/** * @file aicurlthread.cpp * @brief Implementation of AICurl, curl thread functions. * * Copyright (c) 2012, Aleric Inglewood. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution. * * CHANGELOG * and additional copyright holders. * * 28/04/2012 * Initial version, written by Aleric Inglewood @ SL */ #include "linden_common.h" #include "aicurlthread.h" #include "lltimer.h" // ms_sleep #include #if !LL_WINDOWS #include #include #include #endif #include // On linux, add -DDEBUG_WINDOWS_CODE_ON_LINUX to test the windows code used in this file. #if !defined(DEBUG_WINDOWS_CODE_ON_LINUX) || !defined(LL_LINUX) || defined(LL_RELEASE) #undef DEBUG_WINDOWS_CODE_ON_LINUX #define DEBUG_WINDOWS_CODE_ON_LINUX 0 #endif #if DEBUG_WINDOWS_CODE_ON_LINUX struct windows_fd_set { unsigned int fd_count; curl_socket_t fd_array[64]; }; unsigned int const not_found = (unsigned int)-1; static inline unsigned int find_fd(curl_socket_t s, windows_fd_set const* fsp) { for (unsigned int i = 0; i < fsp->fd_count; ++i) { if (fsp->fd_array[i] == s) return i; } return not_found; } static int windows_select(int, windows_fd_set* readfds, windows_fd_set* writefds, windows_fd_set*, timeval* val) { fd_set r; fd_set w; FD_ZERO(&r); FD_ZERO(&w); int mfd = -1; if (readfds) { for (int i = 0; i < readfds->fd_count; ++i) { int fd = readfds->fd_array[i]; FD_SET(fd, &r); mfd = llmax(mfd, fd); } } if (writefds) { for (int i = 0; i < writefds->fd_count; ++i) { int fd = writefds->fd_array[i]; FD_SET(fd, &w); mfd = llmax(mfd, fd); } } int nfds = select(mfd + 1, readfds ? &r : NULL, writefds ? &w : NULL, NULL, val); if (readfds) { unsigned int fd_count = 0; for (int i = 0; i < readfds->fd_count; ++i) { if (FD_ISSET(readfds->fd_array[i], &r)) readfds->fd_array[fd_count++] = readfds->fd_array[i]; } readfds->fd_count = fd_count; } if (writefds) { unsigned int fd_count = 0; for (int i = 0; i < writefds->fd_count; ++i) { if (FD_ISSET(writefds->fd_array[i], &w)) writefds->fd_array[fd_count++] = writefds->fd_array[i]; } writefds->fd_count = fd_count; } return nfds; } #undef FD_SETSIZE #undef FD_ZERO #undef FD_ISSET #undef FD_SET #undef FD_CLR int const FD_SETSIZE = sizeof(windows_fd_set::fd_array) / sizeof(curl_socket_t); static void FD_ZERO(windows_fd_set* fsp) { fsp->fd_count = 0; } static bool FD_ISSET(curl_socket_t s, windows_fd_set const* fsp) { return find_fd(s, fsp) != not_found; } static void FD_SET(curl_socket_t s, windows_fd_set* fsp) { llassert(!FD_ISSET(s, fsp)); fsp->fd_array[fsp->fd_count++] = s; } static void FD_CLR(curl_socket_t s, windows_fd_set* fsp) { unsigned int i = find_fd(s, fsp); llassert(i != not_found); fsp->fd_array[i] = fsp->fd_array[--(fsp->fd_count)]; } #define fd_set windows_fd_set #define select windows_select int WSAGetLastError(void) { return errno; } typedef char* LPTSTR; bool FormatMessage(int, void*, int e, int, LPTSTR error_str_ptr, int, void*) { char* error_str = *(LPTSTR*)error_str_ptr; error_str = strerror(e); return true; } void LocalFree(LPTSTR) { } int const FORMAT_MESSAGE_ALLOCATE_BUFFER = 0; int const FORMAT_MESSAGE_FROM_SYSTEM = 0; int const FORMAT_MESSAGE_IGNORE_INSERTS = 0; int const INVALID_SOCKET = -1; int const SOCKET_ERROR = -1; int const WSAEWOULDBLOCK = EWOULDBLOCK; int closesocket(curl_socket_t fd) { return close(fd); } int const FIONBIO = 0; int ioctlsocket(int fd, int, unsigned long* nonblocking_enable) { int res = fcntl(fd, F_GETFL, 0); llassert_always(res != -1); if (*nonblocking_enable) res |= O_NONBLOCK; else res &= ~O_NONBLOCK; return fcntl(fd, F_SETFD, res); } #endif // DEBUG_WINDOWS_CODE_ON_LINUX #define WINDOWS_CODE (LL_WINDOWS || DEBUG_WINDOWS_CODE_ON_LINUX) #undef AICurlPrivate namespace AICurlPrivate { enum command_st { cmd_none, cmd_add, cmd_boost, cmd_remove }; class Command { public: Command(void) : mCommand(cmd_none) { } Command(AICurlEasyRequest const& easy_request, command_st command) : mCurlEasyRequest(easy_request.get_ptr()), mCommand(command) { } command_st command(void) const { return mCommand; } CurlEasyRequestPtr const& easy_request(void) const { return mCurlEasyRequest; } bool operator==(AICurlEasyRequest const& easy_request) const { return mCurlEasyRequest == easy_request.get_ptr(); } void reset(void); private: CurlEasyRequestPtr mCurlEasyRequest; command_st mCommand; }; void Command::reset(void) { mCurlEasyRequest.reset(); mCommand = cmd_none; } // The following two globals have separate locks for speed considerations (in order not // to block the main thread unnecessarily) but have the following correlation: // // MAIN-THREAD (AICurlEasyRequest::addRequest) // * command_queue locked // - A non-active (mActiveMultiHandle is NULL) ThreadSafeCurlEasyRequest (by means of an AICurlEasyRequest pointing to it) is added to command_queue with as command cmd_add. // * command_queue unlocked // // If at this point addRequest is called again, then it is detected that the last command added to the queue // for this ThreadSafeCurlEasyRequest is cmd_add. // // CURL-THREAD (AICurlThread::wakeup): // * command_queue locked // * command_being_processed is write-locked // - command_being_processed is assigned the value of the command in the queue. // * command_being_processed is unlocked // - The command is removed from command_queue // * command_queue unlocked // // If at this point addRequest is called again, then it is detected that command_being_processed adds the same ThreadSafeCurlEasyRequest. // // * command_being_processed is read-locked // - mActiveMultiHandle is set to point to the curl multi handle // - The easy handle is added to the multi handle // * command_being_processed is write-locked // - command_being_processed is reset // * command_being_processed is unlocked // // If at this point addRequest is called again, then it is detected that the ThreadSafeCurlEasyRequest is active. // Multi-threaded queue for passing Command objects from the main-thread to the curl-thread. AIThreadSafeSimpleDC > command_queue; typedef AIAccess > command_queue_wat; AIThreadSafeDC command_being_processed; typedef AIWriteAccess command_being_processed_wat; typedef AIReadAccess command_being_processed_rat; namespace curlthread { // All functions in this namespace are only run by the curl thread, unless they are marked with MAIN-THREAD. //----------------------------------------------------------------------------- // PollSet int const empty = 0x1; int const complete = 0x2; enum refresh_t { not_complete_not_empty = 0, complete_not_empty = complete, empty_and_complete = complete|empty }; class PollSet { public: PollSet(void); // Add/remove a filedescriptor to/from mFileDescriptors. void add(curl_socket_t s); void remove(curl_socket_t s); // Copy mFileDescriptors to an internal fd_set that is returned by access(). // Returns if all fds could be copied (complete) and/or if the resulting fd_set is empty. refresh_t refresh(void); // Return a pointer to the underlaying fd_set. fd_set* access(void) { return &mFdSet; } #if !WINDOWS_CODE // Return the largest fd set in mFdSet by refresh. curl_socket_t get_max_fd(void) const { return mMaxFdSet; } #endif // Return true if a filedescriptor is set in mFileDescriptors (used for debugging). bool contains(curl_socket_t s) const; // Return true if a filedescriptor is set in mFdSet. bool is_set(curl_socket_t s) const; // Clear filedescriptor in mFdSet. void clr(curl_socket_t fd); // Iterate over all file descriptors that were set by refresh and are still set in mFdSet. void reset(void); // Reset the iterator. curl_socket_t get(void) const; // Return next filedescriptor, or CURL_SOCKET_BAD when there are no more. // Only valid if reset() was called after the last call to refresh(). void next(void); // Advance to next filedescriptor. private: curl_socket_t* mFileDescriptors; int mNrFds; // The number of filedescriptors in the array. int mNext; // The index of the first file descriptor to start copying, the next call to refresh(). fd_set mFdSet; // Output variable for select(). (Re)initialized by calling refresh(). #if !WINDOWS_CODE curl_socket_t mMaxFd; // The largest filedescriptor in the array, or CURL_SOCKET_BAD when it is empty. curl_socket_t mMaxFdSet; // The largest filedescriptor set in mFdSet by refresh(), or CURL_SOCKET_BAD when it was empty. std::vector mCopiedFileDescriptors; // Filedescriptors copied by refresh to mFdSet. std::vector::iterator mIter; // Index into mCopiedFileDescriptors for next(); loop variable. #else unsigned int mIter; // Index into fd_set::fd_array. #endif }; // A PollSet can store at least 1024 filedescriptors, or FD_SETSIZE if that is larger than 1024 [MAXSIZE]. // The number of stored filedescriptors is mNrFds [0 <= mNrFds <= MAXSIZE]. // The largest filedescriptor is stored is mMaxFd, which is -1 iff mNrFds == 0. // The file descriptors are stored contiguous in mFileDescriptors[i], with 0 <= i < mNrFds. // File descriptors with the highest priority should be stored first (low index). // // mNext is an index into mFileDescriptors that is copied first, the next call to refresh(). // It is set to 0 when mNrFds < FD_SETSIZE, even if mNrFds == 0. // // After a call to refresh(): // // mFdSet has bits set for at most FD_SETSIZE - 1 filedescriptors, copied from mFileDescriptors starting // at index mNext (wrapping around to 0). If mNrFds < FD_SETSIZE then mNext is reset to 0 before copying starts. // If mNrFds >= FD_SETSIZE then mNext is set to the next filedescriptor that was not copied (otherwise it is left at 0). // // mMaxFdSet is the largest filedescriptor in mFdSet or -1 if it is empty. static size_t const MAXSIZE = llmax(1024, FD_SETSIZE); // Create an empty PollSet. PollSet::PollSet(void) : mFileDescriptors(new curl_socket_t [MAXSIZE]), mNrFds(0), mNext(0) #if !WINDOWS_CODE , mMaxFd(-1), mMaxFdSet(-1) #endif { FD_ZERO(&mFdSet); } // Add filedescriptor s to the PollSet. void PollSet::add(curl_socket_t s) { llassert_always(mNrFds < (int)MAXSIZE); mFileDescriptors[mNrFds++] = s; #if !WINDOWS_CODE mMaxFd = llmax(mMaxFd, s); #endif } // Remove filedescriptor s from the PollSet. void PollSet::remove(curl_socket_t s) { // The number of open filedescriptors is relatively small, // and on top of that we rather do something CPU intensive // than bandwidth intensive (lookup table). Hence that this // is a linear search in an array containing just the open // filedescriptors. Then, since we are reading this memory // page anyway, we might as well write to it without losing // much clock cycles. Therefore, shift the whole vector // back, keeping it compact and keeping the filedescriptors // in the same order (which is supposedly their priority). // // The general case is where mFileDescriptors contains s at an index // between 0 and mNrFds: // mNrFds = 6 // v // index: 0 1 2 3 4 5 // a b c s d e // This function should never be called unless s is actually in mFileDescriptors, // as a result of a previous call to PollSet::add(). llassert(mNrFds > 0); // Correct mNrFds for when the descriptor is removed. // Make i 'point' to the last entry. int i = --mNrFds; // i = NrFds = 5 // v // index: 0 1 2 3 4 5 // a b c s d e curl_socket_t cur = mFileDescriptors[i]; // cur = 'e' #if !WINDOWS_CODE curl_socket_t max = -1; #endif while (cur != s) { llassert(i > 0); curl_socket_t next = mFileDescriptors[--i]; // next = 'd' mFileDescriptors[i] = cur; // Overwrite 'd' with 'e'. #if !WINDOWS_CODE max = llmax(max, cur); // max is the maximum value in 'i' or higher. #endif cur = next; // cur = 'd' // i NrFds = 5 // v v // index: 0 1 2 3 4 // a b c s e // cur = 'd' // // Next loop iteration: next = 's', overwrite 's' with 'd', cur = 's'; loop terminates. // i NrFds = 5 // v v // index: 0 1 2 3 4 // a b c d e // cur = 's' } llassert(cur == s); // At this point i was decremented once more and points to the element before the old s. // i NrFds = 5 // v v // index: 0 1 2 3 4 // a b c d e // max = llmax('d', 'e') // If mNext pointed to an element before s, it should be left alone. Otherwise, if mNext pointed // to s it must now point to 'd', or if it pointed beyond 's' it must be decremented by 1. if (mNext > i) // i is where s was. --mNext; #if !WINDOWS_CODE // If s was the largest file descriptor, we have to update mMaxFd. if (s == mMaxFd) { while (i > 0) { curl_socket_t next = mFileDescriptors[--i]; max = llmax(max, next); } mMaxFd = max; llassert(mMaxFd < s); llassert((mMaxFd == -1) == (mNrFds == 0)); } #endif // ALSO make sure that s is no longer set in mFdSet, or we might confuse libcurl by // calling curl_multi_socket_action for a socket that it told us to remove. #if !WINDOWS_CODE clr(s); #else // We have to use a custom implementation here, because we don't want to invalidate mIter. // This is the same algorithm as above, but with mFdSet.fd_count instead of mNrFds, // mFdSet.fd_array instead of mFileDescriptors and mIter instead of mNext. if (FD_ISSET(s, &mFdSet)) { llassert(mFdSet.fd_count > 0); unsigned int i = --mFdSet.fd_count; curl_socket_t cur = mFdSet.fd_array[i]; while (cur != s) { llassert(i > 0); curl_socket_t next = mFdSet.fd_array[--i]; mFdSet.fd_array[i] = cur; cur = next; } if (mIter > i) --mIter; llassert(mIter <= mFdSet.fd_count); } #endif } bool PollSet::contains(curl_socket_t fd) const { for (int i = 0; i < mNrFds; ++i) if (mFileDescriptors[i] == fd) return true; return false; } inline bool PollSet::is_set(curl_socket_t fd) const { return FD_ISSET(fd, &mFdSet); } inline void PollSet::clr(curl_socket_t fd) { FD_CLR(fd, &mFdSet); } // This function fills mFdSet with at most FD_SETSIZE - 1 filedescriptors, // starting at index mNext (updating mNext when not all could be added), // and updates mMaxFdSet to be the largest fd added to mFdSet, or -1 if it's empty. refresh_t PollSet::refresh(void) { FD_ZERO(&mFdSet); #if !WINDOWS_CODE mCopiedFileDescriptors.clear(); #endif if (mNrFds == 0) { #if !WINDOWS_CODE mMaxFdSet = -1; #endif return empty_and_complete; } llassert_always(mNext < mNrFds); // Test if mNrFds is larger than or equal to FD_SETSIZE; equal, because we reserve one // filedescriptor for the wakeup fd: we copy maximal FD_SETSIZE - 1 filedescriptors. // If not then we're going to copy everything so that we can save on CPU cycles // by not calculating mMaxFdSet here. if (mNrFds >= FD_SETSIZE) { llwarns << "PollSet::reset: More than FD_SETSIZE (" << FD_SETSIZE << ") file descriptors active!" << llendl; #if !WINDOWS_CODE // Calculate mMaxFdSet. // Run over FD_SETSIZE - 1 elements, starting at mNext, wrapping to 0 when we reach the end. int max = -1, i = mNext, count = 0; while (++count < FD_SETSIZE) { max = llmax(max, mFileDescriptors[i]); if (++i == mNrFds) i = 0; } mMaxFdSet = max; #endif } else { mNext = 0; // Start at the beginning if we copy everything anyway. #if !WINDOWS_CODE mMaxFdSet = mMaxFd; #endif } int count = 0; int i = mNext; for(;;) { if (++count == FD_SETSIZE) { mNext = i; return not_complete_not_empty; } FD_SET(mFileDescriptors[i], &mFdSet); #if !WINDOWS_CODE mCopiedFileDescriptors.push_back(mFileDescriptors[i]); #endif if (++i == mNrFds) { // If we reached the end and start at the beginning, then we copied everything. if (mNext == 0) break; // When can only come here if mNrFds >= FD_SETSIZE, hence we can just // wrap around and terminate on count reaching FD_SETSIZE. i = 0; } } return complete_not_empty; } // The API reset(), get() and next() allows one to run over all filedescriptors // in mFdSet that are set. This works by running only over the filedescriptors // that were set initially (by the call to refresh()) and then checking if that // filedescriptor is (still) set in mFdSet. // // A call to reset() resets mIter to the beginning, so that get() returns // the first filedescriptor that is still set. A call to next() progresses // the iterator to the next set filedescriptor. If get() return -1, then there // were no more filedescriptors set. // // Note that one should never call next() unless get() didn't return -1, so // the call sequence is: // refresh(); // /* reset some or all bits in mFdSet */ // reset(); // while (get() != CURL_SOCKET_BAD) // next(); // // Note also that this API is only used by MergeIterator, which wraps it // and provides a different API to use. void PollSet::reset(void) { #if WINDOWS_CODE mIter = 0; #else if (mCopiedFileDescriptors.empty()) mIter = mCopiedFileDescriptors.end(); else { mIter = mCopiedFileDescriptors.begin(); if (!FD_ISSET(*mIter, &mFdSet)) next(); } #endif } inline curl_socket_t PollSet::get(void) const { #if WINDOWS_CODE return (mIter >= mFdSet.fd_count) ? CURL_SOCKET_BAD : mFdSet.fd_array[mIter]; #else return (mIter == mCopiedFileDescriptors.end()) ? CURL_SOCKET_BAD : *mIter; #endif } void PollSet::next(void) { #if WINDOWS_CODE llassert(mIter < mFdSet.fd_count); ++mIter; #else llassert(mIter != mCopiedFileDescriptors.end()); // Only call next() if the last call to get() didn't return -1. while (++mIter != mCopiedFileDescriptors.end() && !FD_ISSET(*mIter, &mFdSet)); #endif } //----------------------------------------------------------------------------- // MergeIterator // // This class takes two PollSet's and allows one to run over all filedescriptors // that are set in one or both poll sets, returning each filedescriptor only // once, by calling next() until it returns false. class MergeIterator { public: MergeIterator(PollSet* readPollSet, PollSet* writePollSet); bool next(curl_socket_t& fd_out, int& ev_bitmask_out); private: PollSet* mReadPollSet; PollSet* mWritePollSet; int readIndx; int writeIndx; }; MergeIterator::MergeIterator(PollSet* readPollSet, PollSet* writePollSet) : mReadPollSet(readPollSet), mWritePollSet(writePollSet), readIndx(0), writeIndx(0) { mReadPollSet->reset(); mWritePollSet->reset(); } bool MergeIterator::next(curl_socket_t& fd_out, int& ev_bitmask_out) { curl_socket_t rfd = mReadPollSet->get(); curl_socket_t wfd = mWritePollSet->get(); if (rfd == CURL_SOCKET_BAD && wfd == CURL_SOCKET_BAD) return false; if (rfd == wfd) { fd_out = rfd; ev_bitmask_out = CURL_CSELECT_IN | CURL_CSELECT_OUT; mReadPollSet->next(); } else if (wfd == CURL_SOCKET_BAD || (rfd != CURL_SOCKET_BAD && rfd < wfd)) // Use and increment smaller one, unless it's CURL_SOCKET_BAD. { fd_out = rfd; ev_bitmask_out = CURL_CSELECT_IN; mReadPollSet->next(); if (wfd != CURL_SOCKET_BAD && mWritePollSet->is_set(rfd)) { ev_bitmask_out |= CURL_CSELECT_OUT; mWritePollSet->clr(rfd); } } else { fd_out = wfd; ev_bitmask_out = CURL_CSELECT_OUT; mWritePollSet->next(); if (rfd != CURL_SOCKET_BAD && mReadPollSet->is_set(wfd)) { ev_bitmask_out |= CURL_CSELECT_IN; mReadPollSet->clr(wfd); } } return true; } //----------------------------------------------------------------------------- // CurlSocketInfo // A class with info for each socket that is in use by curl. class CurlSocketInfo { public: CurlSocketInfo(MultiHandle& multi_handle, CURL* easy, curl_socket_t s, int action); ~CurlSocketInfo(); void set_action(int action); private: MultiHandle& mMultiHandle; CURL const* mEasy; curl_socket_t mSocketFd; int mAction; }; CurlSocketInfo::CurlSocketInfo(MultiHandle& multi_handle, CURL* easy, curl_socket_t s, int action) : mMultiHandle(multi_handle), mEasy(easy), mSocketFd(s), mAction(CURL_POLL_NONE) { mMultiHandle.assign(s, this); llassert(!mMultiHandle.mReadPollSet->contains(s)); llassert(!mMultiHandle.mWritePollSet->contains(s)); set_action(action); } CurlSocketInfo::~CurlSocketInfo() { set_action(CURL_POLL_NONE); } void CurlSocketInfo::set_action(int action) { int toggle_action = mAction ^ action; mAction = action; if ((toggle_action & CURL_POLL_IN)) { if ((action & CURL_POLL_IN)) mMultiHandle.mReadPollSet->add(mSocketFd); else mMultiHandle.mReadPollSet->remove(mSocketFd); } if ((toggle_action & CURL_POLL_OUT)) { if ((action & CURL_POLL_OUT)) mMultiHandle.mWritePollSet->add(mSocketFd); else mMultiHandle.mWritePollSet->remove(mSocketFd); } } //----------------------------------------------------------------------------- // AICurlThread class AICurlThread : public LLThread { public: static AICurlThread* sInstance; LLMutex mWakeUpMutex; bool mWakeUpFlag; // Protected by mWakeUpMutex. public: // MAIN-THREAD AICurlThread(void); virtual ~AICurlThread(); // MAIN-THREAD void wakeup_thread(void); // MAIN-THREAD void stop_thread(void) { mRunning = false; wakeup_thread(); } protected: virtual void run(void); void wakeup(AICurlMultiHandle_wat const& multi_handle_w); void process_commands(AICurlMultiHandle_wat const& multi_handle_w); private: // MAIN-THREAD void create_wakeup_fds(void); void cleanup_wakeup_fds(void); curl_socket_t mWakeUpFd_in; curl_socket_t mWakeUpFd; int mZeroTimeOut; volatile bool mRunning; }; // Only the main thread is accessing this. AICurlThread* AICurlThread::sInstance = NULL; // MAIN-THREAD AICurlThread::AICurlThread(void) : LLThread("AICurlThread"), mWakeUpFd_in(CURL_SOCKET_BAD), mWakeUpFd(CURL_SOCKET_BAD), mZeroTimeOut(0), mRunning(true), mWakeUpFlag(false) { create_wakeup_fds(); sInstance = this; } // MAIN-THREAD AICurlThread::~AICurlThread() { sInstance = NULL; cleanup_wakeup_fds(); } #if LL_WINDOWS static std::string formatWSAError() { std::ostringstream r; int e = WSAGetLastError(); LPTSTR error_str = 0; r << e; if(FormatMessage( FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, e, 0, (LPTSTR)&error_str, 0, NULL)) { r << " " << utf16str_to_utf8str(error_str); LocalFree(error_str); } else { r << " Unknown WinSock error"; } return r.str(); } #elif WINDOWS_CODE static std::string formatWSAError() { return strerror(errno); } #endif #if LL_WINDOWS /* Copyright 2007, 2010 by Nathan C. Myers * This code is Free Software. It may be copied freely, in original or * modified form, subject only to the restrictions that (1) the author is * relieved from all responsibilities for any use for any purpose, and (2) * this copyright notice must be retained, unchanged, in its entirety. If * for any reason the author might be held responsible for any consequences * of copying or use, license is withheld. */ static int dumb_socketpair(SOCKET socks[2], bool make_overlapped) { union { struct sockaddr_in inaddr; struct sockaddr addr; } a; SOCKET listener; int e; socklen_t addrlen = sizeof(a.inaddr); DWORD flags = (make_overlapped ? WSA_FLAG_OVERLAPPED : 0); int reuse = 1; if (socks == 0) { WSASetLastError(WSAEINVAL); return SOCKET_ERROR; } listener = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (listener == INVALID_SOCKET) return SOCKET_ERROR; memset(&a, 0, sizeof(a)); a.inaddr.sin_family = AF_INET; a.inaddr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); a.inaddr.sin_port = 0; socks[0] = socks[1] = INVALID_SOCKET; do { if (setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, (char*) &reuse, (socklen_t) sizeof(reuse)) == -1) break; if (bind(listener, &a.addr, sizeof(a.inaddr)) == SOCKET_ERROR) break; memset(&a, 0, sizeof(a)); if (getsockname(listener, &a.addr, &addrlen) == SOCKET_ERROR) break; // win32 getsockname may only set the port number, p=0.0005. // ( http://msdn.microsoft.com/library/ms738543.aspx ): a.inaddr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); a.inaddr.sin_family = AF_INET; if (listen(listener, 1) == SOCKET_ERROR) break; socks[0] = WSASocket(AF_INET, SOCK_STREAM, 0, NULL, 0, flags); if (socks[0] == INVALID_SOCKET) break; if (connect(socks[0], &a.addr, sizeof(a.inaddr)) == SOCKET_ERROR) break; socks[1] = accept(listener, NULL, NULL); if (socks[1] == INVALID_SOCKET) break; closesocket(listener); return 0; } while (0); e = WSAGetLastError(); closesocket(listener); closesocket(socks[0]); closesocket(socks[1]); WSASetLastError(e); return SOCKET_ERROR; } #elif WINDOWS_CODE int dumb_socketpair(int socks[2], int dummy) { (void) dummy; return socketpair(AF_LOCAL, SOCK_STREAM, 0, socks); } #endif // MAIN-THREAD void AICurlThread::create_wakeup_fds(void) { #if WINDOWS_CODE //SGTODO curl_socket_t socks[2]; if (dumb_socketpair(socks, false) == SOCKET_ERROR) { llerrs << "Failed to generate wake-up socket pair" << formatWSAError() << llendl; return; } u_long nonblocking_enable = TRUE; int error = ioctlsocket(socks[0], FIONBIO, &nonblocking_enable); if(error) { llerrs << "Failed to set wake-up socket nonblocking: " << formatWSAError() << llendl; } llassert(nonblocking_enable); error = ioctlsocket(socks[1], FIONBIO, &nonblocking_enable); if(error) { llerrs << "Failed to set wake-up input socket nonblocking: " << formatWSAError() << llendl; } mWakeUpFd = socks[0]; mWakeUpFd_in = socks[1]; #else int pipefd[2]; if (pipe(pipefd)) { llerrs << "Failed to create wakeup pipe: " << strerror(errno) << llendl; } int const flags = O_NONBLOCK; for (int i = 0; i < 2; ++i) { if (fcntl(pipefd[i], F_SETFL, flags)) { llerrs << "Failed to set pipe to non-blocking: " << strerror(errno) << llendl; } } mWakeUpFd = pipefd[0]; // Read-end of the pipe. mWakeUpFd_in = pipefd[1]; // Write-end of the pipe. #endif } // MAIN-THREAD void AICurlThread::cleanup_wakeup_fds(void) { #if WINDOWS_CODE //SGTODO if (mWakeUpFd != CURL_SOCKET_BAD) { int error = closesocket(mWakeUpFd); if (error) { llwarns << "Error closing wake-up socket" << formatWSAError() << llendl; } } if (mWakeUpFd_in != CURL_SOCKET_BAD) { int error = closesocket(mWakeUpFd_in); if (error) { llwarns << "Error closing wake-up input socket" << formatWSAError() << llendl; } } #else if (mWakeUpFd_in != CURL_SOCKET_BAD) close(mWakeUpFd_in); if (mWakeUpFd != CURL_SOCKET_BAD) close(mWakeUpFd); #endif } // MAIN-THREAD void AICurlThread::wakeup_thread(void) { DoutEntering(dc::curl, "AICurlThread::wakeup_thread"); llassert(is_main_thread()); // Try if curl thread is still awake and if so, pass the new commands directly. if (mWakeUpMutex.tryLock()) { mWakeUpFlag = true; mWakeUpMutex.unlock(); return; } #if WINDOWS_CODE //SGTODO int len = send(mWakeUpFd_in, "!", 1, 0); if (len == SOCKET_ERROR) { llerrs << "Send to wake-up socket failed: " << formatWSAError() << llendl; } llassert_always(len == 1); //SGTODO: handle EAGAIN if needed #else // If write() is interrupted by a signal before it writes any data, it shall return -1 with errno set to [EINTR]. // If write() is interrupted by a signal after it successfully writes some data, it shall return the number of bytes written. // Write requests to a pipe or FIFO shall be handled in the same way as a regular file with the following exceptions: // If the O_NONBLOCK flag is set, write() requests shall be handled differently, in the following ways: // A write request for {PIPE_BUF} or fewer bytes shall have the following effect: // if there is sufficient space available in the pipe, write() shall transfer all the data and return the number // of bytes requested. Otherwise, write() shall transfer no data and return -1 with errno set to [EAGAIN]. ssize_t len; do { len = write(mWakeUpFd_in, "!", 1); if (len == -1 && errno == EAGAIN) return; // Unread characters are still in the pipe, so no need to add more. } while(len == -1 && errno == EINTR); if (len == -1) { llerrs << "write(3) to mWakeUpFd_in: " << strerror(errno) << llendl; } llassert_always(len == 1); #endif } void AICurlThread::wakeup(AICurlMultiHandle_wat const& multi_handle_w) { DoutEntering(dc::curl, "AICurlThread::wakeup"); #if WINDOWS_CODE //SGTODO char buf[256]; bool got_data = false; for(;;) { int len = recv(mWakeUpFd, buf, sizeof(buf), 0); if (len > 0) { // Data was read from the pipe. got_data = true; if (len < sizeof(buf)) break; } else if (len == SOCKET_ERROR) { // An error occurred. if (errno == EWOULDBLOCK) { if (got_data) break; // There was no data, even though select() said so. If this ever happens at all(?), lets just return and enter select() again. return; } else if (errno == EINTR) { continue; } else { llerrs << "read(3) from mWakeUpFd: " << formatWSAError() << llendl; return; } } else { // pipe(2) returned 0. llwarns << "read(3) from mWakeUpFd returned 0, indicating that the pipe on the other end was closed! Shutting down curl thread." << llendl; closesocket(mWakeUpFd); mWakeUpFd = CURL_SOCKET_BAD; mRunning = false; return; } } #else // If a read() is interrupted by a signal before it reads any data, it shall return -1 with errno set to [EINTR]. // If a read() is interrupted by a signal after it has successfully read some data, it shall return the number of bytes read. // When attempting to read from an empty pipe or FIFO: // If no process has the pipe open for writing, read() shall return 0 to indicate end-of-file. // If some process has the pipe open for writing and O_NONBLOCK is set, read() shall return -1 and set errno to [EAGAIN]. char buf[256]; bool got_data = false; for(;;) { ssize_t len = read(mWakeUpFd, buf, sizeof(buf)); if (len > 0) { // Data was read from the pipe. got_data = true; if (len < sizeof(buf)) break; } else if (len == -1) { // An error occurred. if (errno == EAGAIN) { if (got_data) break; // There was no data, even though select() said so. If this ever happens at all(?), lets just return and enter select() again. return; } else if (errno == EINTR) { continue; } else { llerrs << "read(3) from mWakeUpFd: " << strerror(errno) << llendl; return; } } else { // pipe(2) returned 0. llwarns << "read(3) from mWakeUpFd returned 0, indicating that the pipe on the other end was closed! Shutting down curl thread." << llendl; close(mWakeUpFd); mWakeUpFd = CURL_SOCKET_BAD; mRunning = false; return; } } #endif // Data was received on mWakeUpFd. This means that the main-thread added one // or more commands to the command queue and called wakeUpCurlThread(). process_commands(multi_handle_w); } void AICurlThread::process_commands(AICurlMultiHandle_wat const& multi_handle_w) { DoutEntering(dc::curl, "AICurlThread::process_commands(void)"); // If we get here then the main thread called wakeup_thread() recently. for(;;) { // Access command_queue, and move command to command_being_processed. { command_queue_wat command_queue_w(command_queue); if (command_queue_w->empty()) { mWakeUpMutex.lock(); mWakeUpFlag = false; mWakeUpMutex.unlock(); break; } // Move the next command from the queue into command_being_processed. *command_being_processed_wat(command_being_processed) = command_queue_w->front(); command_queue_w->pop_front(); } // Access command_being_processed only. { command_being_processed_rat command_being_processed_r(command_being_processed); switch(command_being_processed_r->command()) { case cmd_none: case cmd_boost: // FIXME: future stuff break; case cmd_add: multi_handle_w->add_easy_request(AICurlEasyRequest(command_being_processed_r->easy_request())); break; case cmd_remove: multi_handle_w->remove_easy_request(AICurlEasyRequest(command_being_processed_r->easy_request()), true); break; } // Done processing. command_being_processed_wat command_being_processed_w(command_being_processed_r); command_being_processed_w->reset(); // This destroys the CurlEasyRequest in case of a cmd_remove. } } } // The main loop of the curl thread. void AICurlThread::run(void) { DoutEntering(dc::curl, "AICurlThread::run()"); { AICurlMultiHandle_wat multi_handle_w(AICurlMultiHandle::getInstance()); while(mRunning) { // If mRunning is true then we can only get here if mWakeUpFd != CURL_SOCKET_BAD. llassert(mWakeUpFd != CURL_SOCKET_BAD); // Copy the next batch of file descriptors from the PollSets mFiledescriptors into their mFdSet. multi_handle_w->mReadPollSet->refresh(); refresh_t wres = multi_handle_w->mWritePollSet->refresh(); // Add wake up fd if any, and pass NULL to select() if a set is empty. fd_set* read_fd_set = multi_handle_w->mReadPollSet->access(); FD_SET(mWakeUpFd, read_fd_set); fd_set* write_fd_set = ((wres & empty)) ? NULL : multi_handle_w->mWritePollSet->access(); // Calculate nfds (ignored on windows). #if !WINDOWS_CODE curl_socket_t const max_rfd = llmax(multi_handle_w->mReadPollSet->get_max_fd(), mWakeUpFd); curl_socket_t const max_wfd = multi_handle_w->mWritePollSet->get_max_fd(); int nfds = llmax(max_rfd, max_wfd) + 1; llassert(0 <= nfds && nfds <= FD_SETSIZE); llassert((max_rfd == -1) == (read_fd_set == NULL) && (max_wfd == -1) == (write_fd_set == NULL)); // Needed on Windows. llassert((max_rfd == -1 || multi_handle_w->mReadPollSet->is_set(max_rfd)) && (max_wfd == -1 || multi_handle_w->mWritePollSet->is_set(max_wfd))); #else int nfds = 64; #endif int ready = 0; // Process every command in command_queue before entering select(). for(;;) { mWakeUpMutex.lock(); if (mWakeUpFlag) { mWakeUpMutex.unlock(); process_commands(multi_handle_w); continue; } break; } // wakeup_thread() is also called after setting mRunning to false. if (!mRunning) { mWakeUpMutex.unlock(); break; } // If we get here then mWakeUpFlag has been false since we grabbed the lock. // We're now entering select(), during which the main thread will write to the pipe/socket // to wake us up, because it can't get the lock. struct timeval timeout; long timeout_ms = multi_handle_w->getTimeOut(); // If no timeout is set, sleep 1 second. if (LL_UNLIKELY(timeout_ms < 0)) timeout_ms = 1000; if (LL_UNLIKELY(timeout_ms == 0)) { if (mZeroTimeOut >= 10000) { if (mZeroTimeOut == 10000) llwarns << "Detected more than 10000 zero-timeout calls of select() by curl thread (more than 101 seconds)!" << llendl; } else if (mZeroTimeOut >= 1000) timeout_ms = 10; else if (mZeroTimeOut >= 100) timeout_ms = 1; } else { if (LL_UNLIKELY(mZeroTimeOut >= 10000)) llinfos << "Timeout of select() call by curl thread reset (to " << timeout_ms << " ms)." << llendl; mZeroTimeOut = 0; } timeout.tv_sec = timeout_ms / 1000; timeout.tv_usec = (timeout_ms % 1000) * 1000; #ifdef CWDEBUG static int last_nfds = -1; static long last_timeout_ms = -1; static int same_count = 0; bool same = (nfds == last_nfds && timeout_ms == last_timeout_ms); if (!same) { if (same_count > 1) Dout(dc::curl, "Last select() call repeated " << same_count << " times."); Dout(dc::curl|flush_cf|continued_cf, "select(" << nfds << ", ..., timeout = " << timeout_ms << " ms) = "); same_count = 1; } else { ++same_count; } #endif ready = select(nfds, read_fd_set, write_fd_set, NULL, &timeout); mWakeUpMutex.unlock(); #ifdef CWDEBUG static int last_ready = -2; static int last_errno = 0; if (!same) Dout(dc::finish|cond_error_cf(ready == -1), ready); else if (ready != last_ready || (ready == -1 && errno != last_errno)) { if (same_count > 1) Dout(dc::curl, "Last select() call repeated " << same_count << " times."); Dout(dc::curl|cond_error_cf(ready == -1), "select(" << last_nfds << ", ..., timeout = " << last_timeout_ms << " ms) = " << ready); same_count = 1; } last_nfds = nfds; last_timeout_ms = timeout_ms; last_ready = ready; if (ready == -1) last_errno = errno; #endif // Select returns the total number of bits set in each of the fd_set's (upon return), // or -1 when an error occurred. A value of 0 means that a timeout occurred. if (ready == -1) { llwarns << "select() failed: " << errno << ", " << strerror(errno) << llendl; continue; } else if (ready == 0) { multi_handle_w->socket_action(CURL_SOCKET_TIMEOUT, 0); } else { if (multi_handle_w->mReadPollSet->is_set(mWakeUpFd)) { // Process commands from main-thread. This can add or remove filedescriptors from the poll sets. wakeup(multi_handle_w); --ready; } // Handle all active filedescriptors. MergeIterator iter(multi_handle_w->mReadPollSet, multi_handle_w->mWritePollSet); curl_socket_t fd; int ev_bitmask; while (ready > 0 && iter.next(fd, ev_bitmask)) { ready -= (ev_bitmask == (CURL_CSELECT_IN|CURL_CSELECT_OUT)) ? 2 : 1; // This can cause libcurl to do callbacks and remove filedescriptors, causing us to reset their bits in the poll sets. multi_handle_w->socket_action(fd, ev_bitmask); llassert(ready >= 0); } // Note that ready is not necessarily 0 here, because it's possible // that libcurl removed file descriptors which we subsequently // didn't handle. } multi_handle_w->check_run_count(); } } AICurlMultiHandle::destroyInstance(); } //----------------------------------------------------------------------------- // MultiHandle MultiHandle::MultiHandle(void) : mHandleAddedOrRemoved(false), mPrevRunningHandles(0), mRunningHandles(0), mTimeOut(-1), mReadPollSet(NULL), mWritePollSet(NULL) { mReadPollSet = new PollSet; mWritePollSet = new PollSet; check_multi_code(curl_multi_setopt(mMultiHandle, CURLMOPT_SOCKETFUNCTION, &MultiHandle::socket_callback)); check_multi_code(curl_multi_setopt(mMultiHandle, CURLMOPT_SOCKETDATA, this)); check_multi_code(curl_multi_setopt(mMultiHandle, CURLMOPT_TIMERFUNCTION, &MultiHandle::timer_callback)); check_multi_code(curl_multi_setopt(mMultiHandle, CURLMOPT_TIMERDATA, this)); } MultiHandle::~MultiHandle() { llinfos << "Destructing MultiHandle with " << mAddedEasyRequests.size() << " active curl easy handles." << llendl; // This thread was terminated. // Curl demands that all handles are removed from the multi session handle before calling curl_multi_cleanup. for(addedEasyRequests_type::iterator iter = mAddedEasyRequests.begin(); iter != mAddedEasyRequests.end(); iter = mAddedEasyRequests.begin()) { remove_easy_request(*iter); } delete mWritePollSet; delete mReadPollSet; } #if defined(CWDEBUG) || defined(DEBUG_CURLIO) #undef AI_CASE_RETURN #define AI_CASE_RETURN(x) do { case x: return #x; } while(0) char const* action_str(int action) { switch(action) { AI_CASE_RETURN(CURL_POLL_NONE); AI_CASE_RETURN(CURL_POLL_IN); AI_CASE_RETURN(CURL_POLL_OUT); AI_CASE_RETURN(CURL_POLL_INOUT); AI_CASE_RETURN(CURL_POLL_REMOVE); } return ""; } #endif //static int MultiHandle::socket_callback(CURL* easy, curl_socket_t s, int action, void* userp, void* socketp) { DoutEntering(dc::curl, "MultiHandle::socket_callback(" << (void*)easy << ", " << s << ", " << action_str(action) << ", " << (void*)userp << ", " << (void*)socketp << ")"); MultiHandle& self = *static_cast(userp); CurlSocketInfo* sock_info = static_cast(socketp); if (action == CURL_POLL_REMOVE) { delete sock_info; } else { if (!sock_info) { sock_info = new CurlSocketInfo(self, easy, s, action); } else { sock_info->set_action(action); } } return 0; } //static int MultiHandle::timer_callback(CURLM* multi, long timeout_ms, void* userp) { MultiHandle& self = *static_cast(userp); llassert(multi == self.mMultiHandle); self.mTimeOut = timeout_ms; Dout(dc::curl, "MultiHandle::timer_callback(): timeout set to " << timeout_ms << " ms."); return 0; } CURLMcode MultiHandle::socket_action(curl_socket_t sockfd, int ev_bitmask) { CURLMcode res; do { res = check_multi_code(curl_multi_socket_action(mMultiHandle, sockfd, ev_bitmask, &mRunningHandles)); } while(res == CURLM_CALL_MULTI_PERFORM); return res; } CURLMcode MultiHandle::assign(curl_socket_t sockfd, void* sockptr) { return check_multi_code(curl_multi_assign(mMultiHandle, sockfd, sockptr)); } CURLMsg const* MultiHandle::info_read(int* msgs_in_queue) const { CURLMsg const* ret = curl_multi_info_read(mMultiHandle, msgs_in_queue); // NULL could be an error, but normally it isn't, so don't print anything and // never increment Stats::multi_errors. However, lets just increment multi_calls // when it certainly wasn't an error... if (ret) Stats::multi_calls++; return ret; } CURLMcode MultiHandle::add_easy_request(AICurlEasyRequest const& easy_request) { std::pair res = mAddedEasyRequests.insert(easy_request); llassert(res.second); // May not have been added before. CURLMcode ret; { AICurlEasyRequest_wat curl_easy_request_w(*easy_request); ret = curl_easy_request_w->add_handle_to_multi(curl_easy_request_w, mMultiHandle); } mHandleAddedOrRemoved = true; Dout(dc::curl, "MultiHandle::add_easy_request: Added AICurlEasyRequest " << (void*)easy_request.get() << "; now processing " << mAddedEasyRequests.size() << " easy handles."); return ret; } CURLMcode MultiHandle::remove_easy_request(AICurlEasyRequest const& easy_request, bool as_per_command) { addedEasyRequests_type::iterator iter = mAddedEasyRequests.find(easy_request); if (iter == mAddedEasyRequests.end()) return (CURLMcode)-2; // Was already removed before. CURLMcode res; { AICurlEasyRequest_wat curl_easy_request_w(**iter); res = curl_easy_request_w->remove_handle_from_multi(curl_easy_request_w, mMultiHandle); #ifdef SHOW_ASSERT curl_easy_request_w->mRemovedPerCommand = as_per_command; #endif } mAddedEasyRequests.erase(iter); mHandleAddedOrRemoved = true; Dout(dc::curl, "MultiHandle::remove_easy_request: Removed AICurlEasyRequest " << (void*)easy_request.get() << "; now processing " << mAddedEasyRequests.size() << " easy handles."); return res; } void MultiHandle::check_run_count(void) { if (mHandleAddedOrRemoved || mRunningHandles < mPrevRunningHandles) { CURLMsg const* msg; int msgs_left; while ((msg = info_read(&msgs_left))) { if (msg->msg == CURLMSG_DONE) { CURL* easy = msg->easy_handle; ThreadSafeCurlEasyRequest* ptr; CURLcode rese = curl_easy_getinfo(easy, CURLINFO_PRIVATE, &ptr); llassert_always(rese == CURLE_OK); AICurlEasyRequest easy_request(ptr); llassert(*AICurlEasyRequest_wat(*easy_request) == easy); // Store the result and transfer info in the easy handle. { AICurlEasyRequest_wat curl_easy_request_w(*easy_request); curl_easy_request_w->store_result(msg->data.result); #ifdef CWDEBUG char* eff_url; curl_easy_request_w->getinfo(CURLINFO_EFFECTIVE_URL, &eff_url); Dout(dc::curl, "Finished: " << eff_url << " (" << msg->data.result << ")"); #endif // Signal that this easy handle finished. curl_easy_request_w->done(curl_easy_request_w); } // This invalidates msg, but not easy_request. CURLMcode res = remove_easy_request(easy_request); // This should hold, I think, because the handles are obviously ok and // the only error we could get is when remove_easy_request() was already // called before (by this thread); but if that was the case then the easy // handle should not have been be returned by info_read()... llassert(res == CURLM_OK); // Nevertheless, if it was already removed then just ignore it. if (res == CURLM_OK) { } else if (res == -2) { llwarns << "Curl easy handle returned by curl_multi_info_read() that is not (anymore) in MultiHandle::mAddedEasyRequests!?!" << llendl; } // Destruction of easy_request at this point, causes the CurlEasyRequest to be deleted. } } mHandleAddedOrRemoved = false; } mPrevRunningHandles = mRunningHandles; } } // namespace curlthread } // namespace AICurlPrivate //static void AICurlMultiHandle::destroyInstance(void) { LLThreadLocalData& tldata = LLThreadLocalData::tldata(); Dout(dc::curl, "Destroying AICurlMultiHandle [" << (void*)tldata.mCurlMultiHandle << "] for thread \"" << tldata.mName << "\"."); delete tldata.mCurlMultiHandle; tldata.mCurlMultiHandle = NULL; } //============================================================================= // MAIN-THREAD (needing to access the above declarations). //static AICurlMultiHandle& AICurlMultiHandle::getInstance(void) { LLThreadLocalData& tldata = LLThreadLocalData::tldata(); if (!tldata.mCurlMultiHandle) { tldata.mCurlMultiHandle = new AICurlMultiHandle; Dout(dc::curl, "Created AICurlMultiHandle [" << (void*)tldata.mCurlMultiHandle << "] for thread \"" << tldata.mName << "\"."); } return *static_cast(tldata.mCurlMultiHandle); } namespace AICurlPrivate { bool curlThreadIsRunning(void) { using curlthread::AICurlThread; return AICurlThread::sInstance && !AICurlThread::sInstance->isStopped(); } void wakeUpCurlThread(void) { using curlthread::AICurlThread; if (AICurlThread::sInstance) AICurlThread::sInstance->wakeup_thread(); } void stopCurlThread(void) { using curlthread::AICurlThread; if (AICurlThread::sInstance) { AICurlThread::sInstance->stop_thread(); int count = 101; while(--count && !AICurlThread::sInstance->isStopped()) { ms_sleep(10); } Dout(dc::curl, "Curl thread" << (curlThreadIsRunning() ? " not" : "") << " stopped after " << ((100 - count) * 10) << "ms."); // Clear the command queue, for a cleaner cleanup. command_queue_wat command_queue_w(command_queue); command_queue_w->clear(); } } } // namespace AICurlPrivate //----------------------------------------------------------------------------- // AICurlEasyRequest void AICurlEasyRequest::addRequest(void) { using namespace AICurlPrivate; { // Write-lock the command queue. command_queue_wat command_queue_w(command_queue); #ifdef SHOW_ASSERT // This debug code checks if we aren't calling addRequest() twice for the same object. // That means that the main thread already called (and finished, this is also the // main thread) this function, which also follows from that we just locked command_queue. // That leaves three options: It's still in the queue, or it was removed and is currently // processed by the curl thread with again two options: either it was already added // to the multi session handle or not yet. // Find the last command added. command_st cmd = cmd_none; for (std::deque::iterator iter = command_queue_w->begin(); iter != command_queue_w->end(); ++iter) { if (*iter == *this) { cmd = iter->command(); break; } } llassert(cmd == cmd_none || cmd == cmd_remove); // Not in queue, or last command was to remove it. if (cmd == cmd_none) { // Read-lock command_being_processed. command_being_processed_rat command_being_processed_r(command_being_processed); if (*command_being_processed_r == *this) { // May not be in-between being removed from the command queue but not added to the multi session handle yet. llassert(command_being_processed_r->command() == cmd_remove); } else { // May not already be added to the multi session handle. llassert(!AICurlEasyRequest_wat(*get())->active()); } } #endif // Add a command to add the new request to the multi session to the command queue. command_queue_w->push_back(Command(*this, cmd_add)); AICurlEasyRequest_wat(*get())->add_queued(); } // Something was added to the queue, wake up the thread to get it. wakeUpCurlThread(); } void AICurlEasyRequest::removeRequest(void) { using namespace AICurlPrivate; { // Write-lock the command queue. command_queue_wat command_queue_w(command_queue); #ifdef SHOW_ASSERT // This debug code checks if we aren't calling removeRequest() twice for the same object. // That means that the thread calling this function already finished it, following from that // we just locked command_queue. // That leaves three options: It's still in the queue, or it was removed and is currently // processed by the curl thread with again two options: either it was already removed // from the multi session handle or not yet. // Find the last command added. command_st cmd = cmd_none; for (std::deque::iterator iter = command_queue_w->begin(); iter != command_queue_w->end(); ++iter) { if (*iter == *this) { cmd = iter->command(); break; } } llassert(cmd == cmd_none || cmd != cmd_remove); // Not in queue, or last command was not a remove command. if (cmd == cmd_none) { // Read-lock command_being_processed. command_being_processed_rat command_being_processed_r(command_being_processed); if (*command_being_processed_r == *this) { // May not be in-between being removed from the command queue but not removed from the multi session handle yet. llassert(command_being_processed_r->command() != cmd_remove); } else { // May not already have been removed from multi session handle as per command from the main thread (through this function thus). { AICurlEasyRequest_wat curl_easy_request_w(*get()); llassert(curl_easy_request_w->active() || !curl_easy_request_w->mRemovedPerCommand); } } } #endif // Add a command to remove this request from the multi session to the command queue. command_queue_w->push_back(Command(*this, cmd_remove)); // Suppress warning that would otherwise happen if the callbacks are revoked before the curl thread removed the request. AICurlEasyRequest_wat(*get())->remove_queued(); } // Something was added to the queue, wake up the thread to get it. wakeUpCurlThread(); } //----------------------------------------------------------------------------- namespace AICurlInterface { void startCurlThread(void) { using namespace AICurlPrivate::curlthread; llassert(is_main_thread()); AICurlThread::sInstance = new AICurlThread; AICurlThread::sInstance->start(); } } // namespace AICurlInterface