unbind();
if (gDebugGL || gDebugPipeline)
{
LLGLState::checkStates();
}
}
}
else
{
// Skip all pools of this type
for (iter2 = iter1; iter2 != mPools.end(); iter2++)
{
LLDrawPool *p = *iter2;
if (p->getType() != cur_type)
{
break;
}
}
}
iter1 = iter2;
stop_glerror();
}
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLModelView.getF32ptr());
if (occlude)
{
occlude = FALSE;
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLModelView.getF32ptr());
LLGLSLShader::bindNoShader();
doOcclusion(camera);
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLModelView.getF32ptr());
}
}
void LLPipeline::renderGeomShadow(LLCamera& camera)
{
U32 cur_type = 0;
LLGLEnable cull(GL_CULL_FACE);
LLVertexBuffer::unbind();
pool_set_t::iterator iter1 = mPools.begin();
while ( iter1 != mPools.end() )
{
LLDrawPool *poolp = *iter1;
cur_type = poolp->getType();
pool_set_t::iterator iter2 = iter1;
if (hasRenderType(poolp->getType()) && poolp->getNumShadowPasses() > 0)
{
poolp->prerender() ;
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLModelView.getF32ptr());
for( S32 i = 0; i < poolp->getNumShadowPasses(); i++ )
{
LLVertexBuffer::unbind();
poolp->beginShadowPass(i);
for (iter2 = iter1; iter2 != mPools.end(); iter2++)
{
LLDrawPool *p = *iter2;
if (p->getType() != cur_type)
{
break;
}
p->renderShadow(i);
}
poolp->endShadowPass(i);
LLVertexBuffer::unbind();
LLGLState::checkStates();
}
}
else
{
// Skip all pools of this type
for (iter2 = iter1; iter2 != mPools.end(); iter2++)
{
LLDrawPool *p = *iter2;
if (p->getType() != cur_type)
{
break;
}
}
}
iter1 = iter2;
stop_glerror();
}
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLModelView.getF32ptr());
}
void LLPipeline::addTrianglesDrawn(S32 index_count, U32 render_type)
{
assertInitialized();
S32 count = 0;
if (render_type == LLRender::TRIANGLE_STRIP)
{
count = index_count-2;
}
else
{
count = index_count/3;
}
mTrianglesDrawn += count;
mBatchCount++;
mMaxBatchSize = llmax(mMaxBatchSize, count);
mMinBatchSize = llmin(mMinBatchSize, count);
if (LLPipeline::sRenderFrameTest)
{
gViewerWindow->getWindow()->swapBuffers();
ms_sleep(16);
}
}
void LLPipeline::renderPhysicsDisplay()
{
if (!hasRenderDebugMask(LLPipeline::RENDER_DEBUG_PHYSICS_SHAPES))
{
return;
}
allocatePhysicsBuffer();
gGL.flush();
mPhysicsDisplay.bindTarget();
glClearColor(0,0,0,1);
gGL.setColorMask(true, true);
mPhysicsDisplay.clear();
glClearColor(0,0,0,0);
gGL.setColorMask(true, false);
if (LLGLSLShader::sNoFixedFunction)
{
gDebugProgram.bind();
}
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
if (hasRenderType(part->mDrawableType))
{
part->renderPhysicsShapes();
}
}
}
}
for (LLCullResult::bridge_iterator i = sCull->beginVisibleBridge(); i != sCull->endVisibleBridge(); ++i)
{
LLSpatialBridge* bridge = *i;
if (!bridge->isDead() && hasRenderType(bridge->mDrawableType))
{
gGL.pushMatrix();
gGL.multMatrix((F32*)bridge->mDrawable->getRenderMatrix().mMatrix);
bridge->renderPhysicsShapes();
gGL.popMatrix();
}
}
gGL.flush();
if (LLGLSLShader::sNoFixedFunction)
{
gDebugProgram.unbind();
}
mPhysicsDisplay.flush();
}
void LLPipeline::renderDebug()
{
assertInitialized();
gGL.color4f(1,1,1,1);
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLModelView.getF32ptr());
gGL.setColorMask(true, false);
bool hud_only = hasRenderType(LLPipeline::RENDER_TYPE_HUD);
if (!hud_only && !mDebugBlips.empty())
{ //render debug blips
if (LLGLSLShader::sNoFixedFunction)
{
gUIProgram.bind();
}
gGL.getTexUnit(0)->bind(LLViewerFetchedTexture::sWhiteImagep, true);
glPointSize(8.f);
LLGLDepthTest depth(GL_TRUE, GL_TRUE, GL_ALWAYS);
gGL.begin(LLRender::POINTS);
for (std::list<DebugBlip>::iterator iter = mDebugBlips.begin(); iter != mDebugBlips.end(); )
{
DebugBlip& blip = *iter;
blip.mAge += gFrameIntervalSeconds;
if (blip.mAge > 2.f)
{
mDebugBlips.erase(iter++);
}
else
{
iter++;
}
blip.mPosition.mV[2] += gFrameIntervalSeconds*2.f;
gGL.color4fv(blip.mColor.mV);
gGL.vertex3fv(blip.mPosition.mV);
}
gGL.end();
gGL.flush();
glPointSize(1.f);
if (LLGLSLShader::sNoFixedFunction)
{
gUIProgram.unbind();
}
}
if(!mRenderDebugMask)
return;
LLGLDepthTest gls_depth(GL_TRUE, GL_FALSE, GL_LEQUAL);
// Debug stuff.
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
if ( (hud_only && (part->mDrawableType == RENDER_TYPE_HUD || part->mDrawableType == RENDER_TYPE_HUD_PARTICLES)) ||
(!hud_only && hasRenderType(part->mDrawableType)) )
{
part->renderDebug();
}
}
}
}
for (LLCullResult::bridge_iterator i = sCull->beginVisibleBridge(); i != sCull->endVisibleBridge(); ++i)
{
LLSpatialBridge* bridge = *i;
if (!bridge->isDead() && hasRenderType(bridge->mDrawableType))
{
gGL.pushMatrix();
gGL.multMatrix((F32*)bridge->mDrawable->getRenderMatrix().mMatrix);
bridge->renderDebug();
gGL.popMatrix();
}
}
if (LLGLSLShader::sNoFixedFunction)
{
gUIProgram.bind();
}
if (hasRenderDebugMask(LLPipeline::RENDER_DEBUG_SHADOW_FRUSTA))
{
LLVertexBuffer::unbind();
LLGLEnable blend(GL_BLEND);
LLGLDepthTest depth(TRUE, FALSE);
LLGLDisable cull(GL_CULL_FACE);
gGL.color4f(1,1,1,1);
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
F32 a = 0.1f;
F32 col[] =
{
1,0,0,a,
0,1,0,a,
0,0,1,a,
1,0,1,a,
1,1,0,a,
0,1,1,a,
1,1,1,a,
1,0,1,a,
};
for (U32 i = 0; i < 8; i++)
{
LLVector3* frust = mShadowCamera[i].mAgentFrustum;
if (i > 3)
{ //render shadow frusta as volumes
if (mShadowFrustPoints[i-4].empty())
{
continue;
}
gGL.color4fv(col+(i-4)*4);
gGL.begin(LLRender::TRIANGLE_STRIP);
gGL.vertex3fv(frust[0].mV); gGL.vertex3fv(frust[4].mV);
gGL.vertex3fv(frust[1].mV); gGL.vertex3fv(frust[5].mV);
gGL.vertex3fv(frust[2].mV); gGL.vertex3fv(frust[6].mV);
gGL.vertex3fv(frust[3].mV); gGL.vertex3fv(frust[7].mV);
gGL.vertex3fv(frust[0].mV); gGL.vertex3fv(frust[4].mV);
gGL.end();
gGL.begin(LLRender::TRIANGLE_STRIP);
gGL.vertex3fv(frust[0].mV);
gGL.vertex3fv(frust[1].mV);
gGL.vertex3fv(frust[3].mV);
gGL.vertex3fv(frust[2].mV);
gGL.end();
gGL.begin(LLRender::TRIANGLE_STRIP);
gGL.vertex3fv(frust[4].mV);
gGL.vertex3fv(frust[5].mV);
gGL.vertex3fv(frust[7].mV);
gGL.vertex3fv(frust[6].mV);
gGL.end();
}
if (i < 4)
{
//if (i == 0 || !mShadowFrustPoints[i].empty())
{
//render visible point cloud
gGL.flush();
glPointSize(8.f);
gGL.begin(LLRender::POINTS);
F32* c = col+i*4;
gGL.color3fv(c);
for (U32 j = 0; j < mShadowFrustPoints[i].size(); ++j)
{
gGL.vertex3fv(mShadowFrustPoints[i][j].mV);
}
gGL.end();
gGL.flush();
glPointSize(1.f);
LLVector3* ext = mShadowExtents[i];
LLVector3 pos = (ext[0]+ext[1])*0.5f;
LLVector3 size = (ext[1]-ext[0])*0.5f;
drawBoxOutline(pos, size);
//render camera frustum splits as outlines
gGL.begin(LLRender::LINES);
gGL.vertex3fv(frust[0].mV); gGL.vertex3fv(frust[1].mV);
gGL.vertex3fv(frust[1].mV); gGL.vertex3fv(frust[2].mV);
gGL.vertex3fv(frust[2].mV); gGL.vertex3fv(frust[3].mV);
gGL.vertex3fv(frust[3].mV); gGL.vertex3fv(frust[0].mV);
gGL.vertex3fv(frust[4].mV); gGL.vertex3fv(frust[5].mV);
gGL.vertex3fv(frust[5].mV); gGL.vertex3fv(frust[6].mV);
gGL.vertex3fv(frust[6].mV); gGL.vertex3fv(frust[7].mV);
gGL.vertex3fv(frust[7].mV); gGL.vertex3fv(frust[4].mV);
gGL.vertex3fv(frust[0].mV); gGL.vertex3fv(frust[4].mV);
gGL.vertex3fv(frust[1].mV); gGL.vertex3fv(frust[5].mV);
gGL.vertex3fv(frust[2].mV); gGL.vertex3fv(frust[6].mV);
gGL.vertex3fv(frust[3].mV); gGL.vertex3fv(frust[7].mV);
gGL.end();
}
}
/*gGL.flush();
glLineWidth(16-i*2);
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 j = 0; j < LLViewerRegion::NUM_PARTITIONS; j++)
{
LLSpatialPartition* part = region->getSpatialPartition(j);
if (part)
{
if (hasRenderType(part->mDrawableType))
{
part->renderIntersectingBBoxes(&mShadowCamera[i]);
}
}
}
}
gGL.flush();
glLineWidth(1.f);*/
}
}
if (mRenderDebugMask & RENDER_DEBUG_WIND_VECTORS)
{
gAgent.getRegion()->mWind.renderVectors();
}
if (mRenderDebugMask & RENDER_DEBUG_COMPOSITION)
{
// Debug composition layers
F32 x, y;
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
if (gAgent.getRegion())
{
gGL.begin(LLRender::POINTS);
// Draw the composition layer for the region that I'm in.
for (x = 0; x <= 260; x++)
{
for (y = 0; y <= 260; y++)
{
if ((x > 255) || (y > 255))
{
gGL.color4f(1.f, 0.f, 0.f, 1.f);
}
else
{
gGL.color4f(0.f, 0.f, 1.f, 1.f);
}
F32 z = gAgent.getRegion()->getCompositionXY((S32)x, (S32)y);
z *= 5.f;
z += 50.f;
gGL.vertex3f(x, y, z);
}
}
gGL.end();
}
}
if (mRenderDebugMask & LLPipeline::RENDER_DEBUG_BUILD_QUEUE)
{
U32 count = 0;
U32 size = mGroupQ2.size();
LLColor4 col;
LLVertexBuffer::unbind();
LLGLEnable blend(GL_BLEND);
gGL.setSceneBlendType(LLRender::BT_ALPHA);
LLGLDepthTest depth(GL_TRUE, GL_FALSE);
gGL.getTexUnit(0)->bind(LLViewerFetchedTexture::sWhiteImagep);
gGL.pushMatrix();
gGL.loadMatrix(gGLModelView.getF32ptr());
gGLLastMatrix = NULL;
for (LLSpatialGroup::sg_vector_t::iterator iter = mGroupQ2.begin(); iter != mGroupQ2.end(); ++iter)
{
LLSpatialGroup* group = *iter;
if (group->isDead())
{
continue;
}
LLSpatialBridge* bridge = group->mSpatialPartition->asBridge();
if (bridge && (!bridge->mDrawable || bridge->mDrawable->isDead()))
{
continue;
}
if (bridge)
{
gGL.pushMatrix();
gGL.multMatrix((F32*)bridge->mDrawable->getRenderMatrix().mMatrix);
}
F32 alpha = llclamp((F32) (size-count)/size, 0.f, 1.f);
LLVector2 c(1.f-alpha, alpha);
c.normVec();
++count;
col.set(c.mV[0], c.mV[1], 0, alpha*0.5f+0.5f);
group->drawObjectBox(col);
if (bridge)
{
gGL.popMatrix();
}
}
gGL.popMatrix();
}
gGL.flush();
if (LLGLSLShader::sNoFixedFunction)
{
gUIProgram.unbind();
}
}
static LLFastTimer::DeclareTimer FTM_REBUILD_POOLS("Rebuild Pools");
void LLPipeline::rebuildPools()
{
LLFastTimer t(FTM_REBUILD_POOLS);
assertInitialized();
S32 max_count = mPools.size();
pool_set_t::iterator iter1 = mPools.upper_bound(mLastRebuildPool);
while(max_count > 0 && mPools.size() > 0) // && num_rebuilds < MAX_REBUILDS)
{
if (iter1 == mPools.end())
{
iter1 = mPools.begin();
}
LLDrawPool* poolp = *iter1;
if (poolp->isDead())
{
mPools.erase(iter1++);
removeFromQuickLookup( poolp );
if (poolp == mLastRebuildPool)
{
mLastRebuildPool = NULL;
}
delete poolp;
}
else
{
mLastRebuildPool = poolp;
iter1++;
}
max_count--;
}
}
void LLPipeline::addToQuickLookup( LLDrawPool* new_poolp )
{
assertInitialized();
switch( new_poolp->getType() )
{
case LLDrawPool::POOL_SIMPLE:
if (mSimplePool)
{
llassert(0);
llwarns << "Ignoring duplicate simple pool." << llendl;
}
else
{
mSimplePool = (LLRenderPass*) new_poolp;
}
break;
case LLDrawPool::POOL_ALPHA_MASK:
if (mAlphaMaskPool)
{
llassert(0);
llwarns << "Ignoring duplicate alpha mask pool." << llendl;
break;
}
else
{
mAlphaMaskPool = (LLRenderPass*) new_poolp;
}
break;
case LLDrawPool::POOL_FULLBRIGHT_ALPHA_MASK:
if (mFullbrightAlphaMaskPool)
{
llassert(0);
llwarns << "Ignoring duplicate alpha mask pool." << llendl;
break;
}
else
{
mFullbrightAlphaMaskPool = (LLRenderPass*) new_poolp;
}
break;
case LLDrawPool::POOL_GRASS:
if (mGrassPool)
{
llassert(0);
llwarns << "Ignoring duplicate grass pool." << llendl;
}
else
{
mGrassPool = (LLRenderPass*) new_poolp;
}
break;
case LLDrawPool::POOL_FULLBRIGHT:
if (mFullbrightPool)
{
llassert(0);
llwarns << "Ignoring duplicate simple pool." << llendl;
}
else
{
mFullbrightPool = (LLRenderPass*) new_poolp;
}
break;
case LLDrawPool::POOL_INVISIBLE:
if (mInvisiblePool)
{
llassert(0);
llwarns << "Ignoring duplicate simple pool." << llendl;
}
else
{
mInvisiblePool = (LLRenderPass*) new_poolp;
}
break;
case LLDrawPool::POOL_GLOW:
if (mGlowPool)
{
llassert(0);
llwarns << "Ignoring duplicate glow pool." << llendl;
}
else
{
mGlowPool = (LLRenderPass*) new_poolp;
}
break;
case LLDrawPool::POOL_TREE:
mTreePools[ uintptr_t(new_poolp->getTexture()) ] = new_poolp ;
break;
case LLDrawPool::POOL_TERRAIN:
mTerrainPools[ uintptr_t(new_poolp->getTexture()) ] = new_poolp ;
break;
case LLDrawPool::POOL_BUMP:
if (mBumpPool)
{
llassert(0);
llwarns << "Ignoring duplicate bump pool." << llendl;
}
else
{
mBumpPool = new_poolp;
}
break;
case LLDrawPool::POOL_MATERIALS:
if (mMaterialsPool)
{
llassert(0);
llwarns << "Ignorning duplicate materials pool." << llendl;
}
else
{
mMaterialsPool = new_poolp;
}
break;
case LLDrawPool::POOL_ALPHA:
if( mAlphaPool )
{
llassert(0);
llwarns << "LLPipeline::addPool(): Ignoring duplicate Alpha pool" << llendl;
}
else
{
mAlphaPool = (LLDrawPoolAlpha*) new_poolp;
}
break;
case LLDrawPool::POOL_AVATAR:
break; // Do nothing
case LLDrawPool::POOL_SKY:
if( mSkyPool )
{
llassert(0);
llwarns << "LLPipeline::addPool(): Ignoring duplicate Sky pool" << llendl;
}
else
{
mSkyPool = new_poolp;
}
break;
case LLDrawPool::POOL_WATER:
if( mWaterPool )
{
llassert(0);
llwarns << "LLPipeline::addPool(): Ignoring duplicate Water pool" << llendl;
}
else
{
mWaterPool = new_poolp;
}
break;
case LLDrawPool::POOL_GROUND:
if( mGroundPool )
{
llassert(0);
llwarns << "LLPipeline::addPool(): Ignoring duplicate Ground Pool" << llendl;
}
else
{
mGroundPool = new_poolp;
}
break;
case LLDrawPool::POOL_WL_SKY:
if( mWLSkyPool )
{
llassert(0);
llwarns << "LLPipeline::addPool(): Ignoring duplicate WLSky Pool" << llendl;
}
else
{
mWLSkyPool = new_poolp;
}
break;
default:
llassert(0);
llwarns << "Invalid Pool Type in LLPipeline::addPool()" << llendl;
break;
}
}
void LLPipeline::removePool( LLDrawPool* poolp )
{
assertInitialized();
removeFromQuickLookup(poolp);
mPools.erase(poolp);
delete poolp;
}
void LLPipeline::removeFromQuickLookup( LLDrawPool* poolp )
{
assertInitialized();
switch( poolp->getType() )
{
case LLDrawPool::POOL_SIMPLE:
llassert(mSimplePool == poolp);
mSimplePool = NULL;
break;
case LLDrawPool::POOL_ALPHA_MASK:
llassert(mAlphaMaskPool == poolp);
mAlphaMaskPool = NULL;
break;
case LLDrawPool::POOL_FULLBRIGHT_ALPHA_MASK:
llassert(mFullbrightAlphaMaskPool == poolp);
mFullbrightAlphaMaskPool = NULL;
break;
case LLDrawPool::POOL_GRASS:
llassert(mGrassPool == poolp);
mGrassPool = NULL;
break;
case LLDrawPool::POOL_FULLBRIGHT:
llassert(mFullbrightPool == poolp);
mFullbrightPool = NULL;
break;
case LLDrawPool::POOL_INVISIBLE:
llassert(mInvisiblePool == poolp);
mInvisiblePool = NULL;
break;
case LLDrawPool::POOL_WL_SKY:
llassert(mWLSkyPool == poolp);
mWLSkyPool = NULL;
break;
case LLDrawPool::POOL_GLOW:
llassert(mGlowPool == poolp);
mGlowPool = NULL;
break;
case LLDrawPool::POOL_TREE:
#ifdef _DEBUG
{
BOOL found = mTreePools.erase( (uintptr_t)poolp->getTexture() );
llassert( found );
}
#else
mTreePools.erase( (uintptr_t)poolp->getTexture() );
#endif
break;
case LLDrawPool::POOL_TERRAIN:
#ifdef _DEBUG
{
BOOL found = mTerrainPools.erase( (uintptr_t)poolp->getTexture() );
llassert( found );
}
#else
mTerrainPools.erase( (uintptr_t)poolp->getTexture() );
#endif
break;
case LLDrawPool::POOL_BUMP:
llassert( poolp == mBumpPool );
mBumpPool = NULL;
break;
case LLDrawPool::POOL_MATERIALS:
llassert(poolp == mMaterialsPool);
mMaterialsPool = NULL;
break;
case LLDrawPool::POOL_ALPHA:
llassert( poolp == mAlphaPool );
mAlphaPool = NULL;
break;
case LLDrawPool::POOL_AVATAR:
break; // Do nothing
case LLDrawPool::POOL_SKY:
llassert( poolp == mSkyPool );
mSkyPool = NULL;
break;
case LLDrawPool::POOL_WATER:
llassert( poolp == mWaterPool );
mWaterPool = NULL;
break;
case LLDrawPool::POOL_GROUND:
llassert( poolp == mGroundPool );
mGroundPool = NULL;
break;
default:
llassert(0);
llwarns << "Invalid Pool Type in LLPipeline::removeFromQuickLookup() type=" << poolp->getType() << llendl;
break;
}
}
void LLPipeline::resetDrawOrders()
{
assertInitialized();
// Iterate through all of the draw pools and rebuild them.
for (pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ++iter)
{
LLDrawPool *poolp = *iter;
poolp->resetDrawOrders();
}
}
//============================================================================
// Once-per-frame setup of hardware lights,
// including sun/moon, avatar backlight, and up to 6 local lights
void LLPipeline::setupAvatarLights(BOOL for_edit)
{
assertInitialized();
if (for_edit)
{
LLColor4 diffuse(1.f, 1.f, 1.f, 0.f);
LLVector4 light_pos_cam(-8.f, 0.25f, 10.f, 0.f); // w==0 => directional light
LLMatrix4 camera_mat = LLViewerCamera::getInstance()->getModelview();
LLMatrix4 camera_rot(camera_mat.getMat3());
camera_rot.invert();
LLVector4 light_pos = light_pos_cam * camera_rot;
light_pos.normalize();
LLLightState* light = gGL.getLight(1);
mHWLightColors[1] = diffuse;
light->setDiffuse(diffuse);
light->setAmbient(LLColor4::black);
light->setSpecular(LLColor4::black);
light->setPosition(light_pos);
light->setConstantAttenuation(1.f);
light->setLinearAttenuation(0.f);
light->setQuadraticAttenuation(0.f);
light->setSpotExponent(0.f);
light->setSpotCutoff(180.f);
}
else if (gAvatarBacklight) // Always true (unless overridden in a devs .ini)
{
LLVector3 opposite_pos = -1.f * mSunDir;
LLVector3 orthog_light_pos = mSunDir % LLVector3::z_axis;
LLVector4 backlight_pos = LLVector4(lerp(opposite_pos, orthog_light_pos, 0.3f), 0.0f);
backlight_pos.normalize();
LLColor4 light_diffuse = mSunDiffuse;
LLColor4 backlight_diffuse(1.f - light_diffuse.mV[VRED], 1.f - light_diffuse.mV[VGREEN], 1.f - light_diffuse.mV[VBLUE], 1.f);
F32 max_component = 0.001f;
for (S32 i = 0; i < 3; i++)
{
if (backlight_diffuse.mV[i] > max_component)
{
max_component = backlight_diffuse.mV[i];
}
}
F32 backlight_mag;
if (gSky.getSunDirection().mV[2] >= LLSky::NIGHTTIME_ELEVATION_COS)
{
backlight_mag = BACKLIGHT_DAY_MAGNITUDE_OBJECT;
}
else
{
backlight_mag = BACKLIGHT_NIGHT_MAGNITUDE_OBJECT;
}
backlight_diffuse *= backlight_mag / max_component;
mHWLightColors[1] = backlight_diffuse;
LLLightState* light = gGL.getLight(1);
light->setPosition(backlight_pos);
light->setDiffuse(backlight_diffuse);
light->setAmbient(LLColor4::black);
light->setSpecular(LLColor4::black);
light->setConstantAttenuation(1.f);
light->setLinearAttenuation(0.f);
light->setQuadraticAttenuation(0.f);
light->setSpotExponent(0.f);
light->setSpotCutoff(180.f);
}
else
{
LLLightState* light = gGL.getLight(1);
mHWLightColors[1] = LLColor4::black;
light->setDiffuse(LLColor4::black);
light->setAmbient(LLColor4::black);
light->setSpecular(LLColor4::black);
}
}
static F32 calc_light_dist(LLVOVolume* light, const LLVector3& cam_pos, F32 max_dist)
{
F32 inten = light->getLightIntensity();
if (inten < .001f)
{
return max_dist;
}
F32 radius = light->getLightRadius();
BOOL selected = light->isSelected();
LLVector3 dpos = light->getRenderPosition() - cam_pos;
F32 dist2 = dpos.lengthSquared();
if (!selected && dist2 > (max_dist + radius)*(max_dist + radius))
{
return max_dist;
}
F32 dist = (F32) sqrt(dist2);
dist *= 1.f / inten;
dist -= radius;
if (selected)
{
dist -= 10000.f; // selected lights get highest priority
}
if (light->mDrawable.notNull() && light->mDrawable->isState(LLDrawable::ACTIVE))
{
// moving lights get a little higher priority (too much causes artifacts)
dist -= light->getLightRadius()*0.25f;
}
return dist;
}
//Default all gl light parameters. Used upon restoreGL. Fixes brightness problems on fullscren toggle
void LLPipeline::resetLocalLights()
{
if (!LLGLSLShader::sNoFixedFunction)
glEnable(GL_LIGHTING);
for (S32 i = 0; i < 8; ++i)
{
LLLightState *pLight = gGL.getLight(i);
pLight->enable();
pLight->setAmbient(LLColor4::black);
pLight->setConstantAttenuation(0.f);
pLight->setDiffuse(LLColor4::black);
pLight->setLinearAttenuation(0.f);
pLight->setPosition(LLVector4(0.f,0.f,0.f,0.f));
pLight->setQuadraticAttenuation(0.f);
pLight->setSpecular(LLColor4::black);
pLight->setSpotCutoff(0.f);
pLight->setSpotDirection(LLVector3(0.f,0.f,0.f));
pLight->setSpotExponent(0.f);
pLight->disable();
}
if (!LLGLSLShader::sNoFixedFunction)
glDisable(GL_LIGHTING);
}
void LLPipeline::calcNearbyLights(LLCamera& camera)
{
assertInitialized();
if (LLPipeline::sReflectionRender)
{
return;
}
if (mLightingDetail >= 1)
{
// mNearbyLight (and all light_set_t's) are sorted such that
// begin() == the closest light and rbegin() == the farthest light
const S32 MAX_LOCAL_LIGHTS = 6;
// LLVector3 cam_pos = gAgentCamera.getCameraPositionAgent();
LLVector3 cam_pos = LLViewerJoystick::getInstance()->getOverrideCamera() ?
camera.getOrigin() :
gAgent.getPositionAgent();
F32 max_dist = LIGHT_MAX_RADIUS * 4.f; // ignore enitrely lights > 4 * max light rad
// UPDATE THE EXISTING NEARBY LIGHTS
light_set_t cur_nearby_lights;
for (light_set_t::iterator iter = mNearbyLights.begin();
iter != mNearbyLights.end(); iter++)
{
const Light* light = &(*iter);
LLDrawable* drawable = light->drawable;
LLVOVolume* volight = drawable->getVOVolume();
if (!volight || !drawable->isState(LLDrawable::LIGHT))
{
drawable->clearState(LLDrawable::NEARBY_LIGHT);
continue;
}
if (light->fade <= -LIGHT_FADE_TIME)
{
drawable->clearState(LLDrawable::NEARBY_LIGHT);
continue;
}
if (!sRenderAttachedLights && volight && volight->isAttachment())
{
drawable->clearState(LLDrawable::NEARBY_LIGHT);
continue;
}
F32 dist = calc_light_dist(volight, cam_pos, max_dist);
cur_nearby_lights.insert(Light(drawable, dist, light->fade));
}
mNearbyLights = cur_nearby_lights;
// FIND NEW LIGHTS THAT ARE IN RANGE
light_set_t new_nearby_lights;
for (LLDrawable::drawable_set_t::iterator iter = mLights.begin();
iter != mLights.end(); ++iter)
{
LLDrawable* drawable = *iter;
LLVOVolume* light = drawable->getVOVolume();
if (!light || drawable->isState(LLDrawable::NEARBY_LIGHT))
{
continue;
}
if (light->isHUDAttachment())
{
continue; // no lighting from HUD objects
}
F32 dist = calc_light_dist(light, cam_pos, max_dist);
if (dist >= max_dist)
{
continue;
}
if (!sRenderAttachedLights && light && light->isAttachment())
{
continue;
}
new_nearby_lights.insert(Light(drawable, dist, 0.f));
if (new_nearby_lights.size() > (U32)MAX_LOCAL_LIGHTS)
{
new_nearby_lights.erase(--new_nearby_lights.end());
const Light& last = *new_nearby_lights.rbegin();
max_dist = last.dist;
}
}
// INSERT ANY NEW LIGHTS
for (light_set_t::iterator iter = new_nearby_lights.begin();
iter != new_nearby_lights.end(); iter++)
{
const Light* light = &(*iter);
if (mNearbyLights.size() < (U32)MAX_LOCAL_LIGHTS)
{
mNearbyLights.insert(*light);
((LLDrawable*) light->drawable)->setState(LLDrawable::NEARBY_LIGHT);
}
else
{
// crazy cast so that we can overwrite the fade value
// even though gcc enforces sets as const
// (fade value doesn't affect sort so this is safe)
Light* farthest_light = (const_cast<Light*>(&(*(mNearbyLights.rbegin()))));
if (light->dist < farthest_light->dist)
{
if (farthest_light->fade >= 0.f)
{
farthest_light->fade = -gFrameIntervalSeconds;
}
}
else
{
break; // none of the other lights are closer
}
}
}
}
}
void LLPipeline::setupHWLights(LLDrawPool* pool)
{
assertInitialized();
// Ambient
if (!LLGLSLShader::sNoFixedFunction)
{
gGL.syncMatrices();
LLColor4 ambient = gSky.getTotalAmbientColor();
gGL.setAmbientLightColor(ambient);
}
// Light 0 = Sun or Moon (All objects)
{
if (gSky.getSunDirection().mV[2] >= LLSky::NIGHTTIME_ELEVATION_COS)
{
mSunDir.setVec(gSky.getSunDirection());
mSunDiffuse.setVec(gSky.getSunDiffuseColor());
}
else
{
mSunDir.setVec(gSky.getMoonDirection());
mSunDiffuse.setVec(gSky.getMoonDiffuseColor());
}
F32 max_color = llmax(mSunDiffuse.mV[0], mSunDiffuse.mV[1], mSunDiffuse.mV[2]);
if (max_color > 1.f)
{
mSunDiffuse *= 1.f/max_color;
}
mSunDiffuse.clamp();
LLVector4 light_pos(mSunDir, 0.0f);
LLColor4 light_diffuse = mSunDiffuse;
mHWLightColors[0] = light_diffuse;
LLLightState* light = gGL.getLight(0);
light->setPosition(light_pos);
light->setDiffuse(light_diffuse);
light->setAmbient(LLColor4::black);
light->setSpecular(LLColor4::black);
light->setConstantAttenuation(1.f);
light->setLinearAttenuation(0.f);
light->setQuadraticAttenuation(0.f);
light->setSpotExponent(0.f);
light->setSpotCutoff(180.f);
}
// Light 1 = Backlight (for avatars)
// (set by enableLightsAvatar)
S32 cur_light = 2;
// Nearby lights = LIGHT 2-7
mLightMovingMask = 0;
if (mLightingDetail >= 1)
{
for (light_set_t::iterator iter = mNearbyLights.begin();
iter != mNearbyLights.end(); ++iter)
{
LLDrawable* drawable = iter->drawable;
LLVOVolume* light = drawable->getVOVolume();
if (!light)
{
continue;
}
if (drawable->isState(LLDrawable::ACTIVE))
{
mLightMovingMask |= (1<<cur_light);
}
LLColor4 light_color = light->getLightColor();
light_color.mV[3] = 0.0f;
F32 fade = iter->fade;
if (fade < LIGHT_FADE_TIME)
{
// fade in/out light
if (fade >= 0.f)
{
fade = fade / LIGHT_FADE_TIME;
((Light*) (&(*iter)))->fade += gFrameIntervalSeconds;
}
else
{
fade = 1.f + fade / LIGHT_FADE_TIME;
((Light*) (&(*iter)))->fade -= gFrameIntervalSeconds;
}
fade = llclamp(fade,0.f,1.f);
light_color *= fade;
}
LLVector3 light_pos(light->getRenderPosition());
LLVector4 light_pos_gl(light_pos, 1.0f);
F32 light_radius = llmax(light->getLightRadius(), 0.001f);
F32 x = (3.f * (1.f + light->getLightFalloff())); // why this magic? probably trying to match a historic behavior.
float linatten = x / (light_radius); // % of brightness at radius
mHWLightColors[cur_light] = light_color;
LLLightState* light_state = gGL.getLight(cur_light);
light_state->setPosition(light_pos_gl);
light_state->setDiffuse(light_color);
light_state->setAmbient(LLColor4::black);
light_state->setConstantAttenuation(0.f);
if (sRenderDeferred)
{
F32 size = light_radius*1.5f;
light_state->setLinearAttenuation(size);
light_state->setQuadraticAttenuation(light->getLightFalloff()*0.5f+1.f);
}
else
{
light_state->setLinearAttenuation(linatten);
light_state->setQuadraticAttenuation(0.f);
}
static const LLCachedControl<bool> RenderSpotLightsInNondeferred("RenderSpotLightsInNondeferred",false);
if (light->isLightSpotlight() // directional (spot-)light
&& (LLPipeline::sRenderDeferred || RenderSpotLightsInNondeferred)) // these are only rendered as GL spotlights if we're in deferred rendering mode *or* the setting forces them on
{
LLQuaternion quat = light->getRenderRotation();
LLVector3 at_axis(0,0,-1); // this matches deferred rendering's object light direction
at_axis *= quat;
light_state->setSpotDirection(at_axis);
light_state->setSpotCutoff(90.f);
light_state->setSpotExponent(2.f);
const LLColor4 specular(0.f, 0.f, 0.f, 0.f);
light_state->setSpecular(specular);
}
else // omnidirectional (point) light
{
light_state->setSpotExponent(0.f);
light_state->setSpotCutoff(180.f);
// we use specular.w = 1.0 as a cheap hack for the shaders to know that this is omnidirectional rather than a spotlight
const LLColor4 specular(0.f, 0.f, 0.f, 1.f);
light_state->setSpecular(specular);
}
cur_light++;
if (cur_light >= 8)
{
break; // safety
}
}
}
for ( ; cur_light < 8 ; cur_light++)
{
mHWLightColors[cur_light] = LLColor4::black;
LLLightState* light = gGL.getLight(cur_light);
light->setDiffuse(LLColor4::black);
light->setAmbient(LLColor4::black);
light->setSpecular(LLColor4::black);
}
if (gAgentAvatarp &&
gAgentAvatarp->mSpecialRenderMode == 3)
{
LLColor4 light_color = LLColor4::white;
light_color.mV[3] = 0.0f;
LLVector3 light_pos(LLViewerCamera::getInstance()->getOrigin());
LLVector4 light_pos_gl(light_pos, 1.0f);
F32 light_radius = 16.f;
F32 x = 3.f;
float linatten = x / (light_radius); // % of brightness at radius
mHWLightColors[2] = light_color;
LLLightState* light = gGL.getLight(2);
light->setPosition(light_pos_gl);
light->setDiffuse(light_color);
light->setAmbient(LLColor4::black);
light->setSpecular(LLColor4::black);
light->setQuadraticAttenuation(0.f);
light->setConstantAttenuation(0.f);
light->setLinearAttenuation(linatten);
light->setSpotExponent(0.f);
light->setSpotCutoff(180.f);
}
// Init GL state
if (!LLGLSLShader::sNoFixedFunction)
{
glDisable(GL_LIGHTING);
}
for (S32 i = 0; i < 8; ++i)
{
gGL.getLight(i)->disable();
}
mLightMask = 0;
}
void LLPipeline::enableLights(U32 mask)
{
assertInitialized();
if (mLightingDetail == 0)
{
mask &= 0xf003; // sun and backlight only (and fullbright bit)
}
if (mLightMask != mask)
{
stop_glerror();
if (!mLightMask)
{
if (!LLGLSLShader::sNoFixedFunction)
{
glEnable(GL_LIGHTING);
}
}
if (mask)
{
stop_glerror();
for (S32 i=0; i<8; i++)
{
LLLightState* light = gGL.getLight(i);
if (mask & (1<<i))
{
light->enable();
light->setDiffuse(mHWLightColors[i]);
}
else
{
light->disable();
light->setDiffuse(LLColor4::black);
}
}
stop_glerror();
}
else
{
if (!LLGLSLShader::sNoFixedFunction)
{
glDisable(GL_LIGHTING);
}
}
mLightMask = mask;
stop_glerror();
LLColor4 ambient = gSky.getTotalAmbientColor();
gGL.setAmbientLightColor(ambient);
}
}
void LLPipeline::enableLightsStatic()
{
assertInitialized();
U32 mask = 0x01; // Sun
if (mLightingDetail >= 2)
{
mask |= mLightMovingMask; // Hardware moving lights
}
else
{
mask |= 0xff & (~2); // Hardware local lights
}
enableLights(mask);
}
void LLPipeline::enableLightsDynamic()
{
assertInitialized();
U32 mask = 0xff & (~2); // Local lights
enableLights(mask);
if (isAgentAvatarValid() && getLightingDetail() <= 0)
{
if (gAgentAvatarp->mSpecialRenderMode == 0) // normal
{
gPipeline.enableLightsAvatar();
}
else if (gAgentAvatarp->mSpecialRenderMode >= 1) // anim preview
{
gPipeline.enableLightsAvatarEdit(LLColor4(0.7f, 0.6f, 0.3f, 1.f));
}
}
}
void LLPipeline::enableLightsAvatar()
{
U32 mask = 0xff; // All lights
setupAvatarLights(FALSE);
enableLights(mask);
}
void LLPipeline::enableLightsPreview()
{
disableLights();
if (!LLGLSLShader::sNoFixedFunction)
{
glEnable(GL_LIGHTING);
}
static LLCachedControl<LLColor4> PreviewAmbientColor("PreviewAmbientColor");
LLColor4 ambient = PreviewAmbientColor;
gGL.setAmbientLightColor(ambient);
static LLCachedControl<LLColor4> PreviewDiffuse0("PreviewDiffuse0");
static LLCachedControl<LLColor4> PreviewSpecular0("PreviewSpecular0");
static LLCachedControl<LLColor4> PreviewDiffuse1("PreviewDiffuse1");
static LLCachedControl<LLColor4> PreviewSpecular1("PreviewSpecular1");
static LLCachedControl<LLColor4> PreviewDiffuse2("PreviewDiffuse2");
static LLCachedControl<LLColor4> PreviewSpecular2("PreviewSpecular2");
static LLCachedControl<LLVector3> PreviewDirection0("PreviewDirection0");
static LLCachedControl<LLVector3> PreviewDirection1("PreviewDirection1");
static LLCachedControl<LLVector3> PreviewDirection2("PreviewDirection2");
LLColor4 diffuse0 = PreviewDiffuse0;
LLColor4 specular0 = PreviewSpecular0;
LLColor4 diffuse1 = PreviewDiffuse1;
LLColor4 specular1 = PreviewSpecular1;
LLColor4 diffuse2 = PreviewDiffuse2;
LLColor4 specular2 = PreviewSpecular2;
LLVector3 dir0 = PreviewDirection0;
LLVector3 dir1 = PreviewDirection1;
LLVector3 dir2 = PreviewDirection2;
dir0.normVec();
dir1.normVec();
dir2.normVec();
LLVector4 light_pos(dir0, 0.0f);
LLLightState* light = gGL.getLight(1);
light->enable();
light->setPosition(light_pos);
light->setDiffuse(diffuse0);
light->setAmbient(LLColor4::black);
light->setSpecular(specular0);
light->setSpotExponent(0.f);
light->setSpotCutoff(180.f);
light_pos = LLVector4(dir1, 0.f);
light = gGL.getLight(2);
light->enable();
light->setPosition(light_pos);
light->setDiffuse(diffuse1);
light->setAmbient(LLColor4::black);
light->setSpecular(specular1);
light->setSpotExponent(0.f);
light->setSpotCutoff(180.f);
light_pos = LLVector4(dir2, 0.f);
light = gGL.getLight(3);
light->enable();
light->setPosition(light_pos);
light->setDiffuse(diffuse2);
light->setAmbient(LLColor4::black);
light->setSpecular(specular2);
light->setSpotExponent(0.f);
light->setSpotCutoff(180.f);
}
void LLPipeline::enableLightsAvatarEdit(const LLColor4& color)
{
U32 mask = 0x2002; // Avatar backlight only, set ambient
setupAvatarLights(TRUE);
enableLights(mask);
gGL.setAmbientLightColor(color);
}
void LLPipeline::enableLightsFullbright(const LLColor4& color)
{
assertInitialized();
U32 mask = 0x1000; // Non-0 mask, set ambient
enableLights(mask);
gGL.setAmbientLightColor(color);
}
void LLPipeline::disableLights()
{
enableLights(0); // no lighting (full bright)
// gGL.diffuseColor4f(1.f, 1.f, 1.f, 1.f);
}
//============================================================================
class LLMenuItemGL;
class LLInvFVBridge;
struct cat_folder_pair;
class LLVOBranch;
class LLVOLeaf;
void LLPipeline::findReferences(LLDrawable *drawablep)
{
assertInitialized();
if (mLights.find(drawablep) != mLights.end())
{
llinfos << "In mLights" << llendl;
}
if (std::find(mMovedList.begin(), mMovedList.end(), drawablep) != mMovedList.end())
{
llinfos << "In mMovedList" << llendl;
}
if (std::find(mShiftList.begin(), mShiftList.end(), drawablep) != mShiftList.end())
{
llinfos << "In mShiftList" << llendl;
}
if (mRetexturedList.find(drawablep) != mRetexturedList.end())
{
llinfos << "In mRetexturedList" << llendl;
}
if (std::find(mBuildQ1.begin(), mBuildQ1.end(), drawablep) != mBuildQ1.end())
{
llinfos << "In mBuildQ1" << llendl;
}
if (std::find(mBuildQ2.begin(), mBuildQ2.end(), drawablep) != mBuildQ2.end())
{
llinfos << "In mBuildQ2" << llendl;
}
S32 count;
count = gObjectList.findReferences(drawablep);
if (count)
{
llinfos << "In other drawables: " << count << " references" << llendl;
}
}
BOOL LLPipeline::verify()
{
BOOL ok = assertInitialized();
if (ok)
{
for (pool_set_t::iterator iter = mPools.begin(); iter != mPools.end(); ++iter)
{
LLDrawPool *poolp = *iter;
if (!poolp->verify())
{
ok = FALSE;
}
}
}
if (!ok)
{
llwarns << "Pipeline verify failed!" << llendl;
}
return ok;
}
//////////////////////////////
//
// Collision detection
//
//
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* A method to compute a ray-AABB intersection.
* Original code by Andrew Woo, from "Graphics Gems", Academic Press, 1990
* Optimized code by Pierre Terdiman, 2000 (~20-30% faster on my Celeron 500)
* Epsilon value added by Klaus Hartmann. (discarding it saves a few cycles only)
*
* Hence this version is faster as well as more robust than the original one.
*
* Should work provided:
* 1) the integer representation of 0.0f is 0x00000000
* 2) the sign bit of the float is the most significant one
*
* Report bugs: p.terdiman@codercorner.com
*
* \param aabb [in] the axis-aligned bounding box
* \param origin [in] ray origin
* \param dir [in] ray direction
* \param coord [out] impact coordinates
* \return true if ray intersects AABB
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//#define RAYAABB_EPSILON 0.00001f
#define IR(x) ((U32&)x)
bool LLRayAABB(const LLVector3 &center, const LLVector3 &size, const LLVector3& origin, const LLVector3& dir, LLVector3 &coord, F32 epsilon)
{
BOOL Inside = TRUE;
LLVector3 MinB = center - size;
LLVector3 MaxB = center + size;
LLVector3 MaxT;
MaxT.mV[VX]=MaxT.mV[VY]=MaxT.mV[VZ]=-1.0f;
// Find candidate planes.
for(U32 i=0;i<3;i++)
{
if(origin.mV[i] < MinB.mV[i])
{
coord.mV[i] = MinB.mV[i];
Inside = FALSE;
// Calculate T distances to candidate planes
if(IR(dir.mV[i])) MaxT.mV[i] = (MinB.mV[i] - origin.mV[i]) / dir.mV[i];
}
else if(origin.mV[i] > MaxB.mV[i])
{
coord.mV[i] = MaxB.mV[i];
Inside = FALSE;
// Calculate T distances to candidate planes
if(IR(dir.mV[i])) MaxT.mV[i] = (MaxB.mV[i] - origin.mV[i]) / dir.mV[i];
}
}
// Ray origin inside bounding box
if(Inside)
{
coord = origin;
return true;
}
// Get largest of the maxT's for final choice of intersection
U32 WhichPlane = 0;
if(MaxT.mV[1] > MaxT.mV[WhichPlane]) WhichPlane = 1;
if(MaxT.mV[2] > MaxT.mV[WhichPlane]) WhichPlane = 2;
// Check final candidate actually inside box
if(IR(MaxT.mV[WhichPlane])&0x80000000) return false;
for(U32 i=0;i<3;i++)
{
if(i!=WhichPlane)
{
coord.mV[i] = origin.mV[i] + MaxT.mV[WhichPlane] * dir.mV[i];
if (epsilon > 0)
{
if(coord.mV[i] < MinB.mV[i] - epsilon || coord.mV[i] > MaxB.mV[i] + epsilon) return false;
}
else
{
if(coord.mV[i] < MinB.mV[i] || coord.mV[i] > MaxB.mV[i]) return false;
}
}
}
return true; // ray hits box
}
//////////////////////////////
//
// Macros, functions, and inline methods from other classes
//
//
void LLPipeline::setLight(LLDrawable *drawablep, BOOL is_light)
{
if (drawablep && assertInitialized())
{
if (is_light)
{
mLights.insert(drawablep);
drawablep->setState(LLDrawable::LIGHT);
}
else
{
drawablep->clearState(LLDrawable::LIGHT);
mLights.erase(drawablep);
}
}
}
//static
void LLPipeline::toggleRenderType(U32 type)
{
gPipeline.mRenderTypeEnabled[type] = !gPipeline.mRenderTypeEnabled[type];
if (type == LLPipeline::RENDER_TYPE_WATER)
{
gPipeline.mRenderTypeEnabled[LLPipeline::RENDER_TYPE_VOIDWATER] = !gPipeline.mRenderTypeEnabled[LLPipeline::RENDER_TYPE_VOIDWATER];
}
}
//static
void LLPipeline::toggleRenderTypeControl(void* data)
{
U32 type = (U32)(intptr_t)data;
U32 bit = (1<<type);
if (gPipeline.hasRenderType(type))
{
llinfos << "Toggling render type mask " << std::hex << bit << " off" << std::dec << llendl;
}
else
{
llinfos << "Toggling render type mask " << std::hex << bit << " on" << std::dec << llendl;
}
gPipeline.toggleRenderType(type);
}
//static
BOOL LLPipeline::hasRenderTypeControl(void* data)
{
U32 type = (U32)(intptr_t)data;
return gPipeline.hasRenderType(type);
}
// Allows UI items labeled "Hide foo" instead of "Show foo"
//static
BOOL LLPipeline::toggleRenderTypeControlNegated(void* data)
{
S32 type = (S32)(intptr_t)data;
return !gPipeline.hasRenderType(type);
}
//static
BOOL LLPipeline::hasRenderPairedTypeControl(void* data)
{
U64 typeflags = *(U64*)data;
for(U8 i = 1 ;i < NUM_RENDER_TYPES; ++i)
{
if( typeflags & (1ULL<<i) )
{
if( gPipeline.hasRenderType(i) )
return true;
}
}
return false;
}
//static
void LLPipeline::toggleRenderPairedTypeControl(void *data)
{
bool on = !!hasRenderPairedTypeControl(data);
U64 typeflags = *(U64*)data;
for(U8 i = 1 ;i < NUM_RENDER_TYPES; ++i)
{
if( typeflags & (1ULL<<i))
{
llinfos << "Toggling render type mask " << std::hex << (1ULL<<i) << (on ? " off" : " on") << std::dec << llendl;
gPipeline.mRenderTypeEnabled[i]=!on;
}
}
}
//static
void LLPipeline::toggleRenderDebug(void* data)
{
U32 bit = (U32)(intptr_t)data;
if (gPipeline.hasRenderDebugMask(bit))
{
llinfos << "Toggling render debug mask " << std::hex << bit << " off" << std::dec << llendl;
}
else
{
llinfos << "Toggling render debug mask " << std::hex << bit << " on" << std::dec << llendl;
}
gPipeline.mRenderDebugMask ^= bit;
}
//static
BOOL LLPipeline::toggleRenderDebugControl(void* data)
{
U32 bit = (U32)(intptr_t)data;
return gPipeline.hasRenderDebugMask(bit);
}
//static
void LLPipeline::toggleRenderDebugFeature(void* data)
{
U32 bit = (U32)(intptr_t)data;
gPipeline.mRenderDebugFeatureMask ^= bit;
}
//static
BOOL LLPipeline::toggleRenderDebugFeatureControl(void* data)
{
U32 bit = (U32)(intptr_t)data;
return gPipeline.hasRenderDebugFeatureMask(bit);
}
void LLPipeline::setRenderDebugFeatureControl(U32 bit, bool value)
{
if (value)
{
gPipeline.mRenderDebugFeatureMask |= bit;
}
else
{
gPipeline.mRenderDebugFeatureMask &= ~bit;
}
}
void LLPipeline::pushRenderDebugFeatureMask()
{
mRenderDebugFeatureStack.push(mRenderDebugFeatureMask);
}
void LLPipeline::popRenderDebugFeatureMask()
{
if (mRenderDebugFeatureStack.empty())
{
llerrs << "Depleted render feature stack." << llendl;
}
mRenderDebugFeatureMask = mRenderDebugFeatureStack.top();
mRenderDebugFeatureStack.pop();
}
// static
void LLPipeline::setRenderScriptedBeacons(BOOL val)
{
sRenderScriptedBeacons = val;
}
// static
void LLPipeline::toggleRenderScriptedBeacons(void*)
{
sRenderScriptedBeacons = !sRenderScriptedBeacons;
}
// static
BOOL LLPipeline::getRenderScriptedBeacons(void*)
{
return sRenderScriptedBeacons;
}
// static
void LLPipeline::setRenderScriptedTouchBeacons(BOOL val)
{
sRenderScriptedTouchBeacons = val;
}
// static
void LLPipeline::toggleRenderScriptedTouchBeacons(void*)
{
sRenderScriptedTouchBeacons = !sRenderScriptedTouchBeacons;
}
// static
BOOL LLPipeline::getRenderScriptedTouchBeacons(void*)
{
return sRenderScriptedTouchBeacons;
}
// static
void LLPipeline::setRenderMOAPBeacons(BOOL val)
{
sRenderMOAPBeacons = val;
}
// static
void LLPipeline::toggleRenderMOAPBeacons(void*)
{
sRenderMOAPBeacons = !sRenderMOAPBeacons;
}
// static
BOOL LLPipeline::getRenderMOAPBeacons(void*)
{
return sRenderMOAPBeacons;
}
// static
void LLPipeline::setRenderPhysicalBeacons(BOOL val)
{
sRenderPhysicalBeacons = val;
}
// static
void LLPipeline::toggleRenderPhysicalBeacons(void*)
{
sRenderPhysicalBeacons = !sRenderPhysicalBeacons;
}
// static
BOOL LLPipeline::getRenderPhysicalBeacons(void*)
{
return sRenderPhysicalBeacons;
}
// static
void LLPipeline::setRenderParticleBeacons(BOOL val)
{
sRenderParticleBeacons = val;
}
// static
void LLPipeline::toggleRenderParticleBeacons(void*)
{
sRenderParticleBeacons = !sRenderParticleBeacons;
}
// static
BOOL LLPipeline::getRenderParticleBeacons(void*)
{
return sRenderParticleBeacons;
}
// static
void LLPipeline::setRenderSoundBeacons(BOOL val)
{
sRenderSoundBeacons = val;
}
// static
void LLPipeline::toggleRenderSoundBeacons(void*)
{
sRenderSoundBeacons = !sRenderSoundBeacons;
}
// static
BOOL LLPipeline::getRenderSoundBeacons(void*)
{
return sRenderSoundBeacons;
}
// static
void LLPipeline::setRenderBeacons(BOOL val)
{
sRenderBeacons = val;
}
// static
void LLPipeline::toggleRenderBeacons(void*)
{
sRenderBeacons = !sRenderBeacons;
}
// static
BOOL LLPipeline::getRenderBeacons(void*)
{
return sRenderBeacons;
}
// static
void LLPipeline::setRenderHighlights(BOOL val)
{
sRenderHighlight = val;
}
// static
void LLPipeline::toggleRenderHighlights(void*)
{
sRenderHighlight = !sRenderHighlight;
}
// static
BOOL LLPipeline::getRenderHighlights(void*)
{
return sRenderHighlight;
}
// static
void LLPipeline::setRenderHighlightTextureChannel(LLRender::eTexIndex channel)
{
sRenderHighlightTextureChannel = channel;
}
LLVOPartGroup* LLPipeline::lineSegmentIntersectParticle(const LLVector4a& start, const LLVector4a& end, LLVector4a* intersection,
S32* face_hit)
{
LLVector4a local_end = end;
LLVector4a position;
LLDrawable* drawable = NULL;
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
LLSpatialPartition* part = region->getSpatialPartition(LLViewerRegion::PARTITION_PARTICLE);
if (part && hasRenderType(part->mDrawableType))
{
LLDrawable* hit = part->lineSegmentIntersect(start, local_end, TRUE, face_hit, &position, NULL, NULL, NULL);
if (hit)
{
drawable = hit;
local_end = position;
}
}
}
LLVOPartGroup* ret = NULL;
if (drawable)
{
//make sure we're returning an LLVOPartGroup
llassert(drawable->getVObj()->getPCode() == LLViewerObject::LL_VO_PART_GROUP);
ret = (LLVOPartGroup*) drawable->getVObj().get();
}
if (intersection)
{
*intersection = position;
}
return ret;
}
LLViewerObject* LLPipeline::lineSegmentIntersectInWorld(const LLVector4a& start, const LLVector4a& end,
BOOL pick_transparent,
S32* face_hit,
LLVector4a* intersection, // return the intersection point
LLVector2* tex_coord, // return the texture coordinates of the intersection point
LLVector4a* normal, // return the surface normal at the intersection point
LLVector4a* tangent // return the surface tangent at the intersection point
)
{
LLDrawable* drawable = NULL;
LLVector4a local_end = end;
LLVector4a position;
sPickAvatar = FALSE; //LLToolMgr::getInstance()->inBuildMode() ? FALSE : TRUE;
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 j = 0; j < LLViewerRegion::NUM_PARTITIONS; j++)
{
if ((j == LLViewerRegion::PARTITION_VOLUME) ||
(j == LLViewerRegion::PARTITION_BRIDGE) ||
(j == LLViewerRegion::PARTITION_TERRAIN) ||
(j == LLViewerRegion::PARTITION_TREE) ||
(j == LLViewerRegion::PARTITION_GRASS)) // only check these partitions for now
{
LLSpatialPartition* part = region->getSpatialPartition(j);
if (part && hasRenderType(part->mDrawableType))
{
LLDrawable* hit = part->lineSegmentIntersect(start, local_end, pick_transparent, face_hit, &position, tex_coord, normal, tangent);
if (hit)
{
drawable = hit;
local_end = position;
}
}
}
}
}
if (!sPickAvatar)
{
//save hit info in case we need to restore
//due to attachment override
LLVector4a local_normal;
LLVector4a local_tangent;
LLVector2 local_texcoord;
S32 local_face_hit = -1;
if (face_hit)
{
local_face_hit = *face_hit;
}
if (tex_coord)
{
local_texcoord = *tex_coord;
}
if (tangent)
{
local_tangent = *tangent;
}
else
{
local_tangent.clear();
}
if (normal)
{
local_normal = *normal;
}
else
{
local_normal.clear();
}
const F32 ATTACHMENT_OVERRIDE_DIST = 0.1f;
//check against avatars
sPickAvatar = TRUE;
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
LLSpatialPartition* part = region->getSpatialPartition(LLViewerRegion::PARTITION_BRIDGE);
if (part && hasRenderType(part->mDrawableType))
{
LLDrawable* hit = part->lineSegmentIntersect(start, local_end, pick_transparent, face_hit, &position, tex_coord, normal, tangent);
if (hit)
{
LLVector4a delta;
delta.setSub(position, local_end);
if (!drawable ||
!drawable->getVObj()->isAttachment() ||
delta.getLength3().getF32() > ATTACHMENT_OVERRIDE_DIST)
{ //avatar overrides if previously hit drawable is not an attachment or
//attachment is far enough away from detected intersection
drawable = hit;
local_end = position;
}
else
{ //prioritize attachments over avatars
position = local_end;
if (face_hit)
{
*face_hit = local_face_hit;
}
if (tex_coord)
{
*tex_coord = local_texcoord;
}
if (tangent)
{
*tangent = local_tangent;
}
if (normal)
{
*normal = local_normal;
}
}
}
}
}
}
//check all avatar nametags (silly, isn't it?)
for (std::vector< LLCharacter* >::iterator iter = LLCharacter::sInstances.begin();
iter != LLCharacter::sInstances.end();
++iter)
{
LLVOAvatar* av = (LLVOAvatar*) *iter;
if (av->mNameText.notNull()
&& av->mNameText->lineSegmentIntersect(start, local_end, position))
{
drawable = av->mDrawable;
local_end = position;
}
}
if (intersection)
{
*intersection = position;
}
return drawable ? drawable->getVObj().get() : NULL;
}
LLViewerObject* LLPipeline::lineSegmentIntersectInHUD(const LLVector4a& start, const LLVector4a& end,
BOOL pick_transparent,
S32* face_hit,
LLVector4a* intersection, // return the intersection point
LLVector2* tex_coord, // return the texture coordinates of the intersection point
LLVector4a* normal, // return the surface normal at the intersection point
LLVector4a* tangent // return the surface tangent at the intersection point
)
{
LLDrawable* drawable = NULL;
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
BOOL toggle = FALSE;
if (!hasRenderType(LLPipeline::RENDER_TYPE_HUD))
{
toggleRenderType(LLPipeline::RENDER_TYPE_HUD);
toggle = TRUE;
}
LLSpatialPartition* part = region->getSpatialPartition(LLViewerRegion::PARTITION_HUD);
if (part)
{
LLDrawable* hit = part->lineSegmentIntersect(start, end, pick_transparent, face_hit, intersection, tex_coord, normal, tangent);
if (hit)
{
drawable = hit;
}
}
if (toggle)
{
toggleRenderType(LLPipeline::RENDER_TYPE_HUD);
}
}
return drawable ? drawable->getVObj().get() : NULL;
}
LLSpatialPartition* LLPipeline::getSpatialPartition(LLViewerObject* vobj)
{
if (vobj)
{
LLViewerRegion* region = vobj->getRegion();
if (region)
{
return region->getSpatialPartition(vobj->getPartitionType());
}
}
return NULL;
}
void LLPipeline::resetVertexBuffers(LLDrawable* drawable)
{
if (!drawable)
{
return;
}
for (S32 i = 0; i < drawable->getNumFaces(); i++)
{
LLFace* facep = drawable->getFace(i);
if (facep)
{
facep->clearVertexBuffer();
}
}
}
void LLPipeline::resetVertexBuffers()
{
mResetVertexBuffers = true;
}
static LLFastTimer::DeclareTimer FTM_RESET_VB("Reset VB");
void LLPipeline::doResetVertexBuffers()
{
if (!mResetVertexBuffers)
{
return;
}
LLFastTimer t(FTM_RESET_VB);
mResetVertexBuffers = false;
mCubeVB = NULL;
mDeferredVB = NULL;
for (LLWorld::region_list_t::const_iterator iter = LLWorld::getInstance()->getRegionList().begin();
iter != LLWorld::getInstance()->getRegionList().end(); ++iter)
{
LLViewerRegion* region = *iter;
for (U32 i = 0; i < LLViewerRegion::NUM_PARTITIONS; i++)
{
LLSpatialPartition* part = region->getSpatialPartition(i);
if (part)
{
part->resetVertexBuffers();
}
}
}
resetDrawOrders();
gSky.resetVertexBuffers();
LLVOPartGroup::destroyGL();
if(LLPostProcess::instanceExists())
LLPostProcess::getInstance()->destroyGL();
LLVOPartGroup::destroyGL();
LLVertexBuffer::cleanupClass();
//delete all name pool caches
LLGLNamePool::cleanupPools();
if (LLVertexBuffer::sGLCount > 0)
{
llwarns << "VBO wipe failed -- " << LLVertexBuffer::sGLCount << " buffers remaining." << llendl;
}
LLVertexBuffer::unbind();
sRenderBump = gSavedSettings.getBOOL("RenderObjectBump");
LLVertexBuffer::sUseStreamDraw = gSavedSettings.getBOOL("ShyotlRenderUseStreamVBO");
LLVertexBuffer::sUseVAO = gSavedSettings.getBOOL("RenderUseVAO") && gPipeline.canUseVertexShaders(); //Temporary workaround for vaos being broken when shaders are off
LLVertexBuffer::sPreferStreamDraw = gSavedSettings.getBOOL("RenderPreferStreamDraw");
LLVertexBuffer::sEnableVBOs = gSavedSettings.getBOOL("RenderVBOEnable");
LLVertexBuffer::sDisableVBOMapping = LLVertexBuffer::sEnableVBOs;// && gSavedSettings.getBOOL("RenderVBOMappingDisable") ; //Temporary workaround for vbo mapping being straight up broken
sBakeSunlight = gSavedSettings.getBOOL("RenderBakeSunlight");
sNoAlpha = gSavedSettings.getBOOL("RenderNoAlpha");
LLPipeline::sTextureBindTest = gSavedSettings.getBOOL("RenderDebugTextureBind");
LLVertexBuffer::initClass(LLVertexBuffer::sEnableVBOs, LLVertexBuffer::sDisableVBOMapping);
LLVOPartGroup::restoreGL();
}
void LLPipeline::renderObjects(U32 type, U32 mask, BOOL texture, BOOL batch_texture)
{
assertInitialized();
gGL.loadMatrix(gGLModelView.getF32ptr());
gGLLastMatrix = NULL;
mSimplePool->pushBatches(type, mask, texture, batch_texture);
gGL.loadMatrix(gGLModelView.getF32ptr());
gGLLastMatrix = NULL;
}
void LLPipeline::renderMaskedObjects(U32 type, U32 mask, BOOL texture, BOOL batch_texture)
{
assertInitialized();
gGL.loadMatrix(gGLModelView.getF32ptr());
gGLLastMatrix = NULL;
mAlphaMaskPool->pushMaskBatches(type, mask, texture, batch_texture);
gGL.loadMatrix(gGLModelView.getF32ptr());
gGLLastMatrix = NULL;
}
void apply_cube_face_rotation(U32 face)
{
switch (face)
{
case 0:
gGL.rotatef(90.f, 0, 1, 0);
gGL.rotatef(180.f, 1, 0, 0);
break;
case 2:
gGL.rotatef(-90.f, 1, 0, 0);
break;
case 4:
gGL.rotatef(180.f, 0, 1, 0);
gGL.rotatef(180.f, 0, 0, 1);
break;
case 1:
gGL.rotatef(-90.f, 0, 1, 0);
gGL.rotatef(180.f, 1, 0, 0);
break;
case 3:
gGL.rotatef(90, 1, 0, 0);
break;
case 5:
gGL.rotatef(180, 0, 0, 1);
break;
}
}
void validate_framebuffer_object()
{
GLenum status;
status = glCheckFramebufferStatus(GL_FRAMEBUFFER_EXT);
switch(status)
{
case GL_FRAMEBUFFER_COMPLETE:
//framebuffer OK, no error.
break;
case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:
// frame buffer not OK: probably means unsupported depth buffer format
llerrs << "Framebuffer Incomplete Missing Attachment." << llendl;
break;
case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT: //May not work on mac. Remove/ifdef if that's the case, for now. GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS missing from glext.h.
// frame buffer not OK: probably means unsupported depth buffer format
llerrs << "Framebuffer Incomplete Dimensions." << llendl;
break;
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT:
// frame buffer not OK: probably means unsupported depth buffer format
llerrs << "Framebuffer Incomplete Attachment." << llendl;
break;
case GL_FRAMEBUFFER_UNSUPPORTED:
/* choose different formats */
llerrs << "Framebuffer unsupported." << llendl;
break;
default:
llerrs << "Unknown framebuffer status." << llendl;
break;
}
}
void LLPipeline::bindScreenToTexture()
{
}
static LLFastTimer::DeclareTimer FTM_RENDER_BLOOM("Bloom");
void LLPipeline::renderBloom(BOOL for_snapshot, F32 zoom_factor, int subfield, bool tiling)
{
if (!(gPipeline.canUseVertexShaders() &&
sRenderGlow))
{
return;
}
static const LLCachedControl<U32> RenderResolutionDivisor("RenderResolutionDivisor",1);
static const LLCachedControl<F32> RenderGlowMinLuminance("RenderGlowMinLuminance",2.5);
static const LLCachedControl<F32> RenderGlowMaxExtractAlpha("RenderGlowMaxExtractAlpha",0.065f);
static const LLCachedControl<F32> RenderGlowWarmthAmount("RenderGlowWarmthAmount",0.0f);
static const LLCachedControl<LLVector3> RenderGlowLumWeights("RenderGlowLumWeights",LLVector3(.299f,.587f,.114f));
static const LLCachedControl<LLVector3> RenderGlowWarmthWeights("RenderGlowWarmthWeights",LLVector3(1.f,.5f,.7f));
static const LLCachedControl<S32> RenderGlowResolutionPow("RenderGlowResolutionPow",9);
static const LLCachedControl<S32> RenderGlowIterations("RenderGlowIterations",2);
static const LLCachedControl<F32> RenderGlowWidth("RenderGlowWidth",1.3f);
static const LLCachedControl<F32> RenderGlowStrength("RenderGlowStrength",.35f);
static const LLCachedControl<bool> RenderDepthOfField("RenderDepthOfField",false);
static const LLCachedControl<F32> CameraFocusTransitionTime("CameraFocusTransitionTime",.5f);
static const LLCachedControl<F32> CameraFNumber("CameraFNumber",9.f);
static const LLCachedControl<F32> CameraFocalLength("CameraFocalLength",50.f);
static const LLCachedControl<F32> CameraFieldOfView("CameraFieldOfView",60.f);
static const LLCachedControl<F32> CameraMaxCoF("CameraMaxCoF",10.0f);
static const LLCachedControl<F32> CameraDoFResScale("CameraDoFResScale",.7f);
static const LLCachedControl<U32> RenderFSAASamples("RenderFSAASamples",0);
LLVertexBuffer::unbind();
LLGLState::checkStates();
LLGLState::checkTextureChannels();
assertInitialized();
if (gUseWireframe)
{
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
}
//U32 res_mod = RenderResolutionDivisor;//.get();
LLVector2 tc1(0,0);
LLVector2 tc2((F32) mScreen.getWidth()*2,
(F32) mScreen.getHeight()*2);
/*if (res_mod > 1)
{
tc2 /= (F32) res_mod;
}*/
LLFastTimer ftm(FTM_RENDER_BLOOM);
gGL.color4f(1,1,1,1);
LLGLDepthTest depth(GL_FALSE);
LLGLDisable blend(GL_BLEND);
LLGLDisable cull(GL_CULL_FACE);
enableLightsFullbright(LLColor4(1,1,1,1));
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.pushMatrix();
gGL.loadIdentity();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.pushMatrix();
gGL.loadIdentity();
LLGLDisable test(GL_ALPHA_TEST);
gGL.setColorMask(true, true);
glClearColor(0,0,0,0);
if (tiling && !LLPipeline::sRenderDeferred) //Need to coax this into working with deferred now that tiling is back.
{
gGlowCombineProgram.bind();
gGL.getTexUnit(0)->bind(&mGlow[1]);
{
//LLGLEnable stencil(GL_STENCIL_TEST);
//glStencilFunc(GL_NOTEQUAL, 255, 0xFFFFFFFF);
//glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
//LLGLDisable blend(GL_BLEND);
// If the snapshot is constructed from tiles, calculate which
// tile we're in.
const S32 num_horizontal_tiles = llceil(zoom_factor);
const LLVector2 tile(subfield % num_horizontal_tiles,
(S32)(subfield / num_horizontal_tiles));
llassert(zoom_factor > 0.0); // Non-zero, non-negative.
const F32 tile_size = 1.0/zoom_factor;
tc1 = tile*tile_size; // Top left texture coordinates
tc2 = (tile+LLVector2(1,1))*tile_size; // Bottom right texture coordinates
LLGLEnable blend(GL_BLEND);
gGL.setSceneBlendType(LLRender::BT_ADD);
gGL.begin(LLRender::TRIANGLE_STRIP);
gGL.color4f(1,1,1,1);
gGL.texCoord2f(tc1.mV[0], tc1.mV[1]);
gGL.vertex2f(-1,-1);
gGL.texCoord2f(tc1.mV[0], tc2.mV[1]);
gGL.vertex2f(-1,1);
gGL.texCoord2f(tc2.mV[0], tc1.mV[1]);
gGL.vertex2f(1,-1);
gGL.texCoord2f(tc2.mV[0], tc2.mV[1]);
gGL.vertex2f(1,1);
gGL.end();
gGL.flush();
gGL.setSceneBlendType(LLRender::BT_ALPHA);
}
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.popMatrix();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.popMatrix();
gGlowCombineProgram.unbind();
gGL.flush();
return;
}
{
{
LLFastTimer ftm(FTM_RENDER_BLOOM_FBO);
mGlow[1].bindTarget();
mGlow[1].clear();
}
gGlowExtractProgram.bind();
F32 minLum = llmax((F32) RenderGlowMinLuminance/*.get()*/, 0.0f);
F32 maxAlpha = RenderGlowMaxExtractAlpha;
F32 warmthAmount = RenderGlowWarmthAmount;
LLVector3 lumWeights = RenderGlowLumWeights;//.get();
LLVector3 warmthWeights = RenderGlowWarmthWeights;//.get();
gGlowExtractProgram.uniform1f(LLShaderMgr::GLOW_MIN_LUMINANCE, minLum);
gGlowExtractProgram.uniform1f(LLShaderMgr::GLOW_MAX_EXTRACT_ALPHA, maxAlpha);
gGlowExtractProgram.uniform3f(LLShaderMgr::GLOW_LUM_WEIGHTS, lumWeights.mV[0], lumWeights.mV[1], lumWeights.mV[2]);
gGlowExtractProgram.uniform3f(LLShaderMgr::GLOW_WARMTH_WEIGHTS, warmthWeights.mV[0], warmthWeights.mV[1], warmthWeights.mV[2]);
gGlowExtractProgram.uniform1f(LLShaderMgr::GLOW_WARMTH_AMOUNT, warmthAmount);
LLGLEnable blend_on(GL_BLEND);
LLGLEnable test(GL_ALPHA_TEST);
gGL.setSceneBlendType(LLRender::BT_ADD_WITH_ALPHA);
mScreen.bindTexture(0, 0);
gGL.color4f(1,1,1,1);
gPipeline.enableLightsFullbright(LLColor4(1,1,1,1));
gGL.begin(LLRender::TRIANGLE_STRIP);
gGL.texCoord2f(tc1.mV[0], tc1.mV[1]);
gGL.vertex2f(-1,-1);
gGL.texCoord2f(tc1.mV[0], tc2.mV[1]);
gGL.vertex2f(-1,3);
gGL.texCoord2f(tc2.mV[0], tc1.mV[1]);
gGL.vertex2f(3,-1);
gGL.end();
gGL.getTexUnit(0)->unbind(mScreen.getUsage());
mGlow[1].flush();
}
tc1.setVec(0,0);
tc2.setVec(2,2);
// power of two between 1 and 1024
U32 glowResPow = RenderGlowResolutionPow;
const U32 glow_res = llmax(1,
llmin(1024, 1 << glowResPow));
S32 kernel = RenderGlowIterations*2;
F32 delta = RenderGlowWidth * zoom_factor / glow_res;
// Use half the glow width if we have the res set to less than 9 so that it looks
// almost the same in either case.
if (glowResPow < 9)
{
delta *= 0.5f;
}
F32 strength = RenderGlowStrength;
gGlowProgram.bind();
gGlowProgram.uniform1f(LLShaderMgr::GLOW_STRENGTH, strength);
for (S32 i = 0; i < kernel; i++)
{
{
LLFastTimer ftm(FTM_RENDER_BLOOM_FBO);
mGlow[i%2].bindTarget();
mGlow[i%2].clear();
}
gGL.getTexUnit(0)->bind(&mGlow[(i+1)%2]);
if (i%2 == 0)
{
gGlowProgram.uniform2f(LLShaderMgr::GLOW_DELTA, delta, 0);
}
else
{
gGlowProgram.uniform2f(LLShaderMgr::GLOW_DELTA, 0, delta);
}
gGL.begin(LLRender::TRIANGLE_STRIP);
gGL.texCoord2f(tc1.mV[0], tc1.mV[1]);
gGL.vertex2f(-1,-1);
gGL.texCoord2f(tc1.mV[0], tc2.mV[1]);
gGL.vertex2f(-1,3);
gGL.texCoord2f(tc2.mV[0], tc1.mV[1]);
gGL.vertex2f(3,-1);
gGL.end();
mGlow[i%2].flush();
}
gGlowProgram.unbind();
/*if (LLRenderTarget::sUseFBO)
{
LLFastTimer ftm(FTM_RENDER_BLOOM_FBO);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}*/
gGLViewport[0] = gViewerWindow->getWorldViewRectRaw().mLeft;
gGLViewport[1] = gViewerWindow->getWorldViewRectRaw().mBottom;
gGLViewport[2] = gViewerWindow->getWorldViewRectRaw().getWidth();
gGLViewport[3] = gViewerWindow->getWorldViewRectRaw().getHeight();
glViewport(gGLViewport[0], gGLViewport[1], gGLViewport[2], gGLViewport[3]);
tc2.setVec((F32) mScreen.getWidth(),
(F32) mScreen.getHeight());
gGL.flush();
LLVertexBuffer::unbind();
if (LLPipeline::sRenderDeferred)
{
bool dof_enabled = !LLViewerCamera::getInstance()->cameraUnderWater() &&
!LLToolMgr::getInstance()->inBuildMode() &&
RenderDepthOfField;
bool multisample = RenderFSAASamples > 1 && mFXAABuffer.isComplete();
gViewerWindow->setup3DViewport();
if (dof_enabled)
{
LLGLSLShader* shader = &gDeferredPostProgram;
LLGLDisable blend(GL_BLEND);
//depth of field focal plane calculations
static F32 current_distance = 16.f;
static F32 start_distance = 16.f;
static F32 transition_time = 1.f;
LLVector3 focus_point;
LLViewerObject* obj = LLViewerMediaFocus::getInstance()->getFocusedObject();
if (obj && obj->mDrawable && obj->isSelected())
{ //focus on selected media object
S32 face_idx = LLViewerMediaFocus::getInstance()->getFocusedFace();
if (obj && obj->mDrawable)
{
LLFace* face = obj->mDrawable->getFace(face_idx);
if (face)
{
focus_point = face->getPositionAgent();
}
}
}
if (focus_point.isExactlyZero())
{
if (LLViewerJoystick::getInstance()->getOverrideCamera())
{ //focus on point under cursor
focus_point.set(gDebugRaycastIntersection.getF32ptr());
}
else if (gAgentCamera.cameraMouselook())
{ //focus on point under mouselook crosshairs
LLVector4a result;
result.clear();
gViewerWindow->cursorIntersect(-1, -1, 512.f, NULL, -1, FALSE,
NULL,
&result);
focus_point.set(result.getF32ptr());
}
else if(gAgent.getRegion())
{
//focus on alt-zoom target
focus_point = LLVector3(gAgentCamera.getFocusGlobal()-gAgent.getRegion()->getOriginGlobal());
}
}
LLVector3 eye = LLViewerCamera::getInstance()->getOrigin();
F32 target_distance = 16.f;
if (!focus_point.isExactlyZero())
{
target_distance = LLViewerCamera::getInstance()->getAtAxis() * (focus_point-eye);
}
if (transition_time >= 1.f &&
fabsf(current_distance-target_distance)/current_distance > 0.01f)
{ //large shift happened, interpolate smoothly to new target distance
transition_time = 0.f;
start_distance = current_distance;
}
else if (transition_time < 1.f)
{ //currently in a transition, continue interpolating
transition_time += 1.f/CameraFocusTransitionTime*gFrameIntervalSeconds;
transition_time = llmin(transition_time, 1.f);
F32 t = cosf(transition_time*F_PI+F_PI)*0.5f+0.5f;
current_distance = start_distance + (target_distance-start_distance)*t;
}
else
{ //small or no change, just snap to target distance
current_distance = target_distance;
}
//convert to mm
F32 subject_distance = current_distance*1000.f;
F32 fnumber = CameraFNumber;
F32 default_focal_length = CameraFocalLength;
F32 fov = LLViewerCamera::getInstance()->getView();
const F32 default_fov = CameraFieldOfView * F_PI/180.f;
//const F32 default_aspect_ratio = gSavedSettings.getF32("CameraAspectRatio");
//F32 aspect_ratio = (F32) mScreen.getWidth()/(F32)mScreen.getHeight();
F32 dv = 2.f*default_focal_length * tanf(default_fov/2.f);
//F32 dh = 2.f*default_focal_length * tanf(default_fov*default_aspect_ratio/2.f);
F32 focal_length = dv/(2*tanf(fov/2.f));
//F32 tan_pixel_angle = tanf(LLDrawable::sCurPixelAngle);
// from wikipedia -- c = |s2-s1|/s2 * f^2/(N(S1-f))
// where N = fnumber
// s2 = dot distance
// s1 = subject distance
// f = focal length
//
F32 blur_constant = focal_length*focal_length/(fnumber*(subject_distance-focal_length));
blur_constant /= 1000.f; //convert to meters for shader
F32 magnification = focal_length/(subject_distance-focal_length);
{ //build diffuse+bloom+CoF
mDeferredLight.bindTarget();
shader = &gDeferredCoFProgram;
bindDeferredShader(*shader);
S32 channel = shader->enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, mScreen.getUsage());
if (channel > -1)
{
mScreen.bindTexture(0, channel);
}
shader->uniform1f(LLShaderMgr::DOF_FOCAL_DISTANCE, -subject_distance/1000.f);
shader->uniform1f(LLShaderMgr::DOF_BLUR_CONSTANT, blur_constant);
shader->uniform1f(LLShaderMgr::DOF_TAN_PIXEL_ANGLE, tanf(1.f/LLDrawable::sCurPixelAngle));
shader->uniform1f(LLShaderMgr::DOF_MAGNIFICATION, magnification);
shader->uniform1f(LLShaderMgr::DOF_MAX_COF, CameraMaxCoF);
shader->uniform1f(LLShaderMgr::DOF_RES_SCALE, CameraDoFResScale);
gGL.begin(LLRender::TRIANGLE_STRIP);
gGL.texCoord2f(tc1.mV[0], tc1.mV[1]);
gGL.vertex2f(-1,-1);
gGL.texCoord2f(tc1.mV[0], tc2.mV[1]);
gGL.vertex2f(-1,3);
gGL.texCoord2f(tc2.mV[0], tc1.mV[1]);
gGL.vertex2f(3,-1);
gGL.end();
unbindDeferredShader(*shader);
mDeferredLight.flush();
}
U32 dof_width = (U32) (mScreen.getWidth()*CameraDoFResScale);
U32 dof_height = (U32) (mScreen.getHeight()*CameraDoFResScale);
{ //perform DoF sampling at half-res (preserve alpha channel)
mScreen.bindTarget();
glViewport(0,0, dof_width, dof_height);
gGL.setColorMask(true, false);
shader = &gDeferredPostProgram;
bindDeferredShader(*shader);
S32 channel = shader->enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, mDeferredLight.getUsage());
if (channel > -1)
{
mDeferredLight.bindTexture(0, channel);
}
shader->uniform1f(LLShaderMgr::DOF_MAX_COF, CameraMaxCoF);
shader->uniform1f(LLShaderMgr::DOF_RES_SCALE, CameraDoFResScale);
gGL.begin(LLRender::TRIANGLE_STRIP);
gGL.texCoord2f(tc1.mV[0], tc1.mV[1]);
gGL.vertex2f(-1,-1);
gGL.texCoord2f(tc1.mV[0], tc2.mV[1]);
gGL.vertex2f(-1,3);
gGL.texCoord2f(tc2.mV[0], tc1.mV[1]);
gGL.vertex2f(3,-1);
gGL.end();
unbindDeferredShader(*shader);
mScreen.flush();
gGL.setColorMask(true, true);
}
{ //combine result based on alpha
if (multisample)
{
mDeferredLight.bindTarget();
glViewport(0, 0, mDeferredScreen.getWidth(), mDeferredScreen.getHeight());
}
else
{
gGLViewport[0] = gViewerWindow->getWorldViewRectRaw().mLeft;
gGLViewport[1] = gViewerWindow->getWorldViewRectRaw().mBottom;
gGLViewport[2] = gViewerWindow->getWorldViewRectRaw().getWidth();
gGLViewport[3] = gViewerWindow->getWorldViewRectRaw().getHeight();
glViewport(gGLViewport[0], gGLViewport[1], gGLViewport[2], gGLViewport[3]);
}
shader = &gDeferredDoFCombineProgram;
bindDeferredShader(*shader);
S32 channel = shader->enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, mScreen.getUsage());
if (channel > -1)
{
mScreen.bindTexture(0, channel);
gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_BILINEAR);
}
if (!LLViewerCamera::getInstance()->cameraUnderWater())
{
shader->uniform1f(LLShaderMgr::GLOBAL_GAMMA, 2.2);
} else {
shader->uniform1f(LLShaderMgr::GLOBAL_GAMMA, 1.0);
}
shader->uniform1f(LLShaderMgr::DOF_MAX_COF, CameraMaxCoF);
shader->uniform1f(LLShaderMgr::DOF_RES_SCALE, CameraDoFResScale);
shader->uniform1f(LLShaderMgr::DOF_WIDTH, dof_width-1);
shader->uniform1f(LLShaderMgr::DOF_HEIGHT, dof_height-1);
gGL.begin(LLRender::TRIANGLE_STRIP);
gGL.texCoord2f(tc1.mV[0], tc1.mV[1]);
gGL.vertex2f(-1,-1);
gGL.texCoord2f(tc1.mV[0], tc2.mV[1]);
gGL.vertex2f(-1,3);
gGL.texCoord2f(tc2.mV[0], tc1.mV[1]);
gGL.vertex2f(3,-1);
gGL.end();
unbindDeferredShader(*shader);
if (multisample)
{
mDeferredLight.flush();
}
}
}
else
{
if (multisample)
{
mDeferredLight.bindTarget();
}
LLGLSLShader* shader = &gDeferredPostNoDoFProgram;
bindDeferredShader(*shader);
S32 channel = shader->enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, mScreen.getUsage());
if (channel > -1)
{
mScreen.bindTexture(0, channel);
}
if (!LLViewerCamera::getInstance()->cameraUnderWater())
{
shader->uniform1f(LLShaderMgr::GLOBAL_GAMMA, 2.2);
} else {
shader->uniform1f(LLShaderMgr::GLOBAL_GAMMA, 1.0);
}
gGL.begin(LLRender::TRIANGLE_STRIP);
gGL.texCoord2f(tc1.mV[0], tc1.mV[1]);
gGL.vertex2f(-1,-1);
gGL.texCoord2f(tc1.mV[0], tc2.mV[1]);
gGL.vertex2f(-1,3);
gGL.texCoord2f(tc2.mV[0], tc1.mV[1]);
gGL.vertex2f(3,-1);
gGL.end();
unbindDeferredShader(*shader);
if (multisample)
{
mDeferredLight.flush();
}
}
if (multisample)
{
//bake out texture2D with RGBL for FXAA shader
mFXAABuffer.bindTarget();
S32 width = mScreen.getWidth();
S32 height = mScreen.getHeight();
glViewport(0, 0, width, height);
LLGLSLShader* shader = &gGlowCombineFXAAProgram;
shader->bind();
shader->uniform2f(LLShaderMgr::DEFERRED_SCREEN_RES, width, height);
S32 channel = shader->enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, mDeferredLight.getUsage());
if (channel > -1)
{
mDeferredLight.bindTexture(0, channel);
}
gGL.begin(LLRender::TRIANGLE_STRIP);
gGL.vertex2f(-1,-1);
gGL.vertex2f(-1,3);
gGL.vertex2f(3,-1);
gGL.end();
gGL.flush();
shader->disableTexture(LLShaderMgr::DEFERRED_DIFFUSE, mDeferredLight.getUsage());
shader->unbind();
mFXAABuffer.flush();
shader = &gFXAAProgram;
shader->bind();
channel = shader->enableTexture(LLShaderMgr::DIFFUSE_MAP, mFXAABuffer.getUsage());
if (channel > -1)
{
mFXAABuffer.bindTexture(0, channel);
gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_BILINEAR);
}
gGLViewport[0] = gViewerWindow->getWorldViewRectRaw().mLeft;
gGLViewport[1] = gViewerWindow->getWorldViewRectRaw().mBottom;
gGLViewport[2] = gViewerWindow->getWorldViewRectRaw().getWidth();
gGLViewport[3] = gViewerWindow->getWorldViewRectRaw().getHeight();
glViewport(gGLViewport[0], gGLViewport[1], gGLViewport[2], gGLViewport[3]);
F32 scale_x = (F32) width/mFXAABuffer.getWidth();
F32 scale_y = (F32) height/mFXAABuffer.getHeight();
shader->uniform2f(LLShaderMgr::FXAA_TC_SCALE, scale_x, scale_y);
shader->uniform2f(LLShaderMgr::FXAA_RCP_SCREEN_RES, 1.f/width*scale_x, 1.f/height*scale_y);
shader->uniform4f(LLShaderMgr::FXAA_RCP_FRAME_OPT, -0.5f/width*scale_x, -0.5f/height*scale_y, 0.5f/width*scale_x, 0.5f/height*scale_y);
shader->uniform4f(LLShaderMgr::FXAA_RCP_FRAME_OPT2, -2.f/width*scale_x, -2.f/height*scale_y, 2.f/width*scale_x, 2.f/height*scale_y);
gGL.begin(LLRender::TRIANGLE_STRIP);
gGL.vertex2f(-1,-1);
gGL.vertex2f(-1,3);
gGL.vertex2f(3,-1);
gGL.end();
gGL.flush();
shader->unbind();
}
}
else
{
/*if (res_mod > 1)
{
tc2 /= (F32) res_mod;
}*/
U32 mask = LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0 | LLVertexBuffer::MAP_TEXCOORD1;
LLPointer<LLVertexBuffer> buff = new LLVertexBuffer(mask, 0);
buff->allocateBuffer(3,0,TRUE);
LLStrider<LLVector3> v;
LLStrider<LLVector2> uv1;
LLStrider<LLVector2> uv2;
buff->getVertexStrider(v);
buff->getTexCoord0Strider(uv1);
buff->getTexCoord1Strider(uv2);
uv1[0] = LLVector2(0, 0);
uv1[1] = LLVector2(0, 2);
uv1[2] = LLVector2(2, 0);
uv2[0] = LLVector2(0, 0);
uv2[1] = LLVector2(0, tc2.mV[1]*2.f);
uv2[2] = LLVector2(tc2.mV[0]*2.f, 0);
v[0] = LLVector3(-1,-1,0);
v[1] = LLVector3(-1,3,0);
v[2] = LLVector3(3,-1,0);
buff->flush();
LLGLDisable blend(GL_BLEND);
if (LLGLSLShader::sNoFixedFunction)
{
gGlowCombineProgram.bind();
}
else
{
//tex unit 0
gGL.getTexUnit(0)->setTextureColorBlend(LLTexUnit::TBO_REPLACE, LLTexUnit::TBS_TEX_COLOR);
//tex unit 1
gGL.getTexUnit(1)->setTextureColorBlend(LLTexUnit::TBO_ADD, LLTexUnit::TBS_TEX_COLOR, LLTexUnit::TBS_PREV_COLOR);
}
gGL.getTexUnit(0)->bind(&mGlow[1]);
gGL.getTexUnit(1)->bind(&mScreen);
LLGLEnable multisample(RenderFSAASamples > 0 ? GL_MULTISAMPLE_ARB : 0);
buff->setBuffer(mask);
buff->drawArrays(LLRender::TRIANGLE_STRIP, 0, 3);
if (LLGLSLShader::sNoFixedFunction)
{
gGlowCombineProgram.unbind();
}
else
{
gGL.getTexUnit(1)->disable();
gGL.getTexUnit(1)->setTextureBlendType(LLTexUnit::TB_MULT);
gGL.getTexUnit(0)->activate();
gGL.getTexUnit(0)->setTextureBlendType(LLTexUnit::TB_MULT);
}
}
gGL.setSceneBlendType(LLRender::BT_ALPHA);
if (hasRenderDebugMask(LLPipeline::RENDER_DEBUG_PHYSICS_SHAPES))
{
if (LLGLSLShader::sNoFixedFunction)
{
gSplatTextureRectProgram.bind();
}
gGL.setColorMask(true, false);
LLVector2 tc1(0,0);
LLVector2 tc2((F32) gViewerWindow->getWorldViewWidthRaw()*2,
(F32) gViewerWindow->getWorldViewHeightRaw()*2);
LLGLEnable blend(GL_BLEND);
gGL.color4f(1,1,1,0.75f);
gGL.getTexUnit(0)->bind(&mPhysicsDisplay);
gGL.begin(LLRender::TRIANGLES);
gGL.texCoord2f(tc1.mV[0], tc1.mV[1]);
gGL.vertex2f(-1,-1);
gGL.texCoord2f(tc1.mV[0], tc2.mV[1]);
gGL.vertex2f(-1,3);
gGL.texCoord2f(tc2.mV[0], tc1.mV[1]);
gGL.vertex2f(3,-1);
gGL.end();
gGL.flush();
if (LLGLSLShader::sNoFixedFunction)
{
gSplatTextureRectProgram.unbind();
}
}
if (mScreen.getFBO())
{ //copy depth buffer from mScreen to framebuffer
LLRenderTarget::copyContentsToFramebuffer(mScreen, 0, 0, mScreen.getWidth(), mScreen.getHeight(),
0, 0, mScreen.getWidth(), mScreen.getHeight(), GL_DEPTH_BUFFER_BIT, GL_NEAREST);
}
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.popMatrix();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.popMatrix();
LLVertexBuffer::unbind();
LLGLState::checkStates();
LLGLState::checkTextureChannels();
}
static LLFastTimer::DeclareTimer FTM_BIND_DEFERRED("Bind Deferred");
void LLPipeline::bindDeferredShader(LLGLSLShader& shader, U32 light_index, U32 noise_map)
{
LLFastTimer t(FTM_BIND_DEFERRED);
static const LLCachedControl<F32> RenderDeferredSunWash("RenderDeferredSunWash",.5f);
static const LLCachedControl<F32> RenderShadowNoise("RenderShadowNoise",-.0001f);
static const LLCachedControl<F32> RenderShadowBlurSize("RenderShadowBlurSize",.7f);
static const LLCachedControl<F32> RenderSSAOScale("RenderSSAOScale",500);
static const LLCachedControl<U32> RenderSSAOMaxScale("RenderSSAOMaxScale",200);
static const LLCachedControl<F32> RenderSSAOFactor("RenderSSAOFactor",.3f);
static const LLCachedControl<LLVector3> RenderSSAOEffect("RenderSSAOEffect",LLVector3(.4f,1.f,0.f));
static const LLCachedControl<F32> RenderDeferredAlphaSoften("RenderDeferredAlphaSoften",.75f);
static const LLCachedControl<F32> RenderShadowOffsetError("RenderShadowOffsetError",0.f);
static const LLCachedControl<F32> RenderShadowBiasError("RenderShadowBiasError",0.f);
static const LLCachedControl<F32> RenderShadowOffset("RenderShadowOffset",.1f);
static const LLCachedControl<F32> RenderShadowBias("RenderShadowBias",0.f);
static const LLCachedControl<F32> RenderSpotShadowOffset("RenderSpotShadowOffset",.4f);
static const LLCachedControl<F32> RenderSpotShadowBias("RenderSpotShadowBias",0.f);
static const LLCachedControl<F32> RenderEdgeDepthCutoff("RenderEdgeDepthCutoff",.01f);
static const LLCachedControl<F32> RenderEdgeNormCutoff("RenderEdgeNormCutoff",.25f);
static const LLCachedControl<F32> RenderSSAOResolutionScale("SHRenderSSAOResolutionScale",.5f);
if (noise_map == 0xFFFFFFFF)
{
noise_map = mNoiseMap;
}
shader.bind();
S32 channel = 0;
channel = shader.enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, mDeferredScreen.getUsage());
if (channel > -1)
{
mDeferredScreen.bindTexture(0,channel);
gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_POINT);
}
channel = shader.enableTexture(LLShaderMgr::DEFERRED_SPECULAR, mDeferredScreen.getUsage());
if (channel > -1)
{
mDeferredScreen.bindTexture(1, channel);
gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_POINT);
}
channel = shader.enableTexture(LLShaderMgr::DEFERRED_NORMAL, mDeferredScreen.getUsage());
if (channel > -1)
{
mDeferredScreen.bindTexture(2, channel);
gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_POINT);
}
S32 channel2 = shader.enableTexture(LLShaderMgr::DEFERRED_DOWNSAMPLED_DEPTH, mDeferredDepth.getUsage());
channel = shader.enableTexture(LLShaderMgr::DEFERRED_DEPTH, mDeferredDepth.getUsage());
if (channel > -1 || channel2 >= -1)
{
if(channel > -1)
gGL.getTexUnit(channel)->bind(&mDeferredDepth, TRUE);
if(channel2 > -1)
{
F32 scale = llclamp(RenderSSAOResolutionScale.get(),.01f,1.f);
if(scale < 1.f)
gGL.getTexUnit(channel2)->bind(&mDeferredDownsampledDepth, TRUE);
else
gGL.getTexUnit(channel2)->bind(&mDeferredDepth, TRUE); //Bind full res depth instead, as downsampling is disabled if scale == 1.f
}
//gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_POINT);
stop_glerror();
//glTexParameteri(LLTexUnit::getInternalType(mDeferredDepth.getUsage()), GL_TEXTURE_COMPARE_MODE_ARB, GL_NONE);
//glTexParameteri(LLTexUnit::getInternalType(mDeferredDepth.getUsage()), GL_DEPTH_TEXTURE_MODE_ARB, GL_ALPHA);
stop_glerror();
glh::matrix4f projection = glh_get_current_projection();
glh::matrix4f inv_proj = projection.inverse();
shader.uniformMatrix4fv(LLShaderMgr::INVERSE_PROJECTION_MATRIX, 1, FALSE, inv_proj.m);
shader.uniform4f(LLShaderMgr::VIEWPORT, (F32) gGLViewport[0],
(F32) gGLViewport[1],
(F32) gGLViewport[2],
(F32) gGLViewport[3]);
}
channel = shader.enableTexture(LLShaderMgr::DEFERRED_NOISE);
if (channel > -1)
{
gGL.getTexUnit(channel)->bindManual(LLTexUnit::TT_TEXTURE, noise_map);
gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_POINT);
}
channel = shader.enableTexture(LLShaderMgr::DEFERRED_LIGHTFUNC);
if (channel > -1)
{
gGL.getTexUnit(channel)->bindManual(LLTexUnit::TT_TEXTURE, mLightFunc);
}
stop_glerror();
channel = shader.enableTexture(LLShaderMgr::DEFERRED_LIGHT, mDeferredLight.getUsage());
if (channel > -1)
{
if (light_index > 0)
{
mScreen.bindTexture(0, channel);
}
else
{
mDeferredLight.bindTexture(0, channel);
}
gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_POINT);
}
channel = shader.enableTexture(LLShaderMgr::DEFERRED_BLOOM);
if (channel > -1)
{
mGlow[1].bindTexture(0, channel);
}
stop_glerror();
for (U32 i = 0; i < 4; i++)
{
channel = shader.enableTexture(LLShaderMgr::DEFERRED_SHADOW0+i, LLTexUnit::TT_TEXTURE);
stop_glerror();
if (channel > -1)
{
stop_glerror();
gGL.getTexUnit(channel)->bind(&mShadow[i], TRUE);
gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_BILINEAR);
gGL.getTexUnit(channel)->setTextureAddressMode(LLTexUnit::TAM_CLAMP);
stop_glerror();
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE_ARB, GL_COMPARE_R_TO_TEXTURE_ARB);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC_ARB, GL_LEQUAL);
stop_glerror();
}
}
for (U32 i = 4; i < 6; i++)
{
channel = shader.enableTexture(LLShaderMgr::DEFERRED_SHADOW0+i);
stop_glerror();
if (channel > -1)
{
stop_glerror();
gGL.getTexUnit(channel)->bind(&mShadow[i], TRUE);
gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_BILINEAR);
gGL.getTexUnit(channel)->setTextureAddressMode(LLTexUnit::TAM_CLAMP);
stop_glerror();
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE_ARB, GL_COMPARE_R_TO_TEXTURE_ARB);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC_ARB, GL_LEQUAL);
stop_glerror();
}
}
stop_glerror();
if(shader.getUniformLocation(LLShaderMgr::DEFERRED_SHADOW_MATRIX) >= 0)
{
F32 mat[16*6];
for (U32 i = 0; i < 16; i++)
{
mat[i] = mSunShadowMatrix[0].m[i];
mat[i+16] = mSunShadowMatrix[1].m[i];
mat[i+32] = mSunShadowMatrix[2].m[i];
mat[i+48] = mSunShadowMatrix[3].m[i];
mat[i+64] = mSunShadowMatrix[4].m[i];
mat[i+80] = mSunShadowMatrix[5].m[i];
}
shader.uniformMatrix4fv(LLShaderMgr::DEFERRED_SHADOW_MATRIX, 6, FALSE, mat);
stop_glerror();
}
channel = shader.enableTexture(LLShaderMgr::ENVIRONMENT_MAP, LLTexUnit::TT_CUBE_MAP);
if (channel > -1)
{
LLCubeMap* cube_map = gSky.mVOSkyp ? gSky.mVOSkyp->getCubeMap() : NULL;
if (cube_map)
{
cube_map->enable(channel);
cube_map->bind();
F32* m = gGLModelView.getF32ptr();
F32 mat[] = { m[0], m[1], m[2],
m[4], m[5], m[6],
m[8], m[9], m[10] };
shader.uniformMatrix3fv(LLShaderMgr::DEFERRED_ENV_MAT, 1, TRUE, mat);
}
}
shader.uniform4fv(LLShaderMgr::DEFERRED_SHADOW_CLIP, 1, mSunClipPlanes.mV);
shader.uniform1f(LLShaderMgr::DEFERRED_SUN_WASH, RenderDeferredSunWash);
shader.uniform1f(LLShaderMgr::DEFERRED_SHADOW_NOISE, RenderShadowNoise);
shader.uniform1f(LLShaderMgr::DEFERRED_BLUR_SIZE, RenderShadowBlurSize);
shader.uniform1f(LLShaderMgr::DEFERRED_SSAO_RADIUS, RenderSSAOScale);
shader.uniform1f(LLShaderMgr::DEFERRED_SSAO_MAX_RADIUS, RenderSSAOMaxScale);
F32 ssao_factor = RenderSSAOFactor;
shader.uniform1f(LLShaderMgr::DEFERRED_SSAO_FACTOR, ssao_factor);
shader.uniform1f(LLShaderMgr::DEFERRED_SSAO_FACTOR_INV, 1.0/ssao_factor);
LLVector3 ssao_effect = RenderSSAOEffect;
shader.uniform1f(LLShaderMgr::DEFERRED_SSAO_EFFECT, ssao_effect[0]);
//F32 shadow_offset_error = 1.f + RenderShadowOffsetError * fabsf(LLViewerCamera::getInstance()->getOrigin().mV[2]);
F32 shadow_bias_error = RenderShadowBiasError * fabsf(LLViewerCamera::getInstance()->getOrigin().mV[2])/3000.f;
shader.uniform2f(LLShaderMgr::DEFERRED_SCREEN_RES, mDeferredScreen.getWidth(), mDeferredScreen.getHeight());
shader.uniform1f(LLShaderMgr::DEFERRED_NEAR_CLIP, LLViewerCamera::getInstance()->getNear()*2.f);
shader.uniform1f (LLShaderMgr::DEFERRED_SHADOW_OFFSET, RenderShadowOffset); //*shadow_offset_error);
shader.uniform1f(LLShaderMgr::DEFERRED_SHADOW_BIAS, RenderShadowBias+shadow_bias_error);
shader.uniform1f(LLShaderMgr::DEFERRED_SPOT_SHADOW_OFFSET, RenderSpotShadowOffset);
shader.uniform1f(LLShaderMgr::DEFERRED_SPOT_SHADOW_BIAS, RenderSpotShadowBias);
shader.uniform3fv(LLShaderMgr::DEFERRED_SUN_DIR, 1, mTransformedSunDir.mV);
shader.uniform2f(LLShaderMgr::DEFERRED_SHADOW_RES, mShadow[0].getWidth(), mShadow[0].getHeight());
shader.uniform2f(LLShaderMgr::DEFERRED_PROJ_SHADOW_RES, mShadow[4].getWidth(), mShadow[4].getHeight());
shader.uniform1f(LLShaderMgr::DEFERRED_DEPTH_CUTOFF, RenderEdgeDepthCutoff);
shader.uniform1f(LLShaderMgr::DEFERRED_NORM_CUTOFF, RenderEdgeNormCutoff);
if (shader.getUniformLocation(LLShaderMgr::DEFERRED_NORM_MATRIX) >= 0)
{
glh::matrix4f norm_mat = glh_get_current_modelview().inverse().transpose();
shader.uniformMatrix4fv(LLShaderMgr::DEFERRED_NORM_MATRIX, 1, FALSE, norm_mat.m);
}
shader.uniform1f(LLShaderMgr::DEFERRED_DOWNSAMPLED_DEPTH_SCALE, llclamp(RenderSSAOResolutionScale.get(),.01f,1.f));
}
static LLFastTimer::DeclareTimer FTM_GI_TRACE("Trace");
static LLFastTimer::DeclareTimer FTM_GI_GATHER("Gather");
static LLFastTimer::DeclareTimer FTM_SUN_SHADOW("Shadow Map");
static LLFastTimer::DeclareTimer FTM_SOFTEN_SHADOW("Shadow Soften");
static LLFastTimer::DeclareTimer FTM_EDGE_DETECTION("Find Edges");
static LLFastTimer::DeclareTimer FTM_LOCAL_LIGHTS("Local Lights");
static LLFastTimer::DeclareTimer FTM_ATMOSPHERICS("Atmospherics");
static LLFastTimer::DeclareTimer FTM_FULLSCREEN_LIGHTS("Fullscreen Lights");
static LLFastTimer::DeclareTimer FTM_PROJECTORS("Projectors");
static LLFastTimer::DeclareTimer FTM_POST("Post");
void LLPipeline::renderDeferredLighting()
{
if (!sCull)
{
return;
}
static const LLCachedControl<U32> RenderFSAASamples("RenderFSAASamples",0);
static const LLCachedControl<bool> RenderDeferredSSAO("RenderDeferredSSAO",false);
static const LLCachedControl<F32> RenderSSAOResolutionScale("SHRenderSSAOResolutionScale",.5f);
static const LLCachedControl<S32> RenderShadowDetail("RenderShadowDetail",0);
static const LLCachedControl<LLVector3> RenderShadowGaussian("RenderShadowGaussian",LLVector3(3.f,2.f,0.f));
static const LLCachedControl<F32> RenderShadowBlurSize("RenderShadowBlurSize",1.4f);
static const LLCachedControl<F32> RenderShadowBlurDistFactor("RenderShadowBlurDistFactor",.1f);
static const LLCachedControl<bool> RenderDeferredAtmospheric("RenderDeferredAtmospheric",false);
static const LLCachedControl<bool> RenderLocalLights("RenderLocalLights",false);
{
LLFastTimer ftm(FTM_RENDER_DEFERRED);
LLViewerCamera* camera = LLViewerCamera::getInstance();
{
LLGLDepthTest depth(GL_TRUE);
mDeferredDepth.copyContents(mDeferredScreen, 0, 0, mDeferredScreen.getWidth(), mDeferredScreen.getHeight(),
0, 0, mDeferredDepth.getWidth(), mDeferredDepth.getHeight(), GL_DEPTH_BUFFER_BIT, GL_NEAREST);
}
LLGLEnable multisample(RenderFSAASamples > 0 ? GL_MULTISAMPLE_ARB : 0);
if (gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_HUD))
{
gPipeline.toggleRenderType(LLPipeline::RENDER_TYPE_HUD);
}
//ati doesn't seem to love actually using the stencil buffer on FBO's
LLGLDisable stencil(GL_STENCIL_TEST);
//glStencilFunc(GL_EQUAL, 1, 0xFFFFFFFF);
//glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
gGL.setColorMask(true, true);
//draw a cube around every light
LLVertexBuffer::unbind();
LLGLEnable cull(GL_CULL_FACE);
LLGLEnable blend(GL_BLEND);
glh::matrix4f mat(gGLModelView.getF32ptr());
if(mDeferredVB.isNull())
{
mDeferredVB = new LLVertexBuffer(DEFERRED_VB_MASK, 0);
mDeferredVB->allocateBuffer(8, 0, true);
LLStrider<LLVector3> vert;
mDeferredVB->getVertexStrider(vert);
vert[0].set(-1,1,0);
vert[1].set(-1,-3,0);
vert[2].set(3,1,0);
}
{
setupHWLights(NULL); //to set mSunDir;
LLVector4 dir(mSunDir, 0.f);
glh::vec4f tc(dir.mV);
mat.mult_matrix_vec(tc);
mTransformedSunDir.set(tc.v);
}
gGL.pushMatrix();
gGL.loadIdentity();
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.pushMatrix();
gGL.loadIdentity();
if (RenderDeferredSSAO)
{
F32 ssao_scale = llclamp(RenderSSAOResolutionScale.get(),.01f,1.f);
LLGLDisable blend(GL_BLEND);
//Downsample with fullscreen quad. GL_NEAREST
if(ssao_scale < 1.f)
{
mDeferredDownsampledDepth.bindTarget();
mDeferredDownsampledDepth.clear(GL_DEPTH_BUFFER_BIT);
bindDeferredShader(gDeferredDownsampleDepthNearestProgram, 0);
gDeferredDownsampleDepthNearestProgram.uniform2f(LLShaderMgr::DEFERRED_SCREEN_RES, mDeferredDownsampledDepth.getWidth()/ssao_scale, mDeferredDownsampledDepth.getHeight()/ssao_scale);
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
{
LLGLDepthTest depth(GL_TRUE, GL_TRUE, GL_ALWAYS);
stop_glerror();
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
stop_glerror();
}
mDeferredDownsampledDepth.flush();
unbindDeferredShader(gDeferredDownsampleDepthNearestProgram);
}
//Run SSAO
{
mScreen.bindTarget();
glClearColor(1,1,1,1);
mScreen.clear(GL_COLOR_BUFFER_BIT);
glClearColor(0,0,0,0);
bindDeferredShader(gDeferredSSAOProgram, 0);
if(ssao_scale < 1.f)
{
glViewport(0,0,mDeferredDownsampledDepth.getWidth(),mDeferredDownsampledDepth.getHeight());
gDeferredSSAOProgram.uniform2f(LLShaderMgr::DEFERRED_SCREEN_RES, mDeferredDownsampledDepth.getWidth()/ssao_scale, mDeferredDownsampledDepth.getHeight()/ssao_scale);
}
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
{
LLGLDepthTest depth(GL_FALSE);
stop_glerror();
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
stop_glerror();
}
mScreen.flush();
unbindDeferredShader(gDeferredSSAOProgram);
}
}
if (RenderDeferredSSAO || RenderShadowDetail > 0)
{
mDeferredLight.bindTarget();
{ //paint shadow/SSAO light map (direct lighting lightmap)
LLFastTimer ftm(FTM_SUN_SHADOW);
bindDeferredShader(gDeferredSunProgram, 0);
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
glClearColor(1,1,1,1);
mDeferredLight.clear(GL_COLOR_BUFFER_BIT);
glClearColor(0,0,0,0);
/*glh::matrix4f inv_trans = glh_get_current_modelview().inverse().transpose();
const U32 slice = 32;
F32 offset[slice*3];
for (U32 i = 0; i < 4; i++)
{
for (U32 j = 0; j < 8; j++)
{
glh::vec3f v;
v.set_value(sinf(6.284f/8*j), cosf(6.284f/8*j), -(F32) i);
#if 0
// Singu note: the call to mult_matrix_vec can crash, because it attempts to divide by zero.
v.normalize();
inv_trans.mult_matrix_vec(v);
#else
// However, because afterwards we normalize the vector anyway, there is an alternative
// way to calculate the same thing without the division (which happens to be faster, too).
glh::vec4f src(v, v.length()); // Make a copy of the source and extent it with its length.
glh::vec4f dst;
inv_trans.mult_matrix_vec(src, dst); // Do a normal 4D multiplication.
dst.get_value(v[0], v[1], v[2], dst[3]); // Copy the first 3 coordinates to v.
// At this point v is equal to what it used to be, except for a constant factor (v.length() * dst[3]),
// but that doesn't matter because the next step is normalizaton. The old computation would crash
// if v.length() is zero in the commented out v.normalize(), and in inv_trans.mult_matrix_vec(v)
// if dst[3] is zero (which some times happens). Now we will only crash if v.length() is zero
// and well in the next line (but this never happens). --Aleric
#endif
v.normalize();
offset[(i*8+j)*3+0] = v.v[0];
offset[(i*8+j)*3+1] = v.v[2];
offset[(i*8+j)*3+2] = v.v[1];
}
}
gDeferredSunProgram.uniform3fv(sOffset, slice, offset);*/
gDeferredSunProgram.uniform2f(LLShaderMgr::DEFERRED_SCREEN_RES, mDeferredLight.getWidth(), mDeferredLight.getHeight());
//Enable bilinear filtering, as the screen tex resolution may not match current framebuffer resolution. Eg, half-res SSAO
// diffuse map should only be found if the sun shader is the SSAO variant.
S32 channel = gDeferredSunProgram.enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, mScreen.getUsage());
if (channel > -1)
{
mScreen.bindTexture(0,channel);
gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_BILINEAR);
}
{
LLGLDisable blend(GL_BLEND);
LLGLDepthTest depth(GL_TRUE, GL_FALSE, GL_ALWAYS);
stop_glerror();
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
stop_glerror();
}
if (channel > -1)
{
gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_POINT);
}
unbindDeferredShader(gDeferredSunProgram);
}
mDeferredLight.flush();
}
static const LLCachedControl<bool> SHAlwaysSoftenShadows("SHAlwaysSoftenShadows",true);
if (RenderDeferredSSAO || (RenderShadowDetail > 0 && SHAlwaysSoftenShadows))
{ //soften direct lighting lightmap
LLFastTimer ftm(FTM_SOFTEN_SHADOW);
//blur lightmap
mScreen.bindTarget();
glClearColor(1,1,1,1);
mScreen.clear(GL_COLOR_BUFFER_BIT);
glClearColor(0,0,0,0);
bindDeferredShader(gDeferredBlurLightProgram);
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
LLVector3 go = RenderShadowGaussian;
const U32 kern_length = 4;
F32 blur_size = RenderShadowBlurSize;
F32 dist_factor = RenderShadowBlurDistFactor;
// sample symmetrically with the middle sample falling exactly on 0.0
F32 x = 0.f;
LLVector3 gauss[32]; // xweight, yweight, offset
for (U32 i = 0; i < kern_length; i++)
{
gauss[i].mV[0] = llgaussian(x, go.mV[0]);
gauss[i].mV[1] = llgaussian(x, go.mV[1]);
gauss[i].mV[2] = x;
x += 1.f;
}
gDeferredBlurLightProgram.uniform2f(sDelta, 1.f, 0.f);
gDeferredBlurLightProgram.uniform1f(sDistFactor, dist_factor);
gDeferredBlurLightProgram.uniform3fv(sKern, kern_length, gauss[0].mV);
gDeferredBlurLightProgram.uniform1f(sKernScale, blur_size * (kern_length/2.f - 0.5f));
{
LLGLDisable blend(GL_BLEND);
LLGLDepthTest depth(GL_TRUE, GL_FALSE, GL_ALWAYS);
stop_glerror();
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
stop_glerror();
}
mScreen.flush();
unbindDeferredShader(gDeferredBlurLightProgram);
bindDeferredShader(gDeferredBlurLightProgram, 1);
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
mDeferredLight.bindTarget();
gDeferredBlurLightProgram.uniform2f(sDelta, 0.f, 1.f);
{
LLGLDisable blend(GL_BLEND);
LLGLDepthTest depth(GL_TRUE, GL_FALSE, GL_ALWAYS);
stop_glerror();
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
stop_glerror();
}
mDeferredLight.flush();
unbindDeferredShader(gDeferredBlurLightProgram);
}
stop_glerror();
gGL.popMatrix();
stop_glerror();
gGL.matrixMode(LLRender::MM_MODELVIEW);
stop_glerror();
gGL.popMatrix();
stop_glerror();
mScreen.bindTarget();
// clear color buffer here - zeroing alpha (glow) is important or it will accumulate against sky
glClearColor(0,0,0,0);
mScreen.clear(GL_COLOR_BUFFER_BIT);
if (RenderDeferredAtmospheric)
{ //apply sunlight contribution
LLFastTimer ftm(FTM_ATMOSPHERICS);
bindDeferredShader(LLPipeline::sUnderWaterRender ? gDeferredSoftenWaterProgram : gDeferredSoftenProgram);
{
LLGLDepthTest depth(GL_FALSE);
LLGLDisable blend(GL_BLEND);
LLGLDisable test(GL_ALPHA_TEST);
//full screen blit
gGL.pushMatrix();
gGL.loadIdentity();
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.pushMatrix();
gGL.loadIdentity();
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
gGL.popMatrix();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.popMatrix();
}
unbindDeferredShader(LLPipeline::sUnderWaterRender ? gDeferredSoftenWaterProgram : gDeferredSoftenProgram);
}
{ //render non-deferred geometry (fullbright, alpha, etc)
LLGLDisable blend(GL_BLEND);
LLGLDisable stencil(GL_STENCIL_TEST);
gGL.setSceneBlendType(LLRender::BT_ALPHA);
gPipeline.pushRenderTypeMask();
gPipeline.andRenderTypeMask(LLPipeline::RENDER_TYPE_SKY,
#if ENABLE_CLASSIC_CLOUDS
LLPipeline::RENDER_TYPE_CLASSIC_CLOUDS,
#endif
LLPipeline::RENDER_TYPE_WL_CLOUDS,
LLPipeline::RENDER_TYPE_WL_SKY,
LLPipeline::END_RENDER_TYPES);
renderGeomPostDeferred(*LLViewerCamera::getInstance(), false);
gPipeline.popRenderTypeMask();
}
BOOL render_local = RenderLocalLights;
if (render_local)
{
gGL.setSceneBlendType(LLRender::BT_ADD);
std::list<LLVector4> fullscreen_lights;
LLDrawable::drawable_list_t spot_lights;
LLDrawable::drawable_list_t fullscreen_spot_lights;
for (U32 i = 0; i < 2; i++)
{
mTargetShadowSpotLight[i] = NULL;
}
std::list<LLVector4> light_colors;
LLVertexBuffer::unbind();
{
bindDeferredShader(gDeferredLightProgram);
if (mCubeVB.isNull())
{
mCubeVB = ll_create_cube_vb(LLVertexBuffer::MAP_VERTEX, GL_STATIC_DRAW_ARB);
}
mCubeVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
LLGLDepthTest depth(GL_TRUE, GL_FALSE);
for (LLDrawable::drawable_set_t::iterator iter = mLights.begin(); iter != mLights.end(); ++iter)
{
LLDrawable* drawablep = *iter;
LLVOVolume* volume = drawablep->getVOVolume();
if (!volume)
{
continue;
}
if (volume->isAttachment())
{
if (!sRenderAttachedLights)
{
continue;
}
}
LLVector4a center;
center.load3(drawablep->getPositionAgent().mV);
const F32* c = center.getF32ptr();
F32 s = volume->getLightRadius()*1.5f;
LLColor3 col = volume->getLightColor();
if (col.magVecSquared() < 0.001f)
{
continue;
}
if (s <= 0.001f)
{
continue;
}
LLVector4a sa;
sa.splat(s);
if (camera->AABBInFrustumNoFarClip(center, sa) == 0)
{
continue;
}
sVisibleLightCount++;
if (camera->getOrigin().mV[0] > c[0] + s + 0.2f ||
camera->getOrigin().mV[0] < c[0] - s - 0.2f ||
camera->getOrigin().mV[1] > c[1] + s + 0.2f ||
camera->getOrigin().mV[1] < c[1] - s - 0.2f ||
camera->getOrigin().mV[2] > c[2] + s + 0.2f ||
camera->getOrigin().mV[2] < c[2] - s - 0.2f)
{ //draw box if camera is outside box
if (render_local)
{
if (volume->isLightSpotlight())
{
drawablep->getVOVolume()->updateSpotLightPriority();
spot_lights.push_back(drawablep);
continue;
}
LLFastTimer ftm(FTM_LOCAL_LIGHTS);
gDeferredLightProgram.uniform3fv(LLShaderMgr::LIGHT_CENTER, 1, c);
gDeferredLightProgram.uniform1f(LLShaderMgr::LIGHT_SIZE, s);
gDeferredLightProgram.uniform3fv(LLShaderMgr::DIFFUSE_COLOR, 1, col.mV);
gDeferredLightProgram.uniform1f(LLShaderMgr::LIGHT_FALLOFF, volume->getLightFalloff()*0.5f);
gGL.syncMatrices();
mCubeVB->drawRange(LLRender::TRIANGLE_FAN, 0, 7, 8, get_box_fan_indices(camera, center));
stop_glerror();
}
}
else
{
if (volume->isLightSpotlight())
{
drawablep->getVOVolume()->updateSpotLightPriority();
fullscreen_spot_lights.push_back(drawablep);
continue;
}
glh::vec3f tc(c);
mat.mult_matrix_vec(tc);
fullscreen_lights.push_back(LLVector4(tc.v[0], tc.v[1], tc.v[2], s));
light_colors.push_back(LLVector4(col.mV[0], col.mV[1], col.mV[2], volume->getLightFalloff()*0.5f));
}
}
unbindDeferredShader(gDeferredLightProgram);
}
if (!spot_lights.empty())
{
LLGLDepthTest depth(GL_TRUE, GL_FALSE);
bindDeferredShader(gDeferredSpotLightProgram);
mCubeVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
gDeferredSpotLightProgram.enableTexture(LLShaderMgr::DEFERRED_PROJECTION);
for (LLDrawable::drawable_list_t::iterator iter = spot_lights.begin(); iter != spot_lights.end(); ++iter)
{
LLFastTimer ftm(FTM_PROJECTORS);
LLDrawable* drawablep = *iter;
LLVOVolume* volume = drawablep->getVOVolume();
LLVector4a center;
center.load3(drawablep->getPositionAgent().mV);
const F32* c = center.getF32ptr();
F32 s = volume->getLightRadius()*1.5f;
sVisibleLightCount++;
setupSpotLight(gDeferredSpotLightProgram, drawablep);
LLColor3 col = volume->getLightColor();
gDeferredSpotLightProgram.uniform3fv(LLShaderMgr::LIGHT_CENTER, 1, c);
gDeferredSpotLightProgram.uniform1f(LLShaderMgr::LIGHT_SIZE, s);
gDeferredSpotLightProgram.uniform3fv(LLShaderMgr::DIFFUSE_COLOR, 1, col.mV);
gDeferredSpotLightProgram.uniform1f(LLShaderMgr::LIGHT_FALLOFF, volume->getLightFalloff()*0.5f);
gGL.syncMatrices();
mCubeVB->drawRange(LLRender::TRIANGLE_FAN, 0, 7, 8, get_box_fan_indices(camera, center));
}
gDeferredSpotLightProgram.disableTexture(LLShaderMgr::DEFERRED_PROJECTION);
unbindDeferredShader(gDeferredSpotLightProgram);
}
{
LLGLDepthTest depth(GL_FALSE);
//full screen blit
gGL.pushMatrix();
gGL.loadIdentity();
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.pushMatrix();
gGL.loadIdentity();
U32 count = 0;
const U32 max_count = LL_DEFERRED_MULTI_LIGHT_COUNT;
LLVector4 light[max_count];
LLVector4 col[max_count];
F32 far_z = 0.f;
while (!fullscreen_lights.empty())
{
LLFastTimer ftm(FTM_FULLSCREEN_LIGHTS);
light[count] = fullscreen_lights.front();
fullscreen_lights.pop_front();
col[count] = light_colors.front();
light_colors.pop_front();
/*col[count].mV[0] = powf(col[count].mV[0], 2.2f);
col[count].mV[1] = powf(col[count].mV[1], 2.2f);
col[count].mV[2] = powf(col[count].mV[2], 2.2f);*/
far_z = llmin(light[count].mV[2]-light[count].mV[3], far_z);
//col[count] = pow4fsrgb(col[count], 2.2f);
count++;
if (count == max_count || fullscreen_lights.empty())
{
U32 idx = count-1;
bindDeferredShader(gDeferredMultiLightProgram[idx]);
gDeferredMultiLightProgram[idx].uniform1i(LLShaderMgr::MULTI_LIGHT_COUNT, count);
gDeferredMultiLightProgram[idx].uniform4fv(LLShaderMgr::MULTI_LIGHT, count, (GLfloat*) light);
gDeferredMultiLightProgram[idx].uniform4fv(LLShaderMgr::MULTI_LIGHT_COL, count, (GLfloat*) col);
gDeferredMultiLightProgram[idx].uniform1f(LLShaderMgr::MULTI_LIGHT_FAR_Z, far_z);
far_z = 0.f;
count = 0;
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
unbindDeferredShader(gDeferredMultiLightProgram[idx]);
}
}
bindDeferredShader(gDeferredMultiSpotLightProgram);
gDeferredMultiSpotLightProgram.enableTexture(LLShaderMgr::DEFERRED_PROJECTION);
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
for (LLDrawable::drawable_list_t::iterator iter = fullscreen_spot_lights.begin(); iter != fullscreen_spot_lights.end(); ++iter)
{
LLFastTimer ftm(FTM_PROJECTORS);
LLDrawable* drawablep = *iter;
LLVOVolume* volume = drawablep->getVOVolume();
LLVector3 center = drawablep->getPositionAgent();
F32* c = center.mV;
F32 s = volume->getLightRadius()*1.5f;
sVisibleLightCount++;
glh::vec3f tc(c);
mat.mult_matrix_vec(tc);
setupSpotLight(gDeferredMultiSpotLightProgram, drawablep);
LLColor3 col = volume->getLightColor();
/*col.mV[0] = powf(col.mV[0], 2.2f);
col.mV[1] = powf(col.mV[1], 2.2f);
col.mV[2] = powf(col.mV[2], 2.2f);*/
gDeferredMultiSpotLightProgram.uniform3fv(LLShaderMgr::LIGHT_CENTER, 1, tc.v);
gDeferredMultiSpotLightProgram.uniform1f(LLShaderMgr::LIGHT_SIZE, s);
gDeferredMultiSpotLightProgram.uniform3fv(LLShaderMgr::DIFFUSE_COLOR, 1, col.mV);
gDeferredMultiSpotLightProgram.uniform1f(LLShaderMgr::LIGHT_FALLOFF, volume->getLightFalloff()*0.5f);
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
}
gDeferredMultiSpotLightProgram.disableTexture(LLShaderMgr::DEFERRED_PROJECTION);
unbindDeferredShader(gDeferredMultiSpotLightProgram);
gGL.popMatrix();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.popMatrix();
}
gGL.setSceneBlendType(LLRender::BT_ALPHA);
}
gGL.setColorMask(true, true);
}
mScreen.flush();
//gamma correct lighting
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.pushMatrix();
gGL.loadIdentity();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.pushMatrix();
gGL.loadIdentity();
{
LLGLDepthTest depth(GL_FALSE, GL_FALSE);
mScreen.bindTarget();
// Apply gamma correction to the frame here.
gDeferredPostGammaCorrectProgram.bind();
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
S32 channel = 0;
channel = gDeferredPostGammaCorrectProgram.enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, mScreen.getUsage());
if (channel > -1)
{
mScreen.bindTexture(0,channel);
gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_POINT);
}
gDeferredPostGammaCorrectProgram.uniform2f(LLShaderMgr::DEFERRED_SCREEN_RES, mScreen.getWidth(), mScreen.getHeight());
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
gGL.getTexUnit(channel)->unbind(mScreen.getUsage());
gDeferredPostGammaCorrectProgram.unbind();
mScreen.flush();
}
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.popMatrix();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.popMatrix();
mScreen.bindTarget();
{ //render non-deferred geometry (alpha, fullbright, glow)
LLGLDisable blend(GL_BLEND);
LLGLDisable stencil(GL_STENCIL_TEST);
pushRenderTypeMask();
andRenderTypeMask(LLPipeline::RENDER_TYPE_ALPHA,
LLPipeline::RENDER_TYPE_FULLBRIGHT,
LLPipeline::RENDER_TYPE_VOLUME,
LLPipeline::RENDER_TYPE_GLOW,
LLPipeline::RENDER_TYPE_BUMP,
LLPipeline::RENDER_TYPE_PASS_SIMPLE,
LLPipeline::RENDER_TYPE_PASS_ALPHA,
LLPipeline::RENDER_TYPE_PASS_ALPHA_MASK,
LLPipeline::RENDER_TYPE_PASS_BUMP,
LLPipeline::RENDER_TYPE_PASS_POST_BUMP,
LLPipeline::RENDER_TYPE_PASS_FULLBRIGHT,
LLPipeline::RENDER_TYPE_PASS_FULLBRIGHT_ALPHA_MASK,
LLPipeline::RENDER_TYPE_PASS_FULLBRIGHT_SHINY,
LLPipeline::RENDER_TYPE_PASS_GLOW,
LLPipeline::RENDER_TYPE_PASS_GRASS,
LLPipeline::RENDER_TYPE_PASS_SHINY,
LLPipeline::RENDER_TYPE_PASS_INVISIBLE,
LLPipeline::RENDER_TYPE_PASS_INVISI_SHINY,
LLPipeline::RENDER_TYPE_AVATAR,
LLPipeline::RENDER_TYPE_ALPHA_MASK,
LLPipeline::RENDER_TYPE_FULLBRIGHT_ALPHA_MASK,
END_RENDER_TYPES);
renderGeomPostDeferred(*LLViewerCamera::getInstance());
popRenderTypeMask();
}
{
//render highlights, etc.
renderHighlights();
mHighlightFaces.clear();
renderDebug();
LLVertexBuffer::unbind();
if (gPipeline.hasRenderDebugFeatureMask(LLPipeline::RENDER_DEBUG_FEATURE_UI))
{
// Render debugging beacons.
gObjectList.renderObjectBeacons();
gObjectList.resetObjectBeacons();
}
}
mScreen.flush();
}
void LLPipeline::renderDeferredLightingToRT(LLRenderTarget* target)
{
if (!sCull)
{
return;
}
static const LLCachedControl<U32> RenderFSAASamples("RenderFSAASamples",0);
static const LLCachedControl<bool> RenderDeferredSSAO("RenderDeferredSSAO",false);
static const LLCachedControl<F32> RenderSSAOResolutionScale("SHRenderSSAOResolutionScale",.5f);
static const LLCachedControl<S32> RenderShadowDetail("RenderShadowDetail",0);
static const LLCachedControl<LLVector3> RenderShadowGaussian("RenderShadowGaussian",LLVector3(3.f,2.f,0.f));
static const LLCachedControl<F32> RenderShadowBlurSize("RenderShadowBlurSize",1.4f);
static const LLCachedControl<F32> RenderShadowBlurDistFactor("RenderShadowBlurDistFactor",.1f);
static const LLCachedControl<bool> RenderDeferredAtmospheric("RenderDeferredAtmospheric",false);
static const LLCachedControl<bool> RenderLocalLights("RenderLocalLights",false);
{
LLFastTimer ftm(FTM_RENDER_DEFERRED);
LLViewerCamera* camera = LLViewerCamera::getInstance();
{
LLGLDepthTest depth(GL_TRUE);
mDeferredDepth.copyContents(mDeferredScreen, 0, 0, mDeferredScreen.getWidth(), mDeferredScreen.getHeight(),
0, 0, mDeferredDepth.getWidth(), mDeferredDepth.getHeight(), GL_DEPTH_BUFFER_BIT, GL_NEAREST);
}
LLGLEnable multisample(RenderFSAASamples > 0 ? GL_MULTISAMPLE_ARB : 0);
if (gPipeline.hasRenderType(LLPipeline::RENDER_TYPE_HUD))
{
gPipeline.toggleRenderType(LLPipeline::RENDER_TYPE_HUD);
}
//ati doesn't seem to love actually using the stencil buffer on FBO's
LLGLDisable stencil(GL_STENCIL_TEST);
//glStencilFunc(GL_EQUAL, 1, 0xFFFFFFFF);
//glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
gGL.setColorMask(true, true);
//draw a cube around every light
LLVertexBuffer::unbind();
LLGLEnable cull(GL_CULL_FACE);
LLGLEnable blend(GL_BLEND);
glh::matrix4f mat(gGLModelView.getF32ptr());
LLStrider<LLVector3> vert;
mDeferredVB->getVertexStrider(vert);
vert[0].set(-1,1,0);
vert[1].set(-1,-3,0);
vert[2].set(3,1,0);
{
setupHWLights(NULL); //to set mSunDir;
LLVector4 dir(mSunDir, 0.f);
glh::vec4f tc(dir.mV);
mat.mult_matrix_vec(tc);
mTransformedSunDir.set(tc.v);
}
gGL.pushMatrix();
gGL.loadIdentity();
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.pushMatrix();
gGL.loadIdentity();
if (RenderDeferredSSAO)
{
F32 ssao_scale = llclamp(RenderSSAOResolutionScale.get(),.01f,1.f);
LLGLDisable blend(GL_BLEND);
//Downsample with fullscreen quad. GL_NEAREST
if(ssao_scale < 1.f)
{
mDeferredDownsampledDepth.bindTarget();
mDeferredDownsampledDepth.clear(GL_DEPTH_BUFFER_BIT);
bindDeferredShader(gDeferredDownsampleDepthNearestProgram, 0);
gDeferredDownsampleDepthNearestProgram.uniform2f(LLShaderMgr::DEFERRED_SCREEN_RES, mDeferredDownsampledDepth.getWidth()/ssao_scale, mDeferredDownsampledDepth.getHeight()/ssao_scale);
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
{
LLGLDepthTest depth(GL_TRUE, GL_TRUE, GL_ALWAYS);
stop_glerror();
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
stop_glerror();
}
mDeferredDownsampledDepth.flush();
unbindDeferredShader(gDeferredDownsampleDepthNearestProgram);
}
//Run SSAO
{
mScreen.bindTarget();
glClearColor(1,1,1,1);
mScreen.clear(GL_COLOR_BUFFER_BIT);
glClearColor(0,0,0,0);
bindDeferredShader(gDeferredSSAOProgram, 0);
if(ssao_scale < 1.f)
{
glViewport(0,0,mDeferredDownsampledDepth.getWidth(),mDeferredDownsampledDepth.getHeight());
gDeferredSSAOProgram.uniform2f(LLShaderMgr::DEFERRED_SCREEN_RES, mDeferredDownsampledDepth.getWidth()/ssao_scale, mDeferredDownsampledDepth.getHeight()/ssao_scale);
}
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
{
LLGLDepthTest depth(GL_FALSE);
stop_glerror();
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
stop_glerror();
}
mScreen.flush();
unbindDeferredShader(gDeferredSSAOProgram);
}
}
if (RenderDeferredSSAO || RenderShadowDetail > 0)
{
mDeferredLight.bindTarget();
{ //paint shadow/SSAO light map (direct lighting lightmap)
LLFastTimer ftm(FTM_SUN_SHADOW);
bindDeferredShader(gDeferredSunProgram);
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
glClearColor(1,1,1,1);
mDeferredLight.clear(GL_COLOR_BUFFER_BIT);
glClearColor(0,0,0,0);
/*glh::matrix4f inv_trans = glh_get_current_modelview().inverse().transpose();
const U32 slice = 32;
F32 offset[slice*3];
for (U32 i = 0; i < 4; i++)
{
for (U32 j = 0; j < 8; j++)
{
glh::vec3f v;
v.set_value(sinf(6.284f/8*j), cosf(6.284f/8*j), -(F32) i);
v.normalize();
inv_trans.mult_matrix_vec(v);
v.normalize();
offset[(i*8+j)*3+0] = v.v[0];
offset[(i*8+j)*3+1] = v.v[2];
offset[(i*8+j)*3+2] = v.v[1];
}
}
gDeferredSunProgram.uniform3fv(LLShaderMgr::DEFERRED_SHADOW_OFFSET, slice, offset);*/
gDeferredSunProgram.uniform2f(LLShaderMgr::DEFERRED_SCREEN_RES, mDeferredLight.getWidth(), mDeferredLight.getHeight());
//Enable bilinear filtering, as the screen tex resolution may not match current framebuffer resolution. Eg, half-res SSAO
// diffuse map should only be found if the sun shader is the SSAO variant.
S32 channel = gDeferredSunProgram.enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, mScreen.getUsage());
if (channel > -1)
{
mScreen.bindTexture(0,channel);
gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_BILINEAR);
}
{
LLGLDisable blend(GL_BLEND);
LLGLDepthTest depth(GL_TRUE, GL_FALSE, GL_ALWAYS);
stop_glerror();
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
stop_glerror();
}
if (channel > -1)
{
gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_POINT);
}
unbindDeferredShader(gDeferredSunProgram);
}
mDeferredLight.flush();
}
stop_glerror();
gGL.popMatrix();
stop_glerror();
gGL.matrixMode(LLRender::MM_MODELVIEW);
stop_glerror();
gGL.popMatrix();
stop_glerror();
target->bindTarget();
//clear color buffer here - zeroing alpha (glow) is important or it will accumulate against sky
glClearColor(0,0,0,0);
target->clear(GL_COLOR_BUFFER_BIT);
if (RenderDeferredAtmospheric)
{ //apply sunlight contribution
LLFastTimer ftm(FTM_ATMOSPHERICS);
bindDeferredShader(gDeferredSoftenProgram);
{
LLGLDepthTest depth(GL_FALSE);
LLGLDisable blend(GL_BLEND);
LLGLDisable test(GL_ALPHA_TEST);
//full screen blit
gGL.pushMatrix();
gGL.loadIdentity();
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.pushMatrix();
gGL.loadIdentity();
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
gGL.popMatrix();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.popMatrix();
}
unbindDeferredShader(gDeferredSoftenProgram);
}
{ //render non-deferred geometry (fullbright, alpha, etc)
LLGLDisable blend(GL_BLEND);
LLGLDisable stencil(GL_STENCIL_TEST);
gGL.setSceneBlendType(LLRender::BT_ALPHA);
gPipeline.pushRenderTypeMask();
gPipeline.andRenderTypeMask(LLPipeline::RENDER_TYPE_SKY,
#if ENABLE_CLASSIC_CLOUDS
LLPipeline::RENDER_TYPE_CLASSIC_CLOUDS,
#endif
LLPipeline::RENDER_TYPE_WL_CLOUDS,
LLPipeline::RENDER_TYPE_WL_SKY,
LLPipeline::END_RENDER_TYPES);
renderGeomPostDeferred(*LLViewerCamera::getInstance(), false);
gPipeline.popRenderTypeMask();
}
BOOL render_local = RenderLocalLights;
if (render_local)
{
gGL.setSceneBlendType(LLRender::BT_ADD);
std::list<LLVector4> fullscreen_lights;
LLDrawable::drawable_list_t spot_lights;
LLDrawable::drawable_list_t fullscreen_spot_lights;
for (U32 i = 0; i < 2; i++)
{
mTargetShadowSpotLight[i] = NULL;
}
std::list<LLVector4> light_colors;
LLVertexBuffer::unbind();
{
bindDeferredShader(gDeferredLightProgram);
if (mCubeVB.isNull())
{
mCubeVB = ll_create_cube_vb(LLVertexBuffer::MAP_VERTEX, GL_STATIC_DRAW_ARB);
}
mCubeVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
LLGLDepthTest depth(GL_TRUE, GL_FALSE);
for (LLDrawable::drawable_set_t::iterator iter = mLights.begin(); iter != mLights.end(); ++iter)
{
LLDrawable* drawablep = *iter;
LLVOVolume* volume = drawablep->getVOVolume();
if (!volume)
{
continue;
}
if (volume->isAttachment())
{
if (!sRenderAttachedLights)
{
continue;
}
}
LLVector4a center;
center.load3(drawablep->getPositionAgent().mV);
const F32* c = center.getF32ptr();
F32 s = volume->getLightRadius()*1.5f;
LLColor3 col = volume->getLightColor();
if (col.magVecSquared() < 0.001f)
{
continue;
}
if (s <= 0.001f)
{
continue;
}
LLVector4a sa;
sa.splat(s);
if (camera->AABBInFrustumNoFarClip(center, sa) == 0)
{
continue;
}
sVisibleLightCount++;
if (camera->getOrigin().mV[0] > c[0] + s + 0.2f ||
camera->getOrigin().mV[0] < c[0] - s - 0.2f ||
camera->getOrigin().mV[1] > c[1] + s + 0.2f ||
camera->getOrigin().mV[1] < c[1] - s - 0.2f ||
camera->getOrigin().mV[2] > c[2] + s + 0.2f ||
camera->getOrigin().mV[2] < c[2] - s - 0.2f)
{ //draw box if camera is outside box
if (render_local)
{
if (volume->isLightSpotlight())
{
drawablep->getVOVolume()->updateSpotLightPriority();
spot_lights.push_back(drawablep);
continue;
}
/*col.mV[0] = powf(col.mV[0], 2.2f);
col.mV[1] = powf(col.mV[1], 2.2f);
col.mV[2] = powf(col.mV[2], 2.2f);*/
LLFastTimer ftm(FTM_LOCAL_LIGHTS);
gDeferredLightProgram.uniform3fv(LLShaderMgr::LIGHT_CENTER, 1, c);
gDeferredLightProgram.uniform1f(LLShaderMgr::LIGHT_SIZE, s);
gDeferredLightProgram.uniform3fv(LLShaderMgr::DIFFUSE_COLOR, 1, col.mV);
gDeferredLightProgram.uniform1f(LLShaderMgr::LIGHT_FALLOFF, volume->getLightFalloff()*0.5f);
gGL.syncMatrices();
mCubeVB->drawRange(LLRender::TRIANGLE_FAN, 0, 7, 8, get_box_fan_indices(camera, center));
stop_glerror();
}
}
else
{
if (volume->isLightSpotlight())
{
drawablep->getVOVolume()->updateSpotLightPriority();
fullscreen_spot_lights.push_back(drawablep);
continue;
}
glh::vec3f tc(c);
mat.mult_matrix_vec(tc);
fullscreen_lights.push_back(LLVector4(tc.v[0], tc.v[1], tc.v[2], s));
light_colors.push_back(LLVector4(col.mV[0], col.mV[1], col.mV[2], volume->getLightFalloff()*0.5f));
}
}
unbindDeferredShader(gDeferredLightProgram);
}
if (!spot_lights.empty())
{
LLGLDepthTest depth(GL_TRUE, GL_FALSE);
bindDeferredShader(gDeferredSpotLightProgram);
mCubeVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
gDeferredSpotLightProgram.enableTexture(LLShaderMgr::DEFERRED_PROJECTION);
for (LLDrawable::drawable_list_t::iterator iter = spot_lights.begin(); iter != spot_lights.end(); ++iter)
{
LLFastTimer ftm(FTM_PROJECTORS);
LLDrawable* drawablep = *iter;
LLVOVolume* volume = drawablep->getVOVolume();
LLVector4a center;
center.load3(drawablep->getPositionAgent().mV);
const F32* c = center.getF32ptr();
F32 s = volume->getLightRadius()*1.5f;
sVisibleLightCount++;
setupSpotLight(gDeferredSpotLightProgram, drawablep);
LLColor3 col = volume->getLightColor();
/*col.mV[0] = powf(col.mV[0], 2.2f);
col.mV[1] = powf(col.mV[1], 2.2f);
col.mV[2] = powf(col.mV[2], 2.2f);*/
gDeferredSpotLightProgram.uniform3fv(LLShaderMgr::LIGHT_CENTER, 1, c);
gDeferredSpotLightProgram.uniform1f(LLShaderMgr::LIGHT_SIZE, s);
gDeferredSpotLightProgram.uniform3fv(LLShaderMgr::DIFFUSE_COLOR, 1, col.mV);
gDeferredSpotLightProgram.uniform1f(LLShaderMgr::LIGHT_FALLOFF, volume->getLightFalloff()*0.5f);
gGL.syncMatrices();
mCubeVB->drawRange(LLRender::TRIANGLE_FAN, 0, 7, 8, get_box_fan_indices(camera, center));
}
gDeferredSpotLightProgram.disableTexture(LLShaderMgr::DEFERRED_PROJECTION);
unbindDeferredShader(gDeferredSpotLightProgram);
}
//reset mDeferredVB to fullscreen triangle
mDeferredVB->getVertexStrider(vert);
vert[0].set(-1,1,0);
vert[1].set(-1,-3,0);
vert[2].set(3,1,0);
{
LLGLDepthTest depth(GL_FALSE);
//full screen blit
gGL.pushMatrix();
gGL.loadIdentity();
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.pushMatrix();
gGL.loadIdentity();
U32 count = 0;
const U32 max_count = LL_DEFERRED_MULTI_LIGHT_COUNT;
LLVector4 light[max_count];
LLVector4 col[max_count];
F32 far_z = 0.f;
while (!fullscreen_lights.empty())
{
LLFastTimer ftm(FTM_FULLSCREEN_LIGHTS);
light[count] = fullscreen_lights.front();
fullscreen_lights.pop_front();
col[count] = light_colors.front();
light_colors.pop_front();
/*col[count].mV[0] = powf(col[count].mV[0], 2.2f);
col[count].mV[1] = powf(col[count].mV[1], 2.2f);
col[count].mV[2] = powf(col[count].mV[2], 2.2f);*/
far_z = llmin(light[count].mV[2]-light[count].mV[3], far_z);
//col[count] = pow4fsrgb(col[count], 2.2f);
count++;
if (count == max_count || fullscreen_lights.empty())
{
U32 idx = count-1;
bindDeferredShader(gDeferredMultiLightProgram[idx]);
gDeferredMultiLightProgram[idx].uniform1i(LLShaderMgr::MULTI_LIGHT_COUNT, count);
gDeferredMultiLightProgram[idx].uniform4fv(LLShaderMgr::MULTI_LIGHT, count, (GLfloat*) light);
gDeferredMultiLightProgram[idx].uniform4fv(LLShaderMgr::MULTI_LIGHT_COL, count, (GLfloat*) col);
gDeferredMultiLightProgram[idx].uniform1f(LLShaderMgr::MULTI_LIGHT_FAR_Z, far_z);
far_z = 0.f;
count = 0;
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
}
}
unbindDeferredShader(gDeferredMultiLightProgram[0]);
bindDeferredShader(gDeferredMultiSpotLightProgram);
gDeferredMultiSpotLightProgram.enableTexture(LLShaderMgr::DEFERRED_PROJECTION);
mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
for (LLDrawable::drawable_list_t::iterator iter = fullscreen_spot_lights.begin(); iter != fullscreen_spot_lights.end(); ++iter)
{
LLFastTimer ftm(FTM_PROJECTORS);
LLDrawable* drawablep = *iter;
LLVOVolume* volume = drawablep->getVOVolume();
LLVector3 center = drawablep->getPositionAgent();
F32* c = center.mV;
F32 s = volume->getLightRadius()*1.5f;
sVisibleLightCount++;
glh::vec3f tc(c);
mat.mult_matrix_vec(tc);
setupSpotLight(gDeferredMultiSpotLightProgram, drawablep);
LLColor3 col = volume->getLightColor();
/*col.mV[0] = powf(col.mV[0], 2.2f);
col.mV[1] = powf(col.mV[1], 2.2f);
col.mV[2] = powf(col.mV[2], 2.2f);*/
gDeferredMultiSpotLightProgram.uniform3fv(LLShaderMgr::LIGHT_CENTER, 1, tc.v);
gDeferredMultiSpotLightProgram.uniform1f(LLShaderMgr::LIGHT_SIZE, s);
gDeferredMultiSpotLightProgram.uniform3fv(LLShaderMgr::DIFFUSE_COLOR, 1, col.mV);
gDeferredMultiSpotLightProgram.uniform1f(LLShaderMgr::LIGHT_FALLOFF, volume->getLightFalloff()*0.5f);
mDeferredVB->drawArrays(LLRender::TRIANGLES, 0, 3);
}
gDeferredMultiSpotLightProgram.disableTexture(LLShaderMgr::DEFERRED_PROJECTION);
unbindDeferredShader(gDeferredMultiSpotLightProgram);
gGL.popMatrix();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.popMatrix();
}
}
gGL.setColorMask(true, true);
}
/*mScreen.flush();
//gamma correct lighting
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.pushMatrix();
gGL.loadIdentity();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.pushMatrix();
gGL.loadIdentity();
{
LLGLDepthTest depth(GL_FALSE, GL_FALSE);
LLVector2 tc1(0,0);
LLVector2 tc2((F32) mScreen.getWidth()*2,
(F32) mScreen.getHeight()*2);
mScreen.bindTarget();
// Apply gamma correction to the frame here.
gDeferredPostGammaCorrectProgram.bind();
//mDeferredVB->setBuffer(LLVertexBuffer::MAP_VERTEX);
S32 channel = 0;
channel = gDeferredPostGammaCorrectProgram.enableTexture(LLShaderMgr::DEFERRED_DIFFUSE, mScreen.getUsage());
if (channel > -1)
{
mScreen.bindTexture(0,channel);
gGL.getTexUnit(channel)->setTextureFilteringOption(LLTexUnit::TFO_POINT);
}
gDeferredPostGammaCorrectProgram.uniform2f(LLShaderMgr::DEFERRED_SCREEN_RES, mScreen.getWidth(), mScreen.getHeight());
F32 gamma = gSavedSettings.getF32("RenderDeferredDisplayGamma");
gDeferredPostGammaCorrectProgram.uniform1f(LLShaderMgr::DISPLAY_GAMMA, (gamma > 0.1f) ? 1.0f / gamma : (1.0f/2.2f));
gGL.begin(LLRender::TRIANGLE_STRIP);
gGL.texCoord2f(tc1.mV[0], tc1.mV[1]);
gGL.vertex2f(-1,-1);
gGL.texCoord2f(tc1.mV[0], tc2.mV[1]);
gGL.vertex2f(-1,3);
gGL.texCoord2f(tc2.mV[0], tc1.mV[1]);
gGL.vertex2f(3,-1);
gGL.end();
gGL.getTexUnit(channel)->unbind(mScreen.getUsage());
gDeferredPostGammaCorrectProgram.unbind();
mScreen.flush();
}
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.popMatrix();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.popMatrix();
mScreen.bindTarget();*/
{ //render non-deferred geometry (alpha, fullbright, glow)
LLGLDisable blend(GL_BLEND);
LLGLDisable stencil(GL_STENCIL_TEST);
pushRenderTypeMask();
andRenderTypeMask(LLPipeline::RENDER_TYPE_ALPHA,
LLPipeline::RENDER_TYPE_FULLBRIGHT,
LLPipeline::RENDER_TYPE_VOLUME,
LLPipeline::RENDER_TYPE_GLOW,
LLPipeline::RENDER_TYPE_BUMP,
LLPipeline::RENDER_TYPE_PASS_SIMPLE,
LLPipeline::RENDER_TYPE_PASS_ALPHA,
LLPipeline::RENDER_TYPE_PASS_ALPHA_MASK,
LLPipeline::RENDER_TYPE_PASS_BUMP,
LLPipeline::RENDER_TYPE_PASS_POST_BUMP,
LLPipeline::RENDER_TYPE_PASS_FULLBRIGHT,
LLPipeline::RENDER_TYPE_PASS_FULLBRIGHT_ALPHA_MASK,
LLPipeline::RENDER_TYPE_PASS_FULLBRIGHT_SHINY,
LLPipeline::RENDER_TYPE_PASS_GLOW,
LLPipeline::RENDER_TYPE_PASS_GRASS,
LLPipeline::RENDER_TYPE_PASS_SHINY,
LLPipeline::RENDER_TYPE_PASS_INVISIBLE,
LLPipeline::RENDER_TYPE_PASS_INVISI_SHINY,
LLPipeline::RENDER_TYPE_AVATAR,
LLPipeline::RENDER_TYPE_ALPHA_MASK,
LLPipeline::RENDER_TYPE_FULLBRIGHT_ALPHA_MASK,
END_RENDER_TYPES);
renderGeomPostDeferred(*LLViewerCamera::getInstance());
popRenderTypeMask();
}
}
void LLPipeline::setupSpotLight(LLGLSLShader& shader, LLDrawable* drawablep)
{
//construct frustum
LLVOVolume* volume = drawablep->getVOVolume();
LLVector3 params = volume->getSpotLightParams();
F32 fov = params.mV[0];
F32 focus = params.mV[1];
LLVector3 pos = drawablep->getPositionAgent();
LLQuaternion quat = volume->getRenderRotation();
LLVector3 scale = volume->getScale();
//get near clip plane
LLVector3 at_axis(0,0,-scale.mV[2]*0.5f);
at_axis *= quat;
LLVector3 np = pos+at_axis;
at_axis.normVec();
//get origin that has given fov for plane np, at_axis, and given scale
F32 dist = (scale.mV[1]*0.5f)/tanf(fov*0.5f);
LLVector3 origin = np - at_axis*dist;
//matrix from volume space to agent space
LLMatrix4 light_mat(quat, LLVector4(origin,1.f));
glh::matrix4f light_to_agent((F32*) light_mat.mMatrix);
glh::matrix4f light_to_screen = glh_get_current_modelview() * light_to_agent;
glh::matrix4f screen_to_light = light_to_screen.inverse();
F32 s = volume->getLightRadius()*1.5f;
F32 near_clip = dist;
F32 width = scale.mV[VX];
F32 height = scale.mV[VY];
F32 far_clip = s+dist-scale.mV[VZ];
F32 fovy = fov * RAD_TO_DEG;
F32 aspect = width/height;
glh::matrix4f trans(0.5f, 0.f, 0.f, 0.5f,
0.f, 0.5f, 0.f, 0.5f,
0.f, 0.f, 0.5f, 0.5f,
0.f, 0.f, 0.f, 1.f);
glh::vec3f p1(0, 0, -(near_clip+0.01f));
glh::vec3f p2(0, 0, -(near_clip+1.f));
glh::vec3f screen_origin(0, 0, 0);
light_to_screen.mult_matrix_vec(p1);
light_to_screen.mult_matrix_vec(p2);
light_to_screen.mult_matrix_vec(screen_origin);
glh::vec3f n = p2-p1;
n.normalize();
F32 proj_range = far_clip - near_clip;
glh::matrix4f light_proj = gl_perspective(fovy, aspect, near_clip, far_clip);
screen_to_light = trans * light_proj * screen_to_light;
shader.uniformMatrix4fv(LLShaderMgr::PROJECTOR_MATRIX, 1, FALSE, screen_to_light.m);
shader.uniform1f(LLShaderMgr::PROJECTOR_NEAR, near_clip);
shader.uniform3fv(LLShaderMgr::PROJECTOR_P, 1, p1.v);
shader.uniform3fv(LLShaderMgr::PROJECTOR_N, 1, n.v);
shader.uniform3fv(LLShaderMgr::PROJECTOR_ORIGIN, 1, screen_origin.v);
shader.uniform1f(LLShaderMgr::PROJECTOR_RANGE, proj_range);
shader.uniform1f(LLShaderMgr::PROJECTOR_AMBIANCE, params.mV[2]);
S32 s_idx = -1;
for (U32 i = 0; i < 2; i++)
{
if (mShadowSpotLight[i] == drawablep)
{
s_idx = i;
}
}
shader.uniform1i(LLShaderMgr::PROJECTOR_SHADOW_INDEX, s_idx);
if (s_idx >= 0)
{
shader.uniform1f(LLShaderMgr::PROJECTOR_SHADOW_FADE, 1.f-mSpotLightFade[s_idx]);
}
else
{
shader.uniform1f(LLShaderMgr::PROJECTOR_SHADOW_FADE, 1.f);
}
{
LLDrawable* potential = drawablep;
//determine if this is a good light for casting shadows
F32 m_pri = volume->getSpotLightPriority();
for (U32 i = 0; i < 2; i++)
{
F32 pri = 0.f;
if (mTargetShadowSpotLight[i].notNull())
{
pri = mTargetShadowSpotLight[i]->getVOVolume()->getSpotLightPriority();
}
if (m_pri > pri)
{
LLDrawable* temp = mTargetShadowSpotLight[i];
mTargetShadowSpotLight[i] = potential;
potential = temp;
m_pri = pri;
}
}
}
LLViewerTexture* img = volume->getLightTexture();
if (img == NULL)
{
img = LLViewerFetchedTexture::sWhiteImagep;
}
S32 channel = shader.enableTexture(LLShaderMgr::DEFERRED_PROJECTION);
if (channel > -1)
{
if (img)
{
gGL.getTexUnit(channel)->bind(img);
F32 lod_range = logf(img->getWidth())/logf(2.f);
shader.uniform1f(LLShaderMgr::PROJECTOR_FOCUS, focus);
shader.uniform1f(LLShaderMgr::PROJECTOR_LOD, lod_range);
shader.uniform1f(LLShaderMgr::PROJECTOR_AMBIENT_LOD, llclamp((proj_range-focus)/proj_range*lod_range, 0.f, 1.f));
}
}
}
void LLPipeline::unbindDeferredShader(LLGLSLShader &shader)
{
stop_glerror();
shader.disableTexture(LLShaderMgr::DEFERRED_NORMAL, mDeferredScreen.getUsage());
shader.disableTexture(LLShaderMgr::DEFERRED_DIFFUSE, mDeferredScreen.getUsage());
shader.disableTexture(LLShaderMgr::DEFERRED_SPECULAR, mDeferredScreen.getUsage());
shader.disableTexture(LLShaderMgr::DEFERRED_DEPTH, mDeferredScreen.getUsage());
shader.disableTexture(LLShaderMgr::DEFERRED_LIGHT, mDeferredLight.getUsage());
shader.disableTexture(LLShaderMgr::DIFFUSE_MAP);
shader.disableTexture(LLShaderMgr::DEFERRED_BLOOM);
for (U32 i = 0; i < 4; i++)
{
if (shader.disableTexture(LLShaderMgr::DEFERRED_SHADOW0+i) > -1)
{
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE_ARB, GL_NONE);
}
}
for (U32 i = 4; i < 6; i++)
{
if (shader.disableTexture(LLShaderMgr::DEFERRED_SHADOW0+i) > -1)
{
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE_ARB, GL_NONE);
}
}
shader.disableTexture(LLShaderMgr::DEFERRED_NOISE);
shader.disableTexture(LLShaderMgr::DEFERRED_LIGHTFUNC);
S32 channel = shader.disableTexture(LLShaderMgr::ENVIRONMENT_MAP, LLTexUnit::TT_CUBE_MAP);
if (channel > -1)
{
LLCubeMap* cube_map = gSky.mVOSkyp ? gSky.mVOSkyp->getCubeMap() : NULL;
if (cube_map)
{
cube_map->disable();
}
}
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
gGL.getTexUnit(0)->activate();
shader.unbind();
}
inline float sgn(float a)
{
if (a > 0.0F) return (1.0F);
if (a < 0.0F) return (-1.0F);
return (0.0F);
}
void LLPipeline::generateWaterReflection(LLCamera& camera_in)
{
static const LLCachedControl<bool> render_transparent_water("RenderTransparentWater",false);
if ((render_transparent_water || LLPipeline::sRenderDeferred) && LLPipeline::sWaterReflections && assertInitialized() && LLDrawPoolWater::sNeedsReflectionUpdate)
{
BOOL skip_avatar_update = FALSE;
if (!isAgentAvatarValid() || gAgentCamera.getCameraAnimating() || gAgentCamera.getCameraMode() != CAMERA_MODE_MOUSELOOK || !LLVOAvatar::sVisibleInFirstPerson)
{
skip_avatar_update = TRUE;
}
if (!skip_avatar_update)
{
gAgentAvatarp->updateAttachmentVisibility(CAMERA_MODE_THIRD_PERSON);
}
LLVertexBuffer::unbind();
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
LLCamera camera = camera_in;
camera.setFar(camera.getFar()*0.87654321f);
LLPipeline::sReflectionRender = TRUE;
gPipeline.pushRenderTypeMask();
glh::matrix4f projection = glh_get_current_projection();
glh::matrix4f mat;
stop_glerror();
LLPlane plane;
F32 height = gAgent.getRegion()->getWaterHeight();
F32 to_clip = fabsf(camera.getOrigin().mV[2]-height);
F32 pad = -to_clip*0.05f; //amount to "pad" clip plane by
//plane params
LLVector3 pnorm;
F32 pd;
S32 water_clip = 0;
if (!LLViewerCamera::getInstance()->cameraUnderWater())
{ //camera is above water, clip plane points up
pnorm.setVec(0,0,1);
pd = -height;
plane.setVec(pnorm, pd);
water_clip = -1;
}
else
{ //camera is below water, clip plane points down
pnorm = LLVector3(0,0,-1);
pd = height;
plane.setVec(pnorm, pd);
water_clip = 1;
}
bool materials_in_water = false;
#if MATERIALS_IN_REFLECTIONS
materials_in_water = gSavedSettings.getS32("RenderWaterMaterials");
#endif
if (!LLViewerCamera::getInstance()->cameraUnderWater())
{ //generate planar reflection map
//disable occlusion culling for reflection map for now
S32 occlusion = LLPipeline::sUseOcclusion;
LLPipeline::sUseOcclusion = 0;
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
glClearColor(0,0,0,0);
mWaterRef.bindTarget();
LLViewerCamera::sCurCameraID = LLViewerCamera::CAMERA_WATER0;
gGL.setColorMask(true, true);
mWaterRef.clear();
gGL.setColorMask(true, false);
mWaterRef.getViewport(gGLViewport);
stop_glerror();
gGL.pushMatrix();
mat.set_scale(glh::vec3f(1,1,-1));
mat.set_translate(glh::vec3f(0,0,height*2.f));
glh::matrix4f current = glh_get_current_modelview();
mat = current * mat;
glh_set_current_modelview(mat);
gGL.loadMatrix(mat.m);
LLViewerCamera::updateFrustumPlanes(camera, FALSE, TRUE);
glh::matrix4f inv_mat = mat.inverse();
glh::vec3f origin(0,0,0);
inv_mat.mult_matrix_vec(origin);
camera.setOrigin(origin.v);
glCullFace(GL_FRONT);
static LLCullResult ref_result;
if (LLDrawPoolWater::sNeedsReflectionUpdate)
{
//initial sky pass (no user clip plane)
{ //mask out everything but the sky
gPipeline.pushRenderTypeMask();
gPipeline.andRenderTypeMask(LLPipeline::RENDER_TYPE_SKY,
LLPipeline::RENDER_TYPE_WL_SKY,
LLPipeline::RENDER_TYPE_WL_CLOUDS,
LLPipeline::END_RENDER_TYPES);
static LLCullResult result;
updateCull(camera, result);
stateSort(camera, result);
if (LLPipeline::sRenderDeferred && materials_in_water)
{
mWaterRef.flush();
gPipeline.grabReferences(result);
gPipeline.mDeferredScreen.bindTarget();
gGL.setColorMask(true, true);
glClearColor(0,0,0,0);
gPipeline.mDeferredScreen.clear();
renderGeomDeferred(camera);
}
else
{
renderGeom(camera, TRUE);
}
gPipeline.popRenderTypeMask();
}
gGL.setColorMask(true, false);
static const LLCachedControl<S32> detail("RenderReflectionDetail",0);
if (detail > 0)
{ //mask out selected geometry based on reflection detail
gPipeline.pushRenderTypeMask();
if (detail < 4)
{
#if ENABLE_CLASSIC_CLOUDS
clearRenderTypeMask(LLPipeline::RENDER_TYPE_PARTICLES, LLPipeline::RENDER_TYPE_CLASSIC_CLOUDS, END_RENDER_TYPES);
#else
clearRenderTypeMask(LLPipeline::RENDER_TYPE_PARTICLES, END_RENDER_TYPES);
#endif
if (detail < 3)
{
clearRenderTypeMask(LLPipeline::RENDER_TYPE_AVATAR, END_RENDER_TYPES);
if (detail < 2)
{
clearRenderTypeMask(LLPipeline::RENDER_TYPE_VOLUME, END_RENDER_TYPES);
}
}
}
clearRenderTypeMask(LLPipeline::RENDER_TYPE_WATER,
LLPipeline::RENDER_TYPE_VOIDWATER,
LLPipeline::RENDER_TYPE_GROUND,
LLPipeline::RENDER_TYPE_SKY,
LLPipeline::RENDER_TYPE_WL_CLOUDS,
LLPipeline::END_RENDER_TYPES);
static const LLCachedControl<bool> skip_distortion_updates("SkipReflectOcclusionUpdates",false);
LLPipeline::sSkipUpdate = skip_distortion_updates;
LLGLUserClipPlane clip_plane(plane, mat, projection);
LLGLDisable cull(GL_CULL_FACE);
updateCull(camera, ref_result, -water_clip, &plane);
stateSort(camera, ref_result);
if (LLDrawPoolWater::sNeedsDistortionUpdate)
{
if (detail > 0)
{
gPipeline.grabReferences(ref_result);
LLGLUserClipPlane clip_plane(plane, mat, projection);
if (LLPipeline::sRenderDeferred && materials_in_water)
{
renderGeomDeferred(camera);
}
else
{
renderGeom(camera);
}
}
}
if (LLPipeline::sRenderDeferred && materials_in_water)
{
gPipeline.mDeferredScreen.flush();
renderDeferredLightingToRT(&mWaterRef);
}
LLPipeline::sSkipUpdate = FALSE;
gPipeline.popRenderTypeMask();
}
}
glCullFace(GL_BACK);
gGL.popMatrix();
mWaterRef.flush();
glh_set_current_modelview(current);
LLPipeline::sUseOcclusion = occlusion;
}
camera.setOrigin(camera_in.getOrigin());
//render distortion map
static BOOL last_update = TRUE;
if (last_update)
{
camera.setFar(camera_in.getFar());
clearRenderTypeMask(LLPipeline::RENDER_TYPE_WATER,
LLPipeline::RENDER_TYPE_VOIDWATER,
LLPipeline::RENDER_TYPE_GROUND,
END_RENDER_TYPES);
stop_glerror();
LLPipeline::sUnderWaterRender = LLViewerCamera::getInstance()->cameraUnderWater() ? FALSE : TRUE;
if (LLPipeline::sUnderWaterRender)
{
clearRenderTypeMask(LLPipeline::RENDER_TYPE_GROUND,
LLPipeline::RENDER_TYPE_SKY,
#if ENABLE_CLASSIC_CLOUDS
LLPipeline::RENDER_TYPE_CLASSIC_CLOUDS,
#endif
LLPipeline::RENDER_TYPE_WL_CLOUDS,
LLPipeline::RENDER_TYPE_WL_SKY,
END_RENDER_TYPES);
}
LLViewerCamera::updateFrustumPlanes(camera);
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
LLColor4& col = LLDrawPoolWater::sWaterFogColor;
glClearColor(col.mV[0], col.mV[1], col.mV[2], 0.f);
mWaterDis.bindTarget();
LLViewerCamera::sCurCameraID = LLViewerCamera::CAMERA_WATER1;
mWaterDis.getViewport(gGLViewport);
if (!LLPipeline::sUnderWaterRender || LLDrawPoolWater::sNeedsReflectionUpdate)
{
//clip out geometry on the same side of water as the camera
mat = glh_get_current_modelview();
LLPlane plane(-pnorm, -(pd+pad));
LLGLUserClipPlane clip_plane(plane, mat, projection);
static LLCullResult result;
updateCull(camera, result, water_clip, &plane);
stateSort(camera, result);
gGL.setColorMask(true, true);
mWaterDis.clear();
gGL.setColorMask(true, false);
if (LLPipeline::sRenderDeferred && materials_in_water)
{
mWaterDis.flush();
gPipeline.mDeferredScreen.bindTarget();
gGL.setColorMask(true, true);
glClearColor(0,0,0,0);
gPipeline.mDeferredScreen.clear();
gPipeline.grabReferences(result);
renderGeomDeferred(camera);
}
else
{
renderGeom(camera);
}
if (LLPipeline::sRenderDeferred && materials_in_water)
{
gPipeline.mDeferredScreen.flush();
renderDeferredLightingToRT(&mWaterDis);
}
}
mWaterDis.flush();
LLPipeline::sUnderWaterRender = FALSE;
}
last_update = LLDrawPoolWater::sNeedsReflectionUpdate && LLDrawPoolWater::sNeedsDistortionUpdate;
LLPipeline::sReflectionRender = FALSE;
if (!LLRenderTarget::sUseFBO)
{
glClear(GL_DEPTH_BUFFER_BIT);
}
glClearColor(0.f, 0.f, 0.f, 0.f);
gViewerWindow->setup3DViewport();
gPipeline.popRenderTypeMask();
LLDrawPoolWater::sNeedsReflectionUpdate = FALSE;
LLDrawPoolWater::sNeedsDistortionUpdate = FALSE;
LLPlane npnorm(-pnorm, -pd);
LLViewerCamera::getInstance()->setUserClipPlane(npnorm);
LLGLState::checkStates();
if (!skip_avatar_update)
{
gAgentAvatarp->updateAttachmentVisibility(gAgentCamera.getCameraMode());
}
LLViewerCamera::sCurCameraID = LLViewerCamera::CAMERA_WORLD;
}
}
glh::matrix4f look(const LLVector3 pos, const LLVector3 dir, const LLVector3 up)
{
glh::matrix4f ret;
LLVector3 dirN;
LLVector3 upN;
LLVector3 lftN;
lftN = dir % up;
lftN.normVec();
upN = lftN % dir;
upN.normVec();
dirN = dir;
dirN.normVec();
ret.m[ 0] = lftN[0];
ret.m[ 1] = upN[0];
ret.m[ 2] = -dirN[0];
ret.m[ 3] = 0.f;
ret.m[ 4] = lftN[1];
ret.m[ 5] = upN[1];
ret.m[ 6] = -dirN[1];
ret.m[ 7] = 0.f;
ret.m[ 8] = lftN[2];
ret.m[ 9] = upN[2];
ret.m[10] = -dirN[2];
ret.m[11] = 0.f;
ret.m[12] = -(lftN*pos);
ret.m[13] = -(upN*pos);
ret.m[14] = dirN*pos;
ret.m[15] = 1.f;
return ret;
}
glh::matrix4f scale_translate_to_fit(const LLVector3 min, const LLVector3 max)
{
glh::matrix4f ret;
ret.m[ 0] = 2/(max[0]-min[0]);
ret.m[ 4] = 0;
ret.m[ 8] = 0;
ret.m[12] = -(max[0]+min[0])/(max[0]-min[0]);
ret.m[ 1] = 0;
ret.m[ 5] = 2/(max[1]-min[1]);
ret.m[ 9] = 0;
ret.m[13] = -(max[1]+min[1])/(max[1]-min[1]);
ret.m[ 2] = 0;
ret.m[ 6] = 0;
ret.m[10] = 2/(max[2]-min[2]);
ret.m[14] = -(max[2]+min[2])/(max[2]-min[2]);
ret.m[ 3] = 0;
ret.m[ 7] = 0;
ret.m[11] = 0;
ret.m[15] = 1;
return ret;
}
static LLFastTimer::DeclareTimer FTM_SHADOW_RENDER("Render Shadows");
static LLFastTimer::DeclareTimer FTM_SHADOW_ALPHA("Alpha Shadow");
static LLFastTimer::DeclareTimer FTM_SHADOW_SIMPLE("Simple Shadow");
void LLPipeline::renderShadow(glh::matrix4f& view, glh::matrix4f& proj, LLCamera& shadow_cam, LLCullResult &result, BOOL use_shader, BOOL use_occlusion, U32 target_width)
{
LLFastTimer t(FTM_SHADOW_RENDER);
//clip out geometry on the same side of water as the camera
S32 occlude = LLPipeline::sUseOcclusion;
if (!use_occlusion)
{
LLPipeline::sUseOcclusion = 0;
}
LLPipeline::sShadowRender = TRUE;
U32 types[] = {
LLRenderPass::PASS_SIMPLE,
LLRenderPass::PASS_FULLBRIGHT,
LLRenderPass::PASS_SHINY,
LLRenderPass::PASS_BUMP,
LLRenderPass::PASS_FULLBRIGHT_SHINY ,
LLRenderPass::PASS_MATERIAL,
LLRenderPass::PASS_MATERIAL_ALPHA_EMISSIVE,
LLRenderPass::PASS_SPECMAP,
LLRenderPass::PASS_SPECMAP_EMISSIVE,
LLRenderPass::PASS_NORMMAP,
LLRenderPass::PASS_NORMMAP_EMISSIVE,
LLRenderPass::PASS_NORMSPEC,
LLRenderPass::PASS_NORMSPEC_EMISSIVE,
};
LLGLEnable cull(GL_CULL_FACE);
if (use_shader)
{
gDeferredShadowCubeProgram.bind();
}
//LLRenderTarget& occlusion_target = mShadowOcclusion[LLViewerCamera::sCurCameraID-1];
//occlusion_target.bindTarget();
updateCull(shadow_cam, result);
//occlusion_target.flush();
stateSort(shadow_cam, result);
//generate shadow map
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.pushMatrix();
gGL.loadMatrix(proj.m);
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.pushMatrix();
gGL.loadMatrix(gGLModelView.getF32ptr());
stop_glerror();
gGLLastMatrix = NULL;
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
stop_glerror();
LLVertexBuffer::unbind();
{
if (!use_shader)
{ //occlusion program is general purpose depth-only no-textures
gOcclusionProgram.bind();
}
else
{
gDeferredShadowProgram.bind();
}
gGL.diffuseColor4f(1,1,1,1);
gGL.setColorMask(false, false);
LLFastTimer ftm(FTM_SHADOW_SIMPLE);
gGL.getTexUnit(0)->disable();
for (U32 i = 0; i < sizeof(types)/sizeof(U32); ++i)
{
renderObjects(types[i], LLVertexBuffer::MAP_VERTEX, FALSE);
}
gGL.getTexUnit(0)->enable(LLTexUnit::TT_TEXTURE);
if (!use_shader)
{
gOcclusionProgram.unbind();
}
}
if (use_shader)
{
gDeferredShadowProgram.unbind();
renderGeomShadow(shadow_cam);
gDeferredShadowProgram.bind();
}
else
{
renderGeomShadow(shadow_cam);
}
{
LLFastTimer ftm(FTM_SHADOW_ALPHA);
gDeferredShadowAlphaMaskProgram.bind();
gDeferredShadowAlphaMaskProgram.uniform1f(LLShaderMgr::DEFERRED_SHADOW_TARGET_WIDTH, (float)target_width);
U32 mask = LLVertexBuffer::MAP_VERTEX |
LLVertexBuffer::MAP_TEXCOORD0 |
LLVertexBuffer::MAP_COLOR |
LLVertexBuffer::MAP_TEXTURE_INDEX;
renderMaskedObjects(LLRenderPass::PASS_ALPHA_MASK, mask, TRUE, TRUE);
renderMaskedObjects(LLRenderPass::PASS_FULLBRIGHT_ALPHA_MASK, mask, TRUE, TRUE);
gDeferredShadowAlphaMaskProgram.setMinimumAlpha(0.598f);
renderObjects(LLRenderPass::PASS_ALPHA, mask, TRUE, TRUE);
mask = mask & ~LLVertexBuffer::MAP_TEXTURE_INDEX;
gDeferredTreeShadowProgram.bind();
renderMaskedObjects(LLRenderPass::PASS_NORMSPEC_MASK, mask);
renderMaskedObjects(LLRenderPass::PASS_MATERIAL_ALPHA_MASK, mask);
renderMaskedObjects(LLRenderPass::PASS_SPECMAP_MASK, mask);
renderMaskedObjects(LLRenderPass::PASS_NORMMAP_MASK, mask);
gDeferredTreeShadowProgram.setMinimumAlpha(0.598f);
renderObjects(LLRenderPass::PASS_GRASS, LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_TEXCOORD0, TRUE);
}
//glCullFace(GL_BACK);
gDeferredShadowCubeProgram.bind();
gGLLastMatrix = NULL;
gGL.loadMatrix(gGLModelView.getF32ptr());
//LLRenderTarget& occlusion_source = mShadow[LLViewerCamera::sCurCameraID-1];
doOcclusion(shadow_cam/*, occlusion_source, occlusion_target*/);
if (use_shader)
{
gDeferredShadowProgram.unbind();
}
gGL.setColorMask(true, true);
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.popMatrix();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.popMatrix();
gGLLastMatrix = NULL;
LLPipeline::sUseOcclusion = occlude;
LLPipeline::sShadowRender = FALSE;
}
static LLFastTimer::DeclareTimer FTM_VISIBLE_CLOUD("Visible Cloud");
BOOL LLPipeline::getVisiblePointCloud(LLCamera& camera, LLVector3& min, LLVector3& max, std::vector<LLVector3>& fp, LLVector3 light_dir)
{
LLFastTimer t(FTM_VISIBLE_CLOUD);
//get point cloud of intersection of frust and min, max
if (getVisibleExtents(camera, min, max))
{
return FALSE;
}
//get set of planes on bounding box
LLPlane bp[] = {
LLPlane(min, LLVector3(-1,0,0)),
LLPlane(min, LLVector3(0,-1,0)),
LLPlane(min, LLVector3(0,0,-1)),
LLPlane(max, LLVector3(1,0,0)),
LLPlane(max, LLVector3(0,1,0)),
LLPlane(max, LLVector3(0,0,1))};
//potential points
std::vector<LLVector3> pp;
//add corners of AABB
pp.push_back(LLVector3(min.mV[0], min.mV[1], min.mV[2]));
pp.push_back(LLVector3(max.mV[0], min.mV[1], min.mV[2]));
pp.push_back(LLVector3(min.mV[0], max.mV[1], min.mV[2]));
pp.push_back(LLVector3(max.mV[0], max.mV[1], min.mV[2]));
pp.push_back(LLVector3(min.mV[0], min.mV[1], max.mV[2]));
pp.push_back(LLVector3(max.mV[0], min.mV[1], max.mV[2]));
pp.push_back(LLVector3(min.mV[0], max.mV[1], max.mV[2]));
pp.push_back(LLVector3(max.mV[0], max.mV[1], max.mV[2]));
//add corners of camera frustum
for (U32 i = 0; i < LLCamera::AGENT_FRUSTRUM_NUM; i++)
{
pp.push_back(camera.mAgentFrustum[i]);
}
//bounding box line segments
U32 bs[] =
{
0,1,
1,3,
3,2,
2,0,
4,5,
5,7,
7,6,
6,4,
0,4,
1,5,
3,7,
2,6
};
for (U32 i = 0; i < 12; i++)
{ //for each line segment in bounding box
for (U32 j = 0; j < LLCamera::AGENT_PLANE_NO_USER_CLIP_NUM; j++)
{ //for each plane in camera frustum
const LLPlane& cp = camera.getAgentPlane(j);
const LLVector3& v1 = pp[bs[i*2+0]];
const LLVector3& v2 = pp[bs[i*2+1]];
LLVector3 n;
cp.getVector3(n);
LLVector3 line = v1-v2;
F32 d1 = line*n;
F32 d2 = -cp.dist(v2);
F32 t = d2/d1;
if (t > 0.f && t < 1.f)
{
LLVector3 intersect = v2+line*t;
pp.push_back(intersect);
}
}
}
//camera frustum line segments
const U32 fs[] =
{
0,1,
1,2,
2,3,
3,0,
4,5,
5,6,
6,7,
7,4,
0,4,
1,5,
2,6,
3,7
};
for (U32 i = 0; i < 12; i++)
{
for (U32 j = 0; j < 6; ++j)
{
const LLVector3& v1 = pp[fs[i*2+0]+8];
const LLVector3& v2 = pp[fs[i*2+1]+8];
const LLPlane& cp = bp[j];
LLVector3 n;
cp.getVector3(n);
LLVector3 line = v1-v2;
F32 d1 = line*n;
F32 d2 = -cp.dist(v2);
F32 t = d2/d1;
if (t > 0.f && t < 1.f)
{
LLVector3 intersect = v2+line*t;
pp.push_back(intersect);
}
}
}
LLVector3 ext[] = { min-LLVector3(0.05f,0.05f,0.05f),
max+LLVector3(0.05f,0.05f,0.05f) };
for (U32 i = 0; i < pp.size(); ++i)
{
bool found = true;
const F32* p = pp[i].mV;
for (U32 j = 0; j < 3; ++j)
{
if (p[j] < ext[0].mV[j] ||
p[j] > ext[1].mV[j])
{
found = false;
break;
}
}
for (U32 j = 0; j < LLCamera::AGENT_PLANE_NO_USER_CLIP_NUM; ++j)
{
const LLPlane& cp = camera.getAgentPlane(j);
F32 dist = cp.dist(pp[i]);
if (dist > 0.05f) //point is above some plane, not contained
{
found = false;
break;
}
}
if (found)
{
fp.push_back(pp[i]);
}
}
if (fp.empty())
{
return FALSE;
}
return TRUE;
}
static LLFastTimer::DeclareTimer FTM_GEN_SUN_SHADOW("Gen Sun Shadow");
void LLPipeline::generateSunShadow(LLCamera& camera)
{
static const LLCachedControl<S32> RenderShadowDetail("RenderShadowDetail",0);
static const LLCachedControl<LLVector3> RenderShadowClipPlanes("RenderShadowClipPlanes",LLVector3(1.f,12.f,32.f));
static const LLCachedControl<LLVector3> RenderShadowOrthoClipPlanes("RenderShadowOrthoClipPlanes",LLVector3(4.f,8.f,24.f));
static const LLCachedControl<F32> RenderFarClip("RenderFarClip");
static const LLCachedControl<LLVector3> RenderShadowNearDist("RenderShadowNearDist");
static const LLCachedControl<LLVector3> RenderShadowSplitExponent("RenderShadowSplitExponent",LLVector3(3.f,3.f,2.f));
static const LLCachedControl<F32> RenderShadowFOVCutoff("RenderShadowFOVCutoff",1.1f);
static const LLCachedControl<F32> RenderShadowErrorCutoff("RenderShadowErrorCutoff",5.f);
static const LLCachedControl<bool> CameraOffset("CameraOffset",false);
if (!sRenderDeferred || RenderShadowDetail <= 0)
{
return;
}
LLFastTimer t(FTM_GEN_SUN_SHADOW);
BOOL skip_avatar_update = FALSE;
if (!isAgentAvatarValid() || gAgentCamera.getCameraAnimating() || gAgentCamera.getCameraMode() != CAMERA_MODE_MOUSELOOK || !LLVOAvatar::sVisibleInFirstPerson)
{
skip_avatar_update = TRUE;
}
if (!skip_avatar_update)
{
gAgentAvatarp->updateAttachmentVisibility(CAMERA_MODE_THIRD_PERSON);
}
LLMatrix4a last_modelview = gGLLastModelView;
LLMatrix4a last_projection = gGLLastProjection;
pushRenderTypeMask();
andRenderTypeMask(LLPipeline::RENDER_TYPE_SIMPLE,
LLPipeline::RENDER_TYPE_ALPHA,
LLPipeline::RENDER_TYPE_GRASS,
LLPipeline::RENDER_TYPE_FULLBRIGHT,
LLPipeline::RENDER_TYPE_BUMP,
LLPipeline::RENDER_TYPE_VOLUME,
LLPipeline::RENDER_TYPE_AVATAR,
LLPipeline::RENDER_TYPE_TREE,
LLPipeline::RENDER_TYPE_TERRAIN,
LLPipeline::RENDER_TYPE_WATER,
LLPipeline::RENDER_TYPE_VOIDWATER,
LLPipeline::RENDER_TYPE_PASS_ALPHA,
LLPipeline::RENDER_TYPE_PASS_ALPHA_MASK,
LLPipeline::RENDER_TYPE_PASS_FULLBRIGHT_ALPHA_MASK,
LLPipeline::RENDER_TYPE_PASS_GRASS,
LLPipeline::RENDER_TYPE_PASS_SIMPLE,
LLPipeline::RENDER_TYPE_PASS_BUMP,
LLPipeline::RENDER_TYPE_PASS_FULLBRIGHT,
LLPipeline::RENDER_TYPE_PASS_SHINY,
LLPipeline::RENDER_TYPE_PASS_FULLBRIGHT_SHINY,
LLPipeline::RENDER_TYPE_PASS_MATERIAL,
LLPipeline::RENDER_TYPE_PASS_MATERIAL_ALPHA,
LLPipeline::RENDER_TYPE_PASS_MATERIAL_ALPHA_MASK,
LLPipeline::RENDER_TYPE_PASS_MATERIAL_ALPHA_EMISSIVE,
LLPipeline::RENDER_TYPE_PASS_SPECMAP,
LLPipeline::RENDER_TYPE_PASS_SPECMAP_BLEND,
LLPipeline::RENDER_TYPE_PASS_SPECMAP_MASK,
LLPipeline::RENDER_TYPE_PASS_SPECMAP_EMISSIVE,
LLPipeline::RENDER_TYPE_PASS_NORMMAP,
LLPipeline::RENDER_TYPE_PASS_NORMMAP_BLEND,
LLPipeline::RENDER_TYPE_PASS_NORMMAP_MASK,
LLPipeline::RENDER_TYPE_PASS_NORMMAP_EMISSIVE,
LLPipeline::RENDER_TYPE_PASS_NORMSPEC,
LLPipeline::RENDER_TYPE_PASS_NORMSPEC_BLEND,
LLPipeline::RENDER_TYPE_PASS_NORMSPEC_MASK,
LLPipeline::RENDER_TYPE_PASS_NORMSPEC_EMISSIVE,
END_RENDER_TYPES);
gGL.setColorMask(false, false);
//get sun view matrix
//store current projection/modelview matrix
glh::matrix4f saved_proj = glh_get_current_projection();
glh::matrix4f saved_view = glh_get_current_modelview();
glh::matrix4f inv_view = saved_view.inverse();
glh::matrix4f view[6];
glh::matrix4f proj[6];
//clip contains parallel split distances for 3 splits
LLVector3 clip = RenderShadowClipPlanes;
//F32 slope_threshold = gSavedSettings.getF32("RenderShadowSlopeThreshold");
//far clip on last split is minimum of camera view distance and 128
mSunClipPlanes = LLVector4(clip, clip.mV[2] * clip.mV[2]/clip.mV[1]);
clip = RenderShadowOrthoClipPlanes;
mSunOrthoClipPlanes = LLVector4(clip, clip.mV[2]*clip.mV[2]/clip.mV[1]);
//currently used for amount to extrude frusta corners for constructing shadow frusta
//LLVector3 n = RenderShadowNearDist;
//F32 nearDist[] = { n.mV[0], n.mV[1], n.mV[2], n.mV[2] };
//put together a universal "near clip" plane for shadow frusta
LLPlane shadow_near_clip;
{
LLVector3 p = gAgent.getPositionAgent();
p += mSunDir * RenderFarClip*2.f;
shadow_near_clip.setVec(p, mSunDir);
}
LLVector3 lightDir = -mSunDir;
lightDir.normVec();
glh::vec3f light_dir(lightDir.mV);
//create light space camera matrix
LLVector3 at = lightDir;
LLVector3 up = camera.getAtAxis();
if (fabsf(up*lightDir) > 0.75f)
{
up = camera.getUpAxis();
}
/*LLVector3 left = up%at;
up = at%left;*/
up.normVec();
at.normVec();
LLCamera main_camera = camera;
F32 near_clip = 0.f;
{
//get visible point cloud
std::vector<LLVector3> fp;
main_camera.calcAgentFrustumPlanes(main_camera.mAgentFrustum);
LLVector3 min,max;
getVisiblePointCloud(main_camera,min,max,fp);
if (fp.empty())
{
if (!hasRenderDebugMask(RENDER_DEBUG_SHADOW_FRUSTA))
{
mShadowCamera[0] = main_camera;
mShadowExtents[0][0] = min;
mShadowExtents[0][1] = max;
mShadowFrustPoints[0].clear();
mShadowFrustPoints[1].clear();
mShadowFrustPoints[2].clear();
mShadowFrustPoints[3].clear();
}
popRenderTypeMask();
if (!skip_avatar_update)
{
gAgentAvatarp->updateAttachmentVisibility(gAgentCamera.getCameraMode());
}
return;
}
//get good split distances for frustum
for (U32 i = 0; i < fp.size(); ++i)
{
glh::vec3f v(fp[i].mV);
saved_view.mult_matrix_vec(v);
fp[i].setVec(v.v);
}
min = fp[0];
max = fp[0];
//get camera space bounding box
for (U32 i = 1; i < fp.size(); ++i)
{
update_min_max(min, max, fp[i]);
}
near_clip = -max.mV[2];
F32 far_clip = -min.mV[2]*2.f;
//far_clip = llmin(far_clip, 128.f);
far_clip = llmin(far_clip, camera.getFar());
F32 range = far_clip-near_clip;
LLVector3 split_exp = RenderShadowSplitExponent;
F32 da = 1.f-llmax( fabsf(lightDir*up), fabsf(lightDir*camera.getLeftAxis()) );
da = powf(da, split_exp.mV[2]);
F32 sxp = split_exp.mV[1] + (split_exp.mV[0]-split_exp.mV[1])*da;
for (U32 i = 0; i < 4; ++i)
{
F32 x = (F32)(i+1)/4.f;
x = powf(x, sxp);
mSunClipPlanes.mV[i] = near_clip+range*x;
}
mSunClipPlanes.mV[0] *= 1.25f; //bump back first split for transition padding
}
// convenience array of 4 near clip plane distances
F32 dist[] = { near_clip, mSunClipPlanes.mV[0], mSunClipPlanes.mV[1], mSunClipPlanes.mV[2], mSunClipPlanes.mV[3] };
if (mSunDiffuse == LLColor4::black)
{ //sun diffuse is totally black, shadows don't matter
LLGLDepthTest depth(GL_TRUE);
for (S32 j = 0; j < 4; j++)
{
mShadow[j].bindTarget();
mShadow[j].clear();
mShadow[j].flush();
}
}
else
{
for (S32 j = 0; j < 4; j++)
{
if (!hasRenderDebugMask(RENDER_DEBUG_SHADOW_FRUSTA))
{
mShadowFrustPoints[j].clear();
}
LLViewerCamera::sCurCameraID = LLViewerCamera::CAMERA_SHADOW0+j;
//restore render matrices
glh_set_current_modelview(saved_view);
glh_set_current_projection(saved_proj);
LLVector3 eye = camera.getOrigin();
//camera used for shadow cull/render
LLCamera shadow_cam;
//create world space camera frustum for this split
shadow_cam = camera;
shadow_cam.setFar(16.f);
LLViewerCamera::updateFrustumPlanes(shadow_cam, FALSE, FALSE, TRUE);
LLVector3* frust = shadow_cam.mAgentFrustum;
LLVector3 pn = shadow_cam.getAtAxis();
LLVector3 min, max;
//construct 8 corners of split frustum section
for (U32 i = 0; i < 4; i++)
{
LLVector3 delta = frust[i+4]-eye;
delta += (frust[i+4]-frust[(i+2)%4+4])*0.05f;
delta.normVec();
F32 dp = delta*pn;
frust[i] = eye + (delta*dist[j]*0.75f)/dp;
frust[i+4] = eye + (delta*dist[j+1]*1.25f)/dp;
}
shadow_cam.calcAgentFrustumPlanes(frust);
shadow_cam.mFrustumCornerDist = 0.f;
if (!gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_SHADOW_FRUSTA))
{
mShadowCamera[j] = shadow_cam;
}
std::vector<LLVector3> fp;
if (!gPipeline.getVisiblePointCloud(shadow_cam, min, max, fp, lightDir))
{
//no possible shadow receivers
if (!gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_SHADOW_FRUSTA))
{
mShadowExtents[j][0] = LLVector3();
mShadowExtents[j][1] = LLVector3();
mShadowCamera[j+4] = shadow_cam;
}
mShadow[j].bindTarget();
{
LLGLDepthTest depth(GL_TRUE);
mShadow[j].clear();
}
mShadow[j].flush();
mShadowError.mV[j] = 0.f;
mShadowFOV.mV[j] = 0.f;
continue;
}
if (!gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_SHADOW_FRUSTA))
{
mShadowExtents[j][0] = min;
mShadowExtents[j][1] = max;
mShadowFrustPoints[j] = fp;
}
//find a good origin for shadow projection
LLVector3 origin;
//get a temporary view projection
view[j] = look(camera.getOrigin(), lightDir, -up);
std::vector<LLVector3> wpf;
for (U32 i = 0; i < fp.size(); i++)
{
glh::vec3f p = glh::vec3f(fp[i].mV);
view[j].mult_matrix_vec(p);
wpf.push_back(LLVector3(p.v));
}
min = wpf[0];
max = wpf[0];
for (U32 i = 0; i < fp.size(); ++i)
{ //get AABB in camera space
update_min_max(min, max, wpf[i]);
}
// Construct a perspective transform with perspective along y-axis that contains
// points in wpf
//Known:
// - far clip plane
// - near clip plane
// - points in frustum
//Find:
// - origin
//get some "interesting" points of reference
LLVector3 center = (min+max)*0.5f;
LLVector3 size = (max-min)*0.5f;
LLVector3 near_center = center;
near_center.mV[1] += size.mV[1]*2.f;
//put all points in wpf in quadrant 0, reletive to center of min/max
//get the best fit line using least squares
F32 bfm = 0.f;
F32 bfb = 0.f;
for (U32 i = 0; i < wpf.size(); ++i)
{
wpf[i] -= center;
wpf[i].mV[0] = fabsf(wpf[i].mV[0]);
wpf[i].mV[2] = fabsf(wpf[i].mV[2]);
}
if (!wpf.empty())
{
F32 sx = 0.f;
F32 sx2 = 0.f;
F32 sy = 0.f;
F32 sxy = 0.f;
for (U32 i = 0; i < wpf.size(); ++i)
{
sx += wpf[i].mV[0];
sx2 += wpf[i].mV[0]*wpf[i].mV[0];
sy += wpf[i].mV[1];
sxy += wpf[i].mV[0]*wpf[i].mV[1];
}
bfm = (sy*sx-wpf.size()*sxy)/(sx*sx-wpf.size()*sx2);
bfb = (sx*sxy-sy*sx2)/(sx*sx-bfm*sx2);
}
{
// best fit line is y=bfm*x+bfb
//find point that is furthest to the right of line
F32 off_x = -1.f;
LLVector3 lp;
for (U32 i = 0; i < wpf.size(); ++i)
{
//y = bfm*x+bfb
//x = (y-bfb)/bfm
F32 lx = (wpf[i].mV[1]-bfb)/bfm;
lx = wpf[i].mV[0]-lx;
if (off_x < lx)
{
off_x = lx;
lp = wpf[i];
}
}
//get line with slope bfm through lp
// bfb = y-bfm*x
bfb = lp.mV[1]-bfm*lp.mV[0];
//calculate error
mShadowError.mV[j] = 0.f;
for (U32 i = 0; i < wpf.size(); ++i)
{
F32 lx = (wpf[i].mV[1]-bfb)/bfm;
mShadowError.mV[j] += fabsf(wpf[i].mV[0]-lx);
}
mShadowError.mV[j] /= wpf.size();
mShadowError.mV[j] /= size.mV[0];
if (mShadowError.mV[j] > RenderShadowErrorCutoff)
{ //just use ortho projection
mShadowFOV.mV[j] = -1.f;
origin.clearVec();
proj[j] = gl_ortho(min.mV[0], max.mV[0],
min.mV[1], max.mV[1],
-max.mV[2], -min.mV[2]);
}
else
{
//origin is where line x = 0;
origin.setVec(0,bfb,0);
F32 fovz = 1.f;
F32 fovx = 1.f;
LLVector3 zp;
LLVector3 xp;
for (U32 i = 0; i < wpf.size(); ++i)
{
LLVector3 atz = wpf[i]-origin;
atz.mV[0] = 0.f;
atz.normVec();
if (fovz > -atz.mV[1])
{
zp = wpf[i];
fovz = -atz.mV[1];
}
LLVector3 atx = wpf[i]-origin;
atx.mV[2] = 0.f;
atx.normVec();
if (fovx > -atx.mV[1])
{
fovx = -atx.mV[1];
xp = wpf[i];
}
}
fovx = acos(fovx);
fovz = acos(fovz);
F32 cutoff = llmin((F32) RenderShadowFOVCutoff, 1.4f);
mShadowFOV.mV[j] = fovx;
if (fovx < cutoff && fovz > cutoff)
{
//x is a good fit, but z is too big, move away from zp enough so that fovz matches cutoff
F32 d = zp.mV[2]/tan(cutoff);
F32 ny = zp.mV[1] + fabsf(d);
origin.mV[1] = ny;
fovz = 1.f;
fovx = 1.f;
for (U32 i = 0; i < wpf.size(); ++i)
{
LLVector3 atz = wpf[i]-origin;
atz.mV[0] = 0.f;
atz.normVec();
fovz = llmin(fovz, -atz.mV[1]);
LLVector3 atx = wpf[i]-origin;
atx.mV[2] = 0.f;
atx.normVec();
fovx = llmin(fovx, -atx.mV[1]);
}
fovx = acos(fovx);
fovz = acos(fovz);
mShadowFOV.mV[j] = cutoff;
}
origin += center;
F32 ynear = -(max.mV[1]-origin.mV[1]);
F32 yfar = -(min.mV[1]-origin.mV[1]);
if (ynear < 0.1f) //keep a sensible near clip plane
{
F32 diff = 0.1f-ynear;
origin.mV[1] += diff;
ynear += diff;
yfar += diff;
}
if (fovx > cutoff)
{ //just use ortho projection
origin.clearVec();
mShadowError.mV[j] = -1.f;
proj[j] = gl_ortho(min.mV[0], max.mV[0],
min.mV[1], max.mV[1],
-max.mV[2], -min.mV[2]);
}
else
{
//get perspective projection
view[j] = view[j].inverse();
glh::vec3f origin_agent(origin.mV);
//translate view to origin
view[j].mult_matrix_vec(origin_agent);
eye = LLVector3(origin_agent.v);
if (!hasRenderDebugMask(LLPipeline::RENDER_DEBUG_SHADOW_FRUSTA))
{
mShadowFrustOrigin[j] = eye;
}
view[j] = look(LLVector3(origin_agent.v), lightDir, -up);
F32 fx = 1.f/tanf(fovx);
F32 fz = 1.f/tanf(fovz);
proj[j] = glh::matrix4f(-fx, 0, 0, 0,
0, (yfar+ynear)/(ynear-yfar), 0, (2.f*yfar*ynear)/(ynear-yfar),
0, 0, -fz, 0,
0, -1.f, 0, 0);
}
}
}
//shadow_cam.setFar(128.f);
shadow_cam.setOriginAndLookAt(eye, up, center);
shadow_cam.setOrigin(0,0,0);
glh_set_current_modelview(view[j]);
glh_set_current_projection(proj[j]);
LLViewerCamera::updateFrustumPlanes(shadow_cam, FALSE, FALSE, TRUE);
//shadow_cam.ignoreAgentFrustumPlane(LLCamera::AGENT_PLANE_NEAR);
shadow_cam.getAgentPlane(LLCamera::AGENT_PLANE_NEAR).set(shadow_near_clip);
//translate and scale to from [-1, 1] to [0, 1]
glh::matrix4f trans(0.5f, 0.f, 0.f, 0.5f,
0.f, 0.5f, 0.f, 0.5f,
0.f, 0.f, 0.5f, 0.5f,
0.f, 0.f, 0.f, 1.f);
glh_set_current_modelview(view[j]);
glh_set_current_projection(proj[j]);
gGLLastModelView = mShadowModelview[j];
gGLLastProjection = mShadowProjection[j];
mShadowModelview[j].loadu(view[j].m);
mShadowProjection[j].loadu(proj[j].m);
mSunShadowMatrix[j] = trans*proj[j]*view[j]*inv_view;
stop_glerror();
mShadow[j].bindTarget();
mShadow[j].getViewport(gGLViewport);
mShadow[j].clear();
U32 target_width = mShadow[j].getWidth();
{
static LLCullResult result[4];
//LLGLEnable enable(GL_DEPTH_CLAMP_NV);
renderShadow(view[j], proj[j], shadow_cam, result[j], TRUE, TRUE, target_width);
}
mShadow[j].flush();
if (!gPipeline.hasRenderDebugMask(LLPipeline::RENDER_DEBUG_SHADOW_FRUSTA))
{
LLViewerCamera::updateFrustumPlanes(shadow_cam, FALSE, FALSE, TRUE);
mShadowCamera[j+4] = shadow_cam;
}
}
}
//hack to disable projector shadows
bool gen_shadow = RenderShadowDetail > 1;
if (gen_shadow)
{
F32 fade_amt = gFrameIntervalSeconds * llmax(LLViewerCamera::getInstance()->getVelocityStat()->getCurrentPerSec(), 1.f);
//update shadow targets
for (U32 i = 0; i < 2; i++)
{ //for each current shadow
LLViewerCamera::sCurCameraID = LLViewerCamera::CAMERA_SHADOW4+i;
if (mShadowSpotLight[i].notNull() &&
(mShadowSpotLight[i] == mTargetShadowSpotLight[0] ||
mShadowSpotLight[i] == mTargetShadowSpotLight[1]))
{ //keep this spotlight
mSpotLightFade[i] = llmin(mSpotLightFade[i]+fade_amt, 1.f);
}
else
{ //fade out this light
mSpotLightFade[i] = llmax(mSpotLightFade[i]-fade_amt, 0.f);
if (mSpotLightFade[i] == 0.f || mShadowSpotLight[i].isNull())
{ //faded out, grab one of the pending spots (whichever one isn't already taken)
if (mTargetShadowSpotLight[0] != mShadowSpotLight[(i+1)%2])
{
mShadowSpotLight[i] = mTargetShadowSpotLight[0];
}
else
{
mShadowSpotLight[i] = mTargetShadowSpotLight[1];
}
}
}
}
for (S32 i = 0; i < 2; i++)
{
glh_set_current_modelview(saved_view);
glh_set_current_projection(saved_proj);
if (mShadowSpotLight[i].isNull())
{
continue;
}
LLVOVolume* volume = mShadowSpotLight[i]->getVOVolume();
if (!volume)
{
mShadowSpotLight[i] = NULL;
continue;
}
LLDrawable* drawable = mShadowSpotLight[i];
LLVector3 params = volume->getSpotLightParams();
F32 fov = params.mV[0];
//get agent->light space matrix (modelview)
LLVector3 center = drawable->getPositionAgent();
LLQuaternion quat = volume->getRenderRotation();
//get near clip plane
LLVector3 scale = volume->getScale();
LLVector3 at_axis(0,0,-scale.mV[2]*0.5f);
at_axis *= quat;
LLVector3 np = center+at_axis;
at_axis.normVec();
//get origin that has given fov for plane np, at_axis, and given scale
F32 dist = (scale.mV[1]*0.5f)/tanf(fov*0.5f);
LLVector3 origin = np - at_axis*dist;
LLMatrix4 mat(quat, LLVector4(origin, 1.f));
view[i+4] = glh::matrix4f((F32*) mat.mMatrix);
view[i+4] = view[i+4].inverse();
//get perspective matrix
F32 near_clip = dist+0.01f;
F32 width = scale.mV[VX];
F32 height = scale.mV[VY];
F32 far_clip = dist+volume->getLightRadius()*1.5f;
F32 fovy = fov * RAD_TO_DEG;
F32 aspect = width/height;
proj[i+4] = gl_perspective(fovy, aspect, near_clip, far_clip);
//translate and scale to from [-1, 1] to [0, 1]
glh::matrix4f trans(0.5f, 0.f, 0.f, 0.5f,
0.f, 0.5f, 0.f, 0.5f,
0.f, 0.f, 0.5f, 0.5f,
0.f, 0.f, 0.f, 1.f);
glh_set_current_modelview(view[i+4]);
glh_set_current_projection(proj[i+4]);
mSunShadowMatrix[i+4] = trans*proj[i+4]*view[i+4]*inv_view;
gGLLastModelView = mShadowModelview[i+4];
gGLLastProjection = mShadowProjection[i+4];
mShadowModelview[i+4].loadu(view[i+4].m);
mShadowProjection[i+4].loadu(proj[i+4].m);
LLCamera shadow_cam = camera;
shadow_cam.setFar(far_clip);
shadow_cam.setOrigin(origin);
LLViewerCamera::updateFrustumPlanes(shadow_cam, FALSE, FALSE, TRUE);
stop_glerror();
mShadow[i+4].bindTarget();
mShadow[i+4].getViewport(gGLViewport);
mShadow[i+4].clear();
U32 target_width = mShadow[i+4].getWidth();
static LLCullResult result[2];
LLViewerCamera::sCurCameraID = LLViewerCamera::CAMERA_SHADOW0+i+4;
renderShadow(view[i+4], proj[i+4], shadow_cam, result[i], FALSE, FALSE, target_width);
mShadow[i+4].flush();
}
}
else
{ //no spotlight shadows
mShadowSpotLight[0] = mShadowSpotLight[1] = NULL;
}
if (!CameraOffset)
{
glh_set_current_modelview(saved_view);
glh_set_current_projection(saved_proj);
}
else
{
glh_set_current_modelview(view[1]);
glh_set_current_projection(proj[1]);
gGL.loadMatrix(view[1].m);
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.loadMatrix(proj[1].m);
gGL.matrixMode(LLRender::MM_MODELVIEW);
}
gGL.setColorMask(true, false);
gGLLastModelView = last_modelview;
gGLLastProjection = last_projection;
popRenderTypeMask();
if (!skip_avatar_update)
{
gAgentAvatarp->updateAttachmentVisibility(gAgentCamera.getCameraMode());
}
}
void LLPipeline::renderGroups(LLRenderPass* pass, U32 type, U32 mask, BOOL texture)
{
for (LLCullResult::sg_iterator i = sCull->beginVisibleGroups(); i != sCull->endVisibleGroups(); ++i)
{
LLSpatialGroup* group = *i;
if (!group->isDead() &&
(!sUseOcclusion || !group->isOcclusionState(LLSpatialGroup::OCCLUDED)) &&
gPipeline.hasRenderType(group->mSpatialPartition->mDrawableType) &&
group->mDrawMap.find(type) != group->mDrawMap.end())
{
pass->renderGroup(group,type,mask,texture);
}
}
}
static LLFastTimer::DeclareTimer FTM_IMPOSTOR_MARK_VISIBLE("Impostor Mark Visible");
static LLFastTimer::DeclareTimer FTM_IMPOSTOR_SETUP("Impostor Setup");
static LLFastTimer::DeclareTimer FTM_IMPOSTOR_BACKGROUND("Impostor Background");
static LLFastTimer::DeclareTimer FTM_IMPOSTOR_ALLOCATE("Impostor Allocate");
static LLFastTimer::DeclareTimer FTM_IMPOSTOR_RESIZE("Impostor Resize");
void LLPipeline::generateImpostor(LLVOAvatar* avatar)
{
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
static LLCullResult result;
result.clear();
grabReferences(result);
if (!avatar || !avatar->mDrawable)
{
return;
}
assertInitialized();
bool visually_muted = avatar->isVisuallyMuted();
pushRenderTypeMask();
if (visually_muted)
{
andRenderTypeMask(LLPipeline::RENDER_TYPE_AVATAR, END_RENDER_TYPES);
}
else
{
andRenderTypeMask(LLPipeline::RENDER_TYPE_ALPHA,
LLPipeline::RENDER_TYPE_FULLBRIGHT,
LLPipeline::RENDER_TYPE_VOLUME,
LLPipeline::RENDER_TYPE_GLOW,
LLPipeline::RENDER_TYPE_BUMP,
LLPipeline::RENDER_TYPE_PASS_SIMPLE,
LLPipeline::RENDER_TYPE_PASS_ALPHA,
LLPipeline::RENDER_TYPE_PASS_ALPHA_MASK,
LLPipeline::RENDER_TYPE_PASS_BUMP,
LLPipeline::RENDER_TYPE_PASS_POST_BUMP,
LLPipeline::RENDER_TYPE_PASS_FULLBRIGHT,
LLPipeline::RENDER_TYPE_PASS_FULLBRIGHT_ALPHA_MASK,
LLPipeline::RENDER_TYPE_PASS_FULLBRIGHT_SHINY,
LLPipeline::RENDER_TYPE_PASS_GLOW,
LLPipeline::RENDER_TYPE_PASS_GRASS,
LLPipeline::RENDER_TYPE_PASS_SHINY,
LLPipeline::RENDER_TYPE_PASS_INVISIBLE,
LLPipeline::RENDER_TYPE_PASS_INVISI_SHINY,
LLPipeline::RENDER_TYPE_AVATAR,
LLPipeline::RENDER_TYPE_ALPHA_MASK,
LLPipeline::RENDER_TYPE_FULLBRIGHT_ALPHA_MASK,
LLPipeline::RENDER_TYPE_INVISIBLE,
LLPipeline::RENDER_TYPE_SIMPLE,
END_RENDER_TYPES);
}
S32 occlusion = sUseOcclusion;
sUseOcclusion = 0;
sReflectionRender = sRenderDeferred ? FALSE : TRUE;
sShadowRender = TRUE;
sImpostorRender = TRUE;
LLViewerCamera* viewer_camera = LLViewerCamera::getInstance();
{
LLFastTimer t(FTM_IMPOSTOR_MARK_VISIBLE);
markVisible(avatar->mDrawable, *viewer_camera);
LLVOAvatar::sUseImpostors = FALSE;
/*LLVOAvatar::attachment_map_t::iterator iter;
for (iter = avatar->mAttachmentPoints.begin();
iter != avatar->mAttachmentPoints.end();
++iter)
{
LLViewerJointAttachment *attachment = iter->second;
for (LLViewerJointAttachment::attachedobjs_vec_t::iterator attachment_iter = attachment->mAttachedObjects.begin();
attachment_iter != attachment->mAttachedObjects.end();
++attachment_iter)
{
if (LLViewerObject* attached_object = (*attachment_iter))*/
std::vector<std::pair<LLViewerObject*,LLViewerJointAttachment*> >::iterator attachment_iter = avatar->mAttachedObjectsVector.begin();
std::vector<std::pair<LLViewerObject*,LLViewerJointAttachment*> >::iterator end = avatar->mAttachedObjectsVector.end();
for(;attachment_iter != end;++attachment_iter)
{{
if (LLViewerObject* attached_object = attachment_iter->first)
{
markVisible(attached_object->mDrawable->getSpatialBridge(), *viewer_camera);
}
}
}
}
stateSort(*LLViewerCamera::getInstance(), result);
LLCamera camera = *viewer_camera;
LLVector2 tdim;
U32 resY = 0;
U32 resX = 0;
{
LLFastTimer t(FTM_IMPOSTOR_SETUP);
const LLVector4a* ext = avatar->mDrawable->getSpatialExtents();
LLVector3 pos(avatar->getRenderPosition()+avatar->getImpostorOffset());
camera.lookAt(viewer_camera->getOrigin(), pos, viewer_camera->getUpAxis());
LLVector4a half_height;
half_height.setSub(ext[1], ext[0]);
half_height.mul(0.5f);
LLVector4a left;
left.load3(camera.getLeftAxis().mV);
left.mul(left);
llassert(left.dot3(left).getF32() > F_APPROXIMATELY_ZERO);
left.normalize3fast();
LLVector4a up;
up.load3(camera.getUpAxis().mV);
up.mul(up);
llassert(up.dot3(up).getF32() > F_APPROXIMATELY_ZERO);
up.normalize3fast();
tdim.mV[0] = fabsf(half_height.dot3(left).getF32());
tdim.mV[1] = fabsf(half_height.dot3(up).getF32());
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.pushMatrix();
F32 distance = (pos-camera.getOrigin()).length();
F32 fov = atanf(tdim.mV[1]/distance)*2.f*RAD_TO_DEG;
F32 aspect = tdim.mV[0]/tdim.mV[1];
glh::matrix4f persp = gl_perspective(fov, aspect, 1.f, 256.f);
glh_set_current_projection(persp);
gGL.loadMatrix(persp.m);
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.pushMatrix();
glh::matrix4f mat;
camera.getOpenGLTransform(mat.m);
mat = glh::matrix4f((GLfloat*) OGL_TO_CFR_ROTATION) * mat;
gGL.loadMatrix(mat.m);
glh_set_current_modelview(mat);
glClearColor(0.0f,0.0f,0.0f,0.0f);
gGL.setColorMask(true, true);
// get the number of pixels per angle
F32 pa = gViewerWindow->getWindowHeightRaw() / (RAD_TO_DEG * viewer_camera->getView());
//get resolution based on angle width and height of impostor (double desired resolution to prevent aliasing)
resY = llmin(nhpo2((U32) (fov*pa)), (U32) 512);
resX = llmin(nhpo2((U32) (atanf(tdim.mV[0]/distance)*2.f*RAD_TO_DEG*pa)), (U32) 512);
if (!avatar->mImpostor.isComplete())
{
LLFastTimer t(FTM_IMPOSTOR_ALLOCATE);
if (LLPipeline::sRenderDeferred)
{
avatar->mImpostor.allocate(resX,resY,GL_SRGB8_ALPHA8,TRUE,FALSE);
addDeferredAttachments(avatar->mImpostor);
}
else
{
avatar->mImpostor.allocate(resX,resY,GL_RGBA,TRUE,FALSE);
}
gGL.getTexUnit(0)->bind(&avatar->mImpostor);
gGL.getTexUnit(0)->setTextureFilteringOption(LLTexUnit::TFO_POINT);
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
}
else if(resX != avatar->mImpostor.getWidth() || resY != avatar->mImpostor.getHeight())
{
LLFastTimer t(FTM_IMPOSTOR_RESIZE);
avatar->mImpostor.resize(resX,resY);
}
avatar->mImpostor.bindTarget();
}
F32 old_alpha = LLDrawPoolAvatar::sMinimumAlpha;
if (visually_muted)
{ //disable alpha masking for muted avatars (get whole skin silhouette)
LLDrawPoolAvatar::sMinimumAlpha = 0.f;
}
if (LLPipeline::sRenderDeferred)
{
avatar->mImpostor.clear();
renderGeomDeferred(camera);
renderGeomPostDeferred(camera);
// Shameless hack time: render it all again,
// this time writing the depth
// values we need to generate the alpha mask below
// while preserving the alpha-sorted color rendering
// from the previous pass
//
sImpostorRenderAlphaDepthPass = true;
// depth-only here...
//
gGL.setColorMask(false,false);
renderGeomPostDeferred(camera);
sImpostorRenderAlphaDepthPass = false;
}
else
{
LLGLEnable scissor(GL_SCISSOR_TEST);
glScissor(0, 0, resX, resY);
avatar->mImpostor.clear();
renderGeom(camera);
// Shameless hack time: render it all again,
// this time writing the depth
// values we need to generate the alpha mask below
// while preserving the alpha-sorted color rendering
// from the previous pass
//
sImpostorRenderAlphaDepthPass = true;
// depth-only here...
//
gGL.setColorMask(false,false);
renderGeom(camera);
sImpostorRenderAlphaDepthPass = false;
}
LLDrawPoolAvatar::sMinimumAlpha = old_alpha;
{ //create alpha mask based on depth buffer (grey out if muted)
LLFastTimer t(FTM_IMPOSTOR_BACKGROUND);
if (LLPipeline::sRenderDeferred)
{
GLuint buff = GL_COLOR_ATTACHMENT0;
glDrawBuffersARB(1, &buff);
}
LLGLDisable blend(GL_BLEND);
if (visually_muted)
{
gGL.setColorMask(true, true);
}
else
{
gGL.setColorMask(false, true);
}
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
LLGLDepthTest depth(GL_TRUE, GL_FALSE, GL_GREATER);
gGL.flush();
gGL.pushMatrix();
gGL.loadIdentity();
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.pushMatrix();
gGL.loadIdentity();
static const F32 clip_plane = 0.99999f;
if (LLGLSLShader::sNoFixedFunction)
{
gDebugProgram.bind();
}
gGL.diffuseColor4ub(64,64,64,255);
gGL.begin(LLRender::QUADS);
gGL.vertex3f(-1, -1, clip_plane);
gGL.vertex3f(1, -1, clip_plane);
gGL.vertex3f(1, 1, clip_plane);
gGL.vertex3f(-1, 1, clip_plane);
gGL.end();
gGL.flush();
if (LLGLSLShader::sNoFixedFunction)
{
gDebugProgram.unbind();
}
gGL.popMatrix();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.popMatrix();
}
avatar->mImpostor.flush();
avatar->setImpostorDim(tdim);
LLVOAvatar::sUseImpostors = TRUE;
sUseOcclusion = occlusion;
sReflectionRender = FALSE;
sImpostorRender = FALSE;
sShadowRender = FALSE;
popRenderTypeMask();
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.popMatrix();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.popMatrix();
avatar->mNeedsImpostorUpdate = FALSE;
avatar->cacheImpostorValues();
LLVertexBuffer::unbind();
LLGLState::checkStates();
LLGLState::checkTextureChannels();
LLGLState::checkClientArrays();
}
BOOL LLPipeline::hasRenderBatches(const U32 type) const
{
return sCull->hasRenderMap(type);
}
LLCullResult::drawinfo_iterator LLPipeline::beginRenderMap(U32 type) const
{
return sCull->beginRenderMap(type);
}
LLCullResult::drawinfo_iterator LLPipeline::endRenderMap(U32 type) const
{
return sCull->endRenderMap(type);
}
LLCullResult::sg_iterator LLPipeline::beginAlphaGroups() const
{
return sCull->beginAlphaGroups();
}
LLCullResult::sg_iterator LLPipeline::endAlphaGroups() const
{
return sCull->endAlphaGroups();
}
BOOL LLPipeline::hasRenderType(const U32 type) const
{
// STORM-365 : LLViewerJointAttachment::setAttachmentVisibility() is setting type to 0 to actually mean "do not render"
// We then need to test that value here and return FALSE to prevent attachment to render (in mouselook for instance)
// TODO: reintroduce RENDER_TYPE_NONE in LLRenderTypeMask and initialize its mRenderTypeEnabled[RENDER_TYPE_NONE] to FALSE explicitely
return (type == 0 ? FALSE : mRenderTypeEnabled[type]);
}
void LLPipeline::setRenderTypeMask(U32 type, ...)
{
va_list args;
va_start(args, type);
while (type < END_RENDER_TYPES)
{
mRenderTypeEnabled[type] = TRUE;
type = va_arg(args, U32);
}
va_end(args);
if (type > END_RENDER_TYPES)
{
llerrs << "Invalid render type." << llendl;
}
}
BOOL LLPipeline::hasAnyRenderType(U32 type, ...) const
{
va_list args;
va_start(args, type);
while (type < END_RENDER_TYPES)
{
if (mRenderTypeEnabled[type])
{
return TRUE;
}
type = va_arg(args, U32);
}
va_end(args);
if (type > END_RENDER_TYPES)
{
llerrs << "Invalid render type." << llendl;
}
return FALSE;
}
void LLPipeline::pushRenderTypeMask()
{
std::string cur_mask;
cur_mask.assign((const char*) mRenderTypeEnabled, sizeof(mRenderTypeEnabled));
mRenderTypeEnableStack.push(cur_mask);
}
void LLPipeline::popRenderTypeMask()
{
if (mRenderTypeEnableStack.empty())
{
llerrs << "Depleted render type stack." << llendl;
}
memcpy(mRenderTypeEnabled, mRenderTypeEnableStack.top().data(), sizeof(mRenderTypeEnabled));
mRenderTypeEnableStack.pop();
}
void LLPipeline::andRenderTypeMask(U32 type, ...)
{
va_list args;
BOOL tmp[NUM_RENDER_TYPES];
for (U32 i = 0; i < NUM_RENDER_TYPES; ++i)
{
tmp[i] = FALSE;
}
va_start(args, type);
while (type < END_RENDER_TYPES)
{
if (mRenderTypeEnabled[type])
{
tmp[type] = TRUE;
}
type = va_arg(args, U32);
}
va_end(args);
if (type > END_RENDER_TYPES)
{
llerrs << "Invalid render type." << llendl;
}
for (U32 i = 0; i < LLPipeline::NUM_RENDER_TYPES; ++i)
{
mRenderTypeEnabled[i] = tmp[i];
}
}
void LLPipeline::clearRenderTypeMask(U32 type, ...)
{
va_list args;
va_start(args, type);
while (type < END_RENDER_TYPES)
{
mRenderTypeEnabled[type] = FALSE;
type = va_arg(args, U32);
}
va_end(args);
if (type > END_RENDER_TYPES)
{
llerrs << "Invalid render type." << llendl;
}
}
void LLPipeline::setAllRenderTypes()
{
for (U32 i = 0; i < NUM_RENDER_TYPES; ++i)
{
mRenderTypeEnabled[i] = TRUE;
}
}
void LLPipeline::clearAllRenderTypes()
{
for (U32 i = 0; i < NUM_RENDER_TYPES; ++i)
{
mRenderTypeEnabled[i] = FALSE;
}
}
void LLPipeline::addDebugBlip(const LLVector3& position, const LLColor4& color)
{
DebugBlip blip(position, color);
mDebugBlips.push_back(blip);
}
/* Singu Note: This is currently only used upstream by code that requires havok
void LLPipeline::hideObject( const LLUUID& id )
{
LLViewerObject *pVO = gObjectList.findObject( id );
if ( pVO )
{
LLDrawable *pDrawable = pVO->mDrawable;
if ( pDrawable )
{
hideDrawable( pDrawable );
}
}
}
void LLPipeline::hideDrawable( LLDrawable *pDrawable )
{
pDrawable->setState( LLDrawable::FORCE_INVISIBLE );
markRebuild( pDrawable, LLDrawable::REBUILD_ALL, TRUE );
//hide the children
LLViewerObject::const_child_list_t& child_list = pDrawable->getVObj()->getChildren();
for ( LLViewerObject::child_list_t::const_iterator iter = child_list.begin();
iter != child_list.end(); iter++ )
{
LLViewerObject* child = *iter;
LLDrawable* drawable = child->mDrawable;
if ( drawable )
{
drawable->setState( LLDrawable::FORCE_INVISIBLE );
markRebuild( drawable, LLDrawable::REBUILD_ALL, TRUE );
}
}
}
void LLPipeline::unhideDrawable( LLDrawable *pDrawable )
{
pDrawable->clearState( LLDrawable::FORCE_INVISIBLE );
markRebuild( pDrawable, LLDrawable::REBUILD_ALL, TRUE );
//restore children
LLViewerObject::const_child_list_t& child_list = pDrawable->getVObj()->getChildren();
for ( LLViewerObject::child_list_t::const_iterator iter = child_list.begin();
iter != child_list.end(); iter++)
{
LLViewerObject* child = *iter;
LLDrawable* drawable = child->mDrawable;
if ( drawable )
{
drawable->clearState( LLDrawable::FORCE_INVISIBLE );
markRebuild( drawable, LLDrawable::REBUILD_ALL, TRUE );
}
}
}
void LLPipeline::restoreHiddenObject( const LLUUID& id )
{
LLViewerObject *pVO = gObjectList.findObject( id );
if ( pVO )
{
LLDrawable *pDrawable = pVO->mDrawable;
if ( pDrawable )
{
unhideDrawable( pDrawable );
}
}
}
*/