Files
SingularityViewer/indra/newview/llfloatermodelpreview.cpp

5747 lines
156 KiB
C++

/**
* @file llfloatermodelpreview.cpp
* @brief LLFloaterModelPreview class implementation
*
* $LicenseInfo:firstyear=2004&license=viewergpl$
*
* Copyright (c) 2010, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "llviewerprecompiledheaders.h"
#include "dae.h"
#include "dom/domCOLLADA.h"
#include "dom/domConstants.h"
#include "dom/domProfile_COMMON.h"
#include "llfloatermodelpreview.h"
#include "aifilepicker.h"
#include "llagent.h"
#include "llbutton.h"
#include "llcombobox.h"
#include "lldrawable.h"
#include "lldrawpoolavatar.h"
#include "llrender.h"
#include "llface.h"
#include "llfocusmgr.h"
#include "lliconctrl.h"
#include "llmatrix4a.h"
#include "llnotificationsutil.h"
#include "llsdutil_math.h"
#include "lltextbox.h"
#include "lltoolmgr.h"
#include "llui.h"
#include "llvector4a.h"
#include "llviewercamera.h"
#include "llviewerwindow.h"
#include "llvoavatar.h"
#include "pipeline.h"
#include "lluictrlfactory.h"
#include "llviewercontrol.h"
#include "llviewermenu.h"
#include "llviewerregion.h"
#include "llviewertexturelist.h"
#include "llcheckboxctrl.h"
#include "llsdserialize.h"
#include "llsliderctrl.h"
#include "llspinctrl.h"
#include "lltrans.h"
#include "llcallbacklist.h"
#include "llviewerobjectlist.h"
#include "llanimationstates.h"
#include "llviewernetwork.h"
#include "llviewershadermgr.h"
#include "glod/glod.h"
#include <boost/algorithm/string.hpp>
#include "hippogridmanager.h"
#include "hippolimits.h"
const S32 SLM_SUPPORTED_VERSION = 3;
//static
S32 LLFloaterModelPreview::sUploadAmount = 10;
LLFloaterModelPreview* LLFloaterModelPreview::sInstance = NULL;
std::list<LLModelLoader*> LLModelLoader::sActiveLoaderList;
// "Retain%" decomp parameter has values from 0.0 to 1.0 by 0.01
// But according to the UI spec for upload model floater, this parameter
// should be represented by Retain spinner with values from 1 to 100 by 1.
// To achieve this, RETAIN_COEFFICIENT is used while creating spinner
// and when value is requested from spinner.
const double RETAIN_COEFFICIENT = 100;
// "Cosine%" decomp parameter has values from 0.9 to 1 by 0.001
// But according to the UI spec for upload model floater, this parameter
// should be represented by Smooth combobox with only 10 values.
// So this const is used as a size of Smooth combobox list.
const S32 SMOOTH_VALUES_NUMBER = 10;
void drawBoxOutline(const LLVector3& pos, const LLVector3& size);
std::string lod_name[NUM_LOD] =
{
"lowest",
"low",
"medium",
"high",
};
std::string lod_triangles_name[NUM_LOD] =
{
"lowest_triangles",
"low_triangles",
"medium_triangles",
"high_triangles",
};
std::string lod_vertices_name[NUM_LOD] =
{
"lowest_vertices",
"low_vertices",
"medium_vertices",
"high_vertices",
};
std::string lod_status_name[NUM_LOD] =
{
"lowest_status",
"low_status",
"medium_status",
"high_status",
};
std::string lod_icon_name[NUM_LOD] =
{
"status_icon_lowest",
"status_icon_low",
"status_icon_medium",
"status_icon_high",
};
std::string lod_status_image[NUM_LOD] =
{
"green_checkmark.png",
"lag_status_warning.tga",
"red_x.png",
};
std::string lod_label_name[NUM_LOD] =
{
"lowest_label",
"low_label",
"medium_label",
"high_label",
};
std::string colladaVersion[VERSIONTYPE_COUNT + 1] =
{
"1.4.0",
"1.4.1",
"Unsupported"
};
#define LL_DEGENERACY_TOLERANCE 1e-7f
inline F32 dot3fpu(const LLVector4a& a, const LLVector4a& b)
{
volatile F32 p0 = a[0] * b[0];
volatile F32 p1 = a[1] * b[1];
volatile F32 p2 = a[2] * b[2];
return p0 + p1 + p2;
}
bool ll_is_degenerate(const LLVector4a& a, const LLVector4a& b, const LLVector4a& c, F32 tolerance = LL_DEGENERACY_TOLERANCE)
{
// small area check
{
LLVector4a edge1; edge1.setSub(a, b);
LLVector4a edge2; edge2.setSub(a, c);
//////////////////////////////////////////////////////////////////////////
/// Linden Modified
//////////////////////////////////////////////////////////////////////////
// If no one edge is more than 10x longer than any other edge, we weaken
// the tolerance by a factor of 1e-4f.
LLVector4a edge3; edge3.setSub(c, b);
const F32 len1sq = edge1.dot3(edge1).getF32();
const F32 len2sq = edge2.dot3(edge2).getF32();
const F32 len3sq = edge3.dot3(edge3).getF32();
bool abOK = (len1sq <= 100.f * len2sq) && (len1sq <= 100.f * len3sq);
bool acOK = (len2sq <= 100.f * len1sq) && (len1sq <= 100.f * len3sq);
bool cbOK = (len3sq <= 100.f * len1sq) && (len1sq <= 100.f * len2sq);
if (abOK && acOK && cbOK)
{
tolerance *= 1e-4f;
}
//////////////////////////////////////////////////////////////////////////
/// End Modified
//////////////////////////////////////////////////////////////////////////
LLVector4a cross; cross.setCross3(edge1, edge2);
LLVector4a edge1b; edge1b.setSub(b, a);
LLVector4a edge2b; edge2b.setSub(b, c);
LLVector4a crossb; crossb.setCross3(edge1b, edge2b);
if ((cross.dot3(cross).getF32() < tolerance) || (crossb.dot3(crossb).getF32() < tolerance))
{
return true;
}
}
// point triangle distance check
{
LLVector4a Q; Q.setSub(a, b);
LLVector4a R; R.setSub(c, b);
const F32 QQ = dot3fpu(Q, Q);
const F32 RR = dot3fpu(R, R);
const F32 QR = dot3fpu(R, Q);
volatile F32 QQRR = QQ * RR;
volatile F32 QRQR = QR * QR;
F32 Det = (QQRR - QRQR);
if (Det == 0.0f)
{
return true;
}
}
return false;
}
bool validate_face(const LLVolumeFace& face)
{
for (S32 i = 0; i < face.mNumIndices; ++i)
{
if (face.mIndices[i] >= face.mNumVertices)
{
llwarns << "Face has invalid index." << llendl;
return false;
}
}
if (face.mNumIndices % 3 != 0 || face.mNumIndices == 0)
{
llwarns << "Face has invalid number of indices." << llendl;
return false;
}
/*const LLVector4a scale(0.5f);
for (U32 i = 0; i < face.mNumIndices; i+=3)
{
U16 idx1 = face.mIndices[i];
U16 idx2 = face.mIndices[i + 1];
U16 idx3 = face.mIndices[i+2];
LLVector4a v1; v1.setMul(face.mPositions[idx1], scale);
LLVector4a v2; v2.setMul(face.mPositions[idx2], scale);
LLVector4a v3; v3.setMul(face.mPositions[idx3], scale);
if (ll_is_degenerate(v1,v2,v3))
{
llwarns << "Degenerate face found!" << llendl;
return false;
}
}*/
return true;
}
bool validate_model(const LLModel* mdl)
{
if (mdl->getNumVolumeFaces() == 0)
{
llwarns << "Model has no faces!" << llendl;
return false;
}
for (S32 i = 0; i < mdl->getNumVolumeFaces(); ++i)
{
if (mdl->getVolumeFace(i).mNumVertices == 0)
{
llwarns << "Face has no vertices." << llendl;
return false;
}
if (mdl->getVolumeFace(i).mNumIndices == 0)
{
llwarns << "Face has no indices." << llendl;
return false;
}
if (!validate_face(mdl->getVolumeFace(i)))
{
return false;
}
}
return true;
}
BOOL stop_gloderror()
{
GLuint error = glodGetError();
if (error != GLOD_NO_ERROR)
{
llwarns << "GLOD error detected, cannot generate LOD: " << std::hex << error << std::dec << llendl;
return TRUE;
}
return FALSE;
}
//-----------------------------------------------------------------------------
// LLFloaterModelPreview()
//-----------------------------------------------------------------------------
LLFloaterModelPreview::LLFloaterModelPreview(const std::string& name)
: LLFloaterModelUploadBase(name),
mUploadBtn(NULL),
mCalculateBtn(NULL)
{
sInstance = this;
mLastMouseX = 0;
mLastMouseY = 0;
mStatusLock = new LLMutex();
mModelPreview = NULL;
mLODMode[LLModel::LOD_HIGH] = 0;
for (U32 i = 0; i < LLModel::LOD_HIGH; i++)
{
mLODMode[i] = 1;
}
}
//-----------------------------------------------------------------------------
// postBuild()
//-----------------------------------------------------------------------------
BOOL LLFloaterModelPreview::postBuild()
{
if (!LLFloater::postBuild())
{
return FALSE;
}
childSetCommitCallback("cancel_btn", onCancel, this);
childSetCommitCallback("crease_angle", onGenerateNormalsCommit, this);
getChild<LLCheckBoxCtrl>("gen_normals")->setCommitCallback(boost::bind(&LLFloaterModelPreview::toggleGenerateNormals, this));
childSetCommitCallback("lod_generate", onAutoFillCommit, this);
for (S32 lod = 0; lod <= LLModel::LOD_HIGH; ++lod)
{
LLComboBox* lod_source_combo = getChild<LLComboBox>("lod_source_" + lod_name[lod]);
lod_source_combo->setCommitCallback(boost::bind(&LLFloaterModelPreview::onLoDSourceCommit, this, lod));
lod_source_combo->setCurrentByIndex(mLODMode[lod]);
getChild<LLButton>("lod_browse_" + lod_name[lod])->setCommitCallback(boost::bind(&LLFloaterModelPreview::onBrowseLOD, this, lod));
getChild<LLComboBox>("lod_mode_" + lod_name[lod])->setCommitCallback(boost::bind(&LLFloaterModelPreview::onLODParamCommit, this, lod, false));
getChild<LLSpinCtrl>("lod_error_threshold_" + lod_name[lod])->setCommitCallback(boost::bind(&LLFloaterModelPreview::onLODParamCommit, this, lod, false));
getChild<LLSpinCtrl>("lod_triangle_limit_" + lod_name[lod])->setCommitCallback(boost::bind(&LLFloaterModelPreview::onLODParamCommit, this, lod, true));
}
getChild<LLUICtrl>("upload_skin")->setCommitCallback(boost::bind(&LLFloaterModelPreview::toggleCalculateButton, this));
getChild<LLUICtrl>("upload_joints")->setCommitCallback(boost::bind(&LLFloaterModelPreview::toggleCalculateButton, this));
getChild<LLUICtrl>("upload_textures")->setCommitCallback(boost::bind(&LLFloaterModelPreview::toggleCalculateButton, this));
childSetTextArg("status", "[STATUS]", getString("status_idle"));
childSetAction("ok_btn", onUpload, this);
childDisable("ok_btn");
childSetAction("reset_btn", onReset, this);
childSetCommitCallback("preview_lod_combo", onPreviewLODCommit, this);
childSetCommitCallback("upload_skin", onUploadSkinCommit, this);
childSetCommitCallback("upload_joints", onUploadJointsCommit, this);
childSetCommitCallback("import_scale", onImportScaleCommit, this);
childSetCommitCallback("pelvis_offset", onPelvisOffsetCommit, this);
getChild<LLCheckBoxCtrl>("show_edges")->setCommitCallback(boost::bind(&LLFloaterModelPreview::onViewOptionChecked, this, _1));
getChild<LLCheckBoxCtrl>("show_physics")->setCommitCallback(boost::bind(&LLFloaterModelPreview::onViewOptionChecked, this, _1));
getChild<LLCheckBoxCtrl>("show_textures")->setCommitCallback(boost::bind(&LLFloaterModelPreview::onViewOptionChecked, this, _1));
getChild<LLCheckBoxCtrl>("show_skin_weight")->setCommitCallback(boost::bind(&LLFloaterModelPreview::onViewOptionChecked, this, _1));
getChild<LLCheckBoxCtrl>("show_joint_positions")->setCommitCallback(boost::bind(&LLFloaterModelPreview::onViewOptionChecked, this, _1));
childDisable("upload_skin");
childDisable("upload_joints");
initDecompControls();
LLView* preview_panel = getChild<LLView>("preview_panel");
mPreviewRect = preview_panel->getRect();
initModelPreview();
/*
//set callbacks for left click on line editor rows
for (U32 i = 0; i <= LLModel::LOD_HIGH; i++)
{
LLTextBox* text = getChild<LLTextBox>(lod_label_name[i]);
if (text)
{
text->setMouseDownCallback(boost::bind(&LLModelPreview::setPreviewLOD, mModelPreview, i));
}
text = getChild<LLTextBox>(lod_triangles_name[i]);
if (text)
{
text->setMouseDownCallback(boost::bind(&LLModelPreview::setPreviewLOD, mModelPreview, i));
}
text = getChild<LLTextBox>(lod_vertices_name[i]);
if (text)
{
text->setMouseDownCallback(boost::bind(&LLModelPreview::setPreviewLOD, mModelPreview, i));
}
text = getChild<LLTextBox>(lod_status_name[i]);
if (text)
{
text->setMouseDownCallback(boost::bind(&LLModelPreview::setPreviewLOD, mModelPreview, i));
}
}
*/
std::string validate_url;
if (gHippoGridManager->getCurrentGrid()->isSecondLife())
{
if (gHippoGridManager->getConnectedGrid()->isInProductionGrid())
{
validate_url = "http://secondlife.com/my/account/mesh.php";
}
// Singu TODO: Handle damballah here?
else
{
validate_url = "http://secondlife.aditi.lindenlab.com/my/account/mesh.php";
}
}
else
{
// Let's point to a known valid website page for OpenSim grids...
validate_url = gHippoGridManager->getCurrentGrid()->getLoginUri();
}
getChild<LLTextBox>("warning_message")->setTextArg("[VURL]", validate_url);
mUploadBtn = getChild<LLButton>("ok_btn");
mCalculateBtn = getChild<LLButton>("calculate_btn");
mCalculateBtn->setClickedCallback(boost::bind(&LLFloaterModelPreview::onClickCalculateBtn, this));
toggleCalculateButton(true);
return TRUE;
}
//-----------------------------------------------------------------------------
// LLFloaterModelPreview()
//-----------------------------------------------------------------------------
LLFloaterModelPreview::~LLFloaterModelPreview()
{
sInstance = NULL;
if (mModelPreview)
{
delete mModelPreview;
}
delete mStatusLock;
mStatusLock = NULL;
}
void LLFloaterModelPreview::initModelPreview()
{
if (mModelPreview)
{
delete mModelPreview;
}
mModelPreview = new LLModelPreview(512, 512, this);
mModelPreview->setPreviewTarget(16.f);
mModelPreview->setDetailsCallback(boost::bind(&LLFloaterModelPreview::setDetails, this, _1, _2, _3, _4, _5));
mModelPreview->setModelUpdatedCallback(boost::bind(&LLFloaterModelPreview::toggleCalculateButton, this, _1));
}
void LLFloaterModelPreview::onViewOptionChecked(LLUICtrl* ctrl)
{
if (mModelPreview)
{
mModelPreview->mViewOption[ctrl->getName()] = !mModelPreview->mViewOption[ctrl->getName()];
mModelPreview->refresh();
}
}
bool LLFloaterModelPreview::isViewOptionChecked(const LLSD& userdata)
{
if (mModelPreview)
{
return mModelPreview->mViewOption[userdata.asString()];
}
return false;
}
bool LLFloaterModelPreview::isViewOptionEnabled(const LLSD& userdata)
{
return childIsEnabled(userdata.asString());
}
void LLFloaterModelPreview::setViewOptionEnabled(const std::string& option, bool enabled)
{
childSetEnabled(option, enabled);
}
void LLFloaterModelPreview::enableViewOption(const std::string& option)
{
setViewOptionEnabled(option, true);
}
void LLFloaterModelPreview::disableViewOption(const std::string& option)
{
setViewOptionEnabled(option, false);
}
void LLFloaterModelPreview::loadModel(S32 lod)
{
mModelPreview->mLoading = true;
AIFilePicker* filepicker = AIFilePicker::create();
filepicker->open(FFLOAD_COLLADA, "", "mesh");
filepicker->run(boost::bind(&LLFloaterModelPreview::loadModel_continued, this, filepicker, lod));
}
void LLFloaterModelPreview::loadModel_continued(AIFilePicker* filepicker, S32 lod)
{
std::string filename;
if (filepicker->hasFilename()) // User did not click Cancel?
{
filename = filepicker->getFilename();
}
mModelPreview->loadModel(filename, lod); // Pass an empty filename if the user clicked Cancel.
}
void LLFloaterModelPreview::loadModel(S32 lod, const std::string& file_name, bool force_disable_slm)
{
mModelPreview->mLoading = true;
mModelPreview->loadModel(file_name, lod, force_disable_slm);
}
void LLFloaterModelPreview::onClickCalculateBtn()
{
mModelPreview->rebuildUploadData();
bool upload_skinweights = childGetValue("upload_skin").asBoolean();
bool upload_joint_positions = childGetValue("upload_joints").asBoolean();
mUploadModelUrl.clear();
gMeshRepo.uploadModel(mModelPreview->mUploadData, mModelPreview->mPreviewScale,
childGetValue("upload_textures").asBoolean(), upload_skinweights, upload_joint_positions, mUploadModelUrl, false,
getWholeModelFeeObserverHandle());
toggleCalculateButton(false);
mUploadBtn->setEnabled(false);
}
//static
void LLFloaterModelPreview::onImportScaleCommit(LLUICtrl*,void* userdata)
{
LLFloaterModelPreview *fp = (LLFloaterModelPreview *)userdata;
if (!fp->mModelPreview)
{
return;
}
fp->mModelPreview->mDirty = true;
fp->toggleCalculateButton(true);
fp->mModelPreview->refresh();
}
//static
void LLFloaterModelPreview::onPelvisOffsetCommit(LLUICtrl*, void* userdata)
{
LLFloaterModelPreview *fp =(LLFloaterModelPreview*)userdata;
if (!fp->mModelPreview)
{
return;
}
fp->mModelPreview->mDirty = true;
fp->toggleCalculateButton(true);
fp->mModelPreview->refresh();
}
//static
void LLFloaterModelPreview::onUploadJointsCommit(LLUICtrl*,void* userdata)
{
LLFloaterModelPreview *fp =(LLFloaterModelPreview *)userdata;
if (!fp->mModelPreview)
{
return;
}
fp->mModelPreview->refresh();
}
//static
void LLFloaterModelPreview::onUploadSkinCommit(LLUICtrl*,void* userdata)
{
LLFloaterModelPreview *fp =(LLFloaterModelPreview *)userdata;
if (!fp->mModelPreview)
{
return;
}
fp->mModelPreview->refresh();
fp->mModelPreview->resetPreviewTarget();
fp->mModelPreview->clearBuffers();
}
//static
void LLFloaterModelPreview::onPreviewLODCommit(LLUICtrl* ctrl, void* userdata)
{
LLFloaterModelPreview *fp =(LLFloaterModelPreview *)userdata;
if (!fp->mModelPreview)
{
return;
}
S32 which_mode = 0;
LLComboBox* combo = (LLComboBox*) ctrl;
which_mode = (NUM_LOD-1)-combo->getFirstSelectedIndex(); // combo box list of lods is in reverse order
fp->mModelPreview->setPreviewLOD(which_mode);
}
//static
void LLFloaterModelPreview::onGenerateNormalsCommit(LLUICtrl* ctrl, void* userdata)
{
LLFloaterModelPreview* fp = (LLFloaterModelPreview*) userdata;
fp->mModelPreview->generateNormals();
}
void LLFloaterModelPreview::toggleGenerateNormals()
{
bool enabled = childGetValue("gen_normals").asBoolean();
childSetEnabled("crease_angle", enabled);
}
//static
void LLFloaterModelPreview::onExplodeCommit(LLUICtrl* ctrl, void* userdata)
{
LLFloaterModelPreview* fp = LLFloaterModelPreview::sInstance;
fp->mModelPreview->refresh();
}
//static
void LLFloaterModelPreview::onAutoFillCommit(LLUICtrl* ctrl, void* userdata)
{
LLFloaterModelPreview* fp = (LLFloaterModelPreview*) userdata;
fp->mModelPreview->genLODs();
}
void LLFloaterModelPreview::onLODParamCommit(S32 lod, bool enforce_tri_limit)
{
mModelPreview->onLODParamCommit(lod, enforce_tri_limit);
}
//-----------------------------------------------------------------------------
// draw()
//-----------------------------------------------------------------------------
void LLFloaterModelPreview::draw()
{
LLFloater::draw();
mModelPreview->update();
if (!mModelPreview->mLoading)
{
if ( mModelPreview->getLoadState() == LLModelLoader::ERROR_MATERIALS )
{
childSetTextArg("status", "[STATUS]", getString("status_material_mismatch"));
}
else
if (mModelPreview->getLoadState() > LLModelLoader::ERROR_PARSING)
{
childSetTextArg("status", "[STATUS]", getString(LLModel::getStatusString(mModelPreview->getLoadState() - LLModelLoader::ERROR_PARSING)));
}
else
if (mModelPreview->getLoadState() == LLModelLoader::ERROR_PARSING)
{
childSetTextArg("status", "[STATUS]", getString("status_parse_error"));
toggleCalculateButton(false);
}
else
{
childSetTextArg("status", "[STATUS]", getString("status_idle"));
}
}
/* Singu Note: Dummy views and what for?
childSetTextArg("prim_cost", "[PRIM_COST]", llformat("%d", mModelPreview->mResourceCost));
childSetTextArg("description_label", "[TEXTURES]", llformat("%d", mModelPreview->mTextureSet.size()));
*/
if (mModelPreview)
{
gGL.color3f(1.f, 1.f, 1.f);
gGL.getTexUnit(0)->bind(mModelPreview);
LLView* preview_panel = getChild<LLView>("preview_panel");
LLRect rect = preview_panel->getRect();
if (rect != mPreviewRect)
{
mModelPreview->refresh();
mPreviewRect = preview_panel->getRect();
}
gGL.begin(LLRender::QUADS);
{
gGL.texCoord2f(0.f, 1.f);
gGL.vertex2i(mPreviewRect.mLeft, mPreviewRect.mTop - 1);
gGL.texCoord2f(0.f, 0.f);
gGL.vertex2i(mPreviewRect.mLeft, mPreviewRect.mBottom);
gGL.texCoord2f(1.f, 0.f);
gGL.vertex2i(mPreviewRect.mRight - 1, mPreviewRect.mBottom);
gGL.texCoord2f(1.f, 1.f);
gGL.vertex2i(mPreviewRect.mRight - 1, mPreviewRect.mTop - 1);
}
gGL.end();
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
}
}
//-----------------------------------------------------------------------------
// handleMouseDown()
//-----------------------------------------------------------------------------
BOOL LLFloaterModelPreview::handleMouseDown(S32 x, S32 y, MASK mask)
{
if (mPreviewRect.pointInRect(x, y))
{
bringToFront(x, y);
gFocusMgr.setMouseCapture(this);
gViewerWindow->hideCursor();
mLastMouseX = x;
mLastMouseY = y;
return TRUE;
}
return LLFloater::handleMouseDown(x, y, mask);
}
//-----------------------------------------------------------------------------
// handleMouseUp()
//-----------------------------------------------------------------------------
BOOL LLFloaterModelPreview::handleMouseUp(S32 x, S32 y, MASK mask)
{
gFocusMgr.setMouseCapture(NULL);
gViewerWindow->showCursor();
return LLFloater::handleMouseUp(x, y, mask);
}
//-----------------------------------------------------------------------------
// handleHover()
//-----------------------------------------------------------------------------
BOOL LLFloaterModelPreview::handleHover(S32 x, S32 y, MASK mask)
{
MASK local_mask = mask & ~MASK_ALT;
if (mModelPreview && hasMouseCapture())
{
if (local_mask == MASK_PAN)
{
// pan here
mModelPreview->pan((F32)(x - mLastMouseX) * -0.005f, (F32)(y - mLastMouseY) * -0.005f);
}
else if (local_mask == MASK_ORBIT)
{
F32 yaw_radians = (F32)(x - mLastMouseX) * -0.01f;
F32 pitch_radians = (F32)(y - mLastMouseY) * 0.02f;
mModelPreview->rotate(yaw_radians, pitch_radians);
}
else
{
F32 yaw_radians = (F32)(x - mLastMouseX) * -0.01f;
F32 zoom_amt = (F32)(y - mLastMouseY) * 0.02f;
mModelPreview->rotate(yaw_radians, 0.f);
mModelPreview->zoom(zoom_amt);
}
mModelPreview->refresh();
LLUI::setMousePositionLocal(this, mLastMouseX, mLastMouseY);
}
if (!mPreviewRect.pointInRect(x, y) || !mModelPreview)
{
return LLFloater::handleHover(x, y, mask);
}
else if (local_mask == MASK_ORBIT)
{
gViewerWindow->setCursor(UI_CURSOR_TOOLCAMERA);
}
else if (local_mask == MASK_PAN)
{
gViewerWindow->setCursor(UI_CURSOR_TOOLPAN);
}
else
{
gViewerWindow->setCursor(UI_CURSOR_TOOLZOOMIN);
}
return TRUE;
}
//-----------------------------------------------------------------------------
// handleScrollWheel()
//-----------------------------------------------------------------------------
BOOL LLFloaterModelPreview::handleScrollWheel(S32 x, S32 y, S32 clicks)
{
if (mPreviewRect.pointInRect(x, y) && mModelPreview)
{
mModelPreview->zoom((F32)clicks * -0.2f);
mModelPreview->refresh();
}
return TRUE;
}
/*virtual*/
void LLFloaterModelPreview::onOpen(/*const LLSD& key*/)
{
requestAgentUploadPermissions();
}
//static
void LLFloaterModelPreview::onPhysicsParamCommit(LLUICtrl* ctrl, void* data)
{
if (LLConvexDecomposition::getInstance() == NULL)
{
llinfos << "convex decomposition tool is a stub on this platform. cannot get decomp." << llendl;
return;
}
if (sInstance)
{
LLCDParam* param = (LLCDParam*) data;
std::string name(param->mName);
LLSD value = ctrl->getValue();
if ("Retain%" == name)
{
value = ctrl->getValue().asReal() / RETAIN_COEFFICIENT;
}
sInstance->mDecompParams[name] = value;
if (name == "Simplify Method")
{
bool show_retain = false;
bool show_detail = true;
if (ctrl->getValue().asInteger() == 0)
{
show_retain = true;
show_detail = false;
}
sInstance->childSetVisible("Retain%", show_retain);
sInstance->childSetVisible("Retain%_label", show_retain);
sInstance->childSetVisible("Detail Scale", show_detail);
sInstance->childSetVisible("Detail Scale label", show_detail);
}
}
}
//static
void LLFloaterModelPreview::onPhysicsStageExecute(LLUICtrl* ctrl, void* data)
{
LLCDStageData* stage_data = (LLCDStageData*) data;
std::string stage = stage_data->mName;
if (sInstance)
{
if (!sInstance->mCurRequest.empty())
{
llinfos << "Decomposition request still pending." << llendl;
return;
}
if (sInstance->mModelPreview)
{
for (U32 i = 0; i < sInstance->mModelPreview->mModel[LLModel::LOD_PHYSICS].size(); ++i)
{
LLModel* mdl = sInstance->mModelPreview->mModel[LLModel::LOD_PHYSICS][i];
DecompRequest* request = new DecompRequest(stage, mdl);
sInstance->mCurRequest.insert(request);
gMeshRepo.mDecompThread->submitRequest(request);
}
}
if (stage == "Decompose")
{
sInstance->setStatusMessage(sInstance->getString("decomposing"));
sInstance->childSetVisible("Decompose", false);
sInstance->childSetVisible("decompose_cancel", true);
sInstance->childDisable("Simplify");
}
else if (stage == "Simplify")
{
sInstance->setStatusMessage(sInstance->getString("simplifying"));
sInstance->childSetVisible("Simplify", false);
sInstance->childSetVisible("simplify_cancel", true);
sInstance->childDisable("Decompose");
}
}
}
//static
void LLFloaterModelPreview::onPhysicsBrowse(LLUICtrl* ctrl, void* userdata)
{
sInstance->loadModel(LLModel::LOD_PHYSICS);
}
//static
void LLFloaterModelPreview::onPhysicsUseLOD(LLUICtrl* ctrl, void* userdata)
{
S32 num_lods = 4;
S32 which_mode;
LLCtrlSelectionInterface* iface = sInstance->childGetSelectionInterface("physics_lod_combo");
if (iface)
{
which_mode = iface->getFirstSelectedIndex();
}
else
{
llwarns << "no iface" << llendl;
return;
}
if (which_mode <= 0)
{
llwarns << "which_mode out of range, " << which_mode << llendl;
}
S32 file_mode = iface->getItemCount() - 1;
if (which_mode < file_mode)
{
S32 which_lod = num_lods - which_mode;
sInstance->mModelPreview->setPhysicsFromLOD(which_lod);
}
LLModelPreview *model_preview = sInstance->mModelPreview;
if (model_preview)
{
model_preview->refresh();
model_preview->updateStatusMessages();
}
}
//static
void LLFloaterModelPreview::onCancel(LLUICtrl* ctrl, void* data)
{
if (sInstance)
{
sInstance->close();
}
}
//static
void LLFloaterModelPreview::onPhysicsStageCancel(LLUICtrl* ctrl, void*data)
{
if (sInstance)
{
for (std::set<LLPointer<DecompRequest> >::iterator iter = sInstance->mCurRequest.begin();
iter != sInstance->mCurRequest.end(); ++iter)
{
DecompRequest* req = *iter;
req->mContinue = 0;
}
sInstance->mCurRequest.clear();
if (sInstance->mModelPreview)
{
sInstance->mModelPreview->updateStatusMessages();
}
}
}
void LLFloaterModelPreview::initDecompControls()
{
LLSD key;
childSetCommitCallback("simplify_cancel", onPhysicsStageCancel, NULL);
childSetCommitCallback("decompose_cancel", onPhysicsStageCancel, NULL);
childSetCommitCallback("physics_lod_combo", onPhysicsUseLOD, NULL);
childSetCommitCallback("physics_browse", onPhysicsBrowse, NULL);
static const LLCDStageData* stage = NULL;
static S32 stage_count = 0;
if (!stage && LLConvexDecomposition::getInstance() != NULL)
{
stage_count = LLConvexDecomposition::getInstance()->getStages(&stage);
}
static const LLCDParam* param = NULL;
static S32 param_count = 0;
if (!param && LLConvexDecomposition::getInstance() != NULL)
{
param_count = LLConvexDecomposition::getInstance()->getParameters(&param);
}
for (S32 j = stage_count - 1; j >= 0; --j)
{
LLButton* button = getChild<LLButton>(stage[j].mName);
if (button)
{
button->setCommitCallback(onPhysicsStageExecute, (void*) &stage[j]);
}
gMeshRepo.mDecompThread->mStageID[stage[j].mName] = j;
// protected against stub by stage_count being 0 for stub above
LLConvexDecomposition::getInstance()->registerCallback(j, LLPhysicsDecomp::llcdCallback);
//llinfos << "Physics decomp stage " << stage[j].mName << " (" << j << ") parameters:" << llendl;
//llinfos << "------------------------------------" << llendl;
for (S32 i = 0; i < param_count; ++i)
{
if (param[i].mStage != j)
{
continue;
}
std::string name(param[i].mName ? param[i].mName : "");
std::string description(param[i].mDescription ? param[i].mDescription : "");
std::string type = "unknown";
llinfos << name << " - " << description << llendl;
if (param[i].mType == LLCDParam::LLCD_FLOAT)
{
mDecompParams[param[i].mName] = LLSD(param[i].mDefault.mFloat);
//llinfos << "Type: float, Default: " << param[i].mDefault.mFloat << llendl;
LLUICtrl* ctrl = getChild<LLUICtrl>(name);
if (LLSliderCtrl* slider = dynamic_cast<LLSliderCtrl*>(ctrl))
{
slider->setMinValue(param[i].mDetails.mRange.mLow.mFloat);
slider->setMaxValue(param[i].mDetails.mRange.mHigh.mFloat);
slider->setIncrement(param[i].mDetails.mRange.mDelta.mFloat);
slider->setValue(param[i].mDefault.mFloat);
slider->setCommitCallback(onPhysicsParamCommit, (void*) &param[i]);
}
else if (LLSpinCtrl* spinner = dynamic_cast<LLSpinCtrl*>(ctrl))
{
bool is_retain_ctrl = "Retain%" == name;
double coefficient = is_retain_ctrl ? RETAIN_COEFFICIENT : 1.f;
spinner->setMinValue(param[i].mDetails.mRange.mLow.mFloat * coefficient);
spinner->setMaxValue(param[i].mDetails.mRange.mHigh.mFloat * coefficient);
spinner->setIncrement(param[i].mDetails.mRange.mDelta.mFloat * coefficient);
spinner->setValue(param[i].mDefault.mFloat * coefficient);
spinner->setCommitCallback(onPhysicsParamCommit, (void*) &param[i]);
}
else if (LLComboBox* combo_box = dynamic_cast<LLComboBox*>(ctrl))
{
float min = param[i].mDetails.mRange.mLow.mFloat;
float max = param[i].mDetails.mRange.mHigh.mFloat;
float delta = param[i].mDetails.mRange.mDelta.mFloat;
if ("Cosine%" == name)
{
createSmoothComboBox(combo_box, min, max);
}
else
{
for (float value = min; value <= max; value += delta)
{
std::string label = llformat("%.1f", value);
combo_box->add(label, value, ADD_BOTTOM, true);
}
combo_box->setValue(param[i].mDefault.mFloat);
}
combo_box->setCommitCallback(onPhysicsParamCommit, (void*) &param[i]);
}
}
else if (param[i].mType == LLCDParam::LLCD_INTEGER)
{
mDecompParams[param[i].mName] = LLSD(param[i].mDefault.mIntOrEnumValue);
//llinfos << "Type: integer, Default: " << param[i].mDefault.mIntOrEnumValue << llendl;
LLUICtrl* ctrl = getChild<LLUICtrl>(name);
if (LLSliderCtrl* slider = dynamic_cast<LLSliderCtrl*>(ctrl))
{
slider->setMinValue(param[i].mDetails.mRange.mLow.mIntOrEnumValue);
slider->setMaxValue(param[i].mDetails.mRange.mHigh.mIntOrEnumValue);
slider->setIncrement(param[i].mDetails.mRange.mDelta.mIntOrEnumValue);
slider->setValue(param[i].mDefault.mIntOrEnumValue);
slider->setCommitCallback(onPhysicsParamCommit, (void*) &param[i]);
}
else if (LLComboBox* combo_box = dynamic_cast<LLComboBox*>(ctrl))
{
for(int k = param[i].mDetails.mRange.mLow.mIntOrEnumValue; k<=param[i].mDetails.mRange.mHigh.mIntOrEnumValue; k+=param[i].mDetails.mRange.mDelta.mIntOrEnumValue)
{
std::string name = llformat("%.1d", k);
combo_box->add(name, k, ADD_BOTTOM, true);
}
combo_box->setValue(param[i].mDefault.mIntOrEnumValue);
combo_box->setCommitCallback(onPhysicsParamCommit, (void*) &param[i]);
}
}
else if (param[i].mType == LLCDParam::LLCD_BOOLEAN)
{
mDecompParams[param[i].mName] = LLSD(param[i].mDefault.mBool);
//llinfos << "Type: boolean, Default: " << (param[i].mDefault.mBool ? "True" : "False") << llendl;
LLCheckBoxCtrl* check_box = findChild<LLCheckBoxCtrl>(name);
if (check_box)
{
check_box->setValue(param[i].mDefault.mBool);
check_box->setCommitCallback(onPhysicsParamCommit, (void*) &param[i]);
}
}
else if (param[i].mType == LLCDParam::LLCD_ENUM)
{
mDecompParams[param[i].mName] = LLSD(param[i].mDefault.mIntOrEnumValue);
//llinfos << "Type: enum, Default: " << param[i].mDefault.mIntOrEnumValue << llendl;
{ //plug into combo box
//llinfos << "Accepted values: " << llendl;
LLComboBox* combo_box = getChild<LLComboBox>(name);
for (S32 k = 0; k < param[i].mDetails.mEnumValues.mNumEnums; ++k)
{
//llinfos << param[i].mDetails.mEnumValues.mEnumsArray[k].mValue
// << " - " << param[i].mDetails.mEnumValues.mEnumsArray[k].mName << llendl;
std::string name(param[i].mDetails.mEnumValues.mEnumsArray[k].mName);
std::string localized_name;
bool is_localized = LLTrans::findString(localized_name, name);
combo_box->add(is_localized ? localized_name : name,
LLSD::Integer(param[i].mDetails.mEnumValues.mEnumsArray[k].mValue));
}
combo_box->setValue(param[i].mDefault.mIntOrEnumValue);
combo_box->setCommitCallback(onPhysicsParamCommit, (void*) &param[i]);
}
//llinfos << "----" << llendl;
}
//llinfos << "-----------------------------" << llendl;
}
}
childSetCommitCallback("physics_explode", LLFloaterModelPreview::onExplodeCommit, this);
}
void LLFloaterModelPreview::createSmoothComboBox(LLComboBox* combo_box, float min, float max)
{
float delta = (max - min) / SMOOTH_VALUES_NUMBER;
int ilabel = 0;
combo_box->add("0 (none)", ADD_BOTTOM, true);
for (float value = min + delta; value < max; value += delta)
{
std::string label = (++ilabel == SMOOTH_VALUES_NUMBER) ? "10 (max)" : llformat("%.1d", ilabel);
combo_box->add(label, value, ADD_BOTTOM, true);
}
}
//-----------------------------------------------------------------------------
// onMouseCaptureLost()
//-----------------------------------------------------------------------------
// static
void LLFloaterModelPreview::onMouseCaptureLostModelPreview(LLMouseHandler* handler)
{
gViewerWindow->showCursor();
}
//-----------------------------------------------------------------------------
// LLModelLoader
//-----------------------------------------------------------------------------
LLModelLoader::LLModelLoader( std::string filename, S32 lod, LLModelPreview* preview, JointTransformMap& jointMap,
std::deque<std::string>& jointsFromNodes)
: mJointList( jointMap )
, mJointsFromNode( jointsFromNodes )
, LLThread("Model Loader"), mFilename(filename), mLod(lod), mPreview(preview), mFirstTransform(TRUE), mNumOfFetchingTextures(0)
{
mJointMap["mPelvis"] = "mPelvis";
mJointMap["mTorso"] = "mTorso";
mJointMap["mChest"] = "mChest";
mJointMap["mNeck"] = "mNeck";
mJointMap["mHead"] = "mHead";
mJointMap["mSkull"] = "mSkull";
mJointMap["mEyeRight"] = "mEyeRight";
mJointMap["mEyeLeft"] = "mEyeLeft";
mJointMap["mCollarLeft"] = "mCollarLeft";
mJointMap["mShoulderLeft"] = "mShoulderLeft";
mJointMap["mElbowLeft"] = "mElbowLeft";
mJointMap["mWristLeft"] = "mWristLeft";
mJointMap["mCollarRight"] = "mCollarRight";
mJointMap["mShoulderRight"] = "mShoulderRight";
mJointMap["mElbowRight"] = "mElbowRight";
mJointMap["mWristRight"] = "mWristRight";
mJointMap["mHipRight"] = "mHipRight";
mJointMap["mKneeRight"] = "mKneeRight";
mJointMap["mAnkleRight"] = "mAnkleRight";
mJointMap["mFootRight"] = "mFootRight";
mJointMap["mToeRight"] = "mToeRight";
mJointMap["mHipLeft"] = "mHipLeft";
mJointMap["mKneeLeft"] = "mKneeLeft";
mJointMap["mAnkleLeft"] = "mAnkleLeft";
mJointMap["mFootLeft"] = "mFootLeft";
mJointMap["mToeLeft"] = "mToeLeft";
mJointMap["avatar_mPelvis"] = "mPelvis";
mJointMap["avatar_mTorso"] = "mTorso";
mJointMap["avatar_mChest"] = "mChest";
mJointMap["avatar_mNeck"] = "mNeck";
mJointMap["avatar_mHead"] = "mHead";
mJointMap["avatar_mSkull"] = "mSkull";
mJointMap["avatar_mEyeRight"] = "mEyeRight";
mJointMap["avatar_mEyeLeft"] = "mEyeLeft";
mJointMap["avatar_mCollarLeft"] = "mCollarLeft";
mJointMap["avatar_mShoulderLeft"] = "mShoulderLeft";
mJointMap["avatar_mElbowLeft"] = "mElbowLeft";
mJointMap["avatar_mWristLeft"] = "mWristLeft";
mJointMap["avatar_mCollarRight"] = "mCollarRight";
mJointMap["avatar_mShoulderRight"] = "mShoulderRight";
mJointMap["avatar_mElbowRight"] = "mElbowRight";
mJointMap["avatar_mWristRight"] = "mWristRight";
mJointMap["avatar_mHipRight"] = "mHipRight";
mJointMap["avatar_mKneeRight"] = "mKneeRight";
mJointMap["avatar_mAnkleRight"] = "mAnkleRight";
mJointMap["avatar_mFootRight"] = "mFootRight";
mJointMap["avatar_mToeRight"] = "mToeRight";
mJointMap["avatar_mHipLeft"] = "mHipLeft";
mJointMap["avatar_mKneeLeft"] = "mKneeLeft";
mJointMap["avatar_mAnkleLeft"] = "mAnkleLeft";
mJointMap["avatar_mFootLeft"] = "mFootLeft";
mJointMap["avatar_mToeLeft"] = "mToeLeft";
mJointMap["hip"] = "mPelvis";
mJointMap["abdomen"] = "mTorso";
mJointMap["chest"] = "mChest";
mJointMap["neck"] = "mNeck";
mJointMap["head"] = "mHead";
mJointMap["figureHair"] = "mSkull";
mJointMap["lCollar"] = "mCollarLeft";
mJointMap["lShldr"] = "mShoulderLeft";
mJointMap["lForeArm"] = "mElbowLeft";
mJointMap["lHand"] = "mWristLeft";
mJointMap["rCollar"] = "mCollarRight";
mJointMap["rShldr"] = "mShoulderRight";
mJointMap["rForeArm"] = "mElbowRight";
mJointMap["rHand"] = "mWristRight";
mJointMap["rThigh"] = "mHipRight";
mJointMap["rShin"] = "mKneeRight";
mJointMap["rFoot"] = "mFootRight";
mJointMap["lThigh"] = "mHipLeft";
mJointMap["lShin"] = "mKneeLeft";
mJointMap["lFoot"] = "mFootLeft";
if (mPreview)
{
//only try to load from slm if viewer is configured to do so and this is the
//initial model load (not an LoD or physics shape)
mTrySLM = gSavedSettings.getBOOL("MeshImportUseSLM") && mPreview->mUploadData.empty();
mPreview->setLoadState(STARTING);
}
else
{
mTrySLM = false;
}
assert_main_thread();
sActiveLoaderList.push_back(this);
}
LLModelLoader::~LLModelLoader()
{
assert_main_thread();
sActiveLoaderList.remove(this);
}
void stretch_extents(LLModel* model, LLMatrix4a& mat, LLVector4a& min, LLVector4a& max, BOOL& first_transform)
{
LLVector4a box[] =
{
LLVector4a(-1, 1,-1),
LLVector4a(-1, 1, 1),
LLVector4a(-1,-1,-1),
LLVector4a(-1,-1, 1),
LLVector4a( 1, 1,-1),
LLVector4a( 1, 1, 1),
LLVector4a( 1,-1,-1),
LLVector4a( 1,-1, 1),
};
for (S32 j = 0; j < model->getNumVolumeFaces(); ++j)
{
const LLVolumeFace& face = model->getVolumeFace(j);
LLVector4a center;
center.setAdd(face.mExtents[0], face.mExtents[1]);
center.mul(0.5f);
LLVector4a size;
size.setSub(face.mExtents[1],face.mExtents[0]);
size.mul(0.5f);
for (U32 i = 0; i < 8; i++)
{
LLVector4a t;
t.setMul(size, box[i]);
t.add(center);
LLVector4a v;
mat.affineTransform(t, v);
if (first_transform)
{
first_transform = FALSE;
min = max = v;
}
else
{
update_min_max(min, max, v);
}
}
}
}
void stretch_extents(LLModel* model, LLMatrix4& mat, LLVector3& min, LLVector3& max, BOOL& first_transform)
{
LLVector4a mina, maxa;
LLMatrix4a mata;
mata.loadu(mat);
mina.load3(min.mV);
maxa.load3(max.mV);
stretch_extents(model, mata, mina, maxa, first_transform);
min.set(mina.getF32ptr());
max.set(maxa.getF32ptr());
}
void LLModelLoader::run()
{
doLoadModel();
doOnIdleOneTime(boost::bind(&LLModelLoader::loadModelCallback,this));
}
bool LLModelLoader::doLoadModel()
{
//first, look for a .slm file of the same name that was modified later
//than the .dae
if (mTrySLM)
{
std::string filename = mFilename;
std::string::size_type i = filename.rfind(".");
if (i != std::string::npos)
{
filename.replace(i, filename.size() - 1, ".slm");
llstat slm_status;
if (LLFile::stat(filename, &slm_status) == 0)
{ //slm file exists
llstat dae_status;
if (LLFile::stat(mFilename, &dae_status) != 0 ||
dae_status.st_mtime < slm_status.st_mtime)
{
if (loadFromSLM(filename))
{ //slm successfully loaded, if this fails, fall through and
//try loading from dae
mLod = -1; //successfully loading from an slm implicitly sets all
//LoDs
return true;
}
}
}
}
}
//no suitable slm exists, load from the .dae file
DAE dae;
domCOLLADA* dom = dae.open(mFilename);
if (!dom)
{
llinfos<<" Error with dae - traditionally indicates a corrupt file."<<llendl;
setLoadState(ERROR_PARSING);
return false;
}
//Dom version
daeString domVersion = dae.getDomVersion();
std::string sldom(domVersion);
llinfos<<"Collada Importer Version: "<<sldom<<llendl;
//Dae version
domVersionType docVersion = dom->getVersion();
//0=1.4
//1=1.4.1
//2=Currently unsupported, however may work
if (docVersion > 1)
{
docVersion = VERSIONTYPE_COUNT;
}
llinfos<<"Dae version "<<colladaVersion[docVersion]<<llendl;
daeDatabase* db = dae.getDatabase();
daeInt count = db->getElementCount(NULL, COLLADA_TYPE_MESH);
daeDocument* doc = dae.getDoc(mFilename);
if (!doc)
{
llwarns << "can't find internal doc" << llendl;
return false;
}
daeElement* root = doc->getDomRoot();
if (!root)
{
llwarns << "document has no root" << llendl;
return false;
}
//Verify some basic properties of the dae
//1. Basic validity check on controller
U32 controllerCount = (int) db->getElementCount(NULL, "controller");
bool result = false;
for (U32 i = 0; i < controllerCount; ++i)
{
domController* pController = NULL;
db->getElement((daeElement**) &pController, i , NULL, "controller");
result = mPreview->verifyController(pController);
if (!result)
{
setLoadState(ERROR_PARSING);
return true;
}
}
//get unit scale
mTransform.setIdentity();
domAsset::domUnit* unit = daeSafeCast<domAsset::domUnit>(root->getDescendant(daeElement::matchType(domAsset::domUnit::ID())));
if (unit)
{
F32 meter = unit->getMeter();
mTransform.mMatrix[0][0] = meter;
mTransform.mMatrix[1][1] = meter;
mTransform.mMatrix[2][2] = meter;
}
//get up axis rotation
LLMatrix4 rotation;
domUpAxisType up = UPAXISTYPE_Y_UP; // default is Y_UP
domAsset::domUp_axis* up_axis =
daeSafeCast<domAsset::domUp_axis>(root->getDescendant(daeElement::matchType(domAsset::domUp_axis::ID())));
if (up_axis)
{
up = up_axis->getValue();
}
if (up == UPAXISTYPE_X_UP)
{
rotation.initRotation(0.0f, 90.0f * DEG_TO_RAD, 0.0f);
}
else if (up == UPAXISTYPE_Y_UP)
{
rotation.initRotation(90.0f * DEG_TO_RAD, 0.0f, 0.0f);
}
rotation *= mTransform;
mTransform = rotation;
for (daeInt idx = 0; idx < count; ++idx)
{ //build map of domEntities to LLModel
domMesh* mesh = NULL;
db->getElement((daeElement**) &mesh, idx, NULL, COLLADA_TYPE_MESH);
if (mesh)
{
LLPointer<LLModel> model = LLModel::loadModelFromDomMesh(mesh);
if (model->getStatus() != LLModel::NO_ERRORS)
{
setLoadState(ERROR_PARSING + model->getStatus());
return false; //abort
}
if (model.notNull() && validate_model(model))
{
mModelList.push_back(model);
mModel[mesh] = model;
}
}
}
count = db->getElementCount(NULL, COLLADA_TYPE_SKIN);
for (daeInt idx = 0; idx < count; ++idx)
{ //add skinned meshes as instances
domSkin* skin = NULL;
db->getElement((daeElement**) &skin, idx, NULL, COLLADA_TYPE_SKIN);
if (skin)
{
domGeometry* geom = daeSafeCast<domGeometry>(skin->getSource().getElement());
if (geom)
{
domMesh* mesh = geom->getMesh();
if (mesh)
{
LLModel* model = mModel[mesh];
if (model)
{
LLVector3 mesh_scale_vector;
LLVector3 mesh_translation_vector;
model->getNormalizedScaleTranslation(mesh_scale_vector, mesh_translation_vector);
LLMatrix4 normalized_transformation;
normalized_transformation.setTranslation(mesh_translation_vector);
LLMatrix4 mesh_scale;
mesh_scale.initScale(mesh_scale_vector);
mesh_scale *= normalized_transformation;
normalized_transformation = mesh_scale;
glh::matrix4f inv_mat((F32*) normalized_transformation.mMatrix);
inv_mat = inv_mat.inverse();
LLMatrix4 inverse_normalized_transformation(inv_mat.m);
domSkin::domBind_shape_matrix* bind_mat = skin->getBind_shape_matrix();
if (bind_mat)
{ //get bind shape matrix
domFloat4x4& dom_value = bind_mat->getValue();
LLMeshSkinInfo& skin_info = model->mSkinInfo;
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
skin_info.mBindShapeMatrix.mMatrix[i][j] = dom_value[i + j*4];
}
}
LLMatrix4 trans = normalized_transformation;
trans *= skin_info.mBindShapeMatrix;
skin_info.mBindShapeMatrix = trans;
}
//Some collada setup for accessing the skeleton
daeElement* pElement = 0;
dae.getDatabase()->getElement(&pElement, 0, 0, "skeleton");
//Try to get at the skeletal instance controller
domInstance_controller::domSkeleton* pSkeleton = daeSafeCast<domInstance_controller::domSkeleton>(pElement);
bool missingSkeletonOrScene = false;
//If no skeleton, do a breadth-first search to get at specific joints
bool rootNode = false;
//Need to test for a skeleton that does not have a root node
//This occurs when your instance controller does not have an associated scene
if (pSkeleton)
{
daeElement* pSkeletonRootNode = pSkeleton->getValue().getElement();
if (pSkeletonRootNode)
{
rootNode = true;
}
}
if (!pSkeleton || !rootNode)
{
daeElement* pScene = root->getDescendant("visual_scene");
if (!pScene)
{
llwarns<<"No visual scene - unable to parse bone offsets "<<llendl;
missingSkeletonOrScene = true;
}
else
{
//Get the children at this level
daeTArray< daeSmartRef<daeElement> > children = pScene->getChildren();
S32 childCount = children.getCount();
//Process any children that are joints
//Not all children are joints, some code be ambient lights, cameras, geometry etc..
for (S32 i = 0; i < childCount; ++i)
{
domNode* pNode = daeSafeCast<domNode>(children[i]);
if (isNodeAJoint(pNode))
{
processJointNode(pNode, mJointList);
}
}
}
}
else
//Has Skeleton
{
//Get the root node of the skeleton
daeElement* pSkeletonRootNode = pSkeleton->getValue().getElement();
if (pSkeletonRootNode)
{
//Once we have the root node - start acccessing it's joint components
const int jointCnt = mJointMap.size();
std::map<std::string, std::string> :: const_iterator jointIt = mJointMap.begin();
//Loop over all the possible joints within the .dae - using the allowed joint list in the ctor.
for (int i = 0; i < jointCnt; ++i, ++jointIt)
{
//Build a joint for the resolver to work with
char str[64]={0};
sprintf(str,"./%s",(*jointIt).first.c_str());
//llwarns<<"Joint "<< str <<llendl;
//Setup the resolver
daeSIDResolver resolver(pSkeletonRootNode, str);
//Look for the joint
domNode* pJoint = daeSafeCast<domNode>(resolver.getElement());
if (pJoint)
{
//Pull out the translate id and store it in the jointTranslations map
daeSIDResolver jointResolverA(pJoint, "./translate");
domTranslate* pTranslateA = daeSafeCast<domTranslate>(jointResolverA.getElement());
daeSIDResolver jointResolverB(pJoint, "./location");
domTranslate* pTranslateB = daeSafeCast<domTranslate>(jointResolverB.getElement());
LLMatrix4 workingTransform;
//Translation via SID
if (pTranslateA)
{
extractTranslation(pTranslateA, workingTransform);
}
else
if (pTranslateB)
{
extractTranslation(pTranslateB, workingTransform);
}
else
{
//Translation via child from element
daeElement* pTranslateElement = getChildFromElement(pJoint, "translate");
if (pTranslateElement && pTranslateElement->typeID() != domTranslate::ID())
{
llwarns<< "The found element is not a translate node" <<llendl;
missingSkeletonOrScene = true;
}
else
if (pTranslateElement)
{
extractTranslationViaElement(pTranslateElement, workingTransform);
}
else
{
extractTranslationViaSID(pJoint, workingTransform);
}
}
//Store the joint transform w/respect to it's name.
mJointList[(*jointIt).second.c_str()] = workingTransform;
}
}
//If anything failed in regards to extracting the skeleton, joints or translation id,
//mention it
if (missingSkeletonOrScene)
{
llwarns<< "Partial jointmap found in asset - did you mean to just have a partial map?" << llendl;
}
} //got skeleton?
}
domSkin::domJoints* joints = skin->getJoints();
domInputLocal_Array& joint_input = joints->getInput_array();
for (size_t i = 0; i < joint_input.getCount(); ++i)
{
domInputLocal* input = joint_input.get(i);
xsNMTOKEN semantic = input->getSemantic();
if (strcmp(semantic, COMMON_PROFILE_INPUT_JOINT) == 0)
{ //found joint source, fill model->mJointMap and model->mSkinInfo.mJointNames
daeElement* elem = input->getSource().getElement();
domSource* source = daeSafeCast<domSource>(elem);
if (source)
{
domName_array* names_source = source->getName_array();
if (names_source)
{
domListOfNames &names = names_source->getValue();
for (size_t j = 0; j < names.getCount(); ++j)
{
std::string name(names.get(j));
if (mJointMap.find(name) != mJointMap.end())
{
name = mJointMap[name];
}
model->mSkinInfo.mJointNames.push_back(name);
model->mSkinInfo.mJointMap[name] = j;
}
}
else
{
domIDREF_array* names_source = source->getIDREF_array();
if (names_source)
{
xsIDREFS& names = names_source->getValue();
for (size_t j = 0; j < names.getCount(); ++j)
{
std::string name(names.get(j).getID());
if (mJointMap.find(name) != mJointMap.end())
{
name = mJointMap[name];
}
model->mSkinInfo.mJointNames.push_back(name);
model->mSkinInfo.mJointMap[name] = j;
}
}
}
}
}
else if (strcmp(semantic, COMMON_PROFILE_INPUT_INV_BIND_MATRIX) == 0)
{ //found inv_bind_matrix array, fill model->mInvBindMatrix
domSource* source = daeSafeCast<domSource>(input->getSource().getElement());
if (source)
{
domFloat_array* t = source->getFloat_array();
if (t)
{
domListOfFloats& transform = t->getValue();
S32 count = transform.getCount()/16;
for (S32 k = 0; k < count; ++k)
{
LLMatrix4 mat;
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
mat.mMatrix[i][j] = transform[k*16 + i + j*4];
}
}
model->mSkinInfo.mInvBindMatrix.push_back(mat);
}
}
}
}
}
//Now that we've parsed the joint array, let's determine if we have a full rig
//(which means we have all the joint sthat are required for an avatar versus
//a skinned asset attached to a node in a file that contains an entire skeleton,
//but does not use the skeleton).
buildJointToNodeMappingFromScene(root);
mPreview->critiqueRigForUploadApplicability(model->mSkinInfo.mJointNames);
if (!missingSkeletonOrScene)
{
//Set the joint translations on the avatar - if it's a full mapping
//The joints are reset in the dtor
if (mPreview->getRigWithSceneParity())
{
std::map<std::string, std::string> :: const_iterator masterJointIt = mJointMap.begin();
std::map<std::string, std::string> :: const_iterator masterJointItEnd = mJointMap.end();
for ( ;masterJointIt!=masterJointItEnd;++masterJointIt)
{
std::string lookingForJoint = (*masterJointIt).first.c_str();
if (mJointList.find(lookingForJoint) != mJointList.end())
{
//llinfos<<"joint "<<lookingForJoint.c_str()<<llendl;
LLMatrix4 jointTransform = mJointList[lookingForJoint];
LLJoint* pJoint = mPreview->getPreviewAvatar()->getJoint(lookingForJoint);
if (pJoint)
{
pJoint->storeCurrentXform(jointTransform.getTranslation());
}
else
{
//Most likely an error in the asset.
llwarns<<"Tried to apply joint position from .dae, but it did not exist in the avatar rig." << llendl;
}
}
}
}
} //missingSkeletonOrScene
//We need to construct the alternate bind matrix (which contains the new joint positions)
//in the same order as they were stored in the joint buffer. The joints associated
//with the skeleton are not stored in the same order as they are in the exported joint buffer.
//This remaps the skeletal joints to be in the same order as the joints stored in the model.
std::vector<std::string> :: const_iterator jointIt = model->mSkinInfo.mJointNames.begin();
const int jointCnt = model->mSkinInfo.mJointNames.size();
for (int i = 0; i < jointCnt; ++i, ++jointIt)
{
std::string lookingForJoint = (*jointIt).c_str();
//Look for the joint xform that we extracted from the skeleton, using the jointIt as the key
//and store it in the alternate bind matrix
if (mJointList.find(lookingForJoint) != mJointList.end())
{
LLMatrix4 jointTransform = mJointList[lookingForJoint];
LLMatrix4 newInverse = model->mSkinInfo.mInvBindMatrix[i];
newInverse.setTranslation(mJointList[lookingForJoint].getTranslation());
model->mSkinInfo.mAlternateBindMatrix.push_back(newInverse);
}
else
{
llwarns<<"Possibly misnamed/missing joint [" <<lookingForJoint.c_str()<<" ] "<<llendl;
}
}
//grab raw position array
domVertices* verts = mesh->getVertices();
if (verts)
{
domInputLocal_Array& inputs = verts->getInput_array();
for (size_t i = 0; i < inputs.getCount() && model->mPosition.empty(); ++i)
{
if (strcmp(inputs[i]->getSemantic(), COMMON_PROFILE_INPUT_POSITION) == 0)
{
domSource* pos_source = daeSafeCast<domSource>(inputs[i]->getSource().getElement());
if (pos_source)
{
domFloat_array* pos_array = pos_source->getFloat_array();
if (pos_array)
{
domListOfFloats& pos = pos_array->getValue();
for (size_t j = 0; j < pos.getCount(); j += 3)
{
if (pos.getCount() <= j+2)
{
llerrs << "Invalid position array size." << llendl;
}
LLVector3 v(pos[j], pos[j + 1], pos[j+2]);
//transform from COLLADA space to volume space
v = v * inverse_normalized_transformation;
model->mPosition.push_back(v);
}
}
}
}
}
}
//grab skin weights array
domSkin::domVertex_weights* weights = skin->getVertex_weights();
if (weights)
{
domInputLocalOffset_Array& inputs = weights->getInput_array();
domFloat_array* vertex_weights = NULL;
for (size_t i = 0; i < inputs.getCount(); ++i)
{
if (strcmp(inputs[i]->getSemantic(), COMMON_PROFILE_INPUT_WEIGHT) == 0)
{
domSource* weight_source = daeSafeCast<domSource>(inputs[i]->getSource().getElement());
if (weight_source)
{
vertex_weights = weight_source->getFloat_array();
}
}
}
if (vertex_weights)
{
domListOfFloats& w = vertex_weights->getValue();
domListOfUInts& vcount = weights->getVcount()->getValue();
domListOfInts& v = weights->getV()->getValue();
U32 c_idx = 0;
for (size_t vc_idx = 0; vc_idx < vcount.getCount(); ++vc_idx)
{ //for each vertex
daeUInt count = vcount[vc_idx];
//create list of weights that influence this vertex
LLModel::weight_list weight_list;
for (daeUInt i = 0; i < count; ++i)
{ //for each weight
daeInt joint_idx = v[c_idx++];
daeInt weight_idx = v[c_idx++];
if (joint_idx == -1)
{
//ignore bindings to bind_shape_matrix
continue;
}
F32 weight_value = w[weight_idx];
weight_list.push_back(LLModel::JointWeight(joint_idx, weight_value));
}
//sort by joint weight
std::sort(weight_list.begin(), weight_list.end(), LLModel::CompareWeightGreater());
std::vector<LLModel::JointWeight> wght;
F32 total = 0.f;
for (U32 i = 0; i < llmin((U32) 4, (U32) weight_list.size()); ++i)
{ //take up to 4 most significant weights
if (weight_list[i].mWeight > 0.f)
{
wght.push_back(weight_list[i]);
total += weight_list[i].mWeight;
}
}
F32 scale = 1.f/total;
if (scale != 1.f)
{ //normalize weights
for (U32 i = 0; i < wght.size(); ++i)
{
wght[i].mWeight *= scale;
}
}
model->mSkinWeights[model->mPosition[vc_idx]] = wght;
}
//add instance to scene for this model
LLMatrix4 transformation = mTransform;
// adjust the transformation to compensate for mesh normalization
LLMatrix4 mesh_translation;
mesh_translation.setTranslation(mesh_translation_vector);
mesh_translation *= transformation;
transformation = mesh_translation;
LLMatrix4 mesh_scale;
mesh_scale.initScale(mesh_scale_vector);
mesh_scale *= transformation;
transformation = mesh_scale;
std::map<std::string, LLImportMaterial> materials;
for (U32 i = 0; i < model->mMaterialList.size(); ++i)
{
materials[model->mMaterialList[i]] = LLImportMaterial();
}
mScene[transformation].push_back(LLModelInstance(model, model->mLabel, transformation, materials));
stretch_extents(model, transformation, mExtents[0], mExtents[1], mFirstTransform);
}
}
}
}
}
}
}
daeElement* scene = root->getDescendant("visual_scene");
if (!scene)
{
llwarns << "document has no visual_scene" << llendl;
setLoadState(ERROR_PARSING);
return true;
}
setLoadState(DONE);
bool badElement = false;
processElement(scene, badElement);
if (badElement)
{
setLoadState(ERROR_PARSING);
}
return true;
}
void LLModelLoader::setLoadState(U32 state)
{
if (mPreview)
{
mPreview->setLoadState(state);
}
}
bool LLModelLoader::loadFromSLM(const std::string& filename)
{
//only need to populate mScene with data from slm
llstat stat;
if (LLFile::stat(filename, &stat))
{ //file does not exist
return false;
}
S32 file_size = (S32) stat.st_size;
llifstream ifstream(filename, std::ifstream::in | std::ifstream::binary);
LLSD data;
LLSDSerialize::fromBinary(data, ifstream, file_size);
ifstream.close();
//build model list for each LoD
model_list model[LLModel::NUM_LODS];
if (data["version"].asInteger() != SLM_SUPPORTED_VERSION)
{ //unsupported version
return false;
}
LLSD& mesh = data["mesh"];
LLVolumeParams volume_params;
volume_params.setType(LL_PCODE_PROFILE_SQUARE, LL_PCODE_PATH_LINE);
for (S32 lod = 0; lod < LLModel::NUM_LODS; ++lod)
{
for (int i = 0; i < mesh.size(); ++i)
{
std::stringstream str(mesh[i].asString());
LLPointer<LLModel> loaded_model = new LLModel(volume_params, (F32) lod);
if (loaded_model->loadModel(str))
{
loaded_model->mLocalID = i;
model[lod].push_back(loaded_model);
if (lod == LLModel::LOD_HIGH && !loaded_model->mSkinInfo.mJointNames.empty())
{
//check to see if rig is valid
mPreview->critiqueRigForUploadApplicability(loaded_model->mSkinInfo.mJointNames);
}
}
}
}
if (model[LLModel::LOD_HIGH].empty())
{ //failed to load high lod
return false;
}
// Set name.
std::string name = data["name"];
if (!name.empty())
{
model[LLModel::LOD_HIGH][0]->mLabel = name;
}
//load instance list
model_instance_list instance_list;
LLSD& instance = data["instance"];
for (int i = 0; i < instance.size(); ++i)
{
//deserialize instance list
instance_list.push_back(LLModelInstance(instance[i]));
//match up model instance pointers
S32 idx = instance_list[i].mLocalMeshID;
for (U32 lod = 0; lod < LLModel::NUM_LODS; ++lod)
{
if (!model[lod].empty())
{
instance_list[i].mLOD[lod] = model[lod][idx];
}
}
instance_list[i].mModel = model[LLModel::LOD_HIGH][idx];
}
//convert instance_list to mScene
mFirstTransform = TRUE;
for (U32 i = 0; i < instance_list.size(); ++i)
{
LLModelInstance& cur_instance = instance_list[i];
mScene[cur_instance.mTransform].push_back(cur_instance);
stretch_extents(cur_instance.mModel, cur_instance.mTransform, mExtents[0], mExtents[1], mFirstTransform);
}
setLoadState(DONE);
return true;
}
//static
bool LLModelLoader::isAlive(LLModelLoader* loader)
{
if (!loader)
{
return false;
}
std::list<LLModelLoader*>::iterator iter = sActiveLoaderList.begin();
for ( ; iter != sActiveLoaderList.end() && (*iter) != loader; ++iter);
return *iter == loader;
}
void LLModelLoader::loadModelCallback()
{
assert_main_thread();
if (mPreview)
{
mPreview->loadModelCallback(mLod);
}
while (!isStopped())
{ //wait until this thread is stopped before deleting self
apr_sleep(100);
}
//double check if "this" is valid before deleting it, in case it is aborted during running.
if (!isAlive(this))
{
return;
}
//cleanup model loader
if (mPreview)
{
mPreview->mModelLoader = NULL;
}
delete this;
}
//-----------------------------------------------------------------------------
// buildJointToNodeMappingFromScene()
//-----------------------------------------------------------------------------
void LLModelLoader::buildJointToNodeMappingFromScene(daeElement* pRoot)
{
daeElement* pScene = pRoot->getDescendant("visual_scene");
if (pScene)
{
daeTArray< daeSmartRef<daeElement> > children = pScene->getChildren();
S32 childCount = children.getCount();
for (S32 i = 0; i < childCount; ++i)
{
domNode* pNode = daeSafeCast<domNode>(children[i]);
processJointToNodeMapping(pNode);
}
}
}
//-----------------------------------------------------------------------------
// processJointToNodeMapping()
//-----------------------------------------------------------------------------
void LLModelLoader::processJointToNodeMapping(domNode* pNode)
{
if (isNodeAJoint(pNode))
{
//1.Store the parent
std::string nodeName = pNode->getName();
if (!nodeName.empty())
{
mJointsFromNode.push_front(pNode->getName());
}
//2. Handle the kiddo's
processChildJoints(pNode);
}
else
{
//Determine if the're any children wrt to this failed node.
//This occurs when an armature is exported and ends up being what essentially amounts to
//as the root for the visual_scene
if (pNode)
{
processChildJoints(pNode);
}
else
{
llinfos<<"Node is NULL"<<llendl;
}
}
}
//-----------------------------------------------------------------------------
// processChildJoint()
//-----------------------------------------------------------------------------
void LLModelLoader::processChildJoints(domNode* pParentNode)
{
daeTArray< daeSmartRef<daeElement> > childOfChild = pParentNode->getChildren();
S32 childOfChildCount = childOfChild.getCount();
for (S32 i = 0; i < childOfChildCount; ++i)
{
domNode* pChildNode = daeSafeCast<domNode>(childOfChild[i]);
if (pChildNode)
{
processJointToNodeMapping(pChildNode);
}
}
}
//-----------------------------------------------------------------------------
// critiqueRigForUploadApplicability()
//-----------------------------------------------------------------------------
void LLModelPreview::critiqueRigForUploadApplicability(const std::vector<std::string> &jointListFromAsset)
{
critiqueJointToNodeMappingFromScene();
//Determines the following use cases for a rig:
//1. It is suitable for upload with skin weights & joint positions, or
//2. It is suitable for upload as standard av with just skin weights
bool isJointPositionUploadOK = isRigSuitableForJointPositionUpload(jointListFromAsset);
bool isRigLegacyOK = isRigLegacy(jointListFromAsset);
//It's OK that both could end up being true, both default to false
if (isJointPositionUploadOK)
{
setRigValidForJointPositionUpload(true);
}
if (isRigLegacyOK)
{
setLegacyRigValid(true);
}
}
//-----------------------------------------------------------------------------
// critiqueJointToNodeMappingFromScene()
//-----------------------------------------------------------------------------
void LLModelPreview::critiqueJointToNodeMappingFromScene(void)
{
//Do the actual nodes back the joint listing from the dae?
//if yes then this is a fully rigged asset, otherwise it's just a partial rig
std::deque<std::string>::iterator jointsFromNodeIt = mJointsFromNode.begin();
std::deque<std::string>::iterator jointsFromNodeEndIt = mJointsFromNode.end();
bool result = true;
if (!mJointsFromNode.empty())
{
for ( ;jointsFromNodeIt!=jointsFromNodeEndIt;++jointsFromNodeIt)
{
std::string name = *jointsFromNodeIt;
if (mJointTransformMap.find(name) != mJointTransformMap.end())
{
continue;
}
else
{
llinfos<<"critiqueJointToNodeMappingFromScene is missing a: "<<name<<llendl;
result = false;
}
}
}
else
{
result = false;
}
//Determines the following use cases for a rig:
//1. Full av rig w/1-1 mapping from the scene and joint array
//2. Partial rig but w/o parity between the scene and joint array
if (result)
{
setRigWithSceneParity(true);
}
}
//-----------------------------------------------------------------------------
// isRigLegacy()
//-----------------------------------------------------------------------------
bool LLModelPreview::isRigLegacy(const std::vector<std::string> &jointListFromAsset)
{
//No joints in asset
if (jointListFromAsset.size() == 0)
{
return false;
}
bool result = false;
std::deque<std::string> :: const_iterator masterJointIt = mMasterLegacyJointList.begin();
std::deque<std::string> :: const_iterator masterJointEndIt = mMasterLegacyJointList.end();
std::vector<std::string> :: const_iterator modelJointIt = jointListFromAsset.begin();
std::vector<std::string> :: const_iterator modelJointItEnd = jointListFromAsset.end();
for ( ;masterJointIt!=masterJointEndIt;++masterJointIt)
{
result = false;
modelJointIt = jointListFromAsset.begin();
for ( ;modelJointIt!=modelJointItEnd; ++modelJointIt)
{
if (*masterJointIt == *modelJointIt)
{
result = true;
break;
}
}
if (!result)
{
llinfos<<" Asset did not contain the joint (if you're u/l a fully rigged asset w/joint positions - it is required)." << *masterJointIt<< llendl;
break;
}
}
return result;
}
//-----------------------------------------------------------------------------
// isRigSuitableForJointPositionUpload()
//-----------------------------------------------------------------------------
bool LLModelPreview::isRigSuitableForJointPositionUpload(const std::vector<std::string> &jointListFromAsset)
{
bool result = false;
std::deque<std::string> :: const_iterator masterJointIt = mMasterJointList.begin();
std::deque<std::string> :: const_iterator masterJointEndIt = mMasterJointList.end();
std::vector<std::string> :: const_iterator modelJointIt = jointListFromAsset.begin();
std::vector<std::string> :: const_iterator modelJointItEnd = jointListFromAsset.end();
for ( ;masterJointIt!=masterJointEndIt;++masterJointIt)
{
result = false;
modelJointIt = jointListFromAsset.begin();
for ( ;modelJointIt!=modelJointItEnd; ++modelJointIt)
{
if (*masterJointIt == *modelJointIt)
{
result = true;
break;
}
}
if (!result)
{
llinfos<<" Asset did not contain the joint (if you're u/l a fully rigged asset w/joint positions - it is required)." << *masterJointIt<< llendl;
break;
}
}
return result;
}
//called in the main thread
void LLModelLoader::loadTextures()
{
BOOL is_paused = isPaused();
pause(); //pause the loader
for (scene::iterator iter = mScene.begin(); iter != mScene.end(); ++iter)
{
for (U32 i = 0; i < iter->second.size(); i++)
{
for (std::map<std::string, LLImportMaterial>::iterator j = iter->second[i].mMaterial.begin();
j != iter->second[i].mMaterial.end(); ++j)
{
LLImportMaterial& material = j->second;
if (!material.mDiffuseMapFilename.empty())
{
material.mDiffuseMap =
LLViewerTextureManager::getFetchedTextureFromUrl("file://" + material.mDiffuseMapFilename, TRUE, LLGLTexture::BOOST_PREVIEW);
material.mDiffuseMap->setLoadedCallback(LLModelPreview::textureLoadedCallback, 0, TRUE, FALSE, mPreview, NULL, FALSE);
material.mDiffuseMap->forceToSaveRawImage(0, F32_MAX);
mNumOfFetchingTextures++;
}
}
}
}
if (!is_paused)
{
unpause();
}
}
//-----------------------------------------------------------------------------
// isNodeAJoint()
//-----------------------------------------------------------------------------
bool LLModelLoader::isNodeAJoint(domNode* pNode)
{
if (!pNode)
{
llinfos<<"Created node is NULL"<<llendl;
return false;
}
if (pNode->getName() == NULL)
{
llinfos<<"Parsed node has no name "<<llendl;
//Attempt to write the node id, if possible (aids in debugging the visual scene)
if (pNode->getId())
{
llinfos<<"Parsed node ID: "<<pNode->getId()<<llendl;
}
return false;
}
if (mJointMap.find(pNode->getName()) != mJointMap.end())
{
return true;
}
return false;
}
//-----------------------------------------------------------------------------
// verifyCount
//-----------------------------------------------------------------------------
bool LLModelPreview::verifyCount(int expected, int result)
{
if (expected != result)
{
llinfos<< "Error: (expected/got)"<<expected<<"/"<<result<<"verts"<<llendl;
return false;
}
return true;
}
//-----------------------------------------------------------------------------
// verifyController
//-----------------------------------------------------------------------------
bool LLModelPreview::verifyController(domController* pController)
{
bool result = true;
domSkin* pSkin = pController->getSkin();
if (pSkin)
{
xsAnyURI & uri = pSkin->getSource();
domElement* pElement = uri.getElement();
if (!pElement)
{
llinfos<<"Can't resolve skin source"<<llendl;
return false;
}
daeString type_str = pElement->getTypeName();
if (stricmp(type_str, "geometry") == 0)
{
//Skin is reference directly by geometry and get the vertex count from skin
domSkin::domVertex_weights* pVertexWeights = pSkin->getVertex_weights();
U32 vertexWeightsCount = pVertexWeights->getCount();
domGeometry* pGeometry = (domGeometry*) (domElement*) uri.getElement();
domMesh* pMesh = pGeometry->getMesh();
if (pMesh)
{
//Get vertex count from geometry
domVertices* pVertices = pMesh->getVertices();
if (!pVertices)
{
llinfos<<"No vertices!"<<llendl;
return false;
}
if (pVertices)
{
xsAnyURI src = pVertices->getInput_array()[0]->getSource();
domSource* pSource = (domSource*) (domElement*) src.getElement();
U32 verticesCount = pSource->getTechnique_common()->getAccessor()->getCount();
result = verifyCount(verticesCount, vertexWeightsCount);
if (!result)
{
return result;
}
}
}
U32 vcountCount = (U32) pVertexWeights->getVcount()->getValue().getCount();
result = verifyCount(vcountCount, vertexWeightsCount);
if (!result)
{
return result;
}
domInputLocalOffset_Array& inputs = pVertexWeights->getInput_array();
U32 sum = 0;
for (size_t i = 0; i < vcountCount; i++)
{
sum += pVertexWeights->getVcount()->getValue()[i];
}
result = verifyCount(sum * inputs.getCount(), (domInt) pVertexWeights->getV()->getValue().getCount());
}
}
return result;
}
//-----------------------------------------------------------------------------
// extractTranslation()
//-----------------------------------------------------------------------------
void LLModelLoader::extractTranslation(domTranslate* pTranslate, LLMatrix4& transform)
{
domFloat3 jointTrans = pTranslate->getValue();
LLVector3 singleJointTranslation(jointTrans[0], jointTrans[1], jointTrans[2]);
transform.setTranslation(singleJointTranslation);
}
//-----------------------------------------------------------------------------
// extractTranslationViaElement()
//-----------------------------------------------------------------------------
void LLModelLoader::extractTranslationViaElement(daeElement* pTranslateElement, LLMatrix4& transform)
{
if (pTranslateElement)
{
domTranslate* pTranslateChild = dynamic_cast<domTranslate*>(pTranslateElement);
domFloat3 translateChild = pTranslateChild->getValue();
LLVector3 singleJointTranslation(translateChild[0], translateChild[1], translateChild[2]);
transform.setTranslation(singleJointTranslation);
}
}
//-----------------------------------------------------------------------------
// extractTranslationViaSID()
//-----------------------------------------------------------------------------
void LLModelLoader::extractTranslationViaSID(daeElement* pElement, LLMatrix4& transform)
{
if (pElement)
{
daeSIDResolver resolver(pElement, "./transform");
domMatrix* pMatrix = daeSafeCast<domMatrix>(resolver.getElement());
//We are only extracting out the translational component atm
LLMatrix4 workingTransform;
if (pMatrix)
{
domFloat4x4 domArray = pMatrix->getValue();
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
workingTransform.mMatrix[i][j] = domArray[i + j*4];
}
}
LLVector3 trans = workingTransform.getTranslation();
transform.setTranslation(trans);
}
}
else
{
llwarns<<"Element is nonexistent - empty/unsupported node."<<llendl;
}
}
//-----------------------------------------------------------------------------
// processJointNode()
//-----------------------------------------------------------------------------
void LLModelLoader::processJointNode(domNode* pNode, JointTransformMap& jointTransforms)
{
if (pNode->getName() == NULL)
{
llwarns << "nameless node, can't process" << llendl;
return;
}
//llwarns<<"ProcessJointNode# Node:" <<pNode->getName()<<llendl;
//1. handle the incoming node - extract out translation via SID or element
LLMatrix4 workingTransform;
//Pull out the translate id and store it in the jointTranslations map
daeSIDResolver jointResolverA(pNode, "./translate");
domTranslate* pTranslateA = daeSafeCast<domTranslate>(jointResolverA.getElement());
daeSIDResolver jointResolverB(pNode, "./location");
domTranslate* pTranslateB = daeSafeCast<domTranslate>(jointResolverB.getElement());
//Translation via SID was successful
if (pTranslateA)
{
extractTranslation(pTranslateA, workingTransform);
}
else
if (pTranslateB)
{
extractTranslation(pTranslateB, workingTransform);
}
else
{
//Translation via child from element
daeElement* pTranslateElement = getChildFromElement(pNode, "translate");
if (!pTranslateElement || pTranslateElement->typeID() != domTranslate::ID())
{
//llwarns<< "The found element is not a translate node" <<llendl;
daeSIDResolver jointResolver(pNode, "./matrix");
domMatrix* pMatrix = daeSafeCast<domMatrix>(jointResolver.getElement());
if (pMatrix)
{
//llinfos<<"A matrix SID was however found!"<<llendl;
domFloat4x4 domArray = pMatrix->getValue();
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
workingTransform.mMatrix[i][j] = domArray[i + j*4];
}
}
}
else
{
llwarns<< "The found element is not translate or matrix node - most likely a corrupt export!" <<llendl;
}
}
else
{
extractTranslationViaElement(pTranslateElement, workingTransform);
}
}
//Store the working transform relative to the nodes name.
jointTransforms[ pNode->getName() ] = workingTransform;
//2. handle the nodes children
//Gather and handle the incoming nodes children
daeTArray< daeSmartRef<daeElement> > childOfChild = pNode->getChildren();
S32 childOfChildCount = childOfChild.getCount();
for (S32 i = 0; i < childOfChildCount; ++i)
{
domNode* pChildNode = daeSafeCast<domNode>(childOfChild[i]);
if (pChildNode)
{
processJointNode(pChildNode, jointTransforms);
}
}
}
//-----------------------------------------------------------------------------
// getChildFromElement()
//-----------------------------------------------------------------------------
daeElement* LLModelLoader::getChildFromElement(daeElement* pElement, std::string const & name)
{
daeElement* pChildOfElement = pElement->getChild(name.c_str());
if (pChildOfElement)
{
return pChildOfElement;
}
llwarns<< "Could not find a child [" << name << "] for the element: \"" << pElement->getAttribute("id") << "\"" << llendl;
return NULL;
}
void LLModelLoader::processElement(daeElement* element, bool& badElement)
{
LLMatrix4 saved_transform = mTransform;
domTranslate* translate = daeSafeCast<domTranslate>(element);
if (translate)
{
domFloat3 dom_value = translate->getValue();
LLMatrix4 translation;
translation.setTranslation(LLVector3(dom_value[0], dom_value[1], dom_value[2]));
translation *= mTransform;
mTransform = translation;
}
domRotate* rotate = daeSafeCast<domRotate>(element);
if (rotate)
{
domFloat4 dom_value = rotate->getValue();
LLMatrix4 rotation;
rotation.initRotTrans(dom_value[3] * DEG_TO_RAD, LLVector3(dom_value[0], dom_value[1], dom_value[2]), LLVector3(0, 0, 0));
rotation *= mTransform;
mTransform = rotation;
}
domScale* scale = daeSafeCast<domScale>(element);
if (scale)
{
domFloat3 dom_value = scale->getValue();
LLVector3 scale_vector = LLVector3(dom_value[0], dom_value[1], dom_value[2]);
scale_vector.abs(); // Set all values positive, since we don't currently support mirrored meshes
LLMatrix4 scaling;
scaling.initScale(scale_vector);
scaling *= mTransform;
mTransform = scaling;
}
domMatrix* matrix = daeSafeCast<domMatrix>(element);
if (matrix)
{
domFloat4x4 dom_value = matrix->getValue();
LLMatrix4 matrix_transform;
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
matrix_transform.mMatrix[i][j] = dom_value[i + j*4];
}
}
matrix_transform *= mTransform;
mTransform = matrix_transform;
}
domInstance_geometry* instance_geo = daeSafeCast<domInstance_geometry>(element);
if (instance_geo)
{
domGeometry* geo = daeSafeCast<domGeometry>(instance_geo->getUrl().getElement());
if (geo)
{
domMesh* mesh = daeSafeCast<domMesh>(geo->getDescendant(daeElement::matchType(domMesh::ID())));
if (mesh)
{
LLModel* model = mModel[mesh];
if (model)
{
LLMatrix4 transformation = mTransform;
if (mTransform.determinant() < 0)
{ //negative scales are not supported
llinfos << "Negative scale detected, unsupported transform. domInstance_geometry: " << LLModel::getElementLabel(instance_geo) << llendl;
badElement = true;
}
std::map<std::string, LLImportMaterial> materials = getMaterials(model, instance_geo);
// adjust the transformation to compensate for mesh normalization
LLVector3 mesh_scale_vector;
LLVector3 mesh_translation_vector;
model->getNormalizedScaleTranslation(mesh_scale_vector, mesh_translation_vector);
LLMatrix4 mesh_translation;
mesh_translation.setTranslation(mesh_translation_vector);
mesh_translation *= transformation;
transformation = mesh_translation;
LLMatrix4 mesh_scale;
mesh_scale.initScale(mesh_scale_vector);
mesh_scale *= transformation;
transformation = mesh_scale;
std::string label = getElementLabel(instance_geo);
mScene[transformation].push_back(LLModelInstance(model, label, transformation, materials));
stretch_extents(model, transformation, mExtents[0], mExtents[1], mFirstTransform);
}
}
}
else
{
llinfos<<"Unable to resolve geometry URL."<<llendl;
badElement = true;
}
}
domInstance_node* instance_node = daeSafeCast<domInstance_node>(element);
if (instance_node)
{
daeElement* instance = instance_node->getUrl().getElement();
if (instance)
{
processElement(instance,badElement);
}
}
//process children
daeTArray< daeSmartRef<daeElement> > children = element->getChildren();
int childCount = children.getCount();
for (S32 i = 0; i < childCount; i++)
{
processElement(children[i],badElement);
}
domNode* node = daeSafeCast<domNode>(element);
if (node)
{ //this element was a node, restore transform before processiing siblings
mTransform = saved_transform;
}
}
std::map<std::string, LLImportMaterial> LLModelLoader::getMaterials(LLModel* model, domInstance_geometry* instance_geo)
{
std::map<std::string, LLImportMaterial> materials;
for (U32 i = 0; i < model->mMaterialList.size(); i++)
{
LLImportMaterial import_material;
domInstance_material* instance_mat = NULL;
domBind_material::domTechnique_common* technique =
daeSafeCast<domBind_material::domTechnique_common>(instance_geo->getDescendant(daeElement::matchType(domBind_material::domTechnique_common::ID())));
if (technique)
{
daeTArray< daeSmartRef<domInstance_material> > inst_materials = technique->getChildrenByType<domInstance_material>();
for (U32 j = 0; j < inst_materials.getCount(); j++)
{
std::string symbol(inst_materials[j]->getSymbol());
if (symbol == model->mMaterialList[i]) // found the binding
{
instance_mat = inst_materials[j];
}
}
}
if (instance_mat)
{
domMaterial* material = daeSafeCast<domMaterial>(instance_mat->getTarget().getElement());
if (material)
{
domInstance_effect* instance_effect =
daeSafeCast<domInstance_effect>(material->getDescendant(daeElement::matchType(domInstance_effect::ID())));
if (instance_effect)
{
domEffect* effect = daeSafeCast<domEffect>(instance_effect->getUrl().getElement());
if (effect)
{
domProfile_COMMON* profile =
daeSafeCast<domProfile_COMMON>(effect->getDescendant(daeElement::matchType(domProfile_COMMON::ID())));
if (profile)
{
import_material = profileToMaterial(profile);
}
}
}
}
}
import_material.mBinding = model->mMaterialList[i];
materials[model->mMaterialList[i]] = import_material;
}
return materials;
}
LLImportMaterial LLModelLoader::profileToMaterial(domProfile_COMMON* material)
{
LLImportMaterial mat;
mat.mFullbright = FALSE;
daeElement* diffuse = material->getDescendant("diffuse");
if (diffuse)
{
domCommon_color_or_texture_type_complexType::domTexture* texture =
daeSafeCast<domCommon_color_or_texture_type_complexType::domTexture>(diffuse->getDescendant("texture"));
if (texture)
{
domCommon_newparam_type_Array newparams = material->getNewparam_array();
for (U32 i = 0; i < newparams.getCount(); i++)
{
domFx_surface_common* surface = newparams[i]->getSurface();
if (surface)
{
domFx_surface_init_common* init = surface->getFx_surface_init_common();
if (init)
{
domFx_surface_init_from_common_Array init_from = init->getInit_from_array();
if (init_from.getCount() > i)
{
domImage* image = daeSafeCast<domImage>(init_from[i]->getValue().getElement());
if (image)
{
// we only support init_from now - embedded data will come later
domImage::domInit_from* init = image->getInit_from();
if (init)
{
mat.mDiffuseMapFilename = cdom::uriToNativePath(init->getValue().str());
mat.mDiffuseMapLabel = getElementLabel(material);
}
}
}
}
}
}
}
domCommon_color_or_texture_type_complexType::domColor* color =
daeSafeCast<domCommon_color_or_texture_type_complexType::domColor>(diffuse->getDescendant("color"));
if (color)
{
domFx_color_common domfx_color = color->getValue();
LLColor4 value = LLColor4(domfx_color[0], domfx_color[1], domfx_color[2], domfx_color[3]);
mat.mDiffuseColor = value;
}
}
daeElement* emission = material->getDescendant("emission");
if (emission)
{
LLColor4 emission_color = getDaeColor(emission);
if (((emission_color[0] + emission_color[1] + emission_color[2]) / 3.0) > 0.25)
{
mat.mFullbright = TRUE;
}
}
return mat;
}
// try to get a decent label for this element
std::string LLModelLoader::getElementLabel(daeElement *element)
{
// if we have a name attribute, use it
std::string name = element->getAttribute("name");
if (name.length())
{
return name;
}
// if we have an ID attribute, use it
if (element->getID())
{
return std::string(element->getID());
}
// if we have a parent, use it
daeElement* parent = element->getParent();
if (parent)
{
// if parent has a name, use it
std::string name = parent->getAttribute("name");
if (name.length())
{
return name;
}
// if parent has an ID, use it
if (parent->getID())
{
return std::string(parent->getID());
}
}
// try to use our type
daeString element_name = element->getElementName();
if (element_name)
{
return std::string(element_name);
}
// if all else fails, use "object"
return std::string("object");
}
LLColor4 LLModelLoader::getDaeColor(daeElement* element)
{
LLColor4 value;
domCommon_color_or_texture_type_complexType::domColor* color =
daeSafeCast<domCommon_color_or_texture_type_complexType::domColor>(element->getDescendant("color"));
if (color)
{
domFx_color_common domfx_color = color->getValue();
value = LLColor4(domfx_color[0], domfx_color[1], domfx_color[2], domfx_color[3]);
}
return value;
}
//-----------------------------------------------------------------------------
// LLModelPreview
//-----------------------------------------------------------------------------
LLModelPreview::LLModelPreview(S32 width, S32 height, LLFloater* fmp)
: LLViewerDynamicTexture(width, height, 3, ORDER_MIDDLE, FALSE), LLMutex()
, mPelvisZOffset( 0.0f )
, mLegacyRigValid( false )
, mRigValidJointUpload( false )
, mResetJoints( false )
, mRigParityWithScene( false )
, mLastJointUpdate( false )
{
mNeedsUpdate = TRUE;
mCameraDistance = 0.f;
mCameraYaw = 0.f;
mCameraPitch = 0.f;
mCameraZoom = 1.f;
mTextureName = 0;
mPreviewLOD = 0;
mModelLoader = NULL;
mMaxTriangleLimit = 0;
mDirty = false;
mGenLOD = false;
mLoading = false;
mLoadState = LLModelLoader::STARTING;
mGroup = 0;
mLODFrozen = false;
mBuildShareTolerance = 0.f;
mBuildQueueMode = GLOD_QUEUE_GREEDY;
mBuildBorderMode = GLOD_BORDER_UNLOCK;
mBuildOperator = GLOD_OPERATOR_EDGE_COLLAPSE;
for (U32 i = 0; i < LLModel::NUM_LODS; ++i)
{
mRequestedTriangleCount[i] = 0;
mRequestedCreaseAngle[i] = -1.f;
mRequestedLoDMode[i] = 0;
mRequestedErrorThreshold[i] = 0.f;
mRequestedBuildOperator[i] = 0;
mRequestedQueueMode[i] = 0;
mRequestedBorderMode[i] = 0;
mRequestedShareTolerance[i] = 0.f;
}
mViewOption["show_textures"] = false;
mFMP = fmp;
mHasPivot = false;
mModelPivot = LLVector3(0.0f, 0.0f, 0.0f);
glodInit();
//move into joint mapper class
//1. joints for joint offset verification
mMasterJointList.push_front("mPelvis");
mMasterJointList.push_front("mTorso");
mMasterJointList.push_front("mChest");
mMasterJointList.push_front("mNeck");
mMasterJointList.push_front("mHead");
mMasterJointList.push_front("mCollarLeft");
mMasterJointList.push_front("mShoulderLeft");
mMasterJointList.push_front("mElbowLeft");
mMasterJointList.push_front("mWristLeft");
mMasterJointList.push_front("mCollarRight");
mMasterJointList.push_front("mShoulderRight");
mMasterJointList.push_front("mElbowRight");
mMasterJointList.push_front("mWristRight");
mMasterJointList.push_front("mHipRight");
mMasterJointList.push_front("mKneeRight");
mMasterJointList.push_front("mFootRight");
mMasterJointList.push_front("mHipLeft");
mMasterJointList.push_front("mKneeLeft");
mMasterJointList.push_front("mFootLeft");
//2. legacy joint list - used to verify rigs that will not be using joint offsets
mMasterLegacyJointList.push_front("mPelvis");
mMasterLegacyJointList.push_front("mTorso");
mMasterLegacyJointList.push_front("mChest");
mMasterLegacyJointList.push_front("mNeck");
mMasterLegacyJointList.push_front("mHead");
mMasterLegacyJointList.push_front("mHipRight");
mMasterLegacyJointList.push_front("mKneeRight");
mMasterLegacyJointList.push_front("mFootRight");
mMasterLegacyJointList.push_front("mHipLeft");
mMasterLegacyJointList.push_front("mKneeLeft");
mMasterLegacyJointList.push_front("mFootLeft");
createPreviewAvatar();
}
LLModelPreview::~LLModelPreview()
{
if (mModelLoader)
{
mModelLoader->mPreview = NULL;
mModelLoader = NULL;
}
// *HACK : *TODO : turn this back on when we understand why this crashes
//glodShutdown();
}
U32 LLModelPreview::calcResourceCost()
{
assert_main_thread();
rebuildUploadData();
//Upload skin is selected BUT check to see if the joints coming in from the asset were malformed.
if (mFMP && mFMP->childGetValue("upload_skin").asBoolean())
{
bool uploadingJointPositions = mFMP->childGetValue("upload_joints").asBoolean();
if (uploadingJointPositions && !isRigValidForJointPositionUpload())
{
mFMP->childDisable("ok_btn");
}
}
std::set<LLModel*> accounted;
U32 num_points = 0;
U32 num_hulls = 0;
F32 debug_scale = mFMP ? mFMP->childGetValue("import_scale").asReal() : 1.f;
mPelvisZOffset = mFMP ? mFMP->childGetValue("pelvis_offset").asReal() : 3.0f;
if (mFMP && mFMP->childGetValue("upload_joints").asBoolean())
{
getPreviewAvatar()->setPelvisOffset(mPelvisZOffset);
}
F32 streaming_cost = 0.f;
F32 physics_cost = 0.f;
for (U32 i = 0; i < mUploadData.size(); ++i)
{
LLModelInstance& instance = mUploadData[i];
if (accounted.find(instance.mModel) == accounted.end())
{
accounted.insert(instance.mModel);
LLModel::Decomposition& decomp =
instance.mLOD[LLModel::LOD_PHYSICS] ?
instance.mLOD[LLModel::LOD_PHYSICS]->mPhysics :
instance.mModel->mPhysics;
//update instance skin info for each lods pelvisZoffset
for (int j = 0; j < LLModel::NUM_LODS; ++j)
{
if (instance.mLOD[j])
{
instance.mLOD[j]->mSkinInfo.mPelvisOffset = mPelvisZOffset;
}
}
std::stringstream ostr;
LLSD ret = LLModel::writeModel(ostr,
instance.mLOD[4],
instance.mLOD[3],
instance.mLOD[2],
instance.mLOD[1],
instance.mLOD[0],
decomp,
mFMP->childGetValue("upload_skin").asBoolean(),
mFMP->childGetValue("upload_joints").asBoolean(),
TRUE);
num_hulls += decomp.mHull.size();
for (U32 i = 0; i < decomp.mHull.size(); ++i)
{
num_points += decomp.mHull[i].size();
}
//calculate streaming cost
LLMatrix4 transformation = instance.mTransform;
LLVector3 position = LLVector3(0, 0, 0) * transformation;
LLVector3 x_transformed = LLVector3(1, 0, 0) * transformation - position;
LLVector3 y_transformed = LLVector3(0, 1, 0) * transformation - position;
LLVector3 z_transformed = LLVector3(0, 0, 1) * transformation - position;
F32 x_length = x_transformed.normalize();
F32 y_length = y_transformed.normalize();
F32 z_length = z_transformed.normalize();
LLVector3 scale = LLVector3(x_length, y_length, z_length);
F32 radius = scale.length()*0.5f*debug_scale;
streaming_cost += LLMeshRepository::getStreamingCost(ret, radius);
}
}
F32 scale = mFMP ? mFMP->childGetValue("import_scale").asReal()*2.f : 2.f;
mDetailsSignal(mPreviewScale[0]*scale, mPreviewScale[1]*scale, mPreviewScale[2]*scale, streaming_cost, physics_cost);
updateStatusMessages();
return (U32) streaming_cost;
}
void LLFloaterModelPreview::setDetails(F32 x, F32 y, F32 z, F32 streaming_cost, F32 physics_cost)
{
assert_main_thread();
childSetTextArg("import_dimensions", "[X]", llformat("%.3f", x));
childSetTextArg("import_dimensions", "[Y]", llformat("%.3f", y));
childSetTextArg("import_dimensions", "[Z]", llformat("%.3f", z));
}
void LLModelPreview::rebuildUploadData()
{
assert_main_thread();
mUploadData.clear();
mTextureSet.clear();
//fill uploaddata instance vectors from scene data
std::string requested_name = mFMP->getChild<LLUICtrl>("description_form")->getValue().asString();
std::string metric = mFMP->getChild<LLUICtrl>("model_category_combo")->getValue().asString();
LLSpinCtrl* scale_spinner = mFMP->getChild<LLSpinCtrl>("import_scale");
F32 scale = scale_spinner->getValue().asReal();
LLMatrix4 scale_mat;
scale_mat.initScale(LLVector3(scale, scale, scale));
F32 max_scale = 0.f;
//reorder materials to match mBaseModel
for (U32 i = 0; i < LLModel::NUM_LODS-1; i++)
{
if (mBaseModel.size() == mModel[i].size())
{
for (U32 j = 0; j < mBaseModel.size(); ++j)
{
int refFaceCnt = 0;
int modelFaceCnt = 0;
if (!mModel[i][j]->matchMaterialOrder(mBaseModel[j], refFaceCnt, modelFaceCnt))
{
setLoadState( LLModelLoader::ERROR_MATERIALS );
mFMP->childDisable("calculate_btn");
}
}
}
}
for (LLModelLoader::scene::iterator iter = mBaseScene.begin(); iter != mBaseScene.end(); ++iter)
{ //for each transform in scene
LLMatrix4 mat = iter->first;
// compute position
LLVector3 position = LLVector3(0, 0, 0) * mat;
// compute scale
LLVector3 x_transformed = LLVector3(1, 0, 0) * mat - position;
LLVector3 y_transformed = LLVector3(0, 1, 0) * mat - position;
LLVector3 z_transformed = LLVector3(0, 0, 1) * mat - position;
F32 x_length = x_transformed.normalize();
F32 y_length = y_transformed.normalize();
F32 z_length = z_transformed.normalize();
max_scale = llmax(llmax(llmax(max_scale, x_length), y_length), z_length);
mat *= scale_mat;
for (LLModelLoader::model_instance_list::iterator model_iter = iter->second.begin(); model_iter != iter->second.end(); ++model_iter)
{ //for each instance with said transform applied
LLModelInstance instance = *model_iter;
LLModel* base_model = instance.mModel;
if (base_model)
{
base_model->mRequestedLabel = requested_name;
base_model->mMetric = metric;
}
U32 idx = 0;
for (idx = 0; idx < mBaseModel.size(); ++idx)
{ //find reference instance for this model
if (mBaseModel[idx] == base_model)
{
break;
}
}
if (idx < mBaseModel.size())
{
for (U32 i = 0; i < LLModel::NUM_LODS; i++)
{ //fill LOD slots based on reference model index
if (mModel[i].size() > idx)
{
instance.mLOD[i] = mModel[i][idx];
}
else
{
instance.mLOD[i] = NULL;
}
}
}
instance.mTransform = mat;
mUploadData.push_back(instance);
}
}
const F32 DEFAULT_MAX_PRIM_SCALE(gHippoLimits->getMaxPrimScale());
F32 max_import_scale = (DEFAULT_MAX_PRIM_SCALE-0.1f)/max_scale;
F32 max_axis = llmax(mPreviewScale.mV[0], mPreviewScale.mV[1]);
max_axis = llmax(max_axis, mPreviewScale.mV[2]);
max_axis *= 2.f;
//clamp scale so that total imported model bounding box is smaller than 240m on a side
if (gHippoGridManager->getConnectedGrid()->isSecondLife()) // on SecondLife only
max_import_scale = llmin(max_import_scale, 240.f/max_axis);
scale_spinner->setMaxValue(max_import_scale);
if (max_import_scale < scale)
{
scale_spinner->setValue(max_import_scale);
}
}
void LLModelPreview::saveUploadData(bool save_skinweights, bool save_joint_positions)
{
if (!mLODFile[LLModel::LOD_HIGH].empty())
{
std::string filename = mLODFile[LLModel::LOD_HIGH];
std::string::size_type i = filename.rfind(".");
if (i != std::string::npos)
{
filename.replace(i, filename.size() - 1, ".slm");
saveUploadData(filename, save_skinweights, save_joint_positions);
}
}
}
void LLModelPreview::saveUploadData(const std::string& filename, bool save_skinweights, bool save_joint_positions)
{
if (!gSavedSettings.getBOOL("MeshImportUseSLM"))
{
return;
}
std::set<LLPointer<LLModel> > meshes;
std::map<LLModel*, std::string> mesh_binary;
LLModel::hull empty_hull;
LLSD data;
data["version"] = SLM_SUPPORTED_VERSION;
if (!mBaseModel.empty())
{
data["name"] = mBaseModel[0]->getName();
}
S32 mesh_id = 0;
//build list of unique models and initialize local id
for (U32 i = 0; i < mUploadData.size(); ++i)
{
LLModelInstance& instance = mUploadData[i];
if (meshes.find(instance.mModel) == meshes.end())
{
instance.mModel->mLocalID = mesh_id++;
meshes.insert(instance.mModel);
std::stringstream str;
LLModel::Decomposition& decomp =
instance.mLOD[LLModel::LOD_PHYSICS].notNull() ?
instance.mLOD[LLModel::LOD_PHYSICS]->mPhysics :
instance.mModel->mPhysics;
LLModel::writeModel(str,
instance.mLOD[LLModel::LOD_PHYSICS],
instance.mLOD[LLModel::LOD_HIGH],
instance.mLOD[LLModel::LOD_MEDIUM],
instance.mLOD[LLModel::LOD_LOW],
instance.mLOD[LLModel::LOD_IMPOSTOR],
decomp,
save_skinweights, save_joint_positions, FALSE, TRUE);
data["mesh"][instance.mModel->mLocalID] = str.str();
}
data["instance"][i] = instance.asLLSD();
}
llofstream out(filename, std::ios_base::out | std::ios_base::binary);
LLSDSerialize::toBinary(data, out);
out.flush();
out.close();
}
void LLModelPreview::clearModel(S32 lod)
{
if (lod < 0 || lod > LLModel::LOD_PHYSICS)
{
return;
}
mVertexBuffer[lod].clear();
mModel[lod].clear();
mScene[lod].clear();
}
void LLModelPreview::loadModel(std::string filename, S32 lod, bool force_disable_slm)
{
assert_main_thread();
LLMutexLock lock(this);
if (lod < LLModel::LOD_IMPOSTOR || lod > LLModel::NUM_LODS - 1)
{
llwarns << "Invalid level of detail: " << lod << llendl;
assert(lod >= LLModel::LOD_IMPOSTOR && lod < LLModel::NUM_LODS);
return;
}
// This triggers if you bring up the file picker and then hit CANCEL.
// Just use the previous model (if any) and ignore that you brought up
// the file picker.
if (filename.empty())
{
if (mBaseModel.empty())
{
// this is the initial file picking. Close the whole floater
// if we don't have a base model to show for high LOD.
mFMP->close();
mLoading = false;
}
return;
}
if (mModelLoader)
{
llwarns << "Incompleted model load operation pending." << llendl;
return;
}
mLODFile[lod] = filename;
if (lod == LLModel::LOD_HIGH)
{
clearGLODGroup();
}
mModelLoader = new LLModelLoader(filename, lod, this, mJointTransformMap, mJointsFromNode);
if (force_disable_slm)
{
mModelLoader->mTrySLM = false;
}
mModelLoader->start();
mFMP->childSetTextArg("status", "[STATUS]", mFMP->getString("status_reading_file"));
setPreviewLOD(lod);
if (getLoadState() >= LLModelLoader::ERROR_PARSING)
{
mFMP->childDisable("ok_btn");
mFMP->childDisable("calculate_btn");
}
if (lod == mPreviewLOD)
{
mFMP->childSetText("lod_file_" + lod_name[lod], mLODFile[lod]);
}
else if (lod == LLModel::LOD_PHYSICS)
{
mFMP->childSetText("physics_file", mLODFile[lod]);
}
mFMP->open();
}
void LLModelPreview::setPhysicsFromLOD(S32 lod)
{
assert_main_thread();
if (lod >= 0 && lod <= 3)
{
mModel[LLModel::LOD_PHYSICS] = mModel[lod];
mScene[LLModel::LOD_PHYSICS] = mScene[lod];
mLODFile[LLModel::LOD_PHYSICS].clear();
mFMP->childSetText("physics_file", mLODFile[LLModel::LOD_PHYSICS]);
mVertexBuffer[LLModel::LOD_PHYSICS].clear();
rebuildUploadData();
refresh();
updateStatusMessages();
}
}
void LLModelPreview::clearIncompatible(S32 lod)
{
//Don't discard models if specified model is the physic rep
if (lod == LLModel::LOD_PHYSICS)
{
return;
}
for (U32 i = 0; i <= LLModel::LOD_HIGH; i++)
{ //clear out any entries that aren't compatible with this model
if (i != lod)
{
if (mModel[i].size() != mModel[lod].size())
{
mModel[i].clear();
mScene[i].clear();
mVertexBuffer[i].clear();
if (i == LLModel::LOD_HIGH)
{
mBaseModel = mModel[lod];
clearGLODGroup();
mBaseScene = mScene[lod];
mVertexBuffer[5].clear();
}
}
}
}
}
void LLModelPreview::clearGLODGroup()
{
if (mGroup)
{
for (std::map<LLPointer<LLModel>, U32>::iterator iter = mObject.begin(); iter != mObject.end(); ++iter)
{
glodDeleteObject(iter->second);
stop_gloderror();
}
mObject.clear();
glodDeleteGroup(mGroup);
stop_gloderror();
mGroup = 0;
}
}
void LLModelPreview::loadModelCallback(S32 lod)
{
assert_main_thread();
LLMutexLock lock(this);
if (!mModelLoader)
{
mLoading = false;
return;
}
if (getLoadState() >= LLModelLoader::ERROR_PARSING)
{
mLoading = false;
return;
}
mModelLoader->loadTextures();
if (lod == -1)
{ //populate all LoDs from model loader scene
mBaseModel.clear();
mBaseScene.clear();
bool skin_weights = false;
bool joint_positions = false;
for (S32 lod = 0; lod < LLModel::NUM_LODS; ++lod)
{ //for each LoD
//clear scene and model info
mScene[lod].clear();
mModel[lod].clear();
mVertexBuffer[lod].clear();
if (mModelLoader->mScene.begin()->second[0].mLOD[lod].notNull())
{ //if this LoD exists in the loaded scene
//copy scene to current LoD
mScene[lod] = mModelLoader->mScene;
//touch up copied scene to look like current LoD
for (LLModelLoader::scene::iterator iter = mScene[lod].begin(); iter != mScene[lod].end(); ++iter)
{
LLModelLoader::model_instance_list& list = iter->second;
for (LLModelLoader::model_instance_list::iterator list_iter = list.begin(); list_iter != list.end(); ++list_iter)
{
//override displayed model with current LoD
list_iter->mModel = list_iter->mLOD[lod];
//add current model to current LoD's model list (LLModel::mLocalID makes a good vector index)
U32 idx = list_iter->mModel->mLocalID;
if (mModel[lod].size() <= idx)
{ //stretch model list to fit model at given index
mModel[lod].resize(idx + 1);
}
mModel[lod][idx] = list_iter->mModel;
if (!list_iter->mModel->mSkinWeights.empty())
{
skin_weights = true;
if (!list_iter->mModel->mSkinInfo.mAlternateBindMatrix.empty())
{
joint_positions = true;
}
}
}
}
}
}
if (mFMP)
{
LLFloaterModelPreview* fmp = (LLFloaterModelPreview*) mFMP;
if (skin_weights)
{ //enable uploading/previewing of skin weights if present in .slm file
fmp->enableViewOption("show_skin_weight");
mViewOption["show_skin_weight"] = true;
fmp->childSetValue("upload_skin", true);
}
if (joint_positions)
{
fmp->enableViewOption("show_joint_positions");
mViewOption["show_joint_positions"] = true;
fmp->childSetValue("upload_joints", true);
}
}
//copy high lod to base scene for LoD generation
mBaseScene = mScene[LLModel::LOD_HIGH];
mBaseModel = mModel[LLModel::LOD_HIGH];
mDirty = true;
resetPreviewTarget();
}
else
{ //only replace given LoD
mModel[lod] = mModelLoader->mModelList;
mScene[lod] = mModelLoader->mScene;
mVertexBuffer[lod].clear();
setPreviewLOD(lod);
if (lod == LLModel::LOD_HIGH)
{ //save a copy of the highest LOD for automatic LOD manipulation
if (mBaseModel.empty())
{ //first time we've loaded a model, auto-gen LoD
mGenLOD = true;
}
mBaseModel = mModel[lod];
clearGLODGroup();
mBaseScene = mScene[lod];
mVertexBuffer[5].clear();
}
clearIncompatible(lod);
mDirty = true;
if (lod == LLModel::LOD_HIGH)
{
resetPreviewTarget();
}
}
mLoading = false;
if (mFMP)
{
if (!mBaseModel.empty())
{
if (mFMP->getChild<LLUICtrl>("description_form")->getValue().asString().empty())
{
const std::string& model_name = mBaseModel[0]->getName();
mFMP->getChild<LLUICtrl>("description_form")->setValue(model_name);
}
}
}
refresh();
mModelLoadedSignal();
}
void LLModelPreview::resetPreviewTarget()
{
if (mModelLoader)
{
mPreviewTarget = (mModelLoader->mExtents[0] + mModelLoader->mExtents[1]) * 0.5f;
mPreviewScale = (mModelLoader->mExtents[1] - mModelLoader->mExtents[0]) * 0.5f;
}
setPreviewTarget(mPreviewScale.magVec()*10.f);
}
void LLModelPreview::generateNormals()
{
assert_main_thread();
S32 which_lod = mPreviewLOD;
if (which_lod > 4 || which_lod < 0 || mModel[which_lod].empty())
{
return;
}
F32 angle_cutoff = mFMP->childGetValue("crease_angle").asReal();
mRequestedCreaseAngle[which_lod] = angle_cutoff;
angle_cutoff *= DEG_TO_RAD;
if (which_lod == 3 && !mBaseModel.empty())
{
for (LLModelLoader::model_list::iterator iter = mBaseModel.begin(); iter != mBaseModel.end(); ++iter)
{
(*iter)->generateNormals(angle_cutoff);
}
mVertexBuffer[5].clear();
}
for (LLModelLoader::model_list::iterator iter = mModel[which_lod].begin(); iter != mModel[which_lod].end(); ++iter)
{
(*iter)->generateNormals(angle_cutoff);
}
mVertexBuffer[which_lod].clear();
refresh();
updateStatusMessages();
}
void LLModelPreview::genLODs(S32 which_lod, U32 decimation, bool enforce_tri_limit)
{
// Allow LoD from -1 to LLModel::LOD_PHYSICS
if (which_lod < -1 || which_lod > LLModel::NUM_LODS - 1)
{
llwarns << "Invalid level of detail: " << which_lod << llendl;
assert(which_lod >= -1 && which_lod < LLModel::NUM_LODS);
return;
}
if (mBaseModel.empty())
{
return;
}
LLVertexBuffer::unbind();
bool no_ff = LLGLSLShader::sNoFixedFunction;
LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr;
LLGLSLShader::sNoFixedFunction = false;
if (shader)
{
shader->unbind();
}
stop_gloderror();
static U32 cur_name = 1;
S32 limit = -1;
U32 triangle_count = 0;
for (LLModelLoader::model_list::iterator iter = mBaseModel.begin(); iter != mBaseModel.end(); ++iter)
{
LLModel* mdl = *iter;
for (S32 i = 0; i < mdl->getNumVolumeFaces(); ++i)
{
triangle_count += mdl->getVolumeFace(i).mNumIndices/3;
}
}
U32 base_triangle_count = triangle_count;
U32 type_mask = LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_NORMAL | LLVertexBuffer::MAP_TEXCOORD0;
U32 lod_mode = 0;
F32 lod_error_threshold = 0;
// The LoD should be in range from Lowest to High
if (which_lod > -1 && which_lod < NUM_LOD)
{
LLCtrlSelectionInterface* iface = mFMP->childGetSelectionInterface("lod_mode_" + lod_name[which_lod]);
if (iface)
{
lod_mode = iface->getFirstSelectedIndex();
}
lod_error_threshold = mFMP->childGetValue("lod_error_threshold_" + lod_name[which_lod]).asReal();
}
if (which_lod != -1)
{
mRequestedLoDMode[which_lod] = lod_mode;
}
if (lod_mode == 0)
{
lod_mode = GLOD_TRIANGLE_BUDGET;
// The LoD should be in range from Lowest to High
if (which_lod > -1 && which_lod < NUM_LOD)
{
limit = mFMP->childGetValue("lod_triangle_limit_" + lod_name[which_lod]).asInteger();
}
}
else
{
lod_mode = GLOD_ERROR_THRESHOLD;
}
bool object_dirty = false;
if (mGroup == 0)
{
object_dirty = true;
mGroup = cur_name++;
glodNewGroup(mGroup);
}
if (object_dirty)
{
for (LLModelLoader::model_list::iterator iter = mBaseModel.begin(); iter != mBaseModel.end(); ++iter)
{ //build GLOD objects for each model in base model list
LLModel* mdl = *iter;
if (mObject[mdl] != 0)
{
glodDeleteObject(mObject[mdl]);
}
mObject[mdl] = cur_name++;
glodNewObject(mObject[mdl], mGroup, GLOD_DISCRETE);
stop_gloderror();
if (iter == mBaseModel.begin() && !mdl->mSkinWeights.empty())
{ //regenerate vertex buffer for skinned models to prevent animation feedback during LOD generation
mVertexBuffer[5].clear();
}
if (mVertexBuffer[5].empty())
{
genBuffers(5, false);
}
U32 tri_count = 0;
for (U32 i = 0; i < mVertexBuffer[5][mdl].size(); ++i)
{
LLVertexBuffer* buff = mVertexBuffer[5][mdl][i];
buff->setBuffer(type_mask & buff->getTypeMask());
U32 num_indices = mVertexBuffer[5][mdl][i]->getNumIndices();
if (num_indices > 2)
{
glodInsertElements(mObject[mdl], i, GL_TRIANGLES, num_indices, GL_UNSIGNED_SHORT, (U8*) mVertexBuffer[5][mdl][i]->getIndicesPointer(), 0, 0.f);
}
tri_count += num_indices/3;
stop_gloderror();
}
glodBuildObject(mObject[mdl]);
stop_gloderror();
}
}
S32 start = LLModel::LOD_HIGH;
S32 end = 0;
if (which_lod != -1)
{
start = end = which_lod;
}
mMaxTriangleLimit = base_triangle_count;
for (S32 lod = start; lod >= end; --lod)
{
if (which_lod == -1)
{
if (lod < start)
{
triangle_count /= decimation;
}
}
else
{
if (enforce_tri_limit)
{
triangle_count = limit;
}
else
{
for (S32 j = LLModel::LOD_HIGH; j > which_lod; --j)
{
triangle_count /= decimation;
}
}
}
mModel[lod].clear();
mModel[lod].resize(mBaseModel.size());
mVertexBuffer[lod].clear();
U32 actual_tris = 0;
U32 actual_verts = 0;
U32 submeshes = 0;
mRequestedTriangleCount[lod] = triangle_count;
mRequestedErrorThreshold[lod] = lod_error_threshold;
glodGroupParameteri(mGroup, GLOD_ADAPT_MODE, lod_mode);
stop_gloderror();
glodGroupParameteri(mGroup, GLOD_ERROR_MODE, GLOD_OBJECT_SPACE_ERROR);
stop_gloderror();
glodGroupParameterf(mGroup, GLOD_OBJECT_SPACE_ERROR_THRESHOLD, lod_error_threshold);
stop_gloderror();
if (lod_mode != GLOD_TRIANGLE_BUDGET)
{
glodGroupParameteri(mGroup, GLOD_MAX_TRIANGLES, 0);
}
else
{
//SH-632: always add 1 to desired amount to avoid decimating below desired amount
glodGroupParameteri(mGroup, GLOD_MAX_TRIANGLES, triangle_count + 1);
}
stop_gloderror();
glodAdaptGroup(mGroup);
stop_gloderror();
for (U32 mdl_idx = 0; mdl_idx < mBaseModel.size(); ++mdl_idx)
{
LLModel* base = mBaseModel[mdl_idx];
GLint patch_count = 0;
glodGetObjectParameteriv(mObject[base], GLOD_NUM_PATCHES, &patch_count);
stop_gloderror();
LLVolumeParams volume_params;
volume_params.setType(LL_PCODE_PROFILE_SQUARE, LL_PCODE_PATH_LINE);
mModel[lod][mdl_idx] = new LLModel(volume_params, 0.f);
GLint* sizes = new GLint[patch_count*2];
glodGetObjectParameteriv(mObject[base], GLOD_PATCH_SIZES, sizes);
stop_gloderror();
GLint* names = new GLint[patch_count];
glodGetObjectParameteriv(mObject[base], GLOD_PATCH_NAMES, names);
stop_gloderror();
mModel[lod][mdl_idx]->setNumVolumeFaces(patch_count);
LLModel* target_model = mModel[lod][mdl_idx];
for (GLint i = 0; i < patch_count; ++i)
{
type_mask = mVertexBuffer[5][base][i]->getTypeMask();
LLPointer<LLVertexBuffer> buff = new LLVertexBuffer(type_mask, 0);
if (sizes[i*2 + 1] > 0 && sizes[i*2] > 0)
{
buff->allocateBuffer(sizes[i*2 + 1], sizes[i*2], true);
buff->setBuffer(type_mask);
glodFillElements(mObject[base], names[i], GL_UNSIGNED_SHORT, (U8*) buff->getIndicesPointer());
stop_gloderror();
}
else
{ //this face was eliminated, create a dummy triangle (one vertex, 3 indices, all 0)
buff->allocateBuffer(1, 3, true);
memset((U8*) buff->getMappedData(), 0, buff->getSize());
memset((U8*) buff->getIndicesPointer(), 0, buff->getIndicesSize());
}
buff->validateRange(0, buff->getNumVerts() - 1, buff->getNumIndices(), 0);
LLStrider<LLVector3> pos;
LLStrider<LLVector3> norm;
LLStrider<LLVector2> tc;
LLStrider<U16> index;
buff->getVertexStrider(pos);
if (type_mask & LLVertexBuffer::MAP_NORMAL)
{
buff->getNormalStrider(norm);
}
if (type_mask & LLVertexBuffer::MAP_TEXCOORD0)
{
buff->getTexCoord0Strider(tc);
}
buff->getIndexStrider(index);
target_model->setVolumeFaceData(names[i], pos, norm, tc, index, buff->getNumVerts(), buff->getNumIndices());
actual_tris += buff->getNumIndices()/3;
actual_verts += buff->getNumVerts();
++submeshes;
if (!validate_face(target_model->getVolumeFace(names[i])))
{
llerrs << "Invalid face generated during LOD generation." << llendl;
}
}
//blind copy skin weights and just take closest skin weight to point on
//decimated mesh for now (auto-generating LODs with skin weights is still a bit
//of an open problem).
target_model->mPosition = base->mPosition;
target_model->mSkinWeights = base->mSkinWeights;
target_model->mSkinInfo = base->mSkinInfo;
//copy material list
target_model->mMaterialList = base->mMaterialList;
if (!validate_model(target_model))
{
llerrs << "Invalid model generated when creating LODs" << llendl;
}
delete [] sizes;
delete [] names;
}
//rebuild scene based on mBaseScene
mScene[lod].clear();
mScene[lod] = mBaseScene;
for (U32 i = 0; i < mBaseModel.size(); ++i)
{
LLModel* mdl = mBaseModel[i];
LLModel* target = mModel[lod][i];
if (target)
{
for (LLModelLoader::scene::iterator iter = mScene[lod].begin(); iter != mScene[lod].end(); ++iter)
{
for (U32 j = 0; j < iter->second.size(); ++j)
{
if (iter->second[j].mModel == mdl)
{
iter->second[j].mModel = target;
}
}
}
}
}
}
mResourceCost = calcResourceCost();
LLVertexBuffer::unbind();
LLGLSLShader::sNoFixedFunction = no_ff;
if (shader)
{
shader->bind();
}
/*if (which_lod == -1 && mScene[LLModel::LOD_PHYSICS].empty())
{ //build physics scene
mScene[LLModel::LOD_PHYSICS] = mScene[LLModel::LOD_LOW];
mModel[LLModel::LOD_PHYSICS] = mModel[LLModel::LOD_LOW];
for (U32 i = 1; i < mModel[LLModel::LOD_PHYSICS].size(); ++i)
{
mPhysicsQ.push(mModel[LLModel::LOD_PHYSICS][i]);
}
}*/
}
void LLModelPreview::updateStatusMessages()
{
assert_main_thread();
//triangle/vertex/submesh count for each mesh asset for each lod
std::vector<S32> tris[LLModel::NUM_LODS];
std::vector<S32> verts[LLModel::NUM_LODS];
std::vector<S32> submeshes[LLModel::NUM_LODS];
//total triangle/vertex/submesh count for each lod
S32 total_tris[LLModel::NUM_LODS];
S32 total_verts[LLModel::NUM_LODS];
S32 total_submeshes[LLModel::NUM_LODS];
for (S32 lod = 0; lod < LLModel::NUM_LODS; ++lod)
{
//initialize total for this lod to 0
total_tris[lod] = total_verts[lod] = total_submeshes[lod] = 0;
for (U32 i = 0; i < mModel[lod].size(); ++i)
{ //for each model in the lod
S32 cur_tris = 0;
S32 cur_verts = 0;
S32 cur_submeshes = mModel[lod][i]->getNumVolumeFaces();
for (S32 j = 0; j < cur_submeshes; ++j)
{ //for each submesh (face), add triangles and vertices to current total
const LLVolumeFace& face = mModel[lod][i]->getVolumeFace(j);
cur_tris += face.mNumIndices/3;
cur_verts += face.mNumVertices;
}
//add this model to the lod total
total_tris[lod] += cur_tris;
total_verts[lod] += cur_verts;
total_submeshes[lod] += cur_submeshes;
//store this model's counts to asset data
tris[lod].push_back(cur_tris);
verts[lod].push_back(cur_verts);
submeshes[lod].push_back(cur_submeshes);
}
}
if (mMaxTriangleLimit == 0)
{
mMaxTriangleLimit = total_tris[LLModel::LOD_HIGH];
}
bool has_degenerate = false;
{ //check for degenerate triangles in physics mesh
U32 lod = LLModel::LOD_PHYSICS;
const LLVector4a scale(0.5f);
for (U32 i = 0; i < mModel[lod].size() && !has_degenerate; ++i)
{ //for each model in the lod
if (mModel[lod][i]->mPhysics.mHull.empty())
{ //no decomp exists
S32 cur_submeshes = mModel[lod][i]->getNumVolumeFaces();
for (S32 j = 0; j < cur_submeshes && !has_degenerate; ++j)
{ //for each submesh (face), add triangles and vertices to current total
const LLVolumeFace& face = mModel[lod][i]->getVolumeFace(j);
for (S32 k = 0; k < face.mNumIndices && !has_degenerate; )
{
LLVector4a v1; v1.setMul(face.mPositions[face.mIndices[k++]], scale);
LLVector4a v2; v2.setMul(face.mPositions[face.mIndices[k++]], scale);
LLVector4a v3; v3.setMul(face.mPositions[face.mIndices[k++]], scale);
if (ll_is_degenerate(v1, v2, v3))
{
has_degenerate = true;
}
}
}
}
}
}
/* Singu Note: Dummy views and what for?
mFMP->childSetTextArg("submeshes_info", "[SUBMESHES]", llformat("%d", total_submeshes[LLModel::LOD_HIGH]));
*/
std::string mesh_status_na = mFMP->getString("mesh_status_na");
S32 upload_status[LLModel::LOD_HIGH + 1];
bool upload_ok = true;
for (S32 lod = 0; lod <= LLModel::LOD_HIGH; ++lod)
{
upload_status[lod] = 0;
std::string message = "mesh_status_good";
if (total_tris[lod] > 0)
{
mFMP->childSetText(lod_triangles_name[lod], llformat("%d", total_tris[lod]));
mFMP->childSetText(lod_vertices_name[lod], llformat("%d", total_verts[lod]));
}
else
{
if (lod == LLModel::LOD_HIGH)
{
upload_status[lod] = 2;
message = "mesh_status_missing_lod";
}
else
{
for (S32 i = lod - 1; i >= 0; --i)
{
if (total_tris[i] > 0)
{
upload_status[lod] = 2;
message = "mesh_status_missing_lod";
}
}
}
mFMP->childSetText(lod_triangles_name[lod], mesh_status_na);
mFMP->childSetText(lod_vertices_name[lod], mesh_status_na);
}
const U32 lod_high = LLModel::LOD_HIGH;
if (lod != lod_high)
{
if (total_submeshes[lod] && total_submeshes[lod] != total_submeshes[lod_high])
{ //number of submeshes is different
message = "mesh_status_submesh_mismatch";
upload_status[lod] = 2;
}
else if (!tris[lod].empty() && tris[lod].size() != tris[lod_high].size())
{ //number of meshes is different
message = "mesh_status_mesh_mismatch";
upload_status[lod] = 2;
}
else if (!verts[lod].empty())
{
S32 sum_verts_higher_lod = 0;
S32 sum_verts_this_lod = 0;
for (U32 i = 0; i < verts[lod].size(); ++i)
{
sum_verts_higher_lod += ((i < verts[lod + 1].size()) ? verts[lod + 1][i] : 0);
sum_verts_this_lod += verts[lod][i];
}
if ((sum_verts_higher_lod > 0) &&
(sum_verts_this_lod > sum_verts_higher_lod))
{
//too many vertices in this lod
message = "mesh_status_too_many_vertices";
upload_status[lod] = 2;
}
}
}
std::string img = lod_status_image[upload_status[lod]];
LLIconCtrl* icon = mFMP->getChild<LLIconCtrl>(lod_icon_name[lod]);
icon->setVisible(true);
icon->setValue(img);
if (upload_status[lod] >= 2)
{
upload_ok = false;
}
if (lod == mPreviewLOD)
{
mFMP->childSetText("lod_status_message_text", mFMP->getString(message));
icon = mFMP->getChild<LLIconCtrl>("lod_status_message_icon");
icon->setValue(img);
}
updateLodControls(lod);
}
//make sure no hulls have more than 256 points in them
for (U32 i = 0; upload_ok && i < mModel[LLModel::LOD_PHYSICS].size(); ++i)
{
LLModel* mdl = mModel[LLModel::LOD_PHYSICS][i];
for (U32 j = 0; upload_ok && j < mdl->mPhysics.mHull.size(); ++j)
{
if (mdl->mPhysics.mHull[j].size() > 256)
{
upload_ok = false;
}
}
}
bool errorStateFromLoader = getLoadState() >= LLModelLoader::ERROR_PARSING ? true : false;
bool skinAndRigOk = true;
bool uploadingSkin = mFMP->childGetValue("upload_skin").asBoolean();
bool uploadingJointPositions = mFMP->childGetValue("upload_joints").asBoolean();
if (uploadingSkin)
{
if (uploadingJointPositions && !isRigValidForJointPositionUpload())
{
skinAndRigOk = false;
}
}
if (upload_ok && mModelLoader)
{
if (!mModelLoader->areTexturesReady() && mFMP->childGetValue("upload_textures").asBoolean())
{
upload_ok = false;
}
}
if (!upload_ok || errorStateFromLoader || !skinAndRigOk || has_degenerate)
{
mFMP->childDisable("ok_btn");
}
//add up physics triangles etc
S32 start = 0;
S32 end = mModel[LLModel::LOD_PHYSICS].size();
S32 phys_tris = 0;
S32 phys_hulls = 0;
S32 phys_points = 0;
for (S32 i = start; i < end; ++i)
{ //add up hulls and points and triangles for selected mesh(es)
LLModel* model = mModel[LLModel::LOD_PHYSICS][i];
S32 cur_submeshes = model->getNumVolumeFaces();
LLModel::convex_hull_decomposition& decomp = model->mPhysics.mHull;
if (!decomp.empty())
{
phys_hulls += decomp.size();
for (U32 i = 0; i < decomp.size(); ++i)
{
phys_points += decomp[i].size();
}
}
else
{ //choose physics shape OR decomposition, can't use both
for (S32 j = 0; j < cur_submeshes; ++j)
{ //for each submesh (face), add triangles and vertices to current total
const LLVolumeFace& face = model->getVolumeFace(j);
phys_tris += face.mNumIndices/3;
}
}
}
if (phys_tris > 0)
{
mFMP->childSetTextArg("physics_triangles", "[TRIANGLES]", llformat("%d", phys_tris));
}
else
{
mFMP->childSetTextArg("physics_triangles", "[TRIANGLES]", mesh_status_na);
}
if (phys_hulls > 0)
{
mFMP->childSetTextArg("physics_hulls", "[HULLS]", llformat("%d", phys_hulls));
mFMP->childSetTextArg("physics_points", "[POINTS]", llformat("%d", phys_points));
}
else
{
mFMP->childSetTextArg("physics_hulls", "[HULLS]", mesh_status_na);
mFMP->childSetTextArg("physics_points", "[POINTS]", mesh_status_na);
}
LLFloaterModelPreview* fmp = LLFloaterModelPreview::sInstance;
if (fmp)
{
if (phys_tris > 0 || phys_hulls > 0)
{
if (!fmp->isViewOptionEnabled("show_physics"))
{
fmp->enableViewOption("show_physics");
mViewOption["show_physics"] = true;
fmp->childSetValue("show_physics", true);
}
}
else
{
fmp->disableViewOption("show_physics");
mViewOption["show_physics"] = false;
fmp->childSetValue("show_physics", false);
}
//bool use_hull = fmp->childGetValue("physics_use_hull").asBoolean();
//fmp->childSetEnabled("physics_optimize", !use_hull);
bool enable = (phys_tris > 0 || phys_hulls > 0) && fmp->mCurRequest.empty();
//enable = enable && !use_hull && fmp->childGetValue("physics_optimize").asBoolean();
//enable/disable "analysis" UI
LLPanel* panel = fmp->getChild<LLPanel>("physics analysis");
LLView* child = panel->getFirstChild();
while (child)
{
child->setEnabled(enable);
child = panel->findNextSibling(child);
}
enable = phys_hulls > 0 && fmp->mCurRequest.empty();
//enable/disable "simplification" UI
panel = fmp->getChild<LLPanel>("physics simplification");
child = panel->getFirstChild();
while (child)
{
child->setEnabled(enable);
child = panel->findNextSibling(child);
}
if (fmp->mCurRequest.empty())
{
fmp->childSetVisible("Simplify", true);
fmp->childSetVisible("simplify_cancel", false);
fmp->childSetVisible("Decompose", true);
fmp->childSetVisible("decompose_cancel", false);
if (phys_hulls > 0)
{
fmp->childEnable("Simplify");
}
if (phys_tris || phys_hulls > 0)
{
fmp->childEnable("Decompose");
}
}
else
{
fmp->childEnable("simplify_cancel");
fmp->childEnable("decompose_cancel");
}
}
LLCtrlSelectionInterface* iface = fmp->childGetSelectionInterface("physics_lod_combo");
S32 which_mode = 0;
S32 file_mode = 1;
if (iface)
{
which_mode = iface->getFirstSelectedIndex();
file_mode = iface->getItemCount() - 1;
}
if (which_mode == file_mode)
{
mFMP->childEnable("physics_file");
mFMP->childEnable("physics_browse");
}
else
{
mFMP->childDisable("physics_file");
mFMP->childDisable("physics_browse");
}
LLSpinCtrl* crease = mFMP->getChild<LLSpinCtrl>("crease_angle");
if (mRequestedCreaseAngle[mPreviewLOD] == -1.f)
{
mFMP->childSetColor("crease_label", LLColor4::grey);
crease->forceSetValue(75.f);
}
else
{
mFMP->childSetColor("crease_label", LLColor4::white);
crease->forceSetValue(mRequestedCreaseAngle[mPreviewLOD]);
}
mModelUpdatedSignal(true);
}
void LLModelPreview::updateLodControls(S32 lod)
{
if (lod < LLModel::LOD_IMPOSTOR || lod > LLModel::LOD_HIGH)
{
llwarns << "Invalid level of detail: " << lod << llendl;
assert(lod >= LLModel::LOD_IMPOSTOR && lod <= LLModel::LOD_HIGH);
return;
}
const char* lod_controls[] =
{
"lod_mode_",
"lod_triangle_limit_",
"lod_error_threshold_"
};
const U32 num_lod_controls = sizeof(lod_controls)/sizeof(char*);
const char* file_controls[] =
{
"lod_browse_",
"lod_file_",
};
const U32 num_file_controls = sizeof(file_controls)/sizeof(char*);
LLFloaterModelPreview* fmp = LLFloaterModelPreview::sInstance;
if (!fmp) return;
LLComboBox* lod_combo = mFMP->findChild<LLComboBox>("lod_source_" + lod_name[lod]);
if (!lod_combo) return;
S32 lod_mode = lod_combo->getCurrentIndex();
if (lod_mode == 0) // LoD from file
{
fmp->mLODMode[lod] = 0;
for (U32 i = 0; i < num_file_controls; ++i)
{
mFMP->childShow(file_controls[i] + lod_name[lod]);
}
for (U32 i = 0; i < num_lod_controls; ++i)
{
mFMP->childHide(lod_controls[i] + lod_name[lod]);
}
}
else if (lod_mode == 2) // use LoD above
{
fmp->mLODMode[lod] = 2;
for (U32 i = 0; i < num_file_controls; ++i)
{
mFMP->childHide(file_controls[i] + lod_name[lod]);
}
for (U32 i = 0; i < num_lod_controls; ++i)
{
mFMP->childHide(lod_controls[i] + lod_name[lod]);
}
if (lod < LLModel::LOD_HIGH)
{
mModel[lod] = mModel[lod + 1];
mScene[lod] = mScene[lod + 1];
mVertexBuffer[lod].clear();
// Also update lower LoD
if (lod > LLModel::LOD_IMPOSTOR)
{
updateLodControls(lod - 1);
}
}
}
else // auto generate, the default case for all LoDs except High
{
fmp->mLODMode[lod] = 1;
//don't actually regenerate lod when refreshing UI
mLODFrozen = true;
for (U32 i = 0; i < num_file_controls; ++i)
{
mFMP->childHide(file_controls[i] + lod_name[lod]);
}
for (U32 i = 0; i < num_lod_controls; ++i)
{
mFMP->childShow(lod_controls[i] + lod_name[lod]);
}
LLSpinCtrl* threshold = mFMP->getChild<LLSpinCtrl>("lod_error_threshold_" + lod_name[lod]);
LLSpinCtrl* limit = mFMP->getChild<LLSpinCtrl>("lod_triangle_limit_" + lod_name[lod]);
limit->setMaxValue(mMaxTriangleLimit);
limit->forceSetValue(mRequestedTriangleCount[lod]);
threshold->forceSetValue(mRequestedErrorThreshold[lod]);
mFMP->getChild<LLComboBox>("lod_mode_" + lod_name[lod])->selectNthItem(mRequestedLoDMode[lod]);
if (mRequestedLoDMode[lod] == 0)
{
limit->setVisible(true);
threshold->setVisible(false);
limit->setMaxValue(mMaxTriangleLimit);
limit->setIncrement(mMaxTriangleLimit/32);
}
else
{
limit->setVisible(false);
threshold->setVisible(true);
}
mLODFrozen = false;
}
}
void LLModelPreview::setPreviewTarget(F32 distance)
{
mCameraDistance = distance;
mCameraZoom = 1.f;
mCameraPitch = 0.f;
mCameraYaw = 0.f;
mCameraOffset.clearVec();
}
void LLModelPreview::clearBuffers()
{
for (U32 i = 0; i < 6; i++)
{
mVertexBuffer[i].clear();
}
}
void LLModelPreview::genBuffers(S32 lod, bool include_skin_weights)
{
U32 tri_count = 0;
U32 vertex_count = 0;
U32 mesh_count = 0;
LLModelLoader::model_list* model = NULL;
if (lod < 0 || lod > 4)
{
model = &mBaseModel;
lod = 5;
}
else
{
model = &(mModel[lod]);
}
if (!mVertexBuffer[lod].empty())
{
mVertexBuffer[lod].clear();
}
mVertexBuffer[lod].clear();
LLModelLoader::model_list::iterator base_iter = mBaseModel.begin();
for (LLModelLoader::model_list::iterator iter = model->begin(); iter != model->end(); ++iter)
{
LLModel* mdl = *iter;
if (!mdl)
{
continue;
}
LLModel* base_mdl = *base_iter;
base_iter++;
for (S32 i = 0; i < mdl->getNumVolumeFaces(); ++i)
{
const LLVolumeFace &vf = mdl->getVolumeFace(i);
U32 num_vertices = vf.mNumVertices;
U32 num_indices = vf.mNumIndices;
if (!num_vertices || ! num_indices)
{
continue;
}
LLVertexBuffer* vb = NULL;
bool skinned = include_skin_weights && !mdl->mSkinWeights.empty();
U32 mask = LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_NORMAL | LLVertexBuffer::MAP_TEXCOORD0;
if (skinned)
{
mask |= LLVertexBuffer::MAP_WEIGHT4;
}
vb = new LLVertexBuffer(mask, 0);
vb->allocateBuffer(num_vertices, num_indices, TRUE);
LLStrider<LLVector3> vertex_strider;
LLStrider<LLVector3> normal_strider;
LLStrider<LLVector2> tc_strider;
LLStrider<U16> index_strider;
LLStrider<LLVector4a> weights_strider;
vb->getVertexStrider(vertex_strider);
vb->getIndexStrider(index_strider);
if (skinned)
{
vb->getWeight4Strider(weights_strider);
}
LLVector4a::memcpyNonAliased16((F32*) vertex_strider.get(), (F32*) vf.mPositions, num_vertices*4*sizeof(F32));
if (vf.mTexCoords)
{
vb->getTexCoord0Strider(tc_strider);
S32 tex_size = (num_vertices*2*sizeof(F32)+0xF) & ~0xF;
LLVector4a::memcpyNonAliased16((F32*) tc_strider.get(), (F32*) vf.mTexCoords, tex_size);
}
if (vf.mNormals)
{
vb->getNormalStrider(normal_strider);
LLVector4a::memcpyNonAliased16((F32*) normal_strider.get(), (F32*) vf.mNormals, num_vertices*4*sizeof(F32));
}
if (skinned)
{
for (U32 i = 0; i < num_vertices; i++)
{
//find closest weight to vf.mVertices[i].mPosition
LLVector3 pos(vf.mPositions[i].getF32ptr());
const LLModel::weight_list& weight_list = base_mdl->getJointInfluences(pos);
LLVector4 w(0,0,0,0);
for (U32 i = 0; i < weight_list.size(); ++i)
{
F32 wght = llmin(weight_list[i].mWeight, 0.999999f);
F32 joint = (F32) weight_list[i].mJointIdx;
w.mV[i] = joint + wght;
}
(*(weights_strider++)).loadua(w.mV);
}
}
// build indices
for (U32 i = 0; i < num_indices; i++)
{
*(index_strider++) = vf.mIndices[i];
}
mVertexBuffer[lod][mdl].push_back(vb);
vertex_count += num_vertices;
tri_count += num_indices/3;
++mesh_count;
}
}
}
void LLModelPreview::update()
{
if (mDirty)
{
mDirty = false;
mResourceCost = calcResourceCost();
refresh();
updateStatusMessages();
}
if (mGenLOD)
{
mGenLOD = false;
genLODs();
refresh();
updateStatusMessages();
}
}
//-----------------------------------------------------------------------------
// getTranslationForJointOffset()
//-----------------------------------------------------------------------------
LLVector3 LLModelPreview::getTranslationForJointOffset(std::string joint)
{
LLMatrix4 jointTransform;
if (mJointTransformMap.find(joint) != mJointTransformMap.end())
{
jointTransform = mJointTransformMap[joint];
return jointTransform.getTranslation();
}
return LLVector3(0.0f,0.0f,0.0f);
}
//-----------------------------------------------------------------------------
// createPreviewAvatar
//-----------------------------------------------------------------------------
void LLModelPreview::createPreviewAvatar(void)
{
mPreviewAvatar = (LLVOAvatar*)gObjectList.createObjectViewer( LL_PCODE_LEGACY_AVATAR, gAgent.getRegion() );
if (mPreviewAvatar)
{
mPreviewAvatar->createDrawable(&gPipeline);
mPreviewAvatar->mIsDummy = TRUE;
mPreviewAvatar->mSpecialRenderMode = 1;
mPreviewAvatar->setPositionAgent(LLVector3::zero);
mPreviewAvatar->slamPosition();
mPreviewAvatar->updateJointLODs();
mPreviewAvatar->updateGeometry(mPreviewAvatar->mDrawable);
mPreviewAvatar->startMotion(ANIM_AGENT_STAND);
mPreviewAvatar->hideSkirt();
}
else
{
llinfos<<"Failed to create preview avatar for upload model window"<<llendl;
}
}
void LLModelPreview::addEmptyFace(LLModel* pTarget)
{
U32 type_mask = LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_NORMAL | LLVertexBuffer::MAP_TEXCOORD0;
LLPointer<LLVertexBuffer> buff = new LLVertexBuffer(type_mask, 0);
buff->allocateBuffer(1, 3, true);
memset( (U8*) buff->getMappedData(), 0, buff->getSize() );
memset( (U8*) buff->getIndicesPointer(), 0, buff->getIndicesSize() );
buff->validateRange(0, buff->getNumVerts() - 1, buff->getNumIndices(), 0);
LLStrider<LLVector3> pos;
LLStrider<LLVector3> norm;
LLStrider<LLVector2> tc;
LLStrider<U16> index;
buff->getVertexStrider(pos);
if (type_mask & LLVertexBuffer::MAP_NORMAL)
{
buff->getNormalStrider(norm);
}
if (type_mask & LLVertexBuffer::MAP_TEXCOORD0)
{
buff->getTexCoord0Strider(tc);
}
buff->getIndexStrider(index);
//resize face array
int faceCnt = pTarget->getNumVolumeFaces();
pTarget->setNumVolumeFaces(faceCnt + 1);
pTarget->setVolumeFaceData(faceCnt + 1, pos, norm, tc, index, buff->getNumVerts(), buff->getNumIndices());
}
//-----------------------------------------------------------------------------
// render()
//-----------------------------------------------------------------------------
BOOL LLModelPreview::render()
{
assert_main_thread();
LLMutexLock lock(this);
mNeedsUpdate = FALSE;
bool use_shaders = LLGLSLShader::sNoFixedFunction;
bool edges = mViewOption["show_edges"];
bool joint_positions = mViewOption["show_joint_positions"];
bool skin_weight = mViewOption["show_skin_weight"];
bool textures = mViewOption["show_textures"];
bool physics = mViewOption["show_physics"];
S32 width = getWidth();
S32 height = getHeight();
LLGLSUIDefault def;
LLGLDisable no_blend(GL_BLEND);
LLGLEnable cull(GL_CULL_FACE);
LLGLDepthTest depth(GL_TRUE);
LLGLDisable fog(GL_FOG);
{
if (use_shaders)
{
gUIProgram.bind();
}
//clear background to blue
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.pushMatrix();
gGL.loadIdentity();
gGL.ortho(0.0f, width, 0.0f, height, -1.0f, 1.0f);
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.pushMatrix();
gGL.loadIdentity();
gGL.color4f(0.169f, 0.169f, 0.169f, 1.f);
gl_rect_2d_simple(width, height);
gGL.matrixMode(LLRender::MM_PROJECTION);
gGL.popMatrix();
gGL.matrixMode(LLRender::MM_MODELVIEW);
gGL.popMatrix();
if (use_shaders)
{
gUIProgram.unbind();
}
}
LLFloaterModelPreview* fmp = LLFloaterModelPreview::sInstance;
bool has_skin_weights = false;
bool upload_skin = mFMP->childGetValue("upload_skin").asBoolean();
bool upload_joints = mFMP->childGetValue("upload_joints").asBoolean();
if ( upload_joints != mLastJointUpdate )
{
mLastJointUpdate = upload_joints;
}
for (LLModelLoader::scene::iterator iter = mScene[mPreviewLOD].begin(); iter != mScene[mPreviewLOD].end(); ++iter)
{
for (LLModelLoader::model_instance_list::iterator model_iter = iter->second.begin(); model_iter != iter->second.end(); ++model_iter)
{
LLModelInstance& instance = *model_iter;
LLModel* model = instance.mModel;
model->mPelvisOffset = mPelvisZOffset;
if (!model->mSkinWeights.empty())
{
has_skin_weights = true;
}
}
}
if (has_skin_weights)
{ //model has skin weights, enable view options for skin weights and joint positions
if (fmp && isLegacyRigValid())
{
fmp->enableViewOption("show_skin_weight");
fmp->setViewOptionEnabled("show_joint_positions", skin_weight);
mFMP->childEnable("upload_skin");
}
}
else
{
mFMP->childDisable("upload_skin");
if (fmp)
{
mViewOption["show_skin_weight"] = false;
fmp->disableViewOption("show_skin_weight");
fmp->disableViewOption("show_joint_positions");
}
skin_weight = false;
}
if (upload_skin && !has_skin_weights)
{ //can't upload skin weights if model has no skin weights
mFMP->childSetValue("upload_skin", false);
upload_skin = false;
}
if (!upload_skin && upload_joints)
{ //can't upload joints if not uploading skin weights
mFMP->childSetValue("upload_joints", false);
upload_joints = false;
}
//Only enable joint offsets if it passed the earlier critiquing
if (isRigValidForJointPositionUpload())
{
mFMP->childSetEnabled("upload_joints", upload_skin);
}
F32 explode = mFMP->childGetValue("physics_explode").asReal();
glClear(GL_DEPTH_BUFFER_BIT);
LLRect preview_rect;
preview_rect = mFMP->getChildView("preview_panel")->getRect();
F32 aspect = (F32) preview_rect.getWidth()/preview_rect.getHeight();
LLViewerCamera::getInstance()->setAspect(aspect);
LLViewerCamera::getInstance()->setView(LLViewerCamera::getInstance()->getDefaultFOV() / mCameraZoom);
LLVector3 offset = mCameraOffset;
LLVector3 target_pos = mPreviewTarget+offset;
F32 z_near = 0.001f;
F32 z_far = mCameraDistance*10.0f+mPreviewScale.magVec()+mCameraOffset.magVec();
if (skin_weight)
{
target_pos = getPreviewAvatar()->getPositionAgent();
z_near = 0.01f;
z_far = 1024.f;
mCameraDistance = 16.f;
//render avatar previews every frame
refresh();
}
if (use_shaders)
{
gObjectPreviewProgram.bind();
}
gGL.loadIdentity();
gPipeline.enableLightsPreview();
LLQuaternion camera_rot = LLQuaternion(mCameraPitch, LLVector3::y_axis) *
LLQuaternion(mCameraYaw, LLVector3::z_axis);
LLQuaternion av_rot = camera_rot;
LLViewerCamera::getInstance()->setOriginAndLookAt(
target_pos + ((LLVector3(mCameraDistance, 0.f, 0.f) + offset) * av_rot), // camera
LLVector3::z_axis, // up
target_pos); // point of interest
z_near = llclamp(z_far * 0.001f, 0.001f, 0.1f);
LLViewerCamera::getInstance()->setPerspective(FALSE, mOrigin.mX, mOrigin.mY, width, height, FALSE, z_near, z_far);
stop_glerror();
gGL.pushMatrix();
const F32 BRIGHTNESS = 0.9f;
gGL.color3f(BRIGHTNESS, BRIGHTNESS, BRIGHTNESS);
const U32 type_mask = LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_NORMAL | LLVertexBuffer::MAP_TEXCOORD0;
LLGLEnable normalize(GL_NORMALIZE);
if (!mBaseModel.empty() && mVertexBuffer[5].empty())
{
genBuffers(-1, skin_weight);
//genBuffers(3);
//genLODs();
}
if (!mModel[mPreviewLOD].empty())
{
mFMP->childEnable("reset_btn");
bool regen = mVertexBuffer[mPreviewLOD].empty();
if (!regen)
{
const std::vector<LLPointer<LLVertexBuffer> >& vb_vec = mVertexBuffer[mPreviewLOD].begin()->second;
if (!vb_vec.empty())
{
const LLVertexBuffer* buff = vb_vec[0];
regen = buff->hasDataType(LLVertexBuffer::TYPE_WEIGHT4) != skin_weight;
}
}
//make sure material lists all match
for (U32 i = 0; i < LLModel::NUM_LODS-1; i++)
{
if (mBaseModel.size() == mModel[i].size())
{
for (U32 j = 0; j < mBaseModel.size(); ++j)
{
int refFaceCnt = 0;
int modelFaceCnt = 0;
if (!mModel[i][j]->matchMaterialOrder(mBaseModel[j], refFaceCnt, modelFaceCnt))
{
mFMP->childDisable("calculate_btn");
}
}
}
}
if (regen)
{
genBuffers(mPreviewLOD, skin_weight);
}
if (!skin_weight)
{
for (LLMeshUploadThread::instance_list::iterator iter = mUploadData.begin(); iter != mUploadData.end(); ++iter)
{
LLModelInstance& instance = *iter;
LLModel* model = instance.mLOD[mPreviewLOD];
if (!model)
{
continue;
}
gGL.pushMatrix();
LLMatrix4 mat = instance.mTransform;
gGL.multMatrix((GLfloat*) mat.mMatrix);
for (U32 i = 0; i < mVertexBuffer[mPreviewLOD][model].size(); ++i)
{
LLVertexBuffer* buffer = mVertexBuffer[mPreviewLOD][model][i];
buffer->setBuffer(type_mask & buffer->getTypeMask());
if (textures)
{
U32 materialCnt = instance.mModel->mMaterialList.size();
if (i < materialCnt)
{
const std::string& binding = instance.mModel->mMaterialList[i];
const LLImportMaterial& material = instance.mMaterial[binding];
gGL.diffuseColor4fv(material.mDiffuseColor.mV);
if (material.mDiffuseMap.notNull())
{
if (material.mDiffuseMap->getDiscardLevel() > -1)
{
gGL.getTexUnit(0)->bind(material.mDiffuseMap, true);
mTextureSet.insert(material.mDiffuseMap.get());
}
}
}
}
else
{
gGL.diffuseColor4f(1,1,1,1);
}
buffer->drawRange(LLRender::TRIANGLES, 0, buffer->getNumVerts()-1, buffer->getNumIndices(), 0);
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
gGL.diffuseColor3f(0.4f, 0.4f, 0.4f);
if (edges)
{
glLineWidth(3.f);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
buffer->drawRange(LLRender::TRIANGLES, 0, buffer->getNumVerts()-1, buffer->getNumIndices(), 0);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glLineWidth(1.f);
}
}
gGL.popMatrix();
}
if (physics)
{
glClear(GL_DEPTH_BUFFER_BIT);
for (U32 i = 0; i < 2; i++)
{
if (i == 0)
{ //depth only pass
gGL.setColorMask(false, false);
}
else
{
gGL.setColorMask(true, true);
}
//enable alpha blending on second pass but not first pass
LLGLState blend(GL_BLEND, i);
gGL.blendFunc(LLRender::BF_SOURCE_ALPHA, LLRender::BF_ONE_MINUS_SOURCE_ALPHA);
for (LLMeshUploadThread::instance_list::iterator iter = mUploadData.begin(); iter != mUploadData.end(); ++iter)
{
LLModelInstance& instance = *iter;
LLModel* model = instance.mLOD[LLModel::LOD_PHYSICS];
if (!model)
{
continue;
}
gGL.pushMatrix();
LLMatrix4 mat = instance.mTransform;
gGL.multMatrix((GLfloat*) mat.mMatrix);
bool render_mesh = true;
LLPhysicsDecomp* decomp = gMeshRepo.mDecompThread;
if (decomp)
{
LLMutexLock(decomp->mMutex);
LLModel::Decomposition& physics = model->mPhysics;
if (!physics.mHull.empty())
{
render_mesh = false;
if (physics.mMesh.empty())
{ //build vertex buffer for physics mesh
gMeshRepo.buildPhysicsMesh(physics);
}
if (!physics.mMesh.empty())
{ //render hull instead of mesh
for (U32 i = 0; i < physics.mMesh.size(); ++i)
{
if (explode > 0.f)
{
gGL.pushMatrix();
LLVector3 offset = model->mHullCenter[i]-model->mCenterOfHullCenters;
offset *= explode;
gGL.translatef(offset.mV[0], offset.mV[1], offset.mV[2]);
}
static std::vector<LLColor4U> hull_colors;
if (i + 1 >= hull_colors.size())
{
hull_colors.push_back(LLColor4U(rand()%128+127, rand()%128+127, rand()%128+127, 128));
}
gGL.diffuseColor4ubv(hull_colors[i].mV);
LLVertexBuffer::drawArrays(LLRender::TRIANGLES, physics.mMesh[i].mPositions, physics.mMesh[i].mNormals);
if (explode > 0.f)
{
gGL.popMatrix();
}
}
}
}
}
if (render_mesh)
{
if (mVertexBuffer[LLModel::LOD_PHYSICS].empty())
{
genBuffers(LLModel::LOD_PHYSICS, false);
}
for (U32 i = 0; i < mVertexBuffer[LLModel::LOD_PHYSICS][model].size(); ++i)
{
LLVertexBuffer* buffer = mVertexBuffer[LLModel::LOD_PHYSICS][model][i];
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
gGL.diffuseColor4f(0.4f, 0.4f, 0.0f, 0.4f);
buffer->setBuffer(type_mask & buffer->getTypeMask());
buffer->drawRange(LLRender::TRIANGLES, 0, buffer->getNumVerts()-1, buffer->getNumIndices(), 0);
gGL.diffuseColor3f(1.f, 1.f, 0.f);
glLineWidth(2.f);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
buffer->drawRange(LLRender::TRIANGLES, 0, buffer->getNumVerts()-1, buffer->getNumIndices(), 0);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glLineWidth(1.f);
}
}
gGL.popMatrix();
}
glLineWidth(3.f);
glPointSize(8.f);
gPipeline.enableLightsFullbright(LLColor4::white);
//show degenerate triangles
LLGLDepthTest depth(GL_TRUE, GL_TRUE, GL_ALWAYS);
LLGLDisable cull(GL_CULL_FACE);
gGL.diffuseColor4f(1.f,0.f,0.f,1.f);
const LLVector4a scale(0.5f);
for (LLMeshUploadThread::instance_list::iterator iter = mUploadData.begin(); iter != mUploadData.end(); ++iter)
{
LLModelInstance& instance = *iter;
LLModel* model = instance.mLOD[LLModel::LOD_PHYSICS];
if (!model)
{
continue;
}
gGL.pushMatrix();
LLMatrix4 mat = instance.mTransform;
gGL.multMatrix((GLfloat*) mat.mMatrix);
LLPhysicsDecomp* decomp = gMeshRepo.mDecompThread;
if (decomp)
{
LLMutexLock(decomp->mMutex);
LLModel::Decomposition& physics = model->mPhysics;
if (physics.mHull.empty())
{
if (mVertexBuffer[LLModel::LOD_PHYSICS].empty())
{
genBuffers(LLModel::LOD_PHYSICS, false);
}
for (U32 i = 0; i < mVertexBuffer[LLModel::LOD_PHYSICS][model].size(); ++i)
{
LLVertexBuffer* buffer = mVertexBuffer[LLModel::LOD_PHYSICS][model][i];
buffer->setBuffer(type_mask & buffer->getTypeMask());
LLStrider<LLVector3> pos_strider;
buffer->getVertexStrider(pos_strider, 0);
LLVector4a* pos = (LLVector4a*) pos_strider.get();
LLStrider<U16> idx;
buffer->getIndexStrider(idx, 0);
for (S32 i = 0; i < buffer->getNumIndices(); i += 3)
{
LLVector4a v1; v1.setMul(pos[*idx++], scale);
LLVector4a v2; v2.setMul(pos[*idx++], scale);
LLVector4a v3; v3.setMul(pos[*idx++], scale);
if (ll_is_degenerate(v1,v2,v3))
{
buffer->draw(LLRender::LINE_LOOP, 3, i);
buffer->draw(LLRender::POINTS, 3, i);
}
}
}
}
}
gGL.popMatrix();
}
glLineWidth(1.f);
glPointSize(1.f);
gPipeline.enableLightsPreview();
gGL.setSceneBlendType(LLRender::BT_ALPHA);
}
}
}
else
{
target_pos = getPreviewAvatar()->getPositionAgent();
LLViewerCamera::getInstance()->setOriginAndLookAt(
target_pos + ((LLVector3(mCameraDistance, 0.f, 0.f) + offset) * av_rot), // camera
LLVector3::z_axis, // up
target_pos); // point of interest
if (joint_positions)
{
LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr;
if (shader)
{
gDebugProgram.bind();
}
getPreviewAvatar()->renderCollisionVolumes();
if (shader)
{
shader->bind();
}
}
for (LLModelLoader::scene::iterator iter = mScene[mPreviewLOD].begin(); iter != mScene[mPreviewLOD].end(); ++iter)
{
for (LLModelLoader::model_instance_list::iterator model_iter = iter->second.begin(); model_iter != iter->second.end(); ++model_iter)
{
LLModelInstance& instance = *model_iter;
LLModel* model = instance.mModel;
if (!model->mSkinWeights.empty())
{
for (U32 i = 0; i < mVertexBuffer[mPreviewLOD][model].size(); ++i)
{
LLVertexBuffer* buffer = mVertexBuffer[mPreviewLOD][model][i];
const LLVolumeFace& face = model->getVolumeFace(i);
LLStrider<LLVector4a> weight;
buffer->getWeight4Strider(weight);
getPreviewAvatar()->updateSoftwareSkinnedVertices(&model->mSkinInfo, weight.get(), face, buffer);
const std::string& binding = instance.mModel->mMaterialList[i];
const LLImportMaterial& material = instance.mMaterial[binding];
buffer->setBuffer(type_mask & buffer->getTypeMask());
gGL.diffuseColor4fv(material.mDiffuseColor.mV);
gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE);
if (material.mDiffuseMap.notNull())
{
if (material.mDiffuseMap->getDiscardLevel() > -1)
{
gGL.getTexUnit(0)->bind(material.mDiffuseMap, true);
mTextureSet.insert(material.mDiffuseMap.get());
}
}
buffer->draw(LLRender::TRIANGLES, buffer->getNumIndices(), 0);
gGL.diffuseColor3f(0.4f, 0.4f, 0.4f);
if (edges)
{
glLineWidth(3.f);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
buffer->draw(LLRender::TRIANGLES, buffer->getNumIndices(), 0);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glLineWidth(1.f);
}
}
}
}
}
}
}
if (use_shaders)
{
gObjectPreviewProgram.unbind();
}
gGL.popMatrix();
return TRUE;
}
//-----------------------------------------------------------------------------
// refresh()
//-----------------------------------------------------------------------------
void LLModelPreview::refresh()
{
mNeedsUpdate = TRUE;
}
//-----------------------------------------------------------------------------
// rotate()
//-----------------------------------------------------------------------------
void LLModelPreview::rotate(F32 yaw_radians, F32 pitch_radians)
{
mCameraYaw = mCameraYaw + yaw_radians;
mCameraPitch = llclamp(mCameraPitch + pitch_radians, F_PI_BY_TWO * -0.8f, F_PI_BY_TWO * 0.8f);
}
//-----------------------------------------------------------------------------
// zoom()
//-----------------------------------------------------------------------------
void LLModelPreview::zoom(F32 zoom_amt)
{
F32 new_zoom = mCameraZoom+zoom_amt;
mCameraZoom = llclamp(new_zoom, 1.f, 10.f);
}
void LLModelPreview::pan(F32 right, F32 up)
{
mCameraOffset.mV[VY] = llclamp(mCameraOffset.mV[VY] + right * mCameraDistance / mCameraZoom, -1.f, 1.f);
mCameraOffset.mV[VZ] = llclamp(mCameraOffset.mV[VZ] + up * mCameraDistance / mCameraZoom, -1.f, 1.f);
}
void LLModelPreview::setPreviewLOD(S32 lod)
{
lod = llclamp(lod, 0, (S32) LLModel::LOD_HIGH);
if (lod != mPreviewLOD)
{
mPreviewLOD = lod;
LLComboBox* combo_box = mFMP->getChild<LLComboBox>("preview_lod_combo");
combo_box->setCurrentByIndex((NUM_LOD-1)-mPreviewLOD); // combo box list of lods is in reverse order
mFMP->childSetText("lod_file_" + lod_name[mPreviewLOD], mLODFile[mPreviewLOD]);
LLColor4 highlight_color = LLUI::sColorsGroup->getColor("MeshImportTableHighlightColor");
LLColor4 normal_color = LLUI::sColorsGroup->getColor("MeshImportTableNormalColor");
for (S32 i = 0; i <= LLModel::LOD_HIGH; ++i)
{
const LLColor4& color = (i == lod) ? highlight_color : normal_color;
mFMP->childSetColor(lod_status_name[i], color);
mFMP->childSetColor(lod_label_name[i], color);
mFMP->childSetColor(lod_triangles_name[i], color);
mFMP->childSetColor(lod_vertices_name[i], color);
}
}
refresh();
updateStatusMessages();
}
void LLFloaterModelPreview::onBrowseLOD(S32 lod)
{
assert_main_thread();
loadModel(lod);
}
//static
void LLFloaterModelPreview::onReset(void* user_data)
{
assert_main_thread();
LLFloaterModelPreview* fmp = (LLFloaterModelPreview*) user_data;
fmp->childDisable("reset_btn");
LLModelPreview* mp = fmp->mModelPreview;
std::string filename = mp->mLODFile[3];
fmp->resetDisplayOptions();
//reset model preview
fmp->initModelPreview();
mp = fmp->mModelPreview;
mp->loadModel(filename,3,true);
}
//static
void LLFloaterModelPreview::onUpload(void* user_data)
{
assert_main_thread();
LLFloaterModelPreview* mp = (LLFloaterModelPreview*) user_data;
mp->mUploadBtn->setEnabled(false);
mp->mModelPreview->rebuildUploadData();
bool upload_skinweights = mp->childGetValue("upload_skin").asBoolean();
bool upload_joint_positions = mp->childGetValue("upload_joints").asBoolean();
mp->mModelPreview->saveUploadData(upload_skinweights, upload_joint_positions);
gMeshRepo.uploadModel(mp->mModelPreview->mUploadData, mp->mModelPreview->mPreviewScale,
mp->childGetValue("upload_textures").asBoolean(), upload_skinweights, upload_joint_positions, mp->mUploadModelUrl,
true, LLHandle<LLWholeModelFeeObserver>(), mp->getWholeModelUploadObserverHandle());
}
void LLFloaterModelPreview::refresh()
{
sInstance->toggleCalculateButton(true);
sInstance->mModelPreview->mDirty = true;
}
//static
void LLModelPreview::textureLoadedCallback( BOOL success, LLViewerFetchedTexture *src_vi, LLImageRaw* src, LLImageRaw* src_aux, S32 discard_level, BOOL final, void* userdata )
{
LLModelPreview* preview = (LLModelPreview*) userdata;
preview->refresh();
if (final && preview->mModelLoader)
{
if (preview->mModelLoader->mNumOfFetchingTextures > 0)
{
preview->mModelLoader->mNumOfFetchingTextures--;
}
}
}
void LLModelPreview::onLODParamCommit(S32 lod, bool enforce_tri_limit)
{
if (!mLODFrozen)
{
genLODs(lod, 3, enforce_tri_limit);
refresh();
}
}
LLFloaterModelPreview::DecompRequest::DecompRequest(const std::string& stage, LLModel* mdl)
{
mStage = stage;
mContinue = 1;
mModel = mdl;
mDecompID = &mdl->mDecompID;
mParams = sInstance->mDecompParams;
//copy out positions and indices
assignData(mdl);
}
void LLFloaterModelPreview::setStatusMessage(const std::string& msg)
{
LLMutexLock lock(mStatusLock);
mStatusMessage = msg;
}
void LLFloaterModelPreview::toggleCalculateButton()
{
toggleCalculateButton(true);
}
void LLFloaterModelPreview::toggleCalculateButton(bool visible)
{
mCalculateBtn->setVisible(visible);
bool uploadingSkin = childGetValue("upload_skin").asBoolean();
bool uploadingJointPositions = childGetValue("upload_joints").asBoolean();
if (uploadingSkin)
{
//Disable the calculate button *if* the rig is invalid - which is determined during the critiquing process
if (uploadingJointPositions && !mModelPreview->isRigValidForJointPositionUpload())
{
mCalculateBtn->setVisible(false);
}
}
mUploadBtn->setVisible(!visible);
mUploadBtn->setEnabled(mHasUploadPerm && !mUploadModelUrl.empty());
if (visible)
{
std::string tbd = getString("tbd");
childSetTextArg("prim_weight", "[EQ]", tbd);
childSetTextArg("download_weight", "[ST]", tbd);
childSetTextArg("server_weight", "[SIM]", tbd);
childSetTextArg("physics_weight", "[PH]", tbd);
childSetTextArg("upload_fee", "[FEE]", tbd);
childSetTextArg("price_breakdown", "[STREAMING]", tbd);
childSetTextArg("price_breakdown", "[PHYSICS]", tbd);
childSetTextArg("price_breakdown", "[INSTANCES]", tbd);
childSetTextArg("price_breakdown", "[TEXTURES]", tbd);
childSetTextArg("price_breakdown", "[MODEL]", tbd);
}
}
void LLFloaterModelPreview::onLoDSourceCommit(S32 lod)
{
mModelPreview->updateLodControls(lod);
refresh();
}
void LLFloaterModelPreview::resetDisplayOptions()
{
std::map<std::string,bool>::iterator option_it = mModelPreview->mViewOption.begin();
for(;option_it != mModelPreview->mViewOption.end(); ++option_it)
{
LLUICtrl* ctrl = getChild<LLUICtrl>(option_it->first);
ctrl->setValue(false);
}
}
void LLFloaterModelPreview::onModelPhysicsFeeReceived(const LLSD& result, std::string upload_url)
{
mModelPhysicsFee = result;
mModelPhysicsFee["url"] = upload_url;
doOnIdleOneTime(boost::bind(&LLFloaterModelPreview::handleModelPhysicsFeeReceived,this));
}
void LLFloaterModelPreview::handleModelPhysicsFeeReceived()
{
const LLSD& result = mModelPhysicsFee;
mUploadModelUrl = result["url"].asString();
childSetTextArg("prim_weight", "[EQ]", llformat("%0.3f", result["resource_cost"].asReal()));
childSetTextArg("download_weight", "[ST]", llformat("%0.3f", result["model_streaming_cost"].asReal()));
childSetTextArg("server_weight", "[SIM]", llformat("%0.3f", result["simulation_cost"].asReal()));
childSetTextArg("physics_weight", "[PH]", llformat("%0.3f", result["physics_cost"].asReal()));
childSetTextArg("upload_fee", "[FEE]", llformat("%d", result["upload_price"].asInteger()));
childSetTextArg("price_breakdown", "[STREAMING]", llformat("%d", result["upload_price_breakdown"]["mesh_streaming"].asInteger()));
childSetTextArg("price_breakdown", "[PHYSICS]", llformat("%d", result["upload_price_breakdown"]["mesh_physics"].asInteger()));
childSetTextArg("price_breakdown", "[INSTANCES]", llformat("%d", result["upload_price_breakdown"]["mesh_instance"].asInteger()));
childSetTextArg("price_breakdown", "[TEXTURES]", llformat("%d", result["upload_price_breakdown"]["texture"].asInteger()));
childSetTextArg("price_breakdown", "[MODEL]", llformat("%d", result["upload_price_breakdown"]["model"].asInteger()));
childSetVisible("upload_fee", true);
childSetVisible("price_breakdown", true);
mUploadBtn->setEnabled(mHasUploadPerm && !mUploadModelUrl.empty());
}
void LLFloaterModelPreview::setModelPhysicsFeeErrorStatus(U32 status, const std::string& reason)
{
llwarns << "LLFloaterModelPreview::setModelPhysicsFeeErrorStatus(" << status << " : " << reason << ")" << llendl;
doOnIdleOneTime(boost::bind(&LLFloaterModelPreview::toggleCalculateButton, this, true));
}
/*virtual*/
void LLFloaterModelPreview::onModelUploadSuccess()
{
assert_main_thread();
close();
}
/*virtual*/
void LLFloaterModelPreview::onModelUploadFailure()
{
assert_main_thread();
toggleCalculateButton(true);
mUploadBtn->setEnabled(true);
}
S32 LLFloaterModelPreview::DecompRequest::statusCallback(const char* status, S32 p1, S32 p2)
{
if (mContinue)
{
setStatusMessage(llformat("%s: %d/%d", status, p1, p2));
if (LLFloaterModelPreview::sInstance)
{
LLFloaterModelPreview::sInstance->setStatusMessage(mStatusMessage);
}
}
return mContinue;
}
void LLFloaterModelPreview::DecompRequest::completed()
{ //called from the main thread
if (mContinue)
{
mModel->setConvexHullDecomposition(mHull);
if (sInstance)
{
if (mContinue)
{
if (sInstance->mModelPreview)
{
sInstance->mModelPreview->mDirty = true;
LLFloaterModelPreview::sInstance->mModelPreview->refresh();
}
}
sInstance->mCurRequest.erase(this);
}
}
else if (sInstance)
{
llassert(sInstance->mCurRequest.find(this) == sInstance->mCurRequest.end());
}
}
void dump_llsd_to_file(const LLSD& content, std::string filename);
void LLFloaterModelPreview::onPermissionsReceived(const LLSD& result)
{
dump_llsd_to_file(result,"perm_received.xml");
std::string upload_status = result["mesh_upload_status"].asString();
// BAP HACK: handle "" for case that MeshUploadFlag cap is broken.
mHasUploadPerm = (("" == upload_status) || ("valid" == upload_status));
//mUploadBtn->setEnabled(mHasUploadPerm);
mUploadBtn->setEnabled(mHasUploadPerm && !mUploadModelUrl.empty());
getChild<LLTextBox>("warning_title")->setVisible(!mHasUploadPerm);
getChild<LLTextBox>("warning_message")->setVisible(!mHasUploadPerm);
}
void LLFloaterModelPreview::setPermissonsErrorStatus(U32 status, const std::string& reason)
{
llwarns << "LLFloaterModelPreview::setPermissonsErrorStatus(" << status << " : " << reason << ")" << llendl;
LLNotificationsUtil::add("MeshUploadPermError");
}