Files
SingularityViewer/indra/llcommon/llsdutil.h
2019-04-28 09:00:17 -04:00

527 lines
18 KiB
C++

/**
* @file llsdutil.h
* @author Phoenix
* @date 2006-05-24
* @brief Utility classes, functions, etc, for using structured data.
*
* $LicenseInfo:firstyear=2006&license=viewerlgpl$
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation;
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
* $/LicenseInfo$
*/
#ifndef LL_LLSDUTIL_H
#define LL_LLSDUTIL_H
#include "llsd.h"
#include <boost/functional/hash.hpp>
// U32
LL_COMMON_API LLSD ll_sd_from_U32(const U32);
LL_COMMON_API U32 ll_U32_from_sd(const LLSD& sd);
// U64
LL_COMMON_API LLSD ll_sd_from_U64(const U64);
LL_COMMON_API U64 ll_U64_from_sd(const LLSD& sd);
// IP Address
LL_COMMON_API LLSD ll_sd_from_ipaddr(const U32);
LL_COMMON_API U32 ll_ipaddr_from_sd(const LLSD& sd);
// Binary to string
LL_COMMON_API LLSD ll_string_from_binary(const LLSD& sd);
//String to binary
LL_COMMON_API LLSD ll_binary_from_string(const LLSD& sd);
// Serializes sd to static buffer and returns pointer, useful for gdb debugging.
LL_COMMON_API char* ll_print_sd(const LLSD& sd);
// Serializes sd to static buffer and returns pointer, using "pretty printing" mode.
LL_COMMON_API char* ll_pretty_print_sd_ptr(const LLSD* sd);
LL_COMMON_API char* ll_pretty_print_sd(const LLSD& sd);
LL_COMMON_API std::string ll_stream_notation_sd(const LLSD& sd);
//compares the structure of an LLSD to a template LLSD and stores the
//"valid" values in a 3rd LLSD. Default values
//are pulled from the template. Extra keys/values in the test
//are ignored in the resultant LLSD. Ordering of arrays matters
//Returns false if the test is of same type but values differ in type
//Otherwise, returns true
LL_COMMON_API BOOL compare_llsd_with_template(
const LLSD& llsd_to_test,
const LLSD& template_llsd,
LLSD& resultant_llsd);
// filter_llsd_with_template() is a direct clone (copy-n-paste) of
// compare_llsd_with_template with the following differences:
// (1) bool vs BOOL return types
// (2) A map with the key value "*" is a special value and maps any key in the
// test llsd that doesn't have an explicitly matching key in the template.
// (3) The element of an array with exactly one element is taken as a template
// for *all* the elements of the test array. If the template array is of
// different size, compare_llsd_with_template() semantics apply.
bool filter_llsd_with_template(
const LLSD & llsd_to_test,
const LLSD & template_llsd,
LLSD & resultant_llsd);
/**
* Recursively determine whether a given LLSD data block "matches" another
* LLSD prototype. The returned string is empty() on success, non-empty() on
* mismatch.
*
* This function tests structure (types) rather than data values. It is
* intended for when a consumer expects an LLSD block with a particular
* structure, and must succinctly detect whether the arriving block is
* well-formed. For instance, a test of the form:
* @code
* if (! (data.has("request") && data.has("target") && data.has("modifier") ...))
* @endcode
* could instead be expressed by initializing a prototype LLSD map with the
* required keys and writing:
* @code
* if (! llsd_matches(prototype, data).empty())
* @endcode
*
* A non-empty return value is an error-message fragment intended to indicate
* to (English-speaking) developers where in the prototype structure the
* mismatch occurred.
*
* * If a slot in the prototype isUndefined(), then anything is valid at that
* place in the real object. (Passing prototype == LLSD() matches anything
* at all.)
* * An array in the prototype must match a data array at least that large.
* (Additional entries in the data array are ignored.) Every isDefined()
* entry in the prototype array must match the corresponding entry in the
* data array.
* * A map in the prototype must match a map in the data. Every key in the
* prototype map must match a corresponding key in the data map. (Additional
* keys in the data map are ignored.) Every isDefined() value in the
* prototype map must match the corresponding key's value in the data map.
* * Scalar values in the prototype are tested for @em type rather than value.
* For instance, a String in the prototype matches any String at all. In
* effect, storing an Integer at a particular place in the prototype asserts
* that the caller intends to apply asInteger() to the corresponding slot in
* the data.
* * A String in the prototype matches String, Boolean, Integer, Real, UUID,
* Date and URI, because asString() applied to any of these produces a
* meaningful result.
* * Similarly, a Boolean, Integer or Real in the prototype can match any of
* Boolean, Integer or Real in the data -- or even String.
* * UUID matches UUID or String.
* * Date matches Date or String.
* * URI matches URI or String.
* * Binary in the prototype matches only Binary in the data.
*
* @TODO: when a Boolean, Integer or Real in the prototype matches a String in
* the data, we should examine the String @em value to ensure it can be
* meaningfully converted to the requested type. The same goes for UUID, Date
* and URI.
*/
LL_COMMON_API std::string llsd_matches(const LLSD& prototype, const LLSD& data, const std::string& pfx="");
/// Deep equality. If you want to compare LLSD::Real values for approximate
/// equality rather than bitwise equality, pass @a bits as for
/// is_approx_equal_fraction().
LL_COMMON_API bool llsd_equals(const LLSD& lhs, const LLSD& rhs, int bits=-1);
inline bool operator==(const LLSD& lhs, const LLSD& rhs)
{
return llsd_equals(lhs, rhs, 8);
}
// Simple function to copy data out of input & output iterators if
// there is no need for casting.
template<typename Input> LLSD llsd_copy_array(Input iter, Input end)
{
LLSD dest;
for (; iter != end; ++iter)
{
dest.append(*iter);
}
return dest;
}
/*****************************************************************************
* LLSDArray
*****************************************************************************/
/**
* Construct an LLSD::Array inline, with implicit conversion to LLSD. Usage:
*
* @code
* void somefunc(const LLSD&);
* ...
* somefunc(LLSDArray("text")(17)(3.14));
* @endcode
*
* For completeness, LLSDArray() with no args constructs an empty array, so
* <tt>LLSDArray()("text")(17)(3.14)</tt> produces an array equivalent to the
* above. But for most purposes, LLSD() is already equivalent to an empty
* array, and if you explicitly want an empty isArray(), there's
* LLSD::emptyArray(). However, supporting a no-args LLSDArray() constructor
* follows the principle of least astonishment.
*/
class LLSDArray
{
public:
LLSDArray():
_data(LLSD::emptyArray())
{}
/**
* Need an explicit copy constructor. Consider the following:
*
* @code
* LLSD array_of_arrays(LLSDArray(LLSDArray(17)(34))
* (LLSDArray("x")("y")));
* @endcode
*
* The coder intends to construct [[17, 34], ["x", "y"]].
*
* With the compiler's implicit copy constructor, s/he gets instead
* [17, 34, ["x", "y"]].
*
* The expression LLSDArray(17)(34) constructs an LLSDArray with those two
* values. The reader assumes it should be converted to LLSD, as we always
* want with LLSDArray, before passing it to the @em outer LLSDArray
* constructor! This copy constructor makes that happen.
*/
LLSDArray(const LLSDArray& inner):
_data(LLSD::emptyArray())
{
_data.append(inner);
}
LLSDArray(const LLSD& value):
_data(LLSD::emptyArray())
{
_data.append(value);
}
LLSDArray& operator()(const LLSD& value)
{
_data.append(value);
return *this;
}
operator LLSD() const { return _data; }
LLSD get() const { return _data; }
private:
LLSD _data;
};
/*****************************************************************************
* LLSDMap
*****************************************************************************/
/**
* Construct an LLSD::Map inline, with implicit conversion to LLSD. Usage:
*
* @code
* void somefunc(const LLSD&);
* ...
* somefunc(LLSDMap("alpha", "abc")("number", 17)("pi", 3.14));
* @endcode
*
* For completeness, LLSDMap() with no args constructs an empty map, so
* <tt>LLSDMap()("alpha", "abc")("number", 17)("pi", 3.14)</tt> produces a map
* equivalent to the above. But for most purposes, LLSD() is already
* equivalent to an empty map, and if you explicitly want an empty isMap(),
* there's LLSD::emptyMap(). However, supporting a no-args LLSDMap()
* constructor follows the principle of least astonishment.
*/
class LLSDMap
{
public:
LLSDMap():
_data(LLSD::emptyMap())
{}
LLSDMap(const LLSD::String& key, const LLSD& value):
_data(LLSD::emptyMap())
{
_data[key] = value;
}
LLSDMap& operator()(const LLSD::String& key, const LLSD& value)
{
_data[key] = value;
return *this;
}
operator LLSD() const { return _data; }
LLSD get() const { return _data; }
private:
LLSD _data;
};
/*****************************************************************************
* LLSDParam
*****************************************************************************/
/**
* LLSDParam is a customization point for passing LLSD values to function
* parameters of more or less arbitrary type. LLSD provides a small set of
* native conversions; but if a generic algorithm explicitly constructs an
* LLSDParam object in the function's argument list, a consumer can provide
* LLSDParam specializations to support more different parameter types than
* LLSD's native conversions.
*
* Usage:
*
* @code
* void somefunc(const paramtype&);
* ...
* somefunc(..., LLSDParam<paramtype>(someLLSD), ...);
* @endcode
*/
template <typename T>
class LLSDParam
{
public:
/**
* Default implementation converts to T on construction, saves converted
* value for later retrieval
*/
LLSDParam(const LLSD& value):
_value(value)
{}
operator T() const { return _value; }
private:
T _value;
};
/**
* Turns out that several target types could accept an LLSD param using any of
* a few different conversions, e.g. LLUUID's constructor can accept LLUUID or
* std::string. Therefore, the compiler can't decide which LLSD conversion
* operator to choose, even though to us it seems obvious. But that's okay, we
* can specialize LLSDParam for such target types, explicitly specifying the
* desired conversion -- that's part of what LLSDParam is all about. Turns out
* we have to do that enough to make it worthwhile generalizing. Use a macro
* because I need to specify one of the asReal, etc., explicit conversion
* methods as well as a type. If I'm overlooking a clever way to implement
* that using a template instead, feel free to reimplement.
*/
#define LLSDParam_for(T, AS) \
template <> \
class LLSDParam<T> \
{ \
public: \
LLSDParam(const LLSD& value): \
_value((T)value.AS()) \
{} \
\
operator T() const { return _value; } \
\
private: \
T _value; \
}
LLSDParam_for(float, asReal);
LLSDParam_for(LLUUID, asUUID);
LLSDParam_for(LLDate, asDate);
LLSDParam_for(LLURI, asURI);
LLSDParam_for(LLSD::Binary, asBinary);
/**
* LLSDParam<const char*> is an example of the kind of conversion you can
* support with LLSDParam beyond native LLSD conversions. Normally you can't
* pass an LLSD object to a function accepting const char* -- but you can
* safely pass an LLSDParam<const char*>(yourLLSD).
*/
template <>
class LLSDParam<const char*>
{
private:
// The difference here is that we store a std::string rather than a const
// char*. It's important that the LLSDParam object own the std::string.
std::string _value;
// We don't bother storing the incoming LLSD object, but we do have to
// distinguish whether _value is an empty string because the LLSD object
// contains an empty string or because it's isUndefined().
bool _undefined;
public:
LLSDParam(const LLSD& value):
_value(value),
_undefined(value.isUndefined())
{}
// The const char* we retrieve is for storage owned by our _value member.
// That's how we guarantee that the const char* is valid for the lifetime
// of this LLSDParam object. Constructing your LLSDParam in the argument
// list should ensure that the LLSDParam object will persist for the
// duration of the function call.
operator const char*() const
{
if (_undefined)
{
// By default, an isUndefined() LLSD object's asString() method
// will produce an empty string. But for a function accepting
// const char*, it's often important to be able to pass NULL, and
// isUndefined() seems like the best way. If you want to pass an
// empty string, you can still pass LLSD(""). Without this special
// case, though, no LLSD value could pass NULL.
return NULL;
}
return _value.c_str();
}
};
namespace llsd
{
/*****************************************************************************
* BOOST_FOREACH() helpers for LLSD
*****************************************************************************/
/// Usage: BOOST_FOREACH(LLSD item, inArray(someLLSDarray)) { ... }
class inArray
{
public:
inArray(const LLSD& array):
_array(array)
{}
typedef LLSD::array_const_iterator const_iterator;
typedef LLSD::array_iterator iterator;
iterator begin() { return _array.beginArray(); }
iterator end() { return _array.endArray(); }
const_iterator begin() const { return _array.beginArray(); }
const_iterator end() const { return _array.endArray(); }
private:
LLSD _array;
};
/// MapEntry is what you get from dereferencing an LLSD::map_[const_]iterator.
typedef std::map<LLSD::String, LLSD>::value_type MapEntry;
/// Usage: BOOST_FOREACH([const] MapEntry& e, inMap(someLLSDmap)) { ... }
class inMap
{
public:
inMap(const LLSD& map):
_map(map)
{}
typedef LLSD::map_const_iterator const_iterator;
typedef LLSD::map_iterator iterator;
iterator begin() { return _map.beginMap(); }
iterator end() { return _map.endMap(); }
const_iterator begin() const { return _map.beginMap(); }
const_iterator end() const { return _map.endMap(); }
private:
LLSD _map;
};
} // namespace llsd
// Creates a deep clone of an LLSD object. Maps, Arrays and binary objects
// are duplicated, atomic primitives (Boolean, Integer, Real, etc) simply
// use a shared reference.
// Optionally a filter may be specified to control what is duplicated. The
// map takes the form "keyname/boolean".
// If the value is true the value will be duplicated otherwise it will be skipped
// when encountered in a map. A key name of "*" can be specified as a wild card
// and will specify the default behavior. If no wild card is given and the clone
// encounters a name not in the filter, that value will be skipped.
LLSD llsd_clone(LLSD value, LLSD filter = LLSD());
// Creates a shallow copy of a map or array. If passed any other type of LLSD
// object it simply returns that value. See llsd_clone for a description of
// the filter parameter.
LLSD llsd_shallow(LLSD value, LLSD filter = LLSD());
// Specialization for generating a hash value from an LLSD block.
namespace boost {
template<> struct hash<LLSD>
{
typedef LLSD argument_type;
typedef std::size_t result_type;
result_type operator()(argument_type const& s) const
{
result_type seed(0);
LLSD::Type stype = s.type();
boost::hash_combine(seed, (S32)stype);
switch (stype)
{
case LLSD::TypeBoolean:
boost::hash_combine(seed, s.asBoolean());
break;
case LLSD::TypeInteger:
boost::hash_combine(seed, s.asInteger());
break;
case LLSD::TypeReal:
boost::hash_combine(seed, s.asReal());
break;
case LLSD::TypeURI:
case LLSD::TypeString:
boost::hash_combine(seed, s.asString());
break;
case LLSD::TypeUUID:
boost::hash_combine(seed, s.asUUID());
break;
case LLSD::TypeDate:
boost::hash_combine(seed, s.asDate().secondsSinceEpoch());
break;
case LLSD::TypeBinary:
{
const LLSD::Binary &b(s.asBinary());
boost::hash_range(seed, b.begin(), b.end());
break;
}
case LLSD::TypeMap:
{
for (LLSD::map_const_iterator itm = s.beginMap(); itm != s.endMap(); ++itm)
{
boost::hash_combine(seed, (*itm).first);
boost::hash_combine(seed, (*itm).second);
}
break;
}
case LLSD::TypeArray:
for (LLSD::array_const_iterator ita = s.beginArray(); ita != s.endArray(); ++ita)
{
boost::hash_combine(seed, (*ita));
}
break;
case LLSD::TypeUndefined:
default:
break;
}
return seed;
}
};
}
#endif // LL_LLSDUTIL_H