Files
SingularityViewer/indra/test/prim_linkability_tut.cpp
2010-04-02 02:48:44 -03:00

502 lines
19 KiB
C++

/**
* @file linkability.cpp
* @author andrew@lindenlab.com
* @date 2007-04-23
* @brief Tests for the LLPrimLinkInfo template which computes the linkability of prims
*
* $LicenseInfo:firstyear=2007&license=viewergpl$
*
* Copyright (c) 2007-2009, Linden Research, Inc.
*
* Second Life Viewer Source Code
* The source code in this file ("Source Code") is provided by Linden Lab
* to you under the terms of the GNU General Public License, version 2.0
* ("GPL"), unless you have obtained a separate licensing agreement
* ("Other License"), formally executed by you and Linden Lab. Terms of
* the GPL can be found in doc/GPL-license.txt in this distribution, or
* online at http://secondlifegrid.net/programs/open_source/licensing/gplv2
*
* There are special exceptions to the terms and conditions of the GPL as
* it is applied to this Source Code. View the full text of the exception
* in the file doc/FLOSS-exception.txt in this software distribution, or
* online at
* http://secondlifegrid.net/programs/open_source/licensing/flossexception
*
* By copying, modifying or distributing this software, you acknowledge
* that you have read and understood your obligations described above,
* and agree to abide by those obligations.
*
* ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO
* WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY,
* COMPLETENESS OR PERFORMANCE.
* $/LicenseInfo$
*/
#include "linden_common.h"
#include "lltut.h"
#include "llprimlinkinfo.h"
#include "llrand.h"
// helper function
void randomize_sphere(LLSphere& sphere, F32 center_range, F32 radius_range)
{
F32 radius = ll_frand(2.f * radius_range) - radius_range;
LLVector3 center;
for (S32 i=0; i<3; ++i)
{
center.mV[i] = ll_frand(2.f * center_range) - center_range;
}
sphere.setRadius(radius);
sphere.setCenter(center);
}
// helper function. Same as above with a min and max radius.
void randomize_sphere(LLSphere& sphere, F32 center_range, F32 minimum_radius, F32 maximum_radius)
{
F32 radius = ll_frand(maximum_radius - minimum_radius) + minimum_radius;
LLVector3 center;
for (S32 i=0; i<3; ++i)
{
center.mV[i] = ll_frand(2.f * center_range) - center_range;
}
sphere.setRadius(radius);
sphere.setCenter(center);
}
// helper function
bool random_sort( const LLPrimLinkInfo< S32 >&, const LLPrimLinkInfo< S32 >& b)
{
return (ll_rand(64) < 32);
}
namespace tut
{
struct linkable_data
{
LLPrimLinkInfo<S32> info;
};
typedef test_group<linkable_data> linkable_test;
typedef linkable_test::object linkable_object;
tut::linkable_test wtf("prim linkability");
template<> template<>
void linkable_object::test<1>()
{
// Here we test the boundary of the LLPrimLinkInfo::canLink() method
// between semi-random middle-sized objects.
S32 number_of_tests = 100;
for (S32 test = 0; test < number_of_tests; ++test)
{
// compute the radii that would provide the above max link distance
F32 first_radius = 0.f;
F32 second_radius = 0.f;
// compute a random center for the first sphere
// compute some random max link distance
F32 max_link_span = ll_frand(MAX_OBJECT_SPAN);
if (max_link_span < OBJECT_SPAN_BONUS)
{
max_link_span += OBJECT_SPAN_BONUS;
}
LLVector3 first_center(
ll_frand(2.f * max_link_span) - max_link_span,
ll_frand(2.f * max_link_span) - max_link_span,
ll_frand(2.f * max_link_span) - max_link_span);
// put the second sphere at the right distance from the origin
// such that it is within the max_link_distance of the first
LLVector3 direction(ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f);
direction.normalize();
F32 half_milimeter = 0.0005f;
LLVector3 second_center;
// max_span = 3 * (first_radius + second_radius) + OBJECT_SPAN_BONUS
// make sure they link at short distances
{
second_center = first_center + (OBJECT_SPAN_BONUS - half_milimeter) * direction;
LLPrimLinkInfo<S32> first_info(0, LLSphere(first_center, first_radius) );
LLPrimLinkInfo<S32> second_info(1, LLSphere(second_center, second_radius) );
ensure("these nearby objects should link", first_info.canLink(second_info) );
}
// make sure they fail to link if we move them apart just a little bit
{
second_center = first_center + (OBJECT_SPAN_BONUS + half_milimeter) * direction;
LLPrimLinkInfo<S32> first_info(0, LLSphere(first_center, first_radius) );
LLPrimLinkInfo<S32> second_info(1, LLSphere(second_center, second_radius) );
ensure("these nearby objects should NOT link", !first_info.canLink(second_info) );
}
// make sure the objects link or not at medium distances
{
first_radius = 0.3f * ll_frand(max_link_span - OBJECT_SPAN_BONUS);
// This is the exact second radius that will link at exactly our random max_link_distance
second_radius = ((max_link_span - OBJECT_SPAN_BONUS) / 3.f) - first_radius;
second_center = first_center + (max_link_span - first_radius - second_radius - half_milimeter) * direction;
LLPrimLinkInfo<S32> first_info(0, LLSphere(first_center, first_radius) );
LLPrimLinkInfo<S32> second_info(1, LLSphere(second_center, second_radius) );
ensure("these objects should link", first_info.canLink(second_info) );
}
// make sure they fail to link if we move them apart just a little bit
{
// move the second sphere such that it is a little too far from the first
second_center += (2.f * half_milimeter) * direction;
LLPrimLinkInfo<S32> first_info(0, LLSphere(first_center, first_radius) );
LLPrimLinkInfo<S32> second_info(1, LLSphere(second_center, second_radius) );
ensure("these objects should NOT link", !first_info.canLink(second_info) );
}
// make sure things don't link at far distances
{
second_center = first_center + (MAX_OBJECT_SPAN + 2.f * half_milimeter) * direction;
second_radius = 0.3f * MAX_OBJECT_SPAN;
LLPrimLinkInfo<S32> first_info(0, LLSphere(first_center, first_radius) );
LLPrimLinkInfo<S32> second_info(1, LLSphere(second_center, second_radius) );
ensure("these objects should NOT link", !first_info.canLink(second_info) );
}
}
}
template<> template<>
void linkable_object::test<2>()
{
// Consider a row of eight spheres in a row, each 10m in diameter and centered
// at 10m intervals: 01234567.
F32 radius = 5.f;
F32 spacing = 10.f;
LLVector3 line_direction(ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f);
line_direction.normalize();
LLVector3 first_center(ll_frand(2.f * spacing) -spacing, ll_frand(2.f * spacing) - spacing, ll_frand(2.f * spacing) - spacing);
LLPrimLinkInfo<S32> infos[8];
for (S32 index = 0; index < 8; ++index)
{
LLVector3 center = first_center + ((F32)(index) * spacing) * line_direction;
infos[index].set(index, LLSphere(center, radius));
}
// Max span for 2 spheres of 5m radius is 3 * (5 + 5) + 1 = 31m
// spheres 0&2 have a 30m span (from outside edge to outside edge) and should link
{
LLPrimLinkInfo<S32> root_info = infos[0];
std::list< LLPrimLinkInfo<S32> > info_list;
info_list.push_back(infos[2]);
root_info.mergeLinkableSet(info_list);
S32 prim_count = root_info.getPrimCount();
ensure_equals("0&2 prim count should be 2", prim_count, 2);
ensure_equals("0&2 unlinkable list should have length 0", (S32) info_list.size(), 0);
}
// spheres 0&3 have a 40 meter span and should NOT link outright
{
LLPrimLinkInfo<S32> root_info = infos[0];
std::list< LLPrimLinkInfo<S32> > info_list;
info_list.push_back(infos[3]);
root_info.mergeLinkableSet(info_list);
S32 prim_count = root_info.getPrimCount();
ensure_equals("0&4 prim count should be 1", prim_count, 1);
ensure_equals("0&4 unlinkable list should have length 1", (S32) info_list.size(), 1);
}
// spheres 0-4 should link no matter what order : 01234
// Total span = 50m, 012 link with a r=15.5 giving max span of 3 * (15.5 + 5) + 1 = 62.5, but the cap is 54m
{
LLPrimLinkInfo<S32> root_info = infos[0];
std::list< LLPrimLinkInfo<S32> > info_list;
for (S32 index = 1; index < 5; ++index)
{
info_list.push_back(infos[index]);
}
root_info.mergeLinkableSet(info_list);
S32 prim_count = root_info.getPrimCount();
ensure_equals("01234 prim count should be 5", prim_count, 5);
ensure_equals("01234 unlinkable list should have length 0", (S32) info_list.size(), 0);
}
// spheres 0-5 should link no matter what order : 04321
{
LLPrimLinkInfo<S32> root_info = infos[0];
std::list< LLPrimLinkInfo<S32> > info_list;
for (S32 index = 4; index > 0; --index)
{
info_list.push_back(infos[index]);
}
root_info.mergeLinkableSet(info_list);
S32 prim_count = root_info.getPrimCount();
ensure_equals("04321 prim count should be 5", prim_count, 5);
ensure_equals("04321 unlinkable list should have length 0", (S32) info_list.size(), 0);
}
// spheres 0-4 should link no matter what order : 01423
{
LLPrimLinkInfo<S32> root_info = infos[0];
std::list< LLPrimLinkInfo<S32> > info_list;
info_list.push_back(infos[1]);
info_list.push_back(infos[4]);
info_list.push_back(infos[2]);
info_list.push_back(infos[3]);
root_info.mergeLinkableSet(info_list);
S32 prim_count = root_info.getPrimCount();
ensure_equals("01423 prim count should be 5", prim_count, 5);
ensure_equals("01423 unlinkable list should have length 0", (S32) info_list.size(), 0);
}
// spheres 0-5 should NOT fully link, only 0-4
{
LLPrimLinkInfo<S32> root_info = infos[0];
std::list< LLPrimLinkInfo<S32> > info_list;
for (S32 index = 1; index < 6; ++index)
{
info_list.push_back(infos[index]);
}
root_info.mergeLinkableSet(info_list);
S32 prim_count = root_info.getPrimCount();
ensure_equals("012345 prim count should be 5", prim_count, 5);
ensure_equals("012345 unlinkable list should have length 1", (S32) info_list.size(), 1);
std::list< LLPrimLinkInfo<S32> >::iterator info_itr = info_list.begin();
if (info_itr != info_list.end())
{
// examine the contents of the unlinked info
std::list<S32> unlinked_indecies;
info_itr->getData(unlinked_indecies);
// make sure there is only one index in the unlinked_info
ensure_equals("012345 unlinkable index count should be 1", (S32) unlinked_indecies.size(), 1);
// make sure its value is 6
std::list<S32>::iterator unlinked_index_itr = unlinked_indecies.begin();
S32 unlinkable_index = *unlinked_index_itr;
ensure_equals("012345 unlinkable index should be 5", (S32) unlinkable_index, 5);
}
}
// spheres 0-7 should NOT fully link, only 0-5
{
LLPrimLinkInfo<S32> root_info = infos[0];
std::list< LLPrimLinkInfo<S32> > info_list;
for (S32 index = 1; index < 8; ++index)
{
info_list.push_back(infos[index]);
}
root_info.mergeLinkableSet(info_list);
S32 prim_count = root_info.getPrimCount();
ensure_equals("01234567 prim count should be 5", prim_count, 5);
// Should be 1 linkinfo on unlinkable that has 2 prims
ensure_equals("01234567 unlinkable list should have length 1", (S32) info_list.size(), 1);
std::list< LLPrimLinkInfo<S32> >::iterator info_itr = info_list.begin();
if (info_itr != info_list.end())
{
// make sure there is only one index in the unlinked_info
std::list<S32> unlinked_indecies;
info_itr->getData(unlinked_indecies);
ensure_equals("0123456 unlinkable index count should be 3", (S32) unlinked_indecies.size(), 3);
// make sure its values are 6 and 7
std::list<S32>::iterator unlinked_index_itr = unlinked_indecies.begin();
S32 unlinkable_index = *unlinked_index_itr;
ensure_equals("0123456 first unlinkable index should be 5", (S32) unlinkable_index, 5);
++unlinked_index_itr;
unlinkable_index = *unlinked_index_itr;
ensure_equals("0123456 second unlinkable index should be 6", (S32) unlinkable_index, 6);
++unlinked_index_itr;
unlinkable_index = *unlinked_index_itr;
ensure_equals("0123456 third unlinkable index should be 7", (S32) unlinkable_index, 7);
}
}
}
template<> template<>
void linkable_object::test<3>()
{
// Here we test the link results between an LLPrimLinkInfo and a set of
// randomized LLPrimLinkInfos where the expected results are known.
S32 number_of_tests = 5;
for (S32 test = 0; test < number_of_tests; ++test)
{
// the radii are known
F32 first_radius = 1.f;
F32 second_radius = 2.f;
F32 third_radius = 3.f;
// compute the distances
F32 half_milimeter = 0.0005f;
F32 max_first_second_span = 3.f * (first_radius + second_radius) + OBJECT_SPAN_BONUS;
F32 linkable_distance = max_first_second_span - first_radius - second_radius - half_milimeter;
F32 max_full_span = 3.f * (0.5f * max_first_second_span + third_radius) + OBJECT_SPAN_BONUS;
F32 unlinkable_distance = max_full_span - 0.5f * linkable_distance - third_radius + half_milimeter;
// compute some random directions
LLVector3 first_direction(ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f);
first_direction.normalize();
LLVector3 second_direction(ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f);
second_direction.normalize();
LLVector3 third_direction(ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f, ll_frand(2.f) - 1.f);
third_direction.normalize();
// compute the centers
LLVector3 first_center = ll_frand(10.f) * first_direction;
LLVector3 second_center = first_center + ll_frand(linkable_distance) * second_direction;
LLVector3 first_join_center = 0.5f * (first_center + second_center);
LLVector3 third_center = first_join_center + unlinkable_distance * third_direction;
// make sure the second info links and the third does not
{
// initialize the infos
S32 index = 0;
LLPrimLinkInfo<S32> first_info(index++, LLSphere(first_center, first_radius));
LLPrimLinkInfo<S32> second_info(index++, LLSphere(second_center, second_radius));
LLPrimLinkInfo<S32> third_info(index++, LLSphere(third_center, third_radius));
// put the second and third infos in a list
std::list< LLPrimLinkInfo<S32> > info_list;
info_list.push_back(second_info);
info_list.push_back(third_info);
// merge the list with the first_info
first_info.mergeLinkableSet(info_list);
S32 prim_count = first_info.getPrimCount();
ensure_equals("prim count should be 2", prim_count, 2);
ensure_equals("unlinkable list should have length 1", (S32) info_list.size(), 1);
}
// reverse the order and make sure we get the same results
{
// initialize the infos
S32 index = 0;
LLPrimLinkInfo<S32> first_info(index++, LLSphere(first_center, first_radius));
LLPrimLinkInfo<S32> second_info(index++, LLSphere(second_center, second_radius));
LLPrimLinkInfo<S32> third_info(index++, LLSphere(third_center, third_radius));
// build the list in the reverse order
std::list< LLPrimLinkInfo<S32> > info_list;
info_list.push_back(third_info);
info_list.push_back(second_info);
// merge the list with the first_info
first_info.mergeLinkableSet(info_list);
S32 prim_count = first_info.getPrimCount();
ensure_equals("prim count should be 2", prim_count, 2);
ensure_equals("unlinkable list should have length 1", (S32) info_list.size(), 1);
}
}
}
template<> template<>
void linkable_object::test<4>()
{
// Here we test whether linkability is invarient under permutations
// of link order. To do this we generate a bunch of random spheres
// and then try to link them in different ways.
//
// NOTE: the linkability will only be invarient if there is only one
// linkable solution. Multiple solutions will exist if the set of
// candidates are larger than the maximum linkable distance, or more
// numerous than a single linked object can contain. This is easily
// understood by considering a very large set of link candidates,
// and first linking preferentially to the left until linking fails,
// then doing the same to the right -- the final solutions will differ.
// Hence for this test we must generate candidate sets that lie within
// the linkability envelope of a single object.
//
// NOTE: a random set of objects will tend to either be totally linkable
// or totally not. That is, the random orientations that
F32 root_center_range = 0.f;
F32 min_prim_radius = 0.1f;
F32 max_prim_radius = 2.f;
// Linkability is min(MAX_OBJECT_SPAN,3 *( R1 + R2 ) + BONUS)
// 3 * (min_prim_radius + min_prim_radius) + OBJECT_SPAN_BONUS = 6 * min_prim_radius + OBJECT_SPAN_BONUS;
// Use .45 instead of .5 to gaurantee objects are within the minimum span.
F32 child_center_range = 0.45f * ( (6*min_prim_radius) + OBJECT_SPAN_BONUS );
S32 number_of_tests = 100;
S32 number_of_spheres = 10;
S32 number_of_scrambles = 10;
S32 number_of_random_bubble_sorts = 10;
for (S32 test = 0; test < number_of_tests; ++test)
{
LLSphere sphere;
S32 sphere_index = 0;
// build the root piece
randomize_sphere(sphere, root_center_range, min_prim_radius, max_prim_radius);
info.set( sphere_index++, sphere );
// build the unlinked pieces
std::list< LLPrimLinkInfo<S32> > info_list;
for (; sphere_index < number_of_spheres; ++sphere_index)
{
randomize_sphere(sphere, child_center_range, min_prim_radius, max_prim_radius);
LLPrimLinkInfo<S32> child_info( sphere_index, sphere );
info_list.push_back(child_info);
}
// declare the variables used to store the results
std::list<S32> first_linked_list;
{
// the link attempt will modify our original info's, so we
// have to make copies of the originals for testing
LLPrimLinkInfo<S32> test_info( 0, LLSphere(info.getCenter(), 0.5f * info.getDiameter()) );
std::list< LLPrimLinkInfo<S32> > test_list;
test_list.assign(info_list.begin(), info_list.end());
// try to link
test_info.mergeLinkableSet(test_list);
ensure("All prims should link, but did not.",test_list.empty());
// store the results
test_info.getData(first_linked_list);
first_linked_list.sort();
}
// try to link the spheres in various random orders
for (S32 scramble = 0; scramble < number_of_scrambles; ++scramble)
{
LLPrimLinkInfo<S32> test_info(0, LLSphere(info.getCenter(), 0.5f * info.getDiameter()) );
// scramble the order of the info_list
std::list< LLPrimLinkInfo<S32> > test_list;
test_list.assign(info_list.begin(), info_list.end());
for (S32 i = 0; i < number_of_random_bubble_sorts; i++)
{
test_list.sort(random_sort);
}
// try to link
test_info.mergeLinkableSet(test_list);
// get the results
std::list<S32> linked_list;
test_info.getData(linked_list);
linked_list.sort();
ensure_equals("linked set size should be order independent",linked_list.size(),first_linked_list.size());
}
}
}
}