/** * @file llfasttimer.cpp * @brief Implementation of the fast timer. * * $LicenseInfo:firstyear=2004&license=viewergpl$ * * Copyright (c) 2004-2009, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at * http://secondlifegrid.net/programs/open_source/licensing/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. * $/LicenseInfo$ */ #include "linden_common.h" #include "llfasttimer.h" #include "llmemory.h" #include "llprocessor.h" #if LL_WINDOWS #define WIN32_LEAN_AND_MEAN #include #include "lltimer.h" #elif LL_LINUX || LL_SOLARIS #include #include #include "lltimer.h" #elif LL_DARWIN #include #include "lltimer.h" // get_clock_count() #else #error "architecture not supported" #endif ////////////////////////////////////////////////////////////////////////////// // statics LLFastTimer::EFastTimerType LLFastTimer::sCurType = LLFastTimer::FTM_OTHER; int LLFastTimer::sCurDepth = 0; U64 LLFastTimer::sStart[LLFastTimer::FTM_MAX_DEPTH]; U64 LLFastTimer::sCounter[LLFastTimer::FTM_NUM_TYPES]; U64 LLFastTimer::sCountHistory[LLFastTimer::FTM_HISTORY_NUM][LLFastTimer::FTM_NUM_TYPES]; U64 LLFastTimer::sCountAverage[LLFastTimer::FTM_NUM_TYPES]; U64 LLFastTimer::sCalls[LLFastTimer::FTM_NUM_TYPES]; U64 LLFastTimer::sCallHistory[LLFastTimer::FTM_HISTORY_NUM][LLFastTimer::FTM_NUM_TYPES]; U64 LLFastTimer::sCallAverage[LLFastTimer::FTM_NUM_TYPES]; S32 LLFastTimer::sCurFrameIndex = -1; S32 LLFastTimer::sLastFrameIndex = -1; int LLFastTimer::sPauseHistory = 0; int LLFastTimer::sResetHistory = 0; #define USE_RDTSC 0 #if LL_LINUX || LL_SOLARIS U64 LLFastTimer::sClockResolution = 1000000000; // 1e9, Nanosecond resolution #else U64 LLFastTimer::sClockResolution = 1000000; // 1e6, Microsecond resolution #endif //static #if (LL_DARWIN || LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__)) U64 LLFastTimer::countsPerSecond() // counts per second for the *32-bit* timer { return sClockResolution >> 8; } #else // windows or x86-mac or x86-linux or x86-solaris U64 LLFastTimer::countsPerSecond() // counts per second for the *32-bit* timer { #if USE_RDTSC || !LL_WINDOWS //getCPUFrequency returns MHz and sCPUClockFrequency wants to be in Hz static U64 sCPUClockFrequency = U64(LLProcessorInfo().getCPUFrequency()*1000000.0); // we drop the low-order byte in our timers, so report a lower frequency #else // If we're not using RDTSC, each fasttimer tick is just a performance counter tick. // Not redefining the clock frequency itself (in llprocessor.cpp/calculate_cpu_frequency()) // since that would change displayed MHz stats for CPUs static bool firstcall = true; static U64 sCPUClockFrequency; if (firstcall) { QueryPerformanceFrequency((LARGE_INTEGER*)&sCPUClockFrequency); firstcall = false; } #endif return sCPUClockFrequency >> 8; } #endif void LLFastTimer::reset() { countsPerSecond(); // good place to calculate clock frequency if (sCurDepth != 0) { llerrs << "LLFastTimer::Reset() when sCurDepth != 0" << llendl; } if (sPauseHistory) { sResetHistory = 1; } else if (sResetHistory) { sCurFrameIndex = -1; sResetHistory = 0; } else if (sCurFrameIndex >= 0) { int hidx = sCurFrameIndex % FTM_HISTORY_NUM; for (S32 i=0; i //#undef _interlockedbittestandset //#undef _interlockedbittestandreset //inline U32 LLFastTimer::getCPUClockCount32() //{ // U64 time_stamp = __rdtsc(); // return (U32)(time_stamp >> 8); //} // //// return full timer value, *not* shifted by 8 bits //inline U64 LLFastTimer::getCPUClockCount64() //{ // return __rdtsc(); //} // shift off lower 8 bits for lower resolution but longer term timing // on 1Ghz machine, a 32-bit word will hold ~1000 seconds of timing #if USE_RDTSC U32 LLFastTimer::getCPUClockCount32() { U32 ret_val; __asm { _emit 0x0f _emit 0x31 shr eax,8 shl edx,24 or eax, edx mov dword ptr [ret_val], eax } return ret_val; } // return full timer value, *not* shifted by 8 bits U64 LLFastTimer::getCPUClockCount64() { U64 ret_val; __asm { _emit 0x0f _emit 0x31 mov eax,eax mov edx,edx mov dword ptr [ret_val+4], edx mov dword ptr [ret_val], eax } return ret_val; } std::string LLFastTimer::sClockType = "rdtsc"; #else //LL_COMMON_API U64 get_clock_count(); // in lltimer.cpp // These use QueryPerformanceCounter, which is arguably fine and also works on amd architectures. U32 LLFastTimer::getCPUClockCount32() { return (U32)(get_clock_count()>>8); } U64 LLFastTimer::getCPUClockCount64() { return get_clock_count(); } std::string LLFastTimer::sClockType = "QueryPerformanceCounter"; #endif #endif #if (LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__)) // // Linux and Solaris implementation of CPU clock - non-x86. // This is accurate but SLOW! Only use out of desperation. // // Try to use the MONOTONIC clock if available, this is a constant time counter // with nanosecond resolution (but not necessarily accuracy) and attempts are // made to synchronize this value between cores at kernel start. It should not // be affected by CPU frequency. If not available use the REALTIME clock, but // this may be affected by NTP adjustments or other user activity affecting // the system time. U64 LLFastTimer::getCPUClockCount64() { struct timespec tp; #ifdef CLOCK_MONOTONIC // MONOTONIC supported at build-time? if (-1 == clock_gettime(CLOCK_MONOTONIC,&tp)) // if MONOTONIC isn't supported at runtime then ouch, try REALTIME #endif clock_gettime(CLOCK_REALTIME,&tp); return (tp.tv_sec*LLFastTimer::sClockResolution)+tp.tv_nsec; } U32 LLFastTimer::getCPUClockCount32() { return (U32)(LLFastTimer::getCPUClockCount64() >> 8); } std::string LLFastTimer::sClockType = "clock_gettime"; #endif // (LL_LINUX || LL_SOLARIS) && !(defined(__i386__) || defined(__amd64__)) #if (LL_LINUX || LL_SOLARIS || LL_DARWIN) && (defined(__i386__) || defined(__amd64__)) // // Mac+Linux+Solaris FAST x86 implementation of CPU clock U32 LLFastTimer::getCPUClockCount32() { U64 x; __asm__ volatile (".byte 0x0f, 0x31": "=A"(x)); return (U32)(x >> 8); } U64 LLFastTimer::getCPUClockCount64() { U64 x; __asm__ volatile (".byte 0x0f, 0x31": "=A"(x)); return x; } std::string LLFastTimer::sClockType = "rdtsc"; #endif