Imported existing code

This commit is contained in:
Hazim Gazov
2010-04-02 02:48:44 -03:00
parent 48fbc5ae91
commit 7a86d01598
13996 changed files with 2468699 additions and 0 deletions

View File

@@ -0,0 +1,24 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_BOUNDS_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_BOUNDS_12NOV2002_HPP
#include "boost/numeric/conversion/detail/bounds.hpp"
namespace boost { namespace numeric
{
template<class N>
struct bounds : boundsdetail::get_impl<N>::type
{} ;
} } // namespace boost::numeric
#endif

View File

@@ -0,0 +1,51 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
//
// Revision History
//
// 19 Nov 2001 Syntatic changes as suggested by Darin Adler (Fernando Cacciola)
// 08 Nov 2001 Fixes to accommodate MSVC (Fernando Cacciola)
// 04 Nov 2001 Fixes to accommodate gcc2.92 (Fernando Cacciola)
// 30 Oct 2001 Some fixes suggested by Daryle Walker (Fernando Cacciola)
// 25 Oct 2001 Initial boostification (Fernando Cacciola)
// 23 Jan 2004 Inital add to cvs (post review)s
//
#ifndef BOOST_NUMERIC_CONVERSION_CAST_25OCT2001_HPP
#define BOOST_NUMERIC_CONVERSION_CAST_25OCT2001_HPP
#include <boost/detail/workaround.hpp>
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300) || BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582))
# include<boost/numeric/conversion/detail/old_numeric_cast.hpp>
#else
#include <boost/type.hpp>
#include <boost/numeric/conversion/converter.hpp>
namespace boost
{
template<typename Target, typename Source>
inline
Target numeric_cast ( Source arg )
{
typedef boost::numeric::converter<Target,Source> Converter ;
return Converter::convert(arg);
}
using numeric::bad_numeric_cast;
} // namespace boost
#endif
#endif

View File

@@ -0,0 +1,39 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_CONVERSION_TRAITS_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_CONVERSION_TRAITS_FLC_12NOV2002_HPP
#include "boost/numeric/conversion/detail/conversion_traits.hpp"
#include "boost/detail/workaround.hpp"
#include "boost/config.hpp"
namespace boost { namespace numeric
{
template<class T, class S>
struct conversion_traits
: convdetail::get_conversion_traits<T,S>::type
{
#if BOOST_WORKAROUND(BOOST_MSVC, <= 1300)
typedef typename convdetail::get_conversion_traits<T,S>::type base_;
typedef typename base_::target_type target_type;
typedef typename base_::source_type source_type;
typedef typename base_::result_type result_type;
typedef typename base_::argument_type argument_type;
#endif
} ;
} } // namespace boost::numeric
#endif
//
///////////////////////////////////////////////////////////////////////////////////////////////

View File

@@ -0,0 +1,68 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_CONVERTER_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_CONVERTER_FLC_12NOV2002_HPP
#include "boost/numeric/conversion/conversion_traits.hpp"
#include "boost/numeric/conversion/converter_policies.hpp"
#include "boost/numeric/conversion/detail/converter.hpp"
namespace boost { namespace numeric
{
template<class T,
class S,
class Traits = conversion_traits<T,S>,
class OverflowHandler = def_overflow_handler,
class Float2IntRounder = Trunc< BOOST_DEDUCED_TYPENAME Traits::source_type> ,
class RawConverter = raw_converter<Traits>,
class UserRangeChecker = UseInternalRangeChecker
>
struct converter : convdetail::get_converter_impl<Traits,
OverflowHandler,
Float2IntRounder,
RawConverter,
UserRangeChecker
>::type
{
typedef Traits traits ;
typedef typename Traits::argument_type argument_type ;
typedef typename Traits::result_type result_type ;
result_type operator() ( argument_type s ) const { return this->convert(s) ; }
} ;
template<class S,
class OverflowHandler = def_overflow_handler,
class Float2IntRounder = Trunc<S> ,
class UserRangeChecker = UseInternalRangeChecker
>
struct make_converter_from
{
template<class T,
class Traits = conversion_traits<T,S>,
class RawConverter = raw_converter<Traits>
>
struct to
{
typedef converter<T,S,Traits,OverflowHandler,Float2IntRounder,RawConverter,UserRangeChecker> type ;
} ;
} ;
} } // namespace boost::numeric
#endif

View File

@@ -0,0 +1,186 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_CONVERTER_POLICIES_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_CONVERTER_POLICIES_FLC_12NOV2002_HPP
#include <typeinfo> // for std::bad_cast
#include <boost/config/no_tr1/cmath.hpp> // for std::floor and std::ceil
#include <functional>
#include "boost/type_traits/is_arithmetic.hpp"
#include "boost/mpl/if.hpp"
#include "boost/mpl/integral_c.hpp"
namespace boost { namespace numeric
{
template<class S>
struct Trunc
{
typedef S source_type ;
typedef typename mpl::if_< is_arithmetic<S>,S,S const&>::type argument_type ;
static source_type nearbyint ( argument_type s )
{
#if !defined(BOOST_NO_STDC_NAMESPACE)
using std::floor ;
using std::ceil ;
#endif
return s < static_cast<S>(0) ? ceil(s) : floor(s) ;
}
typedef mpl::integral_c< std::float_round_style, std::round_toward_zero> round_style ;
} ;
template<class S>
struct Floor
{
typedef S source_type ;
typedef typename mpl::if_< is_arithmetic<S>,S,S const&>::type argument_type ;
static source_type nearbyint ( argument_type s )
{
#if !defined(BOOST_NO_STDC_NAMESPACE)
using std::floor ;
#endif
return floor(s) ;
}
typedef mpl::integral_c< std::float_round_style, std::round_toward_neg_infinity> round_style ;
} ;
template<class S>
struct Ceil
{
typedef S source_type ;
typedef typename mpl::if_< is_arithmetic<S>,S,S const&>::type argument_type ;
static source_type nearbyint ( argument_type s )
{
#if !defined(BOOST_NO_STDC_NAMESPACE)
using std::ceil ;
#endif
return ceil(s) ;
}
typedef mpl::integral_c< std::float_round_style, std::round_toward_infinity> round_style ;
} ;
template<class S>
struct RoundEven
{
typedef S source_type ;
typedef typename mpl::if_< is_arithmetic<S>,S,S const&>::type argument_type ;
static source_type nearbyint ( argument_type s )
{
// Algorithm contributed by Guillaume Melquiond
#if !defined(BOOST_NO_STDC_NAMESPACE)
using std::floor ;
using std::ceil ;
#endif
// only works inside the range not at the boundaries
S prev = floor(s);
S next = ceil(s);
S rt = (s - prev) - (next - s); // remainder type
S const zero(0.0);
S const two(2.0);
if ( rt < zero )
return prev;
else if ( rt > zero )
return next;
else
{
bool is_prev_even = two * floor(prev / two) == prev ;
return ( is_prev_even ? prev : next ) ;
}
}
typedef mpl::integral_c< std::float_round_style, std::round_to_nearest> round_style ;
} ;
enum range_check_result
{
cInRange = 0 ,
cNegOverflow = 1 ,
cPosOverflow = 2
} ;
class bad_numeric_cast : public std::bad_cast
{
public:
virtual const char * what() const throw()
{ return "bad numeric conversion: overflow"; }
};
class negative_overflow : public bad_numeric_cast
{
public:
virtual const char * what() const throw()
{ return "bad numeric conversion: negative overflow"; }
};
class positive_overflow : public bad_numeric_cast
{
public:
virtual const char * what() const throw()
{ return "bad numeric conversion: positive overflow"; }
};
struct def_overflow_handler
{
void operator() ( range_check_result r ) // throw(negative_overflow,positive_overflow)
{
if ( r == cNegOverflow )
throw negative_overflow() ;
else if ( r == cPosOverflow )
throw positive_overflow() ;
}
} ;
struct silent_overflow_handler
{
void operator() ( range_check_result ) {} // throw()
} ;
template<class Traits>
struct raw_converter
{
typedef typename Traits::result_type result_type ;
typedef typename Traits::argument_type argument_type ;
static result_type low_level_convert ( argument_type s ) { return static_cast<result_type>(s) ; }
} ;
struct UseInternalRangeChecker {} ;
} } // namespace boost::numeric
#endif

View File

@@ -0,0 +1,58 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_BOUNDS_DETAIL_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_BOUNDS_DETAIL_FLC_12NOV2002_HPP
#include "boost/limits.hpp"
#include "boost/config.hpp"
#include "boost/mpl/if.hpp"
namespace boost { namespace numeric { namespace boundsdetail
{
template<class N>
class Integral
{
typedef std::numeric_limits<N> limits ;
public :
static N lowest () { return limits::min BOOST_PREVENT_MACRO_SUBSTITUTION (); }
static N highest () { return limits::max BOOST_PREVENT_MACRO_SUBSTITUTION (); }
static N smallest() { return static_cast<N>(1); }
} ;
template<class N>
class Float
{
typedef std::numeric_limits<N> limits ;
public :
static N lowest () { return static_cast<N>(-limits::max BOOST_PREVENT_MACRO_SUBSTITUTION ()) ; }
static N highest () { return limits::max BOOST_PREVENT_MACRO_SUBSTITUTION (); }
static N smallest() { return limits::min BOOST_PREVENT_MACRO_SUBSTITUTION (); }
} ;
template<class N>
struct get_impl
{
typedef mpl::bool_< ::std::numeric_limits<N>::is_integer > is_int ;
typedef Integral<N> impl_int ;
typedef Float <N> impl_float ;
typedef typename mpl::if_<is_int,impl_int,impl_float>::type type ;
} ;
} } } // namespace boost::numeric::boundsdetail.
#endif
//
///////////////////////////////////////////////////////////////////////////////////////////////

View File

@@ -0,0 +1,97 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_DETAIL_CONVERSION_TRAITS_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_DETAIL_CONVERSION_TRAITS_FLC_12NOV2002_HPP
#include "boost/type_traits/is_arithmetic.hpp"
#include "boost/type_traits/is_same.hpp"
#include "boost/type_traits/remove_cv.hpp"
#include "boost/numeric/conversion/detail/meta.hpp"
#include "boost/numeric/conversion/detail/int_float_mixture.hpp"
#include "boost/numeric/conversion/detail/sign_mixture.hpp"
#include "boost/numeric/conversion/detail/udt_builtin_mixture.hpp"
#include "boost/numeric/conversion/detail/is_subranged.hpp"
namespace boost { namespace numeric { namespace convdetail
{
//-------------------------------------------------------------------
// Implementation of the Conversion Traits for T != S
//
// This is a VISIBLE base class of the user-level conversion_traits<> class.
//-------------------------------------------------------------------
template<class T,class S>
struct non_trivial_traits_impl
{
typedef typename get_int_float_mixture <T,S>::type int_float_mixture ;
typedef typename get_sign_mixture <T,S>::type sign_mixture ;
typedef typename get_udt_builtin_mixture <T,S>::type udt_builtin_mixture ;
typedef typename get_is_subranged<T,S>::type subranged ;
typedef mpl::false_ trivial ;
typedef T target_type ;
typedef S source_type ;
typedef T result_type ;
typedef typename mpl::if_< is_arithmetic<S>, S, S const&>::type argument_type ;
typedef typename mpl::if_<subranged,S,T>::type supertype ;
typedef typename mpl::if_<subranged,T,S>::type subtype ;
} ;
//-------------------------------------------------------------------
// Implementation of the Conversion Traits for T == S
//
// This is a VISIBLE base class of the user-level conversion_traits<> class.
//-------------------------------------------------------------------
template<class N>
struct trivial_traits_impl
{
typedef typename get_int_float_mixture <N,N>::type int_float_mixture ;
typedef typename get_sign_mixture <N,N>::type sign_mixture ;
typedef typename get_udt_builtin_mixture<N,N>::type udt_builtin_mixture ;
typedef mpl::false_ subranged ;
typedef mpl::true_ trivial ;
typedef N target_type ;
typedef N source_type ;
typedef N const& result_type ;
typedef N const& argument_type ;
typedef N supertype ;
typedef N subtype ;
} ;
//-------------------------------------------------------------------
// Top level implementation selector.
//-------------------------------------------------------------------
template<class T, class S>
struct get_conversion_traits
{
typedef typename remove_cv<T>::type target_type ;
typedef typename remove_cv<S>::type source_type ;
typedef typename is_same<target_type,source_type>::type is_trivial ;
typedef trivial_traits_impl <target_type> trivial_imp ;
typedef non_trivial_traits_impl<target_type,source_type> non_trivial_imp ;
typedef typename mpl::if_<is_trivial,trivial_imp,non_trivial_imp>::type type ;
} ;
} } } // namespace boost::numeric::convdetail
#endif

View File

@@ -0,0 +1,602 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_DETAIL_CONVERTER_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_DETAIL_CONVERTER_FLC_12NOV2002_HPP
#include <functional>
#include "boost/numeric/conversion/detail/meta.hpp"
#include "boost/numeric/conversion/detail/conversion_traits.hpp"
#include "boost/numeric/conversion/bounds.hpp"
#include "boost/type_traits/is_same.hpp"
#include "boost/mpl/integral_c.hpp"
namespace boost { namespace numeric { namespace convdetail
{
// Integral Constants representing rounding modes
typedef mpl::integral_c<std::float_round_style, std::round_toward_zero> round2zero_c ;
typedef mpl::integral_c<std::float_round_style, std::round_to_nearest> round2nearest_c ;
typedef mpl::integral_c<std::float_round_style, std::round_toward_infinity> round2inf_c ;
typedef mpl::integral_c<std::float_round_style, std::round_toward_neg_infinity> round2neg_inf_c ;
// Metafunction:
//
// for_round_style<RoundStyle,RoundToZero,RoundToNearest,RoundToInf,RoundToNegInf>::type
//
// {RoundStyle} Integral Constant specifying a round style as declared above.
// {RoundToZero,RoundToNearest,RoundToInf,RoundToNegInf} arbitrary types.
//
// Selects one of the 4 types according to the value of RoundStyle.
//
template<class RoundStyle,class RoundToZero,class RoundToNearest,class RoundToInf,class RoundToNegInf>
struct for_round_style
{
typedef ct_switch4<RoundStyle
, round2zero_c, round2nearest_c, round2inf_c // round2neg_inf_c
, RoundToZero , RoundToNearest , RoundToInf , RoundToNegInf
> selector ;
typedef typename selector::type type ;
} ;
//--------------------------------------------------------------------------
// Range Checking Logic.
//
// The range checking logic is built up by combining 1 or 2 predicates.
// Each predicate is encapsulated in a template class and exposes
// the static member function 'apply'.
//
//--------------------------------------------------------------------------
// Because a particular logic can combine either 1 or two predicates, the following
// tags are used to allow the predicate applier to receive 2 preds, but optimize away
// one of them if it is 'non-applicable'
struct non_applicable { typedef mpl::false_ do_apply ; } ;
struct applicable { typedef mpl::true_ do_apply ; } ;
//--------------------------------------------------------------------------
//
// Range Checking Logic implementations.
//
// The following classes, collectivelly named 'Predicates', are instantiated within
// the corresponding range checkers.
// Their static member function 'apply' is called to perform the actual range checking logic.
//--------------------------------------------------------------------------
// s < Lowest(T) ? cNegOverflow : cInRange
//
template<class Traits>
struct LT_LoT : applicable
{
typedef typename Traits::target_type T ;
typedef typename Traits::source_type S ;
typedef typename Traits::argument_type argument_type ;
static range_check_result apply ( argument_type s )
{
return s < static_cast<S>(bounds<T>::lowest()) ? cNegOverflow : cInRange ;
}
} ;
// s < 0 ? cNegOverflow : cInRange
//
template<class Traits>
struct LT_Zero : applicable
{
typedef typename Traits::source_type S ;
typedef typename Traits::argument_type argument_type ;
static range_check_result apply ( argument_type s )
{
return s < static_cast<S>(0) ? cNegOverflow : cInRange ;
}
} ;
// s <= Lowest(T)-1 ? cNegOverflow : cInRange
//
template<class Traits>
struct LE_PrevLoT : applicable
{
typedef typename Traits::target_type T ;
typedef typename Traits::source_type S ;
typedef typename Traits::argument_type argument_type ;
static range_check_result apply ( argument_type s )
{
return s <= static_cast<S>(bounds<T>::lowest()) - static_cast<S>(1.0)
? cNegOverflow : cInRange ;
}
} ;
// s < Lowest(T)-0.5 ? cNegOverflow : cInRange
//
template<class Traits>
struct LT_HalfPrevLoT : applicable
{
typedef typename Traits::target_type T ;
typedef typename Traits::source_type S ;
typedef typename Traits::argument_type argument_type ;
static range_check_result apply ( argument_type s )
{
return s < static_cast<S>(bounds<T>::lowest()) - static_cast<S>(0.5)
? cNegOverflow : cInRange ;
}
} ;
// s > Highest(T) ? cPosOverflow : cInRange
//
template<class Traits>
struct GT_HiT : applicable
{
typedef typename Traits::target_type T ;
typedef typename Traits::source_type S ;
typedef typename Traits::argument_type argument_type ;
static range_check_result apply ( argument_type s )
{
return s > static_cast<S>(bounds<T>::highest())
? cPosOverflow : cInRange ;
}
} ;
// s >= Lowest(T) + 1 ? cPosOverflow : cInRange
//
template<class Traits>
struct GE_SuccHiT : applicable
{
typedef typename Traits::target_type T ;
typedef typename Traits::source_type S ;
typedef typename Traits::argument_type argument_type ;
static range_check_result apply ( argument_type s )
{
return s >= static_cast<S>(bounds<T>::highest()) + static_cast<S>(1.0)
? cPosOverflow : cInRange ;
}
} ;
// s >= Lowest(T) + 0.5 ? cPosgOverflow : cInRange
//
template<class Traits>
struct GT_HalfSuccHiT : applicable
{
typedef typename Traits::target_type T ;
typedef typename Traits::source_type S ;
typedef typename Traits::argument_type argument_type ;
static range_check_result apply ( argument_type s )
{
return s >= static_cast<S>(bounds<T>::highest()) + static_cast<S>(0.5)
? cPosOverflow : cInRange ;
}
} ;
//--------------------------------------------------------------------------
//
// Predicate Combiner.
//
// This helper classes are used to possibly combine the range checking logic
// individually performed by the predicates
//
//--------------------------------------------------------------------------
// Applies both predicates: first 'PredA', and if it equals 'cInRange', 'PredB'
template<class PredA, class PredB>
struct applyBoth
{
typedef typename PredA::argument_type argument_type ;
static range_check_result apply ( argument_type s )
{
range_check_result r = PredA::apply(s) ;
if ( r == cInRange )
r = PredB::apply(s);
return r ;
}
} ;
template<class PredA, class PredB>
struct combine
{
typedef applyBoth<PredA,PredB> Both ;
typedef void NNone ; // 'None' is defined as a macro in (/usr/X11R6/include/X11/X.h)
typedef typename PredA::do_apply do_applyA ;
typedef typename PredB::do_apply do_applyB ;
typedef typename for_both<do_applyA, do_applyB, Both, PredA, PredB, NNone>::type type ;
} ;
//--------------------------------------------------------------------------
// Range Checker classes.
//
// The following classes are VISIBLE base classes of the user-level converter<> class.
// They supply the optimized 'out_of_range()' and 'validate_range()' static member functions
// visible in the user interface.
//
//--------------------------------------------------------------------------
// Dummy range checker.
template<class Traits>
struct dummy_range_checker
{
typedef typename Traits::argument_type argument_type ;
static range_check_result out_of_range ( argument_type ) { return cInRange ; }
static void validate_range ( argument_type ) {}
} ;
// Generic range checker.
//
// All the range checking logic for all possible combinations of source and target
// can be arranged in terms of one or two predicates, which test overflow on both neg/pos 'sides'
// of the ranges.
//
// These predicates are given here as IsNegOverflow and IsPosOverflow.
//
template<class Traits, class IsNegOverflow, class IsPosOverflow, class OverflowHandler>
struct generic_range_checker
{
typedef OverflowHandler overflow_handler ;
typedef typename Traits::argument_type argument_type ;
static range_check_result out_of_range ( argument_type s )
{
typedef typename combine<IsNegOverflow,IsPosOverflow>::type Predicate ;
return Predicate::apply(s);
}
static void validate_range ( argument_type s )
{ OverflowHandler()( out_of_range(s) ) ; }
} ;
//--------------------------------------------------------------------------
//
// Selectors for the optimized Range Checker class.
//
//--------------------------------------------------------------------------
template<class Traits,class OverflowHandler>
struct GetRC_Sig2Sig_or_Unsig2Unsig
{
typedef dummy_range_checker<Traits> Dummy ;
typedef LT_LoT<Traits> Pred1 ;
typedef GT_HiT<Traits> Pred2 ;
typedef generic_range_checker<Traits,Pred1,Pred2,OverflowHandler> Normal ;
typedef typename Traits::subranged subranged ;
typedef typename mpl::if_<subranged,Normal,Dummy>::type type ;
} ;
template<class Traits, class OverflowHandler>
struct GetRC_Sig2Unsig
{
typedef LT_Zero<Traits> Pred1 ;
typedef GT_HiT <Traits> Pred2 ;
typedef generic_range_checker<Traits,Pred1,Pred2,OverflowHandler> ChoiceA ;
typedef generic_range_checker<Traits,Pred1,non_applicable,OverflowHandler> ChoiceB ;
typedef typename Traits::target_type T ;
typedef typename Traits::source_type S ;
typedef typename subranged_Unsig2Sig<S,T>::type oposite_subranged ;
typedef typename mpl::not_<oposite_subranged>::type positively_subranged ;
typedef typename mpl::if_<positively_subranged,ChoiceA,ChoiceB>::type type ;
} ;
template<class Traits, class OverflowHandler>
struct GetRC_Unsig2Sig
{
typedef GT_HiT<Traits> Pred1 ;
typedef generic_range_checker<Traits,non_applicable,Pred1,OverflowHandler> type ;
} ;
template<class Traits,class OverflowHandler>
struct GetRC_Int2Int
{
typedef GetRC_Sig2Sig_or_Unsig2Unsig<Traits,OverflowHandler> Sig2SigQ ;
typedef GetRC_Sig2Unsig <Traits,OverflowHandler> Sig2UnsigQ ;
typedef GetRC_Unsig2Sig <Traits,OverflowHandler> Unsig2SigQ ;
typedef Sig2SigQ Unsig2UnsigQ ;
typedef typename Traits::sign_mixture sign_mixture ;
typedef typename
for_sign_mixture<sign_mixture,Sig2SigQ,Sig2UnsigQ,Unsig2SigQ,Unsig2UnsigQ>::type
selector ;
typedef typename selector::type type ;
} ;
template<class Traits>
struct GetRC_Int2Float
{
typedef dummy_range_checker<Traits> type ;
} ;
template<class Traits, class OverflowHandler, class Float2IntRounder>
struct GetRC_Float2Int
{
typedef LE_PrevLoT <Traits> Pred1 ;
typedef GE_SuccHiT <Traits> Pred2 ;
typedef LT_HalfPrevLoT<Traits> Pred3 ;
typedef GT_HalfSuccHiT<Traits> Pred4 ;
typedef GT_HiT <Traits> Pred5 ;
typedef LT_LoT <Traits> Pred6 ;
typedef generic_range_checker<Traits,Pred1,Pred2,OverflowHandler> ToZero ;
typedef generic_range_checker<Traits,Pred3,Pred4,OverflowHandler> ToNearest ;
typedef generic_range_checker<Traits,Pred1,Pred5,OverflowHandler> ToInf ;
typedef generic_range_checker<Traits,Pred6,Pred2,OverflowHandler> ToNegInf ;
typedef typename Float2IntRounder::round_style round_style ;
typedef typename for_round_style<round_style,ToZero,ToNearest,ToInf,ToNegInf>::type type ;
} ;
template<class Traits, class OverflowHandler>
struct GetRC_Float2Float
{
typedef dummy_range_checker<Traits> Dummy ;
typedef LT_LoT<Traits> Pred1 ;
typedef GT_HiT<Traits> Pred2 ;
typedef generic_range_checker<Traits,Pred1,Pred2,OverflowHandler> Normal ;
typedef typename Traits::subranged subranged ;
typedef typename mpl::if_<subranged,Normal,Dummy>::type type ;
} ;
template<class Traits, class OverflowHandler, class Float2IntRounder>
struct GetRC_BuiltIn2BuiltIn
{
typedef GetRC_Int2Int<Traits,OverflowHandler> Int2IntQ ;
typedef GetRC_Int2Float<Traits> Int2FloatQ ;
typedef GetRC_Float2Int<Traits,OverflowHandler,Float2IntRounder> Float2IntQ ;
typedef GetRC_Float2Float<Traits,OverflowHandler> Float2FloatQ ;
typedef typename Traits::int_float_mixture int_float_mixture ;
typedef typename for_int_float_mixture<int_float_mixture, Int2IntQ, Int2FloatQ, Float2IntQ, Float2FloatQ>::type selector ;
typedef typename selector::type type ;
} ;
template<class Traits, class OverflowHandler, class Float2IntRounder>
struct GetRC
{
typedef GetRC_BuiltIn2BuiltIn<Traits,OverflowHandler,Float2IntRounder> BuiltIn2BuiltInQ ;
typedef dummy_range_checker<Traits> Dummy ;
typedef mpl::identity<Dummy> DummyQ ;
typedef typename Traits::udt_builtin_mixture udt_builtin_mixture ;
typedef typename for_udt_builtin_mixture<udt_builtin_mixture,BuiltIn2BuiltInQ,DummyQ,DummyQ,DummyQ>::type selector ;
typedef typename selector::type type ;
} ;
//--------------------------------------------------------------------------
// Converter classes.
//
// The following classes are VISIBLE base classes of the user-level converter<> class.
// They supply the optimized 'nearbyint()' and 'convert()' static member functions
// visible in the user interface.
//
//--------------------------------------------------------------------------
//
// Trivial Converter : used when (cv-unqualified) T == (cv-unqualified) S
//
template<class Traits>
struct trivial_converter_impl : public std::unary_function< BOOST_DEDUCED_TYPENAME Traits::argument_type
,BOOST_DEDUCED_TYPENAME Traits::result_type
>
,public dummy_range_checker<Traits>
{
typedef Traits traits ;
typedef typename Traits::source_type source_type ;
typedef typename Traits::argument_type argument_type ;
typedef typename Traits::result_type result_type ;
static result_type low_level_convert ( argument_type s ) { return s ; }
static source_type nearbyint ( argument_type s ) { return s ; }
static result_type convert ( argument_type s ) { return s ; }
} ;
//
// Rounding Converter : used for float to integral conversions.
//
template<class Traits,class RangeChecker,class RawConverter,class Float2IntRounder>
struct rounding_converter : public std::unary_function< BOOST_DEDUCED_TYPENAME Traits::argument_type
,BOOST_DEDUCED_TYPENAME Traits::result_type
>
,public RangeChecker
,public Float2IntRounder
,public RawConverter
{
typedef RangeChecker RangeCheckerBase ;
typedef Float2IntRounder Float2IntRounderBase ;
typedef RawConverter RawConverterBase ;
typedef Traits traits ;
typedef typename Traits::source_type source_type ;
typedef typename Traits::argument_type argument_type ;
typedef typename Traits::result_type result_type ;
static result_type convert ( argument_type s )
{
RangeCheckerBase::validate_range(s);
source_type s1 = Float2IntRounderBase::nearbyint(s);
return RawConverterBase::low_level_convert(s1);
}
} ;
//
// Non-Rounding Converter : used for all other conversions.
//
template<class Traits,class RangeChecker,class RawConverter>
struct non_rounding_converter : public std::unary_function< BOOST_DEDUCED_TYPENAME Traits::argument_type
,BOOST_DEDUCED_TYPENAME Traits::result_type
>
,public RangeChecker
,public RawConverter
{
typedef RangeChecker RangeCheckerBase ;
typedef RawConverter RawConverterBase ;
typedef Traits traits ;
typedef typename Traits::source_type source_type ;
typedef typename Traits::argument_type argument_type ;
typedef typename Traits::result_type result_type ;
static source_type nearbyint ( argument_type s ) { return s ; }
static result_type convert ( argument_type s )
{
RangeCheckerBase::validate_range(s);
return RawConverterBase::low_level_convert(s);
}
} ;
//--------------------------------------------------------------------------
//
// Selectors for the optimized Converter class.
//
//--------------------------------------------------------------------------
template<class Traits,class OverflowHandler,class Float2IntRounder,class RawConverter, class UserRangeChecker>
struct get_non_trivial_converter
{
typedef GetRC<Traits,OverflowHandler,Float2IntRounder> InternalRangeCheckerQ ;
typedef is_same<UserRangeChecker,UseInternalRangeChecker> use_internal_RC ;
typedef mpl::identity<UserRangeChecker> UserRangeCheckerQ ;
typedef typename
mpl::eval_if<use_internal_RC,InternalRangeCheckerQ,UserRangeCheckerQ>::type
RangeChecker ;
typedef non_rounding_converter<Traits,RangeChecker,RawConverter> NonRounding ;
typedef rounding_converter<Traits,RangeChecker,RawConverter,Float2IntRounder> Rounding ;
typedef mpl::identity<NonRounding> NonRoundingQ ;
typedef mpl::identity<Rounding> RoundingQ ;
typedef typename Traits::int_float_mixture int_float_mixture ;
typedef typename
for_int_float_mixture<int_float_mixture, NonRoundingQ, NonRoundingQ, RoundingQ, NonRoundingQ>::type
selector ;
typedef typename selector::type type ;
} ;
template< class Traits
,class OverflowHandler
,class Float2IntRounder
,class RawConverter
,class UserRangeChecker
>
struct get_converter_impl
{
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT( 0x0561 ) )
// bcc55 prefers sometimes template parameters to be explicit local types.
// (notice that is is illegal to reuse the names like this)
typedef Traits Traits ;
typedef OverflowHandler OverflowHandler ;
typedef Float2IntRounder Float2IntRounder ;
typedef RawConverter RawConverter ;
typedef UserRangeChecker UserRangeChecker ;
#endif
typedef trivial_converter_impl<Traits> Trivial ;
typedef mpl::identity <Trivial> TrivialQ ;
typedef get_non_trivial_converter< Traits
,OverflowHandler
,Float2IntRounder
,RawConverter
,UserRangeChecker
> NonTrivialQ ;
typedef typename Traits::trivial trivial ;
typedef typename mpl::eval_if<trivial,TrivialQ,NonTrivialQ>::type type ;
} ;
} } } // namespace boost::numeric::convdetail
#endif

View File

@@ -0,0 +1,72 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_DETAIL_INT_FLOAT_MIXTURE_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_DETAIL_INT_FLOAT_MIXTURE_FLC_12NOV2002_HPP
#include "boost/config.hpp"
#include "boost/limits.hpp"
#include "boost/numeric/conversion/int_float_mixture_enum.hpp"
#include "boost/numeric/conversion/detail/meta.hpp"
#include "boost/mpl/integral_c.hpp"
namespace boost { namespace numeric { namespace convdetail
{
// Integral Constants for 'IntFloatMixture'
typedef mpl::integral_c<int_float_mixture_enum, integral_to_integral> int2int_c ;
typedef mpl::integral_c<int_float_mixture_enum, integral_to_float> int2float_c ;
typedef mpl::integral_c<int_float_mixture_enum, float_to_integral> float2int_c ;
typedef mpl::integral_c<int_float_mixture_enum, float_to_float> float2float_c ;
// Metafunction:
//
// get_int_float_mixture<T,S>::type
//
// Selects the appropriate Int-Float Mixture Integral Constant for the combination T,S.
//
template<class T,class S>
struct get_int_float_mixture
{
typedef mpl::bool_< ::std::numeric_limits<S>::is_integer > S_int ;
typedef mpl::bool_< ::std::numeric_limits<T>::is_integer > T_int ;
typedef typename
for_both<S_int, T_int, int2int_c, int2float_c, float2int_c, float2float_c>::type
type ;
} ;
// Metafunction:
//
// for_int_float_mixture<Mixture,int_int,int_float,float_int,float_float>::type
//
// {Mixture} is one of the Integral Constants for Mixture, declared above.
// {int_int,int_float,float_int,float_float} are aribtrary types. (not metafunctions)
//
// According to the value of 'IntFloatMixture', selects the corresponding type.
//
template<class IntFloatMixture, class Int2Int, class Int2Float, class Float2Int, class Float2Float>
struct for_int_float_mixture
{
typedef typename
ct_switch4<IntFloatMixture
,int2int_c, int2float_c, float2int_c // default
,Int2Int , Int2Float , Float2Int , Float2Float
>::type
type ;
} ;
} } } // namespace boost::numeric::convdetail
#endif
//
///////////////////////////////////////////////////////////////////////////////////////////////

View File

@@ -0,0 +1,234 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_DETAIL_IS_SUBRANGED_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_DETAIL_IS_SUBRANGED_FLC_12NOV2002_HPP
#include "boost/config.hpp"
#include "boost/limits.hpp"
#include "boost/mpl/int.hpp"
#include "boost/mpl/multiplies.hpp"
#include "boost/mpl/less.hpp"
#include "boost/mpl/equal_to.hpp"
#include "boost/type_traits/is_same.hpp"
#include "boost/numeric/conversion/detail/meta.hpp"
#include "boost/numeric/conversion/detail/int_float_mixture.hpp"
#include "boost/numeric/conversion/detail/sign_mixture.hpp"
#include "boost/numeric/conversion/detail/udt_builtin_mixture.hpp"
namespace boost { namespace numeric { namespace convdetail
{
//---------------------------------------------------------------
// Implementations of the compile time predicate "T is subranged"
//---------------------------------------------------------------
// for integral to integral conversions
template<class T,class S>
struct subranged_Sig2Unsig
{
// Signed to unsigned conversions are 'subranged' because of possible loose
// of negative values.
typedef mpl::true_ type ;
} ;
// for unsigned integral to signed integral conversions
template<class T,class S>
struct subranged_Unsig2Sig
{
// IMPORTANT NOTE:
//
// This code assumes that signed/unsigned integral values are represented
// such that:
//
// numeric_limits<signed T>::digits + 1 == numeric_limits<unsigned T>::digits
//
// The '+1' is required since numeric_limits<>::digits gives 1 bit less for signed integral types.
//
// This fact is used by the following logic:
//
// if ( (numeric_limits<T>::digits+1) < (2*numeric_limits<S>::digits) )
// then the conversion is subranged.
//
typedef mpl::int_< ::std::numeric_limits<S>::digits > S_digits ;
typedef mpl::int_< ::std::numeric_limits<T>::digits > T_digits ;
// T is signed, so take digits+1
typedef typename T_digits::next u_T_digits ;
typedef mpl::int_<2> Two ;
typedef typename mpl::multiplies<S_digits,Two>::type S_digits_times_2 ;
typedef typename mpl::less<u_T_digits,S_digits_times_2>::type type ;
} ;
// for integral to integral conversions of the same sign.
template<class T,class S>
struct subranged_SameSign
{
// An integral conversion of the same sign is subranged if digits(T) < digits(S).
typedef mpl::int_< ::std::numeric_limits<S>::digits > S_digits ;
typedef mpl::int_< ::std::numeric_limits<T>::digits > T_digits ;
typedef typename mpl::less<T_digits,S_digits>::type type ;
} ;
// for integral to float conversions
template<class T,class S>
struct subranged_Int2Float
{
typedef mpl::false_ type ;
} ;
// for float to integral conversions
template<class T,class S>
struct subranged_Float2Int
{
typedef mpl::true_ type ;
} ;
// for float to float conversions
template<class T,class S>
struct subranged_Float2Float
{
// If both T and S are floats,
// compare exponent bits and if they match, mantisa bits.
typedef mpl::int_< ::std::numeric_limits<S>::digits > S_mantisa ;
typedef mpl::int_< ::std::numeric_limits<T>::digits > T_mantisa ;
typedef mpl::int_< ::std::numeric_limits<S>::max_exponent > S_exponent ;
typedef mpl::int_< ::std::numeric_limits<T>::max_exponent > T_exponent ;
typedef typename mpl::less<T_exponent,S_exponent>::type T_smaller_exponent ;
typedef typename mpl::equal_to<T_exponent,S_exponent>::type equal_exponents ;
typedef mpl::less<T_mantisa,S_mantisa> T_smaller_mantisa ;
typedef mpl::eval_if<equal_exponents,T_smaller_mantisa,mpl::false_> not_bigger_exponent_case ;
typedef typename
mpl::eval_if<T_smaller_exponent,mpl::true_,not_bigger_exponent_case>::type
type ;
} ;
// for Udt to built-in conversions
template<class T,class S>
struct subranged_Udt2BuiltIn
{
typedef mpl::true_ type ;
} ;
// for built-in to Udt conversions
template<class T,class S>
struct subranged_BuiltIn2Udt
{
typedef mpl::false_ type ;
} ;
// for Udt to Udt conversions
template<class T,class S>
struct subranged_Udt2Udt
{
typedef mpl::false_ type ;
} ;
//-------------------------------------------------------------------
// Selectors for the implementations of the subranged predicate
//-------------------------------------------------------------------
template<class T,class S>
struct get_subranged_Int2Int
{
typedef subranged_SameSign<T,S> Sig2Sig ;
typedef subranged_Sig2Unsig<T,S> Sig2Unsig ;
typedef subranged_Unsig2Sig<T,S> Unsig2Sig ;
typedef Sig2Sig Unsig2Unsig ;
typedef typename get_sign_mixture<T,S>::type sign_mixture ;
typedef typename
for_sign_mixture<sign_mixture, Sig2Sig, Sig2Unsig, Unsig2Sig, Unsig2Unsig>::type
type ;
} ;
template<class T,class S>
struct get_subranged_BuiltIn2BuiltIn
{
typedef get_subranged_Int2Int<T,S> Int2IntQ ;
typedef subranged_Int2Float <T,S> Int2Float ;
typedef subranged_Float2Int <T,S> Float2Int ;
typedef subranged_Float2Float<T,S> Float2Float ;
typedef mpl::identity<Int2Float > Int2FloatQ ;
typedef mpl::identity<Float2Int > Float2IntQ ;
typedef mpl::identity<Float2Float> Float2FloatQ ;
typedef typename get_int_float_mixture<T,S>::type int_float_mixture ;
typedef for_int_float_mixture<int_float_mixture, Int2IntQ, Int2FloatQ, Float2IntQ, Float2FloatQ> for_ ;
typedef typename for_::type selected ;
typedef typename selected::type type ;
} ;
template<class T,class S>
struct get_subranged
{
typedef get_subranged_BuiltIn2BuiltIn<T,S> BuiltIn2BuiltInQ ;
typedef subranged_BuiltIn2Udt<T,S> BuiltIn2Udt ;
typedef subranged_Udt2BuiltIn<T,S> Udt2BuiltIn ;
typedef subranged_Udt2Udt<T,S> Udt2Udt ;
typedef mpl::identity<BuiltIn2Udt> BuiltIn2UdtQ ;
typedef mpl::identity<Udt2BuiltIn> Udt2BuiltInQ ;
typedef mpl::identity<Udt2Udt > Udt2UdtQ ;
typedef typename get_udt_builtin_mixture<T,S>::type udt_builtin_mixture ;
typedef typename
for_udt_builtin_mixture<udt_builtin_mixture, BuiltIn2BuiltInQ, BuiltIn2UdtQ, Udt2BuiltInQ, Udt2UdtQ>::type
selected ;
typedef typename selected::type selected2 ;
typedef typename selected2::type type ;
} ;
//-------------------------------------------------------------------
// Top level implementation selector.
//-------------------------------------------------------------------
template<class T, class S>
struct get_is_subranged
{
typedef get_subranged<T,S> non_trivial_case ;
typedef mpl::identity<mpl::false_> trivial_case ;
typedef is_same<T,S> is_trivial ;
typedef typename mpl::if_<is_trivial,trivial_case,non_trivial_case>::type selected ;
typedef typename selected::type type ;
} ;
} } } // namespace boost::numeric::convdetail
#endif

View File

@@ -0,0 +1,120 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_DETAIL_META_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_DETAIL_META_FLC_12NOV2002_HPP
#include "boost/type_traits/remove_cv.hpp"
#include "boost/mpl/if.hpp"
#include "boost/mpl/eval_if.hpp"
#include "boost/mpl/equal_to.hpp"
#include "boost/mpl/not.hpp"
#include "boost/mpl/and.hpp"
#include "boost/mpl/bool.hpp"
#include "boost/mpl/identity.hpp"
namespace boost { namespace numeric { namespace convdetail
{
template< class T1, class T2>
struct equal_to
{
#if !defined(__BORLANDC__)
enum { x = ( BOOST_MPL_AUX_VALUE_WKND(T1)::value == BOOST_MPL_AUX_VALUE_WKND(T2)::value ) };
BOOST_STATIC_CONSTANT(bool, value = x);
typedef mpl::bool_<value> type;
#else
BOOST_STATIC_CONSTANT(bool, value = (
BOOST_MPL_AUX_VALUE_WKND(T1)::value
== BOOST_MPL_AUX_VALUE_WKND(T2)::value
));
typedef mpl::bool_<(
BOOST_MPL_AUX_VALUE_WKND(T1)::value
== BOOST_MPL_AUX_VALUE_WKND(T2)::value
)> type;
#endif
};
// Metafunction:
//
// ct_switch4<Value,Case0Val,Case1Val,Case2Val,Case0Type,Case1Type,Case2Type,DefaultType>::type
//
// {Value,Case(X)Val} are Integral Constants (such as: mpl::int_<>)
// {Case(X)Type,DefaultType} are arbitrary types. (not metafunctions)
//
// Returns Case(X)Type if Val==Case(X)Val; DefaultType otherwise.
//
template<class Value,
class Case0Val,
class Case1Val,
class Case2Val,
class Case0Type,
class Case1Type,
class Case2Type,
class DefaultType
>
struct ct_switch4
{
typedef mpl::identity<Case0Type> Case0TypeQ ;
typedef mpl::identity<Case1Type> Case1TypeQ ;
typedef equal_to<Value,Case0Val> is_case0 ;
typedef equal_to<Value,Case1Val> is_case1 ;
typedef equal_to<Value,Case2Val> is_case2 ;
typedef mpl::if_<is_case2,Case2Type,DefaultType> choose_2_3Q ;
typedef mpl::eval_if<is_case1,Case1TypeQ,choose_2_3Q> choose_1_2_3Q ;
typedef typename
mpl::eval_if<is_case0,Case0TypeQ,choose_1_2_3Q>::type
type ;
} ;
// Metafunction:
//
// for_both<expr0,expr1,TT,TF,FT,FF>::type
//
// {exp0,expr1} are Boolean Integral Constants
// {TT,TF,FT,FF} are aribtrary types. (not metafunctions)
//
// According to the combined boolean value of 'expr0 && expr1', selects the corresponding type.
//
template<class expr0, class expr1, class TT, class TF, class FT, class FF>
struct for_both
{
typedef mpl::identity<TF> TF_Q ;
typedef mpl::identity<TT> TT_Q ;
typedef typename mpl::not_<expr0>::type not_expr0 ;
typedef typename mpl::not_<expr1>::type not_expr1 ;
typedef typename mpl::and_<expr0,expr1>::type caseTT ;
typedef typename mpl::and_<expr0,not_expr1>::type caseTF ;
typedef typename mpl::and_<not_expr0,expr1>::type caseFT ;
typedef mpl::if_<caseFT,FT,FF> choose_FT_FF_Q ;
typedef mpl::eval_if<caseTF,TF_Q,choose_FT_FF_Q> choose_TF_FT_FF_Q ;
typedef typename mpl::eval_if<caseTT,TT_Q,choose_TF_FT_FF_Q>::type type ;
} ;
} } } // namespace boost::numeric::convdetail
#endif

View File

@@ -0,0 +1,339 @@
// boost cast.hpp header file ----------------------------------------------//
// (C) Copyright Kevlin Henney and Dave Abrahams 1999.
// Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/conversion for Documentation.
// Revision History
// 23 JUN 05 Code extracted from /boost/cast.hpp into this new header.
// Keeps this legacy version of numeric_cast<> for old compilers
// wich can't compile the new version in /boost/numeric/conversion/cast.hpp
// (Fernando Cacciola)
// 02 Apr 01 Removed BOOST_NO_LIMITS workarounds and included
// <boost/limits.hpp> instead (the workaround did not
// actually compile when BOOST_NO_LIMITS was defined in
// any case, so we loose nothing). (John Maddock)
// 21 Jan 01 Undid a bug I introduced yesterday. numeric_cast<> never
// worked with stock GCC; trying to get it to do that broke
// vc-stlport.
// 20 Jan 01 Moved BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS to config.hpp.
// Removed unused BOOST_EXPLICIT_TARGET macro. Moved
// boost::detail::type to boost/type.hpp. Made it compile with
// stock gcc again (Dave Abrahams)
// 29 Nov 00 Remove nested namespace cast, cleanup spacing before Formal
// Review (Beman Dawes)
// 19 Oct 00 Fix numeric_cast for floating-point types (Dave Abrahams)
// 15 Jul 00 Suppress numeric_cast warnings for GCC, Borland and MSVC
// (Dave Abrahams)
// 30 Jun 00 More MSVC6 wordarounds. See comments below. (Dave Abrahams)
// 28 Jun 00 Removed implicit_cast<>. See comment below. (Beman Dawes)
// 27 Jun 00 More MSVC6 workarounds
// 15 Jun 00 Add workarounds for MSVC6
// 2 Feb 00 Remove bad_numeric_cast ";" syntax error (Doncho Angelov)
// 26 Jan 00 Add missing throw() to bad_numeric_cast::what(0 (Adam Levar)
// 29 Dec 99 Change using declarations so usages in other namespaces work
// correctly (Dave Abrahams)
// 23 Sep 99 Change polymorphic_downcast assert to also detect M.I. errors
// as suggested Darin Adler and improved by Valentin Bonnard.
// 2 Sep 99 Remove controversial asserts, simplify, rename.
// 30 Aug 99 Move to cast.hpp, replace value_cast with numeric_cast,
// place in nested namespace.
// 3 Aug 99 Initial version
#ifndef BOOST_OLD_NUMERIC_CAST_HPP
#define BOOST_OLD_NUMERIC_CAST_HPP
# include <boost/config.hpp>
# include <cassert>
# include <typeinfo>
# include <boost/type.hpp>
# include <boost/limits.hpp>
# include <boost/numeric/conversion/converter_policies.hpp>
// It has been demonstrated numerous times that MSVC 6.0 fails silently at link
// time if you use a template function which has template parameters that don't
// appear in the function's argument list.
//
// TODO: Add this to config.hpp?
// FLC: This macro is repeated in boost/cast.hpp but only locally (is undefined at the bottom)
// so is OK to reproduce it here.
# if defined(BOOST_MSVC) && BOOST_MSVC < 1300
# define BOOST_EXPLICIT_DEFAULT_TARGET , ::boost::type<Target>* = 0
# else
# define BOOST_EXPLICIT_DEFAULT_TARGET
# endif
namespace boost
{
using numeric::bad_numeric_cast;
// LEGACY numeric_cast [only for some old broken compilers] --------------------------------------//
// Contributed by Kevlin Henney
// numeric_cast ------------------------------------------------------------//
#if !defined(BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS) || defined(BOOST_SGI_CPP_LIMITS)
namespace detail
{
template <class T>
struct signed_numeric_limits : std::numeric_limits<T>
{
static inline T min BOOST_PREVENT_MACRO_SUBSTITUTION ()
{
return (std::numeric_limits<T>::min)() >= 0
// unary minus causes integral promotion, thus the static_cast<>
? static_cast<T>(-(std::numeric_limits<T>::max)())
: (std::numeric_limits<T>::min)();
};
};
// Move to namespace boost in utility.hpp?
template <class T, bool specialized>
struct fixed_numeric_limits_base
: public if_true< std::numeric_limits<T>::is_signed >
::BOOST_NESTED_TEMPLATE then< signed_numeric_limits<T>,
std::numeric_limits<T>
>::type
{};
template <class T>
struct fixed_numeric_limits
: fixed_numeric_limits_base<T,(std::numeric_limits<T>::is_specialized)>
{};
# ifdef BOOST_HAS_LONG_LONG
// cover implementations which supply no specialization for long
// long / unsigned long long. Not intended to be full
// numeric_limits replacements, but good enough for numeric_cast<>
template <>
struct fixed_numeric_limits_base< ::boost::long_long_type, false>
{
BOOST_STATIC_CONSTANT(bool, is_specialized = true);
BOOST_STATIC_CONSTANT(bool, is_signed = true);
static ::boost::long_long_type max BOOST_PREVENT_MACRO_SUBSTITUTION ()
{
# ifdef LONGLONG_MAX
return LONGLONG_MAX;
# else
return 9223372036854775807LL; // hope this is portable
# endif
}
static ::boost::long_long_type min BOOST_PREVENT_MACRO_SUBSTITUTION ()
{
# ifdef LONGLONG_MIN
return LONGLONG_MIN;
# else
return -( 9223372036854775807LL )-1; // hope this is portable
# endif
}
};
template <>
struct fixed_numeric_limits_base< ::boost::ulong_long_type, false>
{
BOOST_STATIC_CONSTANT(bool, is_specialized = true);
BOOST_STATIC_CONSTANT(bool, is_signed = false);
static ::boost::ulong_long_type max BOOST_PREVENT_MACRO_SUBSTITUTION ()
{
# ifdef ULONGLONG_MAX
return ULONGLONG_MAX;
# else
return 0xffffffffffffffffULL; // hope this is portable
# endif
}
static ::boost::ulong_long_type min BOOST_PREVENT_MACRO_SUBSTITUTION () { return 0; }
};
# endif
} // namespace detail
// less_than_type_min -
// x_is_signed should be numeric_limits<X>::is_signed
// y_is_signed should be numeric_limits<Y>::is_signed
// y_min should be numeric_limits<Y>::min()
//
// check(x, y_min) returns true iff x < y_min without invoking comparisons
// between signed and unsigned values.
//
// "poor man's partial specialization" is in use here.
template <bool x_is_signed, bool y_is_signed>
struct less_than_type_min
{
template <class X, class Y>
static bool check(X x, Y y_min)
{ return x < y_min; }
};
template <>
struct less_than_type_min<false, true>
{
template <class X, class Y>
static bool check(X, Y)
{ return false; }
};
template <>
struct less_than_type_min<true, false>
{
template <class X, class Y>
static bool check(X x, Y)
{ return x < 0; }
};
// greater_than_type_max -
// same_sign should be:
// numeric_limits<X>::is_signed == numeric_limits<Y>::is_signed
// y_max should be numeric_limits<Y>::max()
//
// check(x, y_max) returns true iff x > y_max without invoking comparisons
// between signed and unsigned values.
//
// "poor man's partial specialization" is in use here.
template <bool same_sign, bool x_is_signed>
struct greater_than_type_max;
template<>
struct greater_than_type_max<true, true>
{
template <class X, class Y>
static inline bool check(X x, Y y_max)
{ return x > y_max; }
};
template <>
struct greater_than_type_max<false, true>
{
// What does the standard say about this? I think it's right, and it
// will work with every compiler I know of.
template <class X, class Y>
static inline bool check(X x, Y)
{ return x >= 0 && static_cast<X>(static_cast<Y>(x)) != x; }
# if defined(BOOST_MSVC) && BOOST_MSVC < 1300
// MSVC6 can't static_cast unsigned __int64 -> floating types
# define BOOST_UINT64_CAST(src_type) \
static inline bool check(src_type x, unsigned __int64) \
{ \
if (x < 0) return false; \
unsigned __int64 y = static_cast<unsigned __int64>(x); \
bool odd = y & 0x1; \
__int64 div2 = static_cast<__int64>(y >> 1); \
return ((static_cast<src_type>(div2) * 2.0) + odd) != x; \
}
BOOST_UINT64_CAST(long double);
BOOST_UINT64_CAST(double);
BOOST_UINT64_CAST(float);
# undef BOOST_UINT64_CAST
# endif
};
template<>
struct greater_than_type_max<true, false>
{
template <class X, class Y>
static inline bool check(X x, Y y_max)
{ return x > y_max; }
};
template <>
struct greater_than_type_max<false, false>
{
// What does the standard say about this? I think it's right, and it
// will work with every compiler I know of.
template <class X, class Y>
static inline bool check(X x, Y)
{ return static_cast<X>(static_cast<Y>(x)) != x; }
};
#else // use #pragma hacks if available
namespace detail
{
# if BOOST_MSVC
# pragma warning(push)
# pragma warning(disable : 4018)
# pragma warning(disable : 4146)
#elif defined(__BORLANDC__)
# pragma option push -w-8041
# endif
// Move to namespace boost in utility.hpp?
template <class T>
struct fixed_numeric_limits : public std::numeric_limits<T>
{
static inline T min BOOST_PREVENT_MACRO_SUBSTITUTION ()
{
return std::numeric_limits<T>::is_signed && (std::numeric_limits<T>::min)() >= 0
? T(-(std::numeric_limits<T>::max)()) : (std::numeric_limits<T>::min)();
}
};
# if BOOST_MSVC
# pragma warning(pop)
#elif defined(__BORLANDC__)
# pragma option pop
# endif
} // namespace detail
#endif
template<typename Target, typename Source>
inline Target numeric_cast(Source arg BOOST_EXPLICIT_DEFAULT_TARGET)
{
// typedefs abbreviating respective trait classes
typedef detail::fixed_numeric_limits<Source> arg_traits;
typedef detail::fixed_numeric_limits<Target> result_traits;
#if defined(BOOST_STRICT_CONFIG) \
|| (!defined(__HP_aCC) || __HP_aCC > 33900) \
&& (!defined(BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS) \
|| defined(BOOST_SGI_CPP_LIMITS))
// typedefs that act as compile time assertions
// (to be replaced by boost compile time assertions
// as and when they become available and are stable)
typedef bool argument_must_be_numeric[arg_traits::is_specialized];
typedef bool result_must_be_numeric[result_traits::is_specialized];
const bool arg_is_signed = arg_traits::is_signed;
const bool result_is_signed = result_traits::is_signed;
const bool same_sign = arg_is_signed == result_is_signed;
if (less_than_type_min<arg_is_signed, result_is_signed>::check(arg, (result_traits::min)())
|| greater_than_type_max<same_sign, arg_is_signed>::check(arg, (result_traits::max)())
)
#else // We need to use #pragma hacks if available
# if BOOST_MSVC
# pragma warning(push)
# pragma warning(disable : 4018)
#elif defined(__BORLANDC__)
#pragma option push -w-8012
# endif
if ((arg < 0 && !result_traits::is_signed) // loss of negative range
|| (arg_traits::is_signed && arg < (result_traits::min)()) // underflow
|| arg > (result_traits::max)()) // overflow
# if BOOST_MSVC
# pragma warning(pop)
#elif defined(__BORLANDC__)
#pragma option pop
# endif
#endif
{
throw bad_numeric_cast();
}
return static_cast<Target>(arg);
} // numeric_cast
# undef BOOST_EXPLICIT_DEFAULT_TARGET
} // namespace boost
#endif // BOOST_OLD_NUMERIC_CAST_HPP

View File

@@ -0,0 +1,72 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_DETAIL_SIGN_MIXTURE_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_DETAIL_SIGN_MIXTURE_FLC_12NOV2002_HPP
#include "boost/config.hpp"
#include "boost/limits.hpp"
#include "boost/numeric/conversion/sign_mixture_enum.hpp"
#include "boost/numeric/conversion/detail/meta.hpp"
#include "boost/mpl/integral_c.hpp"
namespace boost { namespace numeric { namespace convdetail
{
// Integral Constants for 'SignMixture'
typedef mpl::integral_c<sign_mixture_enum, unsigned_to_unsigned> unsig2unsig_c ;
typedef mpl::integral_c<sign_mixture_enum, signed_to_signed> sig2sig_c ;
typedef mpl::integral_c<sign_mixture_enum, signed_to_unsigned> sig2unsig_c ;
typedef mpl::integral_c<sign_mixture_enum, unsigned_to_signed> unsig2sig_c ;
// Metafunction:
//
// get_sign_mixture<T,S>::type
//
// Selects the appropriate SignMixture Integral Constant for the combination T,S.
//
template<class T,class S>
struct get_sign_mixture
{
typedef mpl::bool_< ::std::numeric_limits<S>::is_signed > S_signed ;
typedef mpl::bool_< ::std::numeric_limits<T>::is_signed > T_signed ;
typedef typename
for_both<S_signed, T_signed, sig2sig_c, sig2unsig_c, unsig2sig_c, unsig2unsig_c>::type
type ;
} ;
// Metafunction:
//
// for_sign_mixture<SignMixture,Sig2Sig,Sig2Unsig,Unsig2Sig,Unsig2Unsig>::type
//
// {SignMixture} is one of the Integral Constants for SignMixture, declared above.
// {Sig2Sig,Sig2Unsig,Unsig2Sig,Unsig2Unsig} are aribtrary types. (not metafunctions)
//
// According to the value of 'SignMixture', selects the corresponding type.
//
template<class SignMixture, class Sig2Sig, class Sig2Unsig, class Unsig2Sig, class Unsig2Unsig>
struct for_sign_mixture
{
typedef typename
ct_switch4<SignMixture
, sig2sig_c, sig2unsig_c, unsig2sig_c // default
, Sig2Sig , Sig2Unsig , Unsig2Sig , Unsig2Unsig
>::type
type ;
} ;
} } } // namespace boost::numeric::convdetail
#endif
//
///////////////////////////////////////////////////////////////////////////////////////////////

View File

@@ -0,0 +1,69 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_DETAIL_UDT_BUILTIN_MIXTURE_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_DETAIL_UDT_BUILTIN_MIXTURE_FLC_12NOV2002_HPP
#include "boost/type_traits/is_arithmetic.hpp"
#include "boost/numeric/conversion/udt_builtin_mixture_enum.hpp"
#include "boost/numeric/conversion/detail/meta.hpp"
#include "boost/mpl/integral_c.hpp"
namespace boost { namespace numeric { namespace convdetail
{
// Integral Constants for 'UdtMixture'
typedef mpl::integral_c<udt_builtin_mixture_enum, builtin_to_builtin> builtin2builtin_c ;
typedef mpl::integral_c<udt_builtin_mixture_enum, builtin_to_udt> builtin2udt_c ;
typedef mpl::integral_c<udt_builtin_mixture_enum, udt_to_builtin> udt2builtin_c ;
typedef mpl::integral_c<udt_builtin_mixture_enum, udt_to_udt> udt2udt_c ;
// Metafunction:
//
// for_udt_mixture<UdtMixture,BuiltIn2BuiltIn,BuiltIn2Udt,Udt2BuiltIn,Udt2Udt>::type
//
// {UdtMixture} is one of the Integral Constants for UdMixture, declared above.
// {BuiltIn2BuiltIn,BuiltIn2Udt,Udt2BuiltIn,Udt2Udt} are aribtrary types. (not metafunctions)
//
// According to the value of 'UdtMixture', selects the corresponding type.
//
template<class UdtMixture, class BuiltIn2BuiltIn, class BuiltIn2Udt, class Udt2BuiltIn, class Udt2Udt>
struct for_udt_builtin_mixture
{
typedef typename
ct_switch4<UdtMixture
, builtin2builtin_c, builtin2udt_c, udt2builtin_c // default
, BuiltIn2BuiltIn , BuiltIn2Udt , Udt2BuiltIn , Udt2Udt
>::type
type ;
} ;
// Metafunction:
//
// get_udt_mixture<T,S>::type
//
// Selects the appropriate UdtMixture Integral Constant for the combination T,S.
//
template<class T,class S>
struct get_udt_builtin_mixture
{
typedef is_arithmetic<S> S_builtin ;
typedef is_arithmetic<T> T_builtin ;
typedef typename
for_both<S_builtin, T_builtin, builtin2builtin_c, builtin2udt_c, udt2builtin_c, udt2udt_c>::type
type ;
} ;
} } } // namespace boost::numeric::convdetail
#endif

View File

@@ -0,0 +1,30 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_INT_FLOAT_MIXTURE_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_INT_FLOAT_MIXTURE_FLC_12NOV2002_HPP
#include "boost/numeric/conversion/detail/int_float_mixture.hpp"
namespace boost { namespace numeric
{
template<class T, class S>
struct int_float_mixture
: convdetail::get_int_float_mixture< BOOST_DEDUCED_TYPENAME remove_cv<T>::type
,BOOST_DEDUCED_TYPENAME remove_cv<S>::type
>::type {} ;
} } // namespace boost::numeric
#endif
//
///////////////////////////////////////////////////////////////////////////////////////////////

View File

@@ -0,0 +1,29 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_INT_FLOAT_MIXTURE_ENUM_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_INT_FLOAT_MIXTURE_ENUM_FLC_12NOV2002_HPP
namespace boost { namespace numeric
{
enum int_float_mixture_enum
{
integral_to_integral
,integral_to_float
,float_to_integral
,float_to_float
} ;
} } // namespace boost::numeric
#endif
//
///////////////////////////////////////////////////////////////////////////////////////////////

View File

@@ -0,0 +1,27 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_IS_SUBRANGED_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_IS_SUBRANGED_FLC_12NOV2002_HPP
#include "boost/numeric/conversion/detail/is_subranged.hpp"
namespace boost { namespace numeric {
template<class T, class S>
struct is_subranged
: convdetail::get_is_subranged< BOOST_DEDUCED_TYPENAME remove_cv<T>::type
,BOOST_DEDUCED_TYPENAME remove_cv<S>::type
>::type {} ;
} } // namespace boost::numeric
#endif

View File

@@ -0,0 +1,30 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_SIGN_MIXTURE_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_SIGN_MIXTURE_FLC_12NOV2002_HPP
#include "boost/numeric/conversion/detail/sign_mixture.hpp"
namespace boost { namespace numeric
{
template<class T, class S>
struct sign_mixture
: convdetail::get_sign_mixture< BOOST_DEDUCED_TYPENAME remove_cv<T>::type
,BOOST_DEDUCED_TYPENAME remove_cv<S>::type
>::type {} ;
} } // namespace boost::numeric
#endif
//
///////////////////////////////////////////////////////////////////////////////////////////////

View File

@@ -0,0 +1,29 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_SIGN_MIXTURE_ENUM_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_SIGN_MIXTURE_ENUM_FLC_12NOV2002_HPP
namespace boost { namespace numeric
{
enum sign_mixture_enum
{
unsigned_to_unsigned
,signed_to_signed
,signed_to_unsigned
,unsigned_to_signed
} ;
} } // namespace boost::numeric
#endif
//
///////////////////////////////////////////////////////////////////////////////////////////////

View File

@@ -0,0 +1,28 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_UDT_BUILTIN_MIXTURE_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_UDT_BUILTIN_MIXTURE_FLC_12NOV2002_HPP
#include "boost/numeric/conversion/detail/udt_builtin_mixture.hpp"
namespace boost { namespace numeric
{
template<class T, class S>
struct udt_builtin_mixture
: convdetail::get_udt_builtin_mixture< BOOST_DEDUCED_TYPENAME remove_cv<T>::type
,BOOST_DEDUCED_TYPENAME remove_cv<S>::type
>::type {} ;
} } // namespace boost::numeric
#endif

View File

@@ -0,0 +1,26 @@
// (c) Copyright Fernando Luis Cacciola Carballal 2000-2004
// Use, modification, and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See library home page at http://www.boost.org/libs/numeric/conversion
//
// Contact the author at: fernando_cacciola@hotmail.com
//
#ifndef BOOST_NUMERIC_CONVERSION_UDT_BUILTIN_MIXTURE_ENUM_FLC_12NOV2002_HPP
#define BOOST_NUMERIC_CONVERSION_UDT_BUILTIN_MIXTURE_ENUM_FLC_12NOV2002_HPP
namespace boost { namespace numeric
{
enum udt_builtin_mixture_enum
{
builtin_to_builtin
,builtin_to_udt
,udt_to_builtin
,udt_to_udt
} ;
} } // namespace boost::numeric
#endif

View File

@@ -0,0 +1,32 @@
/* Boost interval.hpp header file
*
* Copyright 2000 Jens Maurer
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_HPP
#define BOOST_NUMERIC_INTERVAL_HPP
#include <boost/limits.hpp>
#include <boost/numeric/interval/interval.hpp>
#include <boost/numeric/interval/policies.hpp>
#include <boost/numeric/interval/hw_rounding.hpp>
#include <boost/numeric/interval/rounded_arith.hpp>
#include <boost/numeric/interval/rounded_transc.hpp>
#include <boost/numeric/interval/constants.hpp>
#include <boost/numeric/interval/checking.hpp>
#include <boost/numeric/interval/compare.hpp>
#include <boost/numeric/interval/utility.hpp>
#include <boost/numeric/interval/arith.hpp>
#include <boost/numeric/interval/arith2.hpp>
#include <boost/numeric/interval/arith3.hpp>
#include <boost/numeric/interval/transc.hpp>
#endif // BOOST_NUMERIC_INTERVAL_HPP

View File

@@ -0,0 +1,305 @@
/* Boost interval/arith.hpp template implementation file
*
* Copyright 2000 Jens Maurer
* Copyright 2002-2003 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_ARITH_HPP
#define BOOST_NUMERIC_INTERVAL_ARITH_HPP
#include <boost/config.hpp>
#include <boost/numeric/interval/interval.hpp>
#include <boost/numeric/interval/detail/bugs.hpp>
#include <boost/numeric/interval/detail/test_input.hpp>
#include <boost/numeric/interval/detail/division.hpp>
#include <algorithm>
namespace boost {
namespace numeric {
/*
* Basic arithmetic operators
*/
template<class T, class Policies> inline
const interval<T, Policies>& operator+(const interval<T, Policies>& x)
{
return x;
}
template<class T, class Policies> inline
interval<T, Policies> operator-(const interval<T, Policies>& x)
{
if (interval_lib::detail::test_input(x))
return interval<T, Policies>::empty();
return interval<T, Policies>(-x.upper(), -x.lower(), true);
}
template<class T, class Policies> inline
interval<T, Policies>& interval<T, Policies>::operator+=(const interval<T, Policies>& r)
{
if (interval_lib::detail::test_input(*this, r))
set_empty();
else {
typename Policies::rounding rnd;
set(rnd.add_down(low, r.low), rnd.add_up(up, r.up));
}
return *this;
}
template<class T, class Policies> inline
interval<T, Policies>& interval<T, Policies>::operator+=(const T& r)
{
if (interval_lib::detail::test_input(*this, r))
set_empty();
else {
typename Policies::rounding rnd;
set(rnd.add_down(low, r), rnd.add_up(up, r));
}
return *this;
}
template<class T, class Policies> inline
interval<T, Policies>& interval<T, Policies>::operator-=(const interval<T, Policies>& r)
{
if (interval_lib::detail::test_input(*this, r))
set_empty();
else {
typename Policies::rounding rnd;
set(rnd.sub_down(low, r.up), rnd.sub_up(up, r.low));
}
return *this;
}
template<class T, class Policies> inline
interval<T, Policies>& interval<T, Policies>::operator-=(const T& r)
{
if (interval_lib::detail::test_input(*this, r))
set_empty();
else {
typename Policies::rounding rnd;
set(rnd.sub_down(low, r), rnd.sub_up(up, r));
}
return *this;
}
template<class T, class Policies> inline
interval<T, Policies>& interval<T, Policies>::operator*=(const interval<T, Policies>& r)
{
return *this = *this * r;
}
template<class T, class Policies> inline
interval<T, Policies>& interval<T, Policies>::operator*=(const T& r)
{
return *this = r * *this;
}
template<class T, class Policies> inline
interval<T, Policies>& interval<T, Policies>::operator/=(const interval<T, Policies>& r)
{
return *this = *this / r;
}
template<class T, class Policies> inline
interval<T, Policies>& interval<T, Policies>::operator/=(const T& r)
{
return *this = *this / r;
}
template<class T, class Policies> inline
interval<T, Policies> operator+(const interval<T, Policies>& x,
const interval<T, Policies>& y)
{
if (interval_lib::detail::test_input(x, y))
return interval<T, Policies>::empty();
typename Policies::rounding rnd;
return interval<T,Policies>(rnd.add_down(x.lower(), y.lower()),
rnd.add_up (x.upper(), y.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> operator+(const T& x, const interval<T, Policies>& y)
{
if (interval_lib::detail::test_input(x, y))
return interval<T, Policies>::empty();
typename Policies::rounding rnd;
return interval<T,Policies>(rnd.add_down(x, y.lower()),
rnd.add_up (x, y.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> operator+(const interval<T, Policies>& x, const T& y)
{ return y + x; }
template<class T, class Policies> inline
interval<T, Policies> operator-(const interval<T, Policies>& x,
const interval<T, Policies>& y)
{
if (interval_lib::detail::test_input(x, y))
return interval<T, Policies>::empty();
typename Policies::rounding rnd;
return interval<T,Policies>(rnd.sub_down(x.lower(), y.upper()),
rnd.sub_up (x.upper(), y.lower()), true);
}
template<class T, class Policies> inline
interval<T, Policies> operator-(const T& x, const interval<T, Policies>& y)
{
if (interval_lib::detail::test_input(x, y))
return interval<T, Policies>::empty();
typename Policies::rounding rnd;
return interval<T,Policies>(rnd.sub_down(x, y.upper()),
rnd.sub_up (x, y.lower()), true);
}
template<class T, class Policies> inline
interval<T, Policies> operator-(const interval<T, Policies>& x, const T& y)
{
if (interval_lib::detail::test_input(x, y))
return interval<T, Policies>::empty();
typename Policies::rounding rnd;
return interval<T,Policies>(rnd.sub_down(x.lower(), y),
rnd.sub_up (x.upper(), y), true);
}
template<class T, class Policies> inline
interval<T, Policies> operator*(const interval<T, Policies>& x,
const interval<T, Policies>& y)
{
BOOST_USING_STD_MIN();
BOOST_USING_STD_MAX();
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x, y))
return I::empty();
typename Policies::rounding rnd;
const T& xl = x.lower();
const T& xu = x.upper();
const T& yl = y.lower();
const T& yu = y.upper();
if (interval_lib::user::is_neg(xl))
if (interval_lib::user::is_pos(xu))
if (interval_lib::user::is_neg(yl))
if (interval_lib::user::is_pos(yu)) // M * M
return I(min BOOST_PREVENT_MACRO_SUBSTITUTION(rnd.mul_down(xl, yu), rnd.mul_down(xu, yl)),
max BOOST_PREVENT_MACRO_SUBSTITUTION(rnd.mul_up (xl, yl), rnd.mul_up (xu, yu)), true);
else // M * N
return I(rnd.mul_down(xu, yl), rnd.mul_up(xl, yl), true);
else
if (interval_lib::user::is_pos(yu)) // M * P
return I(rnd.mul_down(xl, yu), rnd.mul_up(xu, yu), true);
else // M * Z
return I(static_cast<T>(0), static_cast<T>(0), true);
else
if (interval_lib::user::is_neg(yl))
if (interval_lib::user::is_pos(yu)) // N * M
return I(rnd.mul_down(xl, yu), rnd.mul_up(xl, yl), true);
else // N * N
return I(rnd.mul_down(xu, yu), rnd.mul_up(xl, yl), true);
else
if (interval_lib::user::is_pos(yu)) // N * P
return I(rnd.mul_down(xl, yu), rnd.mul_up(xu, yl), true);
else // N * Z
return I(static_cast<T>(0), static_cast<T>(0), true);
else
if (interval_lib::user::is_pos(xu))
if (interval_lib::user::is_neg(yl))
if (interval_lib::user::is_pos(yu)) // P * M
return I(rnd.mul_down(xu, yl), rnd.mul_up(xu, yu), true);
else // P * N
return I(rnd.mul_down(xu, yl), rnd.mul_up(xl, yu), true);
else
if (interval_lib::user::is_pos(yu)) // P * P
return I(rnd.mul_down(xl, yl), rnd.mul_up(xu, yu), true);
else // P * Z
return I(static_cast<T>(0), static_cast<T>(0), true);
else // Z * ?
return I(static_cast<T>(0), static_cast<T>(0), true);
}
template<class T, class Policies> inline
interval<T, Policies> operator*(const T& x, const interval<T, Policies>& y)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x, y))
return I::empty();
typename Policies::rounding rnd;
const T& yl = y.lower();
const T& yu = y.upper();
// x is supposed not to be infinite
if (interval_lib::user::is_neg(x))
return I(rnd.mul_down(x, yu), rnd.mul_up(x, yl), true);
else if (interval_lib::user::is_zero(x))
return I(static_cast<T>(0), static_cast<T>(0), true);
else
return I(rnd.mul_down(x, yl), rnd.mul_up(x, yu), true);
}
template<class T, class Policies> inline
interval<T, Policies> operator*(const interval<T, Policies>& x, const T& y)
{ return y * x; }
template<class T, class Policies> inline
interval<T, Policies> operator/(const interval<T, Policies>& x,
const interval<T, Policies>& y)
{
if (interval_lib::detail::test_input(x, y))
return interval<T, Policies>::empty();
if (zero_in(y))
if (!interval_lib::user::is_zero(y.lower()))
if (!interval_lib::user::is_zero(y.upper()))
return interval_lib::detail::div_zero(x);
else
return interval_lib::detail::div_negative(x, y.lower());
else
if (!interval_lib::user::is_zero(y.upper()))
return interval_lib::detail::div_positive(x, y.upper());
else
return interval<T, Policies>::empty();
else
return interval_lib::detail::div_non_zero(x, y);
}
template<class T, class Policies> inline
interval<T, Policies> operator/(const T& x, const interval<T, Policies>& y)
{
if (interval_lib::detail::test_input(x, y))
return interval<T, Policies>::empty();
if (zero_in(y))
if (!interval_lib::user::is_zero(y.lower()))
if (!interval_lib::user::is_zero(y.upper()))
return interval_lib::detail::div_zero<T, Policies>(x);
else
return interval_lib::detail::div_negative<T, Policies>(x, y.lower());
else
if (!interval_lib::user::is_zero(y.upper()))
return interval_lib::detail::div_positive<T, Policies>(x, y.upper());
else
return interval<T, Policies>::empty();
else
return interval_lib::detail::div_non_zero(x, y);
}
template<class T, class Policies> inline
interval<T, Policies> operator/(const interval<T, Policies>& x, const T& y)
{
if (interval_lib::detail::test_input(x, y) || interval_lib::user::is_zero(y))
return interval<T, Policies>::empty();
typename Policies::rounding rnd;
const T& xl = x.lower();
const T& xu = x.upper();
if (interval_lib::user::is_neg(y))
return interval<T, Policies>(rnd.div_down(xu, y), rnd.div_up(xl, y), true);
else
return interval<T, Policies>(rnd.div_down(xl, y), rnd.div_up(xu, y), true);
}
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_ARITH_HPP

View File

@@ -0,0 +1,305 @@
/* Boost interval/arith2.hpp template implementation file
*
* This header provides some auxiliary arithmetic
* functions: fmod, sqrt, square, pov, inverse and
* a multi-interval division.
*
* Copyright 2002-2003 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_ARITH2_HPP
#define BOOST_NUMERIC_INTERVAL_ARITH2_HPP
#include <boost/config.hpp>
#include <boost/numeric/interval/detail/interval_prototype.hpp>
#include <boost/numeric/interval/detail/test_input.hpp>
#include <boost/numeric/interval/detail/bugs.hpp>
#include <boost/numeric/interval/detail/division.hpp>
#include <boost/numeric/interval/arith.hpp>
#include <boost/numeric/interval/policies.hpp>
#include <algorithm>
#include <cassert>
#include <boost/config/no_tr1/cmath.hpp>
namespace boost {
namespace numeric {
template<class T, class Policies> inline
interval<T, Policies> fmod(const interval<T, Policies>& x,
const interval<T, Policies>& y)
{
if (interval_lib::detail::test_input(x, y))
return interval<T, Policies>::empty();
typename Policies::rounding rnd;
typedef typename interval_lib::unprotect<interval<T, Policies> >::type I;
T const &yb = interval_lib::user::is_neg(x.lower()) ? y.lower() : y.upper();
T n = rnd.int_down(rnd.div_down(x.lower(), yb));
return (const I&)x - n * (const I&)y;
}
template<class T, class Policies> inline
interval<T, Policies> fmod(const interval<T, Policies>& x, const T& y)
{
if (interval_lib::detail::test_input(x, y))
return interval<T, Policies>::empty();
typename Policies::rounding rnd;
typedef typename interval_lib::unprotect<interval<T, Policies> >::type I;
T n = rnd.int_down(rnd.div_down(x.lower(), y));
return (const I&)x - n * I(y);
}
template<class T, class Policies> inline
interval<T, Policies> fmod(const T& x, const interval<T, Policies>& y)
{
if (interval_lib::detail::test_input(x, y))
return interval<T, Policies>::empty();
typename Policies::rounding rnd;
typedef typename interval_lib::unprotect<interval<T, Policies> >::type I;
T const &yb = interval_lib::user::is_neg(x) ? y.lower() : y.upper();
T n = rnd.int_down(rnd.div_down(x, yb));
return x - n * (const I&)y;
}
namespace interval_lib {
template<class T, class Policies> inline
interval<T, Policies> division_part1(const interval<T, Policies>& x,
const interval<T, Policies>& y, bool& b)
{
typedef interval<T, Policies> I;
b = false;
if (detail::test_input(x, y))
return I::empty();
if (zero_in(y))
if (!user::is_zero(y.lower()))
if (!user::is_zero(y.upper()))
return detail::div_zero_part1(x, y, b);
else
return detail::div_negative(x, y.lower());
else
if (!user::is_zero(y.upper()))
return detail::div_positive(x, y.upper());
else
return I::empty();
else
return detail::div_non_zero(x, y);
}
template<class T, class Policies> inline
interval<T, Policies> division_part2(const interval<T, Policies>& x,
const interval<T, Policies>& y, bool b = true)
{
if (!b) return interval<T, Policies>::empty();
return detail::div_zero_part2(x, y);
}
template<class T, class Policies> inline
interval<T, Policies> multiplicative_inverse(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (detail::test_input(x))
return I::empty();
T one = static_cast<T>(1);
typename Policies::rounding rnd;
if (zero_in(x)) {
typedef typename Policies::checking checking;
if (!user::is_zero(x.lower()))
if (!user::is_zero(x.upper()))
return I::whole();
else
return I(checking::neg_inf(), rnd.div_up(one, x.lower()), true);
else
if (!user::is_zero(x.upper()))
return I(rnd.div_down(one, x.upper()), checking::pos_inf(), true);
else
return I::empty();
} else
return I(rnd.div_down(one, x.upper()), rnd.div_up(one, x.lower()), true);
}
namespace detail {
template<class T, class Rounding> inline
T pow_dn(const T& x_, int pwr, Rounding& rnd) // x and pwr are positive
{
T x = x_;
T y = (pwr & 1) ? x_ : static_cast<T>(1);
pwr >>= 1;
while (pwr > 0) {
x = rnd.mul_down(x, x);
if (pwr & 1) y = rnd.mul_down(x, y);
pwr >>= 1;
}
return y;
}
template<class T, class Rounding> inline
T pow_up(const T& x_, int pwr, Rounding& rnd) // x and pwr are positive
{
T x = x_;
T y = (pwr & 1) ? x_ : static_cast<T>(1);
pwr >>= 1;
while (pwr > 0) {
x = rnd.mul_up(x, x);
if (pwr & 1) y = rnd.mul_up(x, y);
pwr >>= 1;
}
return y;
}
} // namespace detail
} // namespace interval_lib
template<class T, class Policies> inline
interval<T, Policies> pow(const interval<T, Policies>& x, int pwr)
{
BOOST_USING_STD_MAX();
using interval_lib::detail::pow_dn;
using interval_lib::detail::pow_up;
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x))
return I::empty();
if (pwr == 0)
if (interval_lib::user::is_zero(x.lower())
&& interval_lib::user::is_zero(x.upper()))
return I::empty();
else
return I(static_cast<T>(1));
else if (pwr < 0)
return interval_lib::multiplicative_inverse(pow(x, -pwr));
typename Policies::rounding rnd;
if (interval_lib::user::is_neg(x.upper())) { // [-2,-1]
T yl = pow_dn(static_cast<T>(-x.upper()), pwr, rnd);
T yu = pow_up(static_cast<T>(-x.lower()), pwr, rnd);
if (pwr & 1) // [-2,-1]^1
return I(-yu, -yl, true);
else // [-2,-1]^2
return I(yl, yu, true);
} else if (interval_lib::user::is_neg(x.lower())) { // [-1,1]
if (pwr & 1) { // [-1,1]^1
return I(-pow_up(-x.lower(), pwr, rnd), pow_up(x.upper(), pwr, rnd), true);
} else { // [-1,1]^2
return I(static_cast<T>(0), pow_up(max BOOST_PREVENT_MACRO_SUBSTITUTION(static_cast<T>(-x.lower()), x.upper()), pwr, rnd), true);
}
} else { // [1,2]
return I(pow_dn(x.lower(), pwr, rnd), pow_up(x.upper(), pwr, rnd), true);
}
}
template<class T, class Policies> inline
interval<T, Policies> sqrt(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x) || interval_lib::user::is_neg(x.upper()))
return I::empty();
typename Policies::rounding rnd;
T l = !interval_lib::user::is_pos(x.lower()) ? static_cast<T>(0) : rnd.sqrt_down(x.lower());
return I(l, rnd.sqrt_up(x.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> square(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x))
return I::empty();
typename Policies::rounding rnd;
const T& xl = x.lower();
const T& xu = x.upper();
if (interval_lib::user::is_neg(xu))
return I(rnd.mul_down(xu, xu), rnd.mul_up(xl, xl), true);
else if (interval_lib::user::is_pos(x.lower()))
return I(rnd.mul_down(xl, xl), rnd.mul_up(xu, xu), true);
else
return I(static_cast<T>(0), (-xl > xu ? rnd.mul_up(xl, xl) : rnd.mul_up(xu, xu)), true);
}
namespace interval_lib {
namespace detail {
template< class I > inline
I root_aux(typename I::base_type const &x, int k) // x and k are bigger than one
{
typedef typename I::base_type T;
T tk(k);
I y(static_cast<T>(1), x, true);
for(;;) {
T y0 = median(y);
I yy = intersect(y, y0 - (pow(I(y0, y0, true), k) - x) / (tk * pow(y, k - 1)));
if (equal(y, yy)) return y;
y = yy;
}
}
template< class I > inline // x is positive and k bigger than one
typename I::base_type root_aux_dn(typename I::base_type const &x, int k)
{
typedef typename I::base_type T;
typedef typename I::traits_type Policies;
typename Policies::rounding rnd;
T one(1);
if (x > one) return root_aux<I>(x, k).lower();
if (x == one) return one;
return rnd.div_down(one, root_aux<I>(rnd.div_up(one, x), k).upper());
}
template< class I > inline // x is positive and k bigger than one
typename I::base_type root_aux_up(typename I::base_type const &x, int k)
{
typedef typename I::base_type T;
typedef typename I::traits_type Policies;
typename Policies::rounding rnd;
T one(1);
if (x > one) return root_aux<I>(x, k).upper();
if (x == one) return one;
return rnd.div_up(one, root_aux<I>(rnd.div_down(one, x), k).lower());
}
} // namespace detail
} // namespace interval_lib
template< class T, class Policies > inline
interval<T, Policies> nth_root(interval<T, Policies> const &x, int k)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x)) return I::empty();
assert(k > 0);
if (k == 1) return x;
typename Policies::rounding rnd;
typedef typename interval_lib::unprotect<I>::type R;
if (!interval_lib::user::is_pos(x.upper())) {
if (interval_lib::user::is_zero(x.upper())) {
T zero(0);
if (!(k & 1) || interval_lib::user::is_zero(x.lower())) // [-1,0]^/2 or [0,0]
return I(zero, zero, true);
else // [-1,0]^/3
return I(-interval_lib::detail::root_aux_up<R>(-x.lower(), k), zero, true);
} else if (!(k & 1)) // [-2,-1]^/2
return I::empty();
else { // [-2,-1]^/3
return I(-interval_lib::detail::root_aux_up<R>(-x.lower(), k),
-interval_lib::detail::root_aux_dn<R>(-x.upper(), k), true);
}
}
T u = interval_lib::detail::root_aux_up<R>(x.upper(), k);
if (!interval_lib::user::is_pos(x.lower()))
if (!(k & 1) || interval_lib::user::is_zero(x.lower())) // [-1,1]^/2 or [0,1]
return I(static_cast<T>(0), u, true);
else // [-1,1]^/3
return I(-interval_lib::detail::root_aux_up<R>(-x.lower(), k), u, true);
else // [1,2]
return I(interval_lib::detail::root_aux_dn<R>(x.lower(), k), u, true);
}
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_ARITH2_HPP

View File

@@ -0,0 +1,69 @@
/* Boost interval/arith3.hpp template implementation file
*
* This headers provides arithmetical functions
* which compute an interval given some base
* numbers. The resulting interval encloses the
* real result of the arithmetic operation.
*
* Copyright 2003 Guillaume Melquiond
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_ARITH3_HPP
#define BOOST_NUMERIC_INTERVAL_ARITH3_HPP
#include <boost/numeric/interval/detail/interval_prototype.hpp>
#include <boost/numeric/interval/detail/test_input.hpp>
namespace boost {
namespace numeric {
namespace interval_lib {
template<class I> inline
I add(const typename I::base_type& x, const typename I::base_type& y)
{
typedef typename I::traits_type Policies;
if (detail::test_input<typename I::base_type, Policies>(x, y))
return I::empty();
typename Policies::rounding rnd;
return I(rnd.add_down(x, y), rnd.add_up(x, y), true);
}
template<class I> inline
I sub(const typename I::base_type& x, const typename I::base_type& y)
{
typedef typename I::traits_type Policies;
if (detail::test_input<typename I::base_type, Policies>(x, y))
return I::empty();
typename Policies::rounding rnd;
return I(rnd.sub_down(x, y), rnd.sub_up(x, y), true);
}
template<class I> inline
I mul(const typename I::base_type& x, const typename I::base_type& y)
{
typedef typename I::traits_type Policies;
if (detail::test_input<typename I::base_type, Policies>(x, y))
return I::empty();
typename Policies::rounding rnd;
return I(rnd.mul_down(x, y), rnd.mul_up(x, y), true);
}
template<class I> inline
I div(const typename I::base_type& x, const typename I::base_type& y)
{
typedef typename I::traits_type Policies;
if (detail::test_input<typename I::base_type, Policies>(x, y) || user::is_zero(y))
return I::empty();
typename Policies::rounding rnd;
return I(rnd.div_down(x, y), rnd.div_up(x, y), true);
}
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_ARITH3_HPP

View File

@@ -0,0 +1,130 @@
/* Boost interval/checking.hpp template implementation file
*
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_CHECKING_HPP
#define BOOST_NUMERIC_INTERVAL_CHECKING_HPP
#include <stdexcept>
#include <string>
#include <cassert>
#include <boost/limits.hpp>
namespace boost {
namespace numeric {
namespace interval_lib {
struct exception_create_empty
{
void operator()()
{
throw std::runtime_error("boost::interval: empty interval created");
}
};
struct exception_invalid_number
{
void operator()()
{
throw std::invalid_argument("boost::interval: invalid number");
}
};
template<class T>
struct checking_base
{
static T pos_inf()
{
assert(std::numeric_limits<T>::has_infinity);
return std::numeric_limits<T>::infinity();
}
static T neg_inf()
{
assert(std::numeric_limits<T>::has_infinity);
return -std::numeric_limits<T>::infinity();
}
static T nan()
{
assert(std::numeric_limits<T>::has_quiet_NaN);
return std::numeric_limits<T>::quiet_NaN();
}
static bool is_nan(const T& x)
{
return std::numeric_limits<T>::has_quiet_NaN && (x != x);
}
static T empty_lower()
{
return (std::numeric_limits<T>::has_quiet_NaN ?
std::numeric_limits<T>::quiet_NaN() : static_cast<T>(1));
}
static T empty_upper()
{
return (std::numeric_limits<T>::has_quiet_NaN ?
std::numeric_limits<T>::quiet_NaN() : static_cast<T>(0));
}
static bool is_empty(const T& l, const T& u)
{
return !(l <= u); // safety for partial orders
}
};
template<class T, class Checking = checking_base<T>,
class Exception = exception_create_empty>
struct checking_no_empty: Checking
{
static T nan()
{
assert(false);
return Checking::nan();
}
static T empty_lower()
{
Exception()();
return Checking::empty_lower();
}
static T empty_upper()
{
Exception()();
return Checking::empty_upper();
}
static bool is_empty(const T&, const T&)
{
return false;
}
};
template<class T, class Checking = checking_base<T> >
struct checking_no_nan: Checking
{
static bool is_nan(const T&)
{
return false;
}
};
template<class T, class Checking = checking_base<T>,
class Exception = exception_invalid_number>
struct checking_catch_nan: Checking
{
static bool is_nan(const T& x)
{
if (Checking::is_nan(x)) Exception()();
return false;
}
};
template<class T>
struct checking_strict:
checking_no_nan<T, checking_no_empty<T> >
{};
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_CHECKING_HPP

View File

@@ -0,0 +1,19 @@
/* Boost interval/compare.hpp template implementation file
*
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_COMPARE_HPP
#define BOOST_NUMERIC_INTERVAL_COMPARE_HPP
#include <boost/numeric/interval/compare/certain.hpp>
#include <boost/numeric/interval/compare/possible.hpp>
#include <boost/numeric/interval/compare/explicit.hpp>
#include <boost/numeric/interval/compare/lexicographic.hpp>
#include <boost/numeric/interval/compare/set.hpp>
#endif // BOOST_NUMERIC_INTERVAL_COMPARE_HPP

View File

@@ -0,0 +1,113 @@
/* Boost interval/compare/certain.hpp template implementation file
*
* Copyright 2003 Guillaume Melquiond
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_COMPARE_CERTAIN_HPP
#define BOOST_NUMERIC_INTERVAL_COMPARE_CERTAIN_HPP
#include <boost/numeric/interval/detail/interval_prototype.hpp>
#include <boost/numeric/interval/detail/test_input.hpp>
namespace boost {
namespace numeric {
namespace interval_lib {
namespace compare {
namespace certain {
template<class T, class Policies1, class Policies2> inline
bool operator<(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.upper() < y.lower();
}
template<class T, class Policies> inline
bool operator<(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.upper() < y;
}
template<class T, class Policies1, class Policies2> inline
bool operator<=(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.upper() <= y.lower();
}
template<class T, class Policies> inline
bool operator<=(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.upper() <= y;
}
template<class T, class Policies1, class Policies2> inline
bool operator>(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() > y.upper();
}
template<class T, class Policies> inline
bool operator>(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() > y;
}
template<class T, class Policies1, class Policies2> inline
bool operator>=(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() >= y.upper();
}
template<class T, class Policies> inline
bool operator>=(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() >= y;
}
template<class T, class Policies1, class Policies2> inline
bool operator==(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.upper() == y.lower() && x.lower() == y.upper();
}
template<class T, class Policies> inline
bool operator==(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.upper() == y && x.lower() == y;
}
template<class T, class Policies1, class Policies2> inline
bool operator!=(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.upper() < y.lower() || x.lower() > y.upper();
}
template<class T, class Policies> inline
bool operator!=(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.upper() < y || x.lower() > y;
}
} // namespace certain
} // namespace compare
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_COMPARE_CERTAIN_HPP

View File

@@ -0,0 +1,248 @@
/* Boost interval/compare/explicit.hpp template implementation file
*
* Copyright 2000 Jens Maurer
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_COMPARE_EXPLICIT_HPP
#define BOOST_NUMERIC_INTERVAL_COMPARE_EXPLICIT_HPP
#include <boost/numeric/interval/detail/interval_prototype.hpp>
namespace boost {
namespace numeric {
namespace interval_lib {
/*
* Certainly... operations
*/
template<class T, class Policies1, class Policies2> inline
bool cerlt(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return x.upper() < y.lower();
}
template<class T, class Policies> inline
bool cerlt(const interval<T, Policies>& x, const T& y)
{
return x.upper() < y;
}
template<class T, class Policies> inline
bool cerlt(const T& x, const interval<T, Policies>& y)
{
return x < y.lower();
}
template<class T, class Policies1, class Policies2> inline
bool cerle(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return x.upper() <= y.lower();
}
template<class T, class Policies> inline
bool cerle(const interval<T, Policies>& x, const T& y)
{
return x.upper() <= y;
}
template<class T, class Policies> inline
bool cerle(const T& x, const interval<T, Policies>& y)
{
return x <= y.lower();
}
template<class T, class Policies1, class Policies2> inline
bool cergt(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return x.lower() > y.upper();
}
template<class T, class Policies> inline
bool cergt(const interval<T, Policies>& x, const T& y)
{
return x.lower() > y;
}
template<class T, class Policies> inline
bool cergt(const T& x, const interval<T, Policies>& y)
{
return x > y.upper();
}
template<class T, class Policies1, class Policies2> inline
bool cerge(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return x.lower() >= y.upper();
}
template<class T, class Policies> inline
bool cerge(const interval<T, Policies>& x, const T& y)
{
return x.lower() >= y;
}
template<class T, class Policies> inline
bool cerge(const T& x, const interval<T, Policies>& y)
{
return x >= y.upper();
}
template<class T, class Policies1, class Policies2> inline
bool cereq(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return x.lower() == y.upper() && y.lower() == x.upper();
}
template<class T, class Policies> inline
bool cereq(const interval<T, Policies>& x, const T& y)
{
return x.lower() == y && x.upper() == y;
}
template<class T, class Policies> inline
bool cereq(const T& x, const interval<T, Policies>& y)
{
return x == y.lower() && x == y.upper();
}
template<class T, class Policies1, class Policies2> inline
bool cerne(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return x.upper() < y.lower() || y.upper() < x.lower();
}
template<class T, class Policies> inline
bool cerne(const interval<T, Policies>& x, const T& y)
{
return x.upper() < y || y < x.lower();
}
template<class T, class Policies> inline
bool cerne(const T& x, const interval<T, Policies>& y)
{
return x < y.lower() || y.upper() < x;
}
/*
* Possibly... comparisons
*/
template<class T, class Policies1, class Policies2> inline
bool poslt(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return x.lower() < y.upper();
}
template<class T, class Policies> inline
bool poslt(const interval<T, Policies>& x, const T& y)
{
return x.lower() < y;
}
template<class T, class Policies> inline
bool poslt(const T& x, const interval<T, Policies>& y)
{
return x < y.upper();
}
template<class T, class Policies1, class Policies2> inline
bool posle(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return x.lower() <= y.upper();
}
template<class T, class Policies> inline
bool posle(const interval<T, Policies>& x, const T& y)
{
return x.lower() <= y;
}
template<class T, class Policies> inline
bool posle(const T& x, const interval<T, Policies>& y)
{
return x <= y.upper();
}
template<class T, class Policies1, class Policies2> inline
bool posgt(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return x.upper() > y.lower();
}
template<class T, class Policies> inline
bool posgt(const interval<T, Policies>& x, const T& y)
{
return x.upper() > y;
}
template<class T, class Policies> inline
bool posgt(const T& x, const interval<T, Policies> & y)
{
return x > y.lower();
}
template<class T, class Policies1, class Policies2> inline
bool posge(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return x.upper() >= y.lower();
}
template<class T, class Policies> inline
bool posge(const interval<T, Policies>& x, const T& y)
{
return x.upper() >= y;
}
template<class T, class Policies> inline
bool posge(const T& x, const interval<T, Policies>& y)
{
return x >= y.lower();
}
template<class T, class Policies1, class Policies2> inline
bool poseq(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return x.upper() >= y.lower() && y.upper() >= x.lower();
}
template<class T, class Policies> inline
bool poseq(const interval<T, Policies>& x, const T& y)
{
return x.upper() >= y && y >= x.lower();
}
template<class T, class Policies> inline
bool poseq(const T& x, const interval<T, Policies>& y)
{
return x >= y.lower() && y.upper() >= x;
}
template<class T, class Policies1, class Policies2> inline
bool posne(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return x.upper() != y.lower() || y.upper() != x.lower();
}
template<class T, class Policies> inline
bool posne(const interval<T, Policies>& x, const T& y)
{
return x.upper() != y || y != x.lower();
}
template<class T, class Policies> inline
bool posne(const T& x, const interval<T, Policies>& y)
{
return x != y.lower() || y.upper() != x;
}
} // namespace interval_lib
} // namespace numeric
} //namespace boost
#endif // BOOST_NUMERIC_INTERVAL_COMPARE_EXPLICIT_HPP

View File

@@ -0,0 +1,122 @@
/* Boost interval/compare/lexicographic.hpp template implementation file
*
* Copyright 2002-2003 Guillaume Melquiond
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_COMPARE_LEXICOGRAPHIC_HPP
#define BOOST_NUMERIC_INTERVAL_COMPARE_LEXICOGRAPHIC_HPP
#include <boost/numeric/interval/detail/interval_prototype.hpp>
#include <boost/numeric/interval/detail/test_input.hpp>
namespace boost {
namespace numeric {
namespace interval_lib {
namespace compare {
namespace lexicographic {
template<class T, class Policies1, class Policies2> inline
bool operator<(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
const T& xl = x.lower();
const T& yl = y.lower();
return xl < yl || (xl == yl && x.upper() < y.upper());
}
template<class T, class Policies> inline
bool operator<(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() < y;
}
template<class T, class Policies1, class Policies2> inline
bool operator<=(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
const T& xl = x.lower();
const T& yl = y.lower();
return xl < yl || (xl == yl && x.upper() <= y.upper());
}
template<class T, class Policies> inline
bool operator<=(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
const T& xl = x.lower();
return xl < y || (xl == y && x.upper() <= y);
}
template<class T, class Policies1, class Policies2> inline
bool operator>(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
const T& xl = x.lower();
const T& yl = y.lower();
return xl > yl || (xl == yl && x.upper() > y.upper());
}
template<class T, class Policies> inline
bool operator>(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
const T& xl = x.lower();
return xl > y || (xl == y && x.upper() > y);
}
template<class T, class Policies1, class Policies2> inline
bool operator>=(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
const T& xl = x.lower();
const T& yl = y.lower();
return xl > yl || (xl == yl && x.upper() >= y.upper());
}
template<class T, class Policies> inline
bool operator>=(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() >= y;
}
template<class T, class Policies1, class Policies2> inline
bool operator==(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() == y.lower() && x.upper() == y.upper();
}
template<class T, class Policies> inline
bool operator==(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() == y && x.upper() == y;
}
template<class T, class Policies1, class Policies2> inline
bool operator!=(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() != y.lower() || x.upper() != y.upper();
}
template<class T, class Policies> inline
bool operator!=(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() != y || x.upper() != y;
}
} // namespace lexicographic
} // namespace compare
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_COMPARE_LEXICOGRAPHIC_HPP

View File

@@ -0,0 +1,113 @@
/* Boost interval/compare/possible.hpp template implementation file
*
* Copyright 2003 Guillaume Melquiond
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_COMPARE_POSSIBLE_HPP
#define BOOST_NUMERIC_INTERVAL_COMPARE_POSSIBLE_HPP
#include <boost/numeric/interval/detail/interval_prototype.hpp>
#include <boost/numeric/interval/detail/test_input.hpp>
namespace boost {
namespace numeric {
namespace interval_lib {
namespace compare {
namespace possible {
template<class T, class Policies1, class Policies2> inline
bool operator<(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() < y.upper();
}
template<class T, class Policies> inline
bool operator<(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() < y;
}
template<class T, class Policies1, class Policies2> inline
bool operator<=(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() <= y.upper();
}
template<class T, class Policies> inline
bool operator<=(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() <= y;
}
template<class T, class Policies1, class Policies2> inline
bool operator>(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.upper() > y.lower();
}
template<class T, class Policies> inline
bool operator>(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.upper() > y;
}
template<class T, class Policies1, class Policies2> inline
bool operator>=(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.upper() >= y.lower();
}
template<class T, class Policies> inline
bool operator>=(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.upper() >= y;
}
template<class T, class Policies1, class Policies2> inline
bool operator==(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() <= y.upper() && x.upper() >= y.lower();
}
template<class T, class Policies> inline
bool operator==(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() <= y && x.upper() >= y;
}
template<class T, class Policies1, class Policies2> inline
bool operator!=(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() != y.upper() || x.upper() != y.lower();
}
template<class T, class Policies> inline
bool operator!=(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
return x.lower() != y || x.upper() != y;
}
} // namespace possible
} // namespace compare
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_COMPARE_POSSIBLE_HPP

View File

@@ -0,0 +1,101 @@
/* Boost interval/compare/set.hpp template implementation file
*
* Copyright 2002-2003 Guillaume Melquiond
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_COMPARE_SET_HPP
#define BOOST_NUMERIC_INTERVAL_COMPARE_SET_HPP
#include <boost/numeric/interval/detail/interval_prototype.hpp>
#include <boost/numeric/interval/detail/test_input.hpp>
#include <boost/numeric/interval/utility.hpp>
namespace boost {
namespace numeric {
namespace interval_lib {
namespace compare {
namespace set {
template<class T, class Policies1, class Policies2> inline
bool operator<(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return proper_subset(x, y);
}
template<class T, class Policies> inline
bool operator<(const interval<T, Policies>& x, const T& y)
{
throw comparison_error();
}
template<class T, class Policies1, class Policies2> inline
bool operator<=(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return subset(x, y);
}
template<class T, class Policies> inline
bool operator<=(const interval<T, Policies>& x, const T& y)
{
throw comparison_error();
}
template<class T, class Policies1, class Policies2> inline
bool operator>(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return proper_subset(y, x);
}
template<class T, class Policies> inline
bool operator>(const interval<T, Policies>& x, const T& y)
{
throw comparison_error();
}
template<class T, class Policies1, class Policies2> inline
bool operator>=(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return subset(y, x);
}
template<class T, class Policies> inline
bool operator>=(const interval<T, Policies>& x, const T& y)
{
throw comparison_error();
}
template<class T, class Policies1, class Policies2> inline
bool operator==(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return equal(y, x);
}
template<class T, class Policies> inline
bool operator==(const interval<T, Policies>& x, const T& y)
{
throw comparison_error();
}
template<class T, class Policies1, class Policies2> inline
bool operator!=(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
return !equal(y, x);
}
template<class T, class Policies> inline
bool operator!=(const interval<T, Policies>& x, const T& y)
{
throw comparison_error();
}
} // namespace set
} // namespace compare
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_COMPARE_SET_HPP

View File

@@ -0,0 +1,138 @@
/* Boost interval/compare/tribool.hpp template implementation file
*
* Copyright 2002-2003 Guillaume Melquiond
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_COMPARE_TRIBOOL_HPP
#define BOOST_NUMERIC_INTERVAL_COMPARE_TRIBOOL_HPP
#include <boost/numeric/interval/detail/interval_prototype.hpp>
#include <boost/numeric/interval/detail/test_input.hpp>
#include <boost/logic/tribool.hpp>
namespace boost {
namespace numeric {
namespace interval_lib {
namespace compare {
namespace tribool {
template<class T, class Policies1, class Policies2> inline
logic::tribool operator<(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
if (x.upper() < y.lower()) return true;
if (x.lower() >= y.upper()) return false;
return logic::indeterminate;
}
template<class T, class Policies> inline
logic::tribool operator<(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
if (x.upper() < y) return true;
if (x.lower() >= y) return false;
return logic::indeterminate;
}
template<class T, class Policies1, class Policies2> inline
logic::tribool operator<=(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
if (x.upper() <= y.lower()) return true;
if (x.lower() > y.upper()) return false;
return logic::indeterminate;
}
template<class T, class Policies> inline
logic::tribool operator<=(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
if (x.upper() <= y) return true;
if (x.lower() > y) return false;
return logic::indeterminate;
}
template<class T, class Policies1, class Policies2> inline
logic::tribool operator>(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
if (x.lower() > y.upper()) return true;
if (x.upper() <= y.lower()) return false;
return logic::indeterminate;
}
template<class T, class Policies> inline
logic::tribool operator>(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
if (x.lower() > y) return true;
if (x.upper() <= y) return false;
return logic::indeterminate;
}
template<class T, class Policies1, class Policies2> inline
logic::tribool operator>=(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
if (x.lower() >= y.upper()) return true;
if (x.upper() < y.lower()) return false;
return logic::indeterminate;
}
template<class T, class Policies> inline
logic::tribool operator>=(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
if (x.lower() >= y) return true;
if (x.upper() < y) return false;
return logic::indeterminate;
}
template<class T, class Policies1, class Policies2> inline
logic::tribool operator==(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
if (x.upper() == y.lower() && x.lower() == y.upper()) return true;
if (x.upper() < y.lower() || x.lower() > y.upper()) return false;
return logic::indeterminate;
}
template<class T, class Policies> inline
logic::tribool operator==(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
if (x.upper() == y && x.lower() == y) return true;
if (x.upper() < y || x.lower() > y) return false;
return logic::indeterminate;
}
template<class T, class Policies1, class Policies2> inline
logic::tribool operator!=(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (detail::test_input(x, y)) throw comparison_error();
if (x.upper() < y.lower() || x.lower() > y.upper()) return true;
if (x.upper() == y.lower() && x.lower() == y.upper()) return false;
return logic::indeterminate;
}
template<class T, class Policies> inline
logic::tribool operator!=(const interval<T, Policies>& x, const T& y)
{
if (detail::test_input(x, y)) throw comparison_error();
if (x.upper() < y || x.lower() > y) return true;
if (x.upper() == y && x.lower() == y) return false;
return logic::indeterminate;
}
} // namespace tribool
} // namespace compare
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_COMPARE_TRIBOOL_HPP

View File

@@ -0,0 +1,85 @@
/* Boost interval/constants.hpp template implementation file
*
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_CONSTANTS_HPP
#define BOOST_NUMERIC_INTERVAL_CONSTANTS_HPP
namespace boost {
namespace numeric {
namespace interval_lib {
namespace constants {
// These constants should be exactly computed.
// Decimal representations wouldn't do it since the standard doesn't
// specify the rounding (even nearest) that should be used.
static const float pi_f_l = 13176794.0f/(1<<22);
static const float pi_f_u = 13176795.0f/(1<<22);
static const double pi_d_l = (3373259426.0 + 273688.0 / (1<<21)) / (1<<30);
static const double pi_d_u = (3373259426.0 + 273689.0 / (1<<21)) / (1<<30);
template<class T> inline T pi_lower() { return 3; }
template<class T> inline T pi_upper() { return 4; }
template<class T> inline T pi_half_lower() { return 1; }
template<class T> inline T pi_half_upper() { return 2; }
template<class T> inline T pi_twice_lower() { return 6; }
template<class T> inline T pi_twice_upper() { return 7; }
template<> inline float pi_lower<float>() { return pi_f_l; }
template<> inline float pi_upper<float>() { return pi_f_u; }
template<> inline float pi_half_lower<float>() { return pi_f_l / 2; }
template<> inline float pi_half_upper<float>() { return pi_f_u / 2; }
template<> inline float pi_twice_lower<float>() { return pi_f_l * 2; }
template<> inline float pi_twice_upper<float>() { return pi_f_u * 2; }
template<> inline double pi_lower<double>() { return pi_d_l; }
template<> inline double pi_upper<double>() { return pi_d_u; }
template<> inline double pi_half_lower<double>() { return pi_d_l / 2; }
template<> inline double pi_half_upper<double>() { return pi_d_u / 2; }
template<> inline double pi_twice_lower<double>() { return pi_d_l * 2; }
template<> inline double pi_twice_upper<double>() { return pi_d_u * 2; }
template<> inline long double pi_lower<long double>() { return pi_d_l; }
template<> inline long double pi_upper<long double>() { return pi_d_u; }
template<> inline long double pi_half_lower<long double>() { return pi_d_l / 2; }
template<> inline long double pi_half_upper<long double>() { return pi_d_u / 2; }
template<> inline long double pi_twice_lower<long double>() { return pi_d_l * 2; }
template<> inline long double pi_twice_upper<long double>() { return pi_d_u * 2; }
} // namespace constants
template<class I> inline
I pi()
{
typedef typename I::base_type T;
return I(constants::pi_lower<T>(),
constants::pi_upper<T>(), true);
}
template<class I> inline
I pi_half()
{
typedef typename I::base_type T;
return I(constants::pi_half_lower<T>(),
constants::pi_half_upper<T>(), true);
}
template<class I> inline
I pi_twice()
{
typedef typename I::base_type T;
return I(constants::pi_twice_lower<T>(),
constants::pi_twice_upper<T>(), true);
}
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_CONSTANTS_HPP

View File

@@ -0,0 +1,113 @@
/* Boost interval/detail/alpha_rounding_control.hpp file
*
* Copyright 2005 Felix H<>fling, Guillaume Melquiond
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_DETAIL_ALPHA_ROUNDING_CONTROL_HPP
#define BOOST_NUMERIC_INTERVAL_DETAIL_ALPHA_ROUNDING_CONTROL_HPP
#if !defined(alpha) && !defined(__alpha__)
#error This header only works on Alpha CPUs.
#endif
#if defined(__GNUC__) || defined(__digital__) || defined(__DECCXX)
#include <float.h> // write_rnd() and read_rnd()
namespace boost {
namespace numeric {
namespace interval_lib {
namespace detail {
#if defined(__GNUC__ )
typedef union {
::boost::long_long_type imode;
double dmode;
} rounding_mode_struct;
// set bits 59-58 (DYN),
// clear all exception bits and disable overflow (51) and inexact exceptions (62)
static const rounding_mode_struct mode_upward = { 0x4C08000000000000LL };
static const rounding_mode_struct mode_downward = { 0x4408000000000000LL };
static const rounding_mode_struct mode_to_nearest = { 0x4808000000000000LL };
static const rounding_mode_struct mode_toward_zero = { 0x4008000000000000LL };
struct alpha_rounding_control
{
typedef double rounding_mode;
static void set_rounding_mode(const rounding_mode mode)
{ __asm__ __volatile__ ("mt_fpcr %0" : : "f"(mode)); }
static void get_rounding_mode(rounding_mode& mode)
{ __asm__ __volatile__ ("mf_fpcr %0" : "=f"(mode)); }
static void downward() { set_rounding_mode(mode_downward.dmode); }
static void upward() { set_rounding_mode(mode_upward.dmode); }
static void to_nearest() { set_rounding_mode(mode_to_nearest.dmode); }
static void toward_zero() { set_rounding_mode(mode_toward_zero.dmode); }
};
#elif defined(__digital__) || defined(__DECCXX)
#if defined(__DECCXX) && !(defined(__FLT_ROUNDS) && __FLT_ROUNDS == -1)
#error Dynamic rounding mode not enabled. See cxx man page for details.
#endif
struct alpha_rounding_control
{
typedef unsigned int rounding_mode;
static void set_rounding_mode(const rounding_mode& mode) { write_rnd(mode); }
static void get_rounding_mode(rounding_mode& mode) { mode = read_rnd(); }
static void downward() { set_rounding_mode(FP_RND_RM); }
static void upward() { set_rounding_mode(FP_RND_RP); }
static void to_nearest() { set_rounding_mode(FP_RND_RN); }
static void toward_zero() { set_rounding_mode(FP_RND_RZ); }
};
#endif
} // namespace detail
extern "C" {
float rintf(float);
double rint(double);
long double rintl(long double);
}
template<>
struct rounding_control<float>:
detail::alpha_rounding_control
{
static float force_rounding(const float r)
{ volatile float _r = r; return _r; }
static float to_int(const float& x) { return rintf(x); }
};
template<>
struct rounding_control<double>:
detail::alpha_rounding_control
{
static const double & force_rounding(const double& r) { return r; }
static double to_int(const double& r) { return rint(r); }
};
template<>
struct rounding_control<long double>:
detail::alpha_rounding_control
{
static const long double & force_rounding(const long double& r) { return r; }
static long double to_int(const long double& r) { return rintl(r); }
};
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#undef BOOST_NUMERIC_INTERVAL_NO_HARDWARE
#endif
#endif /* BOOST_NUMERIC_INTERVAL_DETAIL_ALPHA_ROUNDING_CONTROL_HPP */

View File

@@ -0,0 +1,57 @@
/* Boost interval/detail/bcc_rounding_control.hpp file
*
* Copyright 2000 Jens Maurer
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_DETAIL_BCC_ROUNDING_CONTROL_HPP
#define BOOST_NUMERIC_INTERVAL_DETAIL_BCC_ROUNDING_CONTROL_HPP
#ifndef __BORLANDC__
# error This header is only intended for Borland C++.
#endif
#ifndef _M_IX86
# error This header only works on x86 CPUs.
#endif
#include <float.h> // Borland C++ rounding control
namespace boost {
namespace numeric {
namespace interval_lib {
namespace detail {
#ifndef BOOST_NUMERIC_INTERVAL_KEEP_EXCEPTIONS_FOR_BCC
extern "C" { unsigned int _RTLENTRY _fm_init(void); }
struct borland_workaround {
borland_workaround() { _fm_init(); }
};
static borland_workaround borland_workaround_exec;
#endif // BOOST_NUMERIC_INTERVAL_KEEP_EXCEPTIONS_FOR_BCC
__inline double rint(double)
{ __emit__(0xD9); __emit__(0xFC); /* asm FRNDINT */ }
struct x86_rounding
{
typedef unsigned int rounding_mode;
static void get_rounding_mode(rounding_mode& mode)
{ mode = _control87(0, 0); }
static void set_rounding_mode(const rounding_mode mode)
{ _control87(mode, 0xffff); }
static double to_int(const double& x) { return rint(x); }
};
} // namespace detail
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif /* BOOST_NUMERIC_INTERVAL_DETAIL_BCC_ROUNDING_CONTROL_HPP */

View File

@@ -0,0 +1,79 @@
/* Boost interval/detail/bugs.hpp file
*
* Copyright 2000 Jens Maurer
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_DETAIL_BUGS
#define BOOST_NUMERIC_INTERVAL_DETAIL_BUGS
#include <boost/config.hpp>
#if defined(__GLIBC__) && (defined(__USE_MISC) || defined(__USE_XOPEN_EXTENDED) || defined(__USE_ISOC99)) && !defined(__ICC)
# define BOOST_HAS_INV_HYPERBOLIC
#endif
#ifdef BOOST_NO_STDC_NAMESPACE
# define BOOST_NUMERIC_INTERVAL_using_math(a) using ::a
# ifdef BOOST_HAS_INV_HYPERBOLIC
# define BOOST_NUMERIC_INTERVAL_using_ahyp(a) using ::a
# endif
#else
# define BOOST_NUMERIC_INTERVAL_using_math(a) using std::a
# if defined(BOOST_HAS_INV_HYPERBOLIC)
# if defined(__GLIBCPP__) || defined(__GLIBCXX__)
# define BOOST_NUMERIC_INTERVAL_using_ahyp(a) using ::a
# else
# define BOOST_NUMERIC_INTERVAL_using_ahyp(a) using std::a
# endif
# endif
#endif
#if defined(__COMO__) || defined(BOOST_INTEL)
# define BOOST_NUMERIC_INTERVAL_using_max(a) using std::a
#elif defined(BOOST_NO_STDC_NAMESPACE)
# define BOOST_NUMERIC_INTERVAL_using_max(a) using ::a
#else
# define BOOST_NUMERIC_INTERVAL_using_max(a) using std::a
#endif
#ifndef BOOST_NUMERIC_INTERVAL_using_ahyp
# define BOOST_NUMERIC_INTERVAL_using_ahyp(a)
#endif
#if defined(__GNUC__) && (__GNUC__ <= 2)
// cf PR c++/1981 for a description of the bug
#include <algorithm>
#include <boost/config/no_tr1/cmath.hpp>
namespace boost {
namespace numeric {
using std::min;
using std::max;
using std::sqrt;
using std::exp;
using std::log;
using std::cos;
using std::tan;
using std::asin;
using std::acos;
using std::atan;
using std::ceil;
using std::floor;
using std::sinh;
using std::cosh;
using std::tanh;
# undef BOOST_NUMERIC_INTERVAL_using_max
# undef BOOST_NUMERIC_INTERVAL_using_math
# define BOOST_NUMERIC_INTERVAL_using_max(a)
# define BOOST_NUMERIC_INTERVAL_using_math(a)
# undef BOOST_NUMERIC_INTERVAL_using_ahyp
# define BOOST_NUMERIC_INTERVAL_using_ahyp(a)
} // namespace numeric
} // namespace boost
#endif
#endif // BOOST_NUMERIC_INTERVAL_DETAIL_BUGS

View File

@@ -0,0 +1,47 @@
/* Boost interval/detail/c99_rounding_control.hpp file
*
* Copyright 2000 Jens Maurer
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_DETAIL_C99_ROUNDING_CONTROL_HPP
#define BOOST_NUMERIC_INTERVAL_DETAIL_C99_ROUNDING_CONTROL_HPP
#include <boost/numeric/interval/detail/c99sub_rounding_control.hpp>
namespace boost {
namespace numeric {
namespace interval_lib {
namespace detail {
struct c99_rounding_control: c99_rounding
{
template<class T>
static T force_rounding(const T& r) { volatile T r_ = r; return r_; }
};
} // namespace detail
template<>
struct rounding_control<float>:
detail::c99_rounding_control { };
template<>
struct rounding_control<double>:
detail::c99_rounding_control { };
template<>
struct rounding_control<long double>:
detail::c99_rounding_control { };
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#undef BOOST_NUMERIC_INTERVAL_NO_HARDWARE
#endif // BOOST_NUMERIC_INTERVAL_DETAIL_C99_ROUNDING_CONTROL_HPP

View File

@@ -0,0 +1,43 @@
/* Boost interval/detail/c99sub_rounding_control.hpp file
*
* Copyright 2000 Jens Maurer
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_DETAIL_C99SUB_ROUNDING_CONTROL_HPP
#define BOOST_NUMERIC_INTERVAL_DETAIL_C99SUB_ROUNDING_CONTROL_HPP
#include <fenv.h> // ISO C 99 rounding mode control
namespace boost {
namespace numeric {
namespace interval_lib {
namespace detail {
extern "C" { double rint(double); }
struct c99_rounding
{
typedef int rounding_mode;
static void set_rounding_mode(const rounding_mode mode) { fesetround(mode); }
static void get_rounding_mode(rounding_mode &mode) { mode = fegetround(); }
static void downward() { set_rounding_mode(FE_DOWNWARD); }
static void upward() { set_rounding_mode(FE_UPWARD); }
static void to_nearest() { set_rounding_mode(FE_TONEAREST); }
static void toward_zero() { set_rounding_mode(FE_TOWARDZERO); }
template<class T>
static T to_int(const T& r) { return rint(r); }
};
} // namespace detail
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_DETAIL_C99SUB_ROUBDING_CONTROL_HPP

View File

@@ -0,0 +1,194 @@
/* Boost interval/detail/division.hpp file
*
* Copyright 2003 Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_DETAIL_DIVISION_HPP
#define BOOST_NUMERIC_INTERVAL_DETAIL_DIVISION_HPP
#include <boost/numeric/interval/detail/interval_prototype.hpp>
#include <boost/numeric/interval/detail/bugs.hpp>
#include <boost/numeric/interval/detail/test_input.hpp>
#include <boost/numeric/interval/rounded_arith.hpp>
#include <algorithm>
namespace boost {
namespace numeric {
namespace interval_lib {
namespace detail {
template<class T, class Policies> inline
interval<T, Policies> div_non_zero(const interval<T, Policies>& x,
const interval<T, Policies>& y)
{
// assert(!in_zero(y));
typename Policies::rounding rnd;
typedef interval<T, Policies> I;
const T& xl = x.lower();
const T& xu = x.upper();
const T& yl = y.lower();
const T& yu = y.upper();
if (::boost::numeric::interval_lib::user::is_neg(xu))
if (::boost::numeric::interval_lib::user::is_neg(yu))
return I(rnd.div_down(xu, yl), rnd.div_up(xl, yu), true);
else
return I(rnd.div_down(xl, yl), rnd.div_up(xu, yu), true);
else if (::boost::numeric::interval_lib::user::is_neg(xl))
if (::boost::numeric::interval_lib::user::is_neg(yu))
return I(rnd.div_down(xu, yu), rnd.div_up(xl, yu), true);
else
return I(rnd.div_down(xl, yl), rnd.div_up(xu, yl), true);
else
if (::boost::numeric::interval_lib::user::is_neg(yu))
return I(rnd.div_down(xu, yu), rnd.div_up(xl, yl), true);
else
return I(rnd.div_down(xl, yu), rnd.div_up(xu, yl), true);
}
template<class T, class Policies> inline
interval<T, Policies> div_non_zero(const T& x, const interval<T, Policies>& y)
{
// assert(!in_zero(y));
typename Policies::rounding rnd;
typedef interval<T, Policies> I;
const T& yl = y.lower();
const T& yu = y.upper();
if (::boost::numeric::interval_lib::user::is_neg(x))
return I(rnd.div_down(x, yl), rnd.div_up(x, yu), true);
else
return I(rnd.div_down(x, yu), rnd.div_up(x, yl), true);
}
template<class T, class Policies> inline
interval<T, Policies> div_positive(const interval<T, Policies>& x, const T& yu)
{
// assert(::boost::numeric::interval_lib::user::is_pos(yu));
if (::boost::numeric::interval_lib::user::is_zero(x.lower()) &&
::boost::numeric::interval_lib::user::is_zero(x.upper()))
return x;
typename Policies::rounding rnd;
typedef interval<T, Policies> I;
const T& xl = x.lower();
const T& xu = x.upper();
typedef typename Policies::checking checking;
if (::boost::numeric::interval_lib::user::is_neg(xu))
return I(checking::neg_inf(), rnd.div_up(xu, yu), true);
else if (::boost::numeric::interval_lib::user::is_neg(xl))
return I(checking::neg_inf(), checking::pos_inf(), true);
else
return I(rnd.div_down(xl, yu), checking::pos_inf(), true);
}
template<class T, class Policies> inline
interval<T, Policies> div_positive(const T& x, const T& yu)
{
// assert(::boost::numeric::interval_lib::user::is_pos(yu));
typedef interval<T, Policies> I;
if (::boost::numeric::interval_lib::user::is_zero(x))
return I(static_cast<T>(0), static_cast<T>(0), true);
typename Policies::rounding rnd;
typedef typename Policies::checking checking;
if (::boost::numeric::interval_lib::user::is_neg(x))
return I(checking::neg_inf(), rnd.div_up(x, yu), true);
else
return I(rnd.div_down(x, yu), checking::pos_inf(), true);
}
template<class T, class Policies> inline
interval<T, Policies> div_negative(const interval<T, Policies>& x, const T& yl)
{
// assert(::boost::numeric::interval_lib::user::is_neg(yl));
if (::boost::numeric::interval_lib::user::is_zero(x.lower()) &&
::boost::numeric::interval_lib::user::is_zero(x.upper()))
return x;
typename Policies::rounding rnd;
typedef interval<T, Policies> I;
const T& xl = x.lower();
const T& xu = x.upper();
typedef typename Policies::checking checking;
if (::boost::numeric::interval_lib::user::is_neg(xu))
return I(rnd.div_down(xu, yl), checking::pos_inf(), true);
else if (::boost::numeric::interval_lib::user::is_neg(xl))
return I(checking::neg_inf(), checking::pos_inf(), true);
else
return I(checking::neg_inf(), rnd.div_up(xl, yl), true);
}
template<class T, class Policies> inline
interval<T, Policies> div_negative(const T& x, const T& yl)
{
// assert(::boost::numeric::interval_lib::user::is_neg(yl));
typedef interval<T, Policies> I;
if (::boost::numeric::interval_lib::user::is_zero(x))
return I(static_cast<T>(0), static_cast<T>(0), true);
typename Policies::rounding rnd;
typedef typename Policies::checking checking;
if (::boost::numeric::interval_lib::user::is_neg(x))
return I(rnd.div_down(x, yl), checking::pos_inf(), true);
else
return I(checking::neg_inf(), rnd.div_up(x, yl), true);
}
template<class T, class Policies> inline
interval<T, Policies> div_zero(const interval<T, Policies>& x)
{
if (::boost::numeric::interval_lib::user::is_zero(x.lower()) &&
::boost::numeric::interval_lib::user::is_zero(x.upper()))
return x;
else return interval<T, Policies>::whole();
}
template<class T, class Policies> inline
interval<T, Policies> div_zero(const T& x)
{
if (::boost::numeric::interval_lib::user::is_zero(x))
return interval<T, Policies>(static_cast<T>(0), static_cast<T>(0), true);
else return interval<T, Policies>::whole();
}
template<class T, class Policies> inline
interval<T, Policies> div_zero_part1(const interval<T, Policies>& x,
const interval<T, Policies>& y, bool& b)
{
// assert(::boost::numeric::interval_lib::user::is_neg(y.lower()) && ::boost::numeric::interval_lib::user::is_pos(y.upper()));
if (::boost::numeric::interval_lib::user::is_zero(x.lower()) && ::boost::numeric::interval_lib::user::is_zero(x.upper()))
{ b = false; return x; }
typename Policies::rounding rnd;
typedef interval<T, Policies> I;
const T& xl = x.lower();
const T& xu = x.upper();
const T& yl = y.lower();
const T& yu = y.upper();
typedef typename Policies::checking checking;
if (::boost::numeric::interval_lib::user::is_neg(xu))
{ b = true; return I(checking::neg_inf(), rnd.div_up(xu, yu), true); }
else if (::boost::numeric::interval_lib::user::is_neg(xl))
{ b = false; return I(checking::neg_inf(), checking::pos_inf(), true); }
else
{ b = true; return I(checking::neg_inf(), rnd.div_up(xl, yl), true); }
}
template<class T, class Policies> inline
interval<T, Policies> div_zero_part2(const interval<T, Policies>& x,
const interval<T, Policies>& y)
{
// assert(::boost::numeric::interval_lib::user::is_neg(y.lower()) && ::boost::numeric::interval_lib::user::is_pos(y.upper()) && (div_zero_part1(x, y, b), b));
typename Policies::rounding rnd;
typedef interval<T, Policies> I;
typedef typename Policies::checking checking;
if (::boost::numeric::interval_lib::user::is_neg(x.upper()))
return I(rnd.div_down(x.upper(), y.lower()), checking::pos_inf(), true);
else
return I(rnd.div_down(x.lower(), y.upper()), checking::pos_inf(), true);
}
} // namespace detail
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_DETAIL_DIVISION_HPP

View File

@@ -0,0 +1,83 @@
/* Boost interval/detail/ia64_rounding_control.hpp file
*
* Copyright 2006-2007 Boris Gubenko
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_DETAIL_IA64_ROUNDING_CONTROL_HPP
#define BOOST_NUMERIC_INTERVAL_DETAIL_IA64_ROUNDING_CONTROL_HPP
#if !defined(ia64) && !defined(__ia64) && !defined(__ia64__)
#error This header only works on ia64 CPUs.
#endif
#if defined(__hpux)
# include <fenv.h>
namespace boost {
namespace numeric {
namespace interval_lib {
namespace detail {
struct ia64_rounding_control
{
typedef unsigned int rounding_mode;
static void set_rounding_mode(const rounding_mode& mode) {
fesetround(mode); }
static void get_rounding_mode(rounding_mode& mode) { mode = fegetround(); }
static void downward() { set_rounding_mode(FE_DOWNWARD); }
static void upward() { set_rounding_mode(FE_UPWARD); }
static void to_nearest() { set_rounding_mode(FE_TONEAREST); }
static void toward_zero() { set_rounding_mode(FE_TOWARDZERO); }
};
} // namespace detail
extern "C" {
float rintf(float);
double rint(double);
long double rintl(long double);
}
template<>
struct rounding_control<float>:
detail::ia64_rounding_control
{
static float force_rounding(const float r)
{ volatile float _r = r; return _r; }
static float to_int(const float& x) { return rintf(x); }
};
template<>
struct rounding_control<double>:
detail::ia64_rounding_control
{
static const double & force_rounding(const double& r) { return r; }
static double to_int(const double& r) { return rint(r); }
};
template<>
struct rounding_control<long double>:
detail::ia64_rounding_control
{
static const long double & force_rounding(const long double& r) { return r; }
static long double to_int(const long double& r) { return rintl(r); }
};
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#undef BOOST_NUMERIC_INTERVAL_NO_HARDWARE
#endif /* __hpux */
#endif /* BOOST_NUMERIC_INTERVAL_DETAIL_IA64_ROUNDING_CONTROL_HPP */

View File

@@ -0,0 +1,41 @@
/* Boost interval/detail/interval_prototype.hpp file
*
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_DETAIL_INTERVAL_PROTOTYPE_HPP
#define BOOST_NUMERIC_INTERVAL_DETAIL_INTERVAL_PROTOTYPE_HPP
namespace boost {
namespace numeric {
namespace interval_lib {
template<class T> struct rounded_math;
template<class T> struct checking_strict;
class comparison_error;
template<class Rounding, class Checking> struct policies;
/*
* default policies class
*/
template<class T>
struct default_policies
{
typedef policies<rounded_math<T>, checking_strict<T> > type;
};
} // namespace interval_lib
template<class T, class Policies = typename interval_lib::default_policies<T>::type >
class interval;
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_DETAIL_INTERVAL_PROTOTYPE_HPP

View File

@@ -0,0 +1,91 @@
/* Boost interval/detail/msvc_rounding_control.hpp file
*
* Copyright 2000 Maarten Keijzer
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_DETAIL_MSVC_ROUNDING_CONTROL_HPP
#define BOOST_NUMERIC_INTERVAL_DETAIL_MSVC_ROUNDING_CONTROL_HPP
#ifndef _MSC_VER
# error This header is only intended for MSVC, but might work for Borland as well
#endif
#include <float.h> // MSVC rounding control
// Although the function is called _control87, it seems to work for
// other FPUs too, so it does not have to be changed to _controlfp.
namespace boost {
namespace numeric {
namespace interval_lib {
namespace detail {
extern "C" { double rint(double); }
struct x86_rounding
{
static unsigned int hard2msvc(unsigned short m) {
unsigned int n = 0;
if (m & 0x01) n |= _EM_INVALID;
if (m & 0x02) n |= _EM_DENORMAL;
if (m & 0x04) n |= _EM_ZERODIVIDE;
if (m & 0x08) n |= _EM_OVERFLOW;
if (m & 0x10) n |= _EM_UNDERFLOW;
if (m & 0x20) n |= _EM_INEXACT;
switch (m & 0x300) {
case 0x000: n |= _PC_24; break;
case 0x200: n |= _PC_53; break;
case 0x300: n |= _PC_64; break;
}
switch (m & 0xC00) {
case 0x000: n |= _RC_NEAR; break;
case 0x400: n |= _RC_DOWN; break;
case 0x800: n |= _RC_UP; break;
case 0xC00: n |= _RC_CHOP; break;
}
if (m & 0x1000) n |= _IC_AFFINE; // only useful on 287
return n;
}
static unsigned short msvc2hard(unsigned int n) {
unsigned short m = 0;
if (n & _EM_INVALID) m |= 0x01;
if (n & _EM_DENORMAL) m |= 0x02;
if (n & _EM_ZERODIVIDE) m |= 0x04;
if (n & _EM_OVERFLOW) m |= 0x08;
if (n & _EM_UNDERFLOW) m |= 0x10;
if (n & _EM_INEXACT) m |= 0x20;
switch (n & _MCW_RC) {
case _RC_NEAR: m |= 0x000; break;
case _RC_DOWN: m |= 0x400; break;
case _RC_UP: m |= 0x800; break;
case _RC_CHOP: m |= 0xC00; break;
}
switch (n & _MCW_PC) {
case _PC_24: m |= 0x000; break;
case _PC_53: m |= 0x200; break;
case _PC_64: m |= 0x300; break;
}
if ((n & _MCW_IC) == _IC_AFFINE) m |= 0x1000;
return m;
}
typedef unsigned short rounding_mode;
static void get_rounding_mode(rounding_mode& mode)
{ mode = msvc2hard(_control87(0, 0)); }
static void set_rounding_mode(const rounding_mode mode)
{ _control87(hard2msvc(mode), _MCW_EM | _MCW_RC | _MCW_PC | _MCW_IC); }
static double to_int(const double& x) { return rint(x); }
};
} // namespace detail
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif /* BOOST_NUMERIC_INTERVAL_DETAIL_MSVC_ROUNDING_CONTROL_HPP */

View File

@@ -0,0 +1,99 @@
/* Boost interval/detail/ppc_rounding_control.hpp file
*
* Copyright 2000 Jens Maurer
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
* Copyright 2005 Guillaume Melquiond
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_DETAIL_PPC_ROUNDING_CONTROL_HPP
#define BOOST_NUMERIC_INTERVAL_DETAIL_PPC_ROUNDING_CONTROL_HPP
#if !defined(powerpc) && !defined(__powerpc__) && !defined(__ppc__)
#error This header only works on PPC CPUs.
#endif
#if defined(__GNUC__ ) || (__IBMCPP__ >= 700)
namespace boost {
namespace numeric {
namespace interval_lib {
namespace detail {
typedef union {
::boost::long_long_type imode;
double dmode;
} rounding_mode_struct;
static const rounding_mode_struct mode_upward = { 0xFFF8000000000002LL };
static const rounding_mode_struct mode_downward = { 0xFFF8000000000003LL };
static const rounding_mode_struct mode_to_nearest = { 0xFFF8000000000000LL };
static const rounding_mode_struct mode_toward_zero = { 0xFFF8000000000001LL };
struct ppc_rounding_control
{
typedef double rounding_mode;
static void set_rounding_mode(const rounding_mode mode)
{ __asm__ __volatile__ ("mtfsf 255,%0" : : "f"(mode)); }
static void get_rounding_mode(rounding_mode& mode)
{ __asm__ __volatile__ ("mffs %0" : "=f"(mode)); }
static void downward() { set_rounding_mode(mode_downward.dmode); }
static void upward() { set_rounding_mode(mode_upward.dmode); }
static void to_nearest() { set_rounding_mode(mode_to_nearest.dmode); }
static void toward_zero() { set_rounding_mode(mode_toward_zero.dmode); }
};
} // namespace detail
// Do not declare the following C99 symbols if <math.h> provides them.
// Otherwise, conflicts may occur, due to differences between prototypes.
#if !defined(_ISOC99_SOURCE) && !defined(__USE_ISOC99)
extern "C" {
float rintf(float);
double rint(double);
}
#endif
template<>
struct rounding_control<float>:
detail::ppc_rounding_control
{
static float force_rounding(const float r)
{
float tmp;
__asm__ __volatile__ ("frsp %0, %1" : "=f" (tmp) : "f" (r));
return tmp;
}
static float to_int(const float& x) { return rintf(x); }
};
template<>
struct rounding_control<double>:
detail::ppc_rounding_control
{
static const double & force_rounding(const double& r) { return r; }
static double to_int(const double& r) { return rint(r); }
};
template<>
struct rounding_control<long double>:
detail::ppc_rounding_control
{
static const long double & force_rounding(const long double& r) { return r; }
static long double to_int(const long double& r) { return rint(r); }
};
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#undef BOOST_NUMERIC_INTERVAL_NO_HARDWARE
#endif
#endif /* BOOST_NUMERIC_INTERVAL_DETAIL_PPC_ROUNDING_CONTROL_HPP */

View File

@@ -0,0 +1,112 @@
/* Boost interval/detail/sparc_rounding_control.hpp file
*
* Copyright 2000 Jens Maurer
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*
* The basic code in this file was kindly provided by Jeremy Siek.
*/
#ifndef BOOST_NUMERIC_INTERVAL_DETAIL_SPARC_ROUNDING_CONTROL_HPP
#define BOOST_NUMERIC_INTERVAL_DETAIL_SPARC_ROUNDING_CONTROL_HPP
#if !defined(sparc) && !defined(__sparc__)
# error This header is only intended for SPARC CPUs.
#endif
#ifdef __SUNPRO_CC
# include <ieeefp.h>
#endif
namespace boost {
namespace numeric {
namespace interval_lib {
namespace detail {
struct sparc_rounding_control
{
typedef unsigned int rounding_mode;
static void set_rounding_mode(const rounding_mode& mode)
{
# if defined(__GNUC__)
__asm__ __volatile__("ld %0, %%fsr" : : "m"(mode));
# elif defined (__SUNPRO_CC)
fpsetround(fp_rnd(mode));
# elif defined(__KCC)
asm("sethi %hi(mode), %o1");
asm("ld [%o1+%lo(mode)], %fsr");
# else
# error Unsupported compiler for Sparc rounding control.
# endif
}
static void get_rounding_mode(rounding_mode& mode)
{
# if defined(__GNUC__)
__asm__ __volatile__("st %%fsr, %0" : "=m"(mode));
# elif defined (__SUNPRO_CC)
mode = fpgetround();
# elif defined(__KCC)
# error KCC on Sun SPARC get_round_mode: please fix me
asm("st %fsr, [mode]");
# else
# error Unsupported compiler for Sparc rounding control.
# endif
}
#if defined(__SUNPRO_CC)
static void downward() { set_rounding_mode(FP_RM); }
static void upward() { set_rounding_mode(FP_RP); }
static void to_nearest() { set_rounding_mode(FP_RN); }
static void toward_zero() { set_rounding_mode(FP_RZ); }
#else
static void downward() { set_rounding_mode(0xc0000000); }
static void upward() { set_rounding_mode(0x80000000); }
static void to_nearest() { set_rounding_mode(0x00000000); }
static void toward_zero() { set_rounding_mode(0x40000000); }
#endif
};
} // namespace detail
extern "C" {
float rintf(float);
double rint(double);
}
template<>
struct rounding_control<float>:
detail::sparc_rounding_control
{
static const float& force_rounding(const float& x) { return x; }
static float to_int(const float& x) { return rintf(x); }
};
template<>
struct rounding_control<double>:
detail::sparc_rounding_control
{
static const double& force_rounding(const double& x) { return x; }
static double to_int(const double& x) { return rint(x); }
};
template<>
struct rounding_control<long double>:
detail::sparc_rounding_control
{
static const long double& force_rounding(const long double& x) { return x; }
static long double to_int(const long double& x) { return rint(x); }
};
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#undef BOOST_NUMERIC_INTERVAL_NO_HARDWARE
#endif /* BOOST_NUMERIC_INTERVAL_DETAIL_SPARC_ROUNDING_CONTROL_HPP */

View File

@@ -0,0 +1,76 @@
/* Boost interval/detail/test_input.hpp file
*
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_DETAIL_TEST_INPUT_HPP
#define BOOST_NUMERIC_INTERVAL_DETAIL_TEST_INPUT_HPP
#include <boost/numeric/interval/detail/interval_prototype.hpp>
namespace boost {
namespace numeric {
namespace interval_lib {
namespace user {
template<class T> inline
bool is_zero(T const &v) { return v == static_cast<T>(0); }
template<class T> inline
bool is_neg (T const &v) { return v < static_cast<T>(0); }
template<class T> inline
bool is_pos (T const &v) { return v > static_cast<T>(0); }
} // namespace user
namespace detail {
template<class T, class Policies> inline
bool test_input(const interval<T, Policies>& x) {
typedef typename Policies::checking checking;
return checking::is_empty(x.lower(), x.upper());
}
template<class T, class Policies1, class Policies2> inline
bool test_input(const interval<T, Policies1>& x, const interval<T, Policies2>& y) {
typedef typename Policies1::checking checking1;
typedef typename Policies2::checking checking2;
return checking1::is_empty(x.lower(), x.upper()) ||
checking2::is_empty(y.lower(), y.upper());
}
template<class T, class Policies> inline
bool test_input(const T& x, const interval<T, Policies>& y) {
typedef typename Policies::checking checking;
return checking::is_nan(x) || checking::is_empty(y.lower(), y.upper());
}
template<class T, class Policies> inline
bool test_input(const interval<T, Policies>& x, const T& y) {
typedef typename Policies::checking checking;
return checking::is_empty(x.lower(), x.upper()) || checking::is_nan(y);
}
template<class T, class Policies> inline
bool test_input(const T& x) {
typedef typename Policies::checking checking;
return checking::is_nan(x);
}
template<class T, class Policies> inline
bool test_input(const T& x, const T& y) {
typedef typename Policies::checking checking;
return checking::is_nan(x) || checking::is_nan(y);
}
} // namespace detail
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_DETAIL_TEST_INPUT_HPP

View File

@@ -0,0 +1,108 @@
/* Boost interval/detail/x86_rounding_control.hpp file
*
* Copyright 2000 Jens Maurer
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_DETAIL_X86_ROUNDING_CONTROL_HPP
#define BOOST_NUMERIC_INTERVAL_DETAIL_X86_ROUNDING_CONTROL_HPP
#ifdef __GNUC__
# include <boost/numeric/interval/detail/x86gcc_rounding_control.hpp>
#elif defined(__BORLANDC__)
# include <boost/numeric/interval/detail/bcc_rounding_control.hpp>
#elif defined(_MSC_VER)
# include <boost/numeric/interval/detail/msvc_rounding_control.hpp>
#elif defined(__MWERKS__) || defined(__ICC)
# define BOOST_NUMERIC_INTERVAL_USE_C99_SUBSYSTEM
# include <boost/numeric/interval/detail/c99sub_rounding_control.hpp>
#else
# error Unsupported C++ compiler.
#endif
namespace boost {
namespace numeric {
namespace interval_lib {
namespace detail {
#ifdef BOOST_NUMERIC_INTERVAL_USE_C99_SUBSYSTEM
typedef c99_rounding x86_rounding_control;
#undef BOOST_NUMERIC_INTERVAL_USE_C99_SUBSYSTEM
#else
struct fpu_rounding_modes
{
unsigned short to_nearest;
unsigned short downward;
unsigned short upward;
unsigned short toward_zero;
};
// exceptions masked, extended precision
// hardware default is 0x037f (0x1000 only has a meaning on 287)
static const fpu_rounding_modes rnd_mode = { 0x137f, 0x177f, 0x1b7f, 0x1f7f };
struct x86_rounding_control: x86_rounding
{
static void to_nearest() { set_rounding_mode(rnd_mode.to_nearest); }
static void downward() { set_rounding_mode(rnd_mode.downward); }
static void upward() { set_rounding_mode(rnd_mode.upward); }
static void toward_zero() { set_rounding_mode(rnd_mode.toward_zero); }
};
#endif // BOOST_NUMERIC_INTERVAL_USE_C99_SUBSYSTEM
} // namespace detail
template<>
struct rounding_control<float>: detail::x86_rounding_control
{
static float force_rounding(const float& r)
{ volatile float r_ = r; return r_; }
};
template<>
struct rounding_control<double>: detail::x86_rounding_control
{
/*static double force_rounding(double r)
{ asm volatile ("" : "+m"(r) : ); return r; }*/
static double force_rounding(const double& r)
{ volatile double r_ = r; return r_; }
};
namespace detail {
template<bool>
struct x86_rounding_control_long_double;
template<>
struct x86_rounding_control_long_double<false>: x86_rounding_control
{
static long double force_rounding(long double const &r)
{ volatile long double r_ = r; return r_; }
};
template<>
struct x86_rounding_control_long_double<true>: x86_rounding_control
{
static long double const &force_rounding(long double const &r)
{ return r; }
};
} // namespace detail
template<>
struct rounding_control<long double>:
detail::x86_rounding_control_long_double< (sizeof(long double) >= 10) >
{};
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#undef BOOST_NUMERIC_INTERVAL_NO_HARDWARE
#endif /* BOOST_NUMERIC_INTERVAL_DETAIL_X86_ROUNDING_CONTROL_HPP */

View File

@@ -0,0 +1,51 @@
/* Boost interval/detail/x86gcc_rounding_control.hpp file
*
* Copyright 2000 Jens Maurer
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_DETAIL_X86GCC_ROUNDING_CONTROL_HPP
#define BOOST_NUMERIC_INTERVAL_DETAIL_X86GCC_ROUNDING_CONTROL_HPP
#ifndef __GNUC__
# error This header only works with GNU CC.
#endif
#ifndef __i386__
# error This header only works on x86 CPUs.
#endif
namespace boost {
namespace numeric {
namespace interval_lib {
namespace detail {
struct x86_rounding
{
typedef unsigned short rounding_mode;
static void set_rounding_mode(const rounding_mode& mode)
{ __asm__ __volatile__ ("fldcw %0" : : "m"(mode)); }
static void get_rounding_mode(rounding_mode& mode)
{ __asm__ __volatile__ ("fnstcw %0" : "=m"(mode)); }
template<class T>
static T to_int(T r)
{
T r_;
__asm__ ("frndint" : "=&t"(r_) : "0"(r));
return r_;
}
};
} // namespace detail
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif /* BOOST_NUMERIC_INTERVAL_DETAIL_X86GCC_ROUNDING_CONTROL_HPP */

View File

@@ -0,0 +1,70 @@
/* Boost interval/ext/integer.hpp template implementation file
*
* Copyright 2003 Guillaume Melquiond
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_EXT_INTEGER_HPP
#define BOOST_NUMERIC_INTERVAL_EXT_INTEGER_HPP
#include <boost/numeric/interval/detail/interval_prototype.hpp>
#include <boost/numeric/interval/detail/test_input.hpp>
namespace boost {
namespace numeric {
template<class T, class Policies> inline
interval<T, Policies> operator+ (const interval<T, Policies>& x, int y)
{
return x + static_cast<T>(y);
}
template<class T, class Policies> inline
interval<T, Policies> operator+ (int x, const interval<T, Policies>& y)
{
return static_cast<T>(x) + y;
}
template<class T, class Policies> inline
interval<T, Policies> operator- (const interval<T, Policies>& x, int y)
{
return x - static_cast<T>(y);
}
template<class T, class Policies> inline
interval<T, Policies> operator- (int x, const interval<T, Policies>& y)
{
return static_cast<T>(x) - y;
}
template<class T, class Policies> inline
interval<T, Policies> operator* (const interval<T, Policies>& x, int y)
{
return x * static_cast<T>(y);
}
template<class T, class Policies> inline
interval<T, Policies> operator* (int x, const interval<T, Policies>& y)
{
return static_cast<T>(x) * y;
}
template<class T, class Policies> inline
interval<T, Policies> operator/ (const interval<T, Policies>& x, int y)
{
return x / static_cast<T>(y);
}
template<class T, class Policies> inline
interval<T, Policies> operator/ (int x, const interval<T, Policies>& y)
{
return static_cast<T>(x) / y;
}
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_EXT_INTEGER_HPP

View File

@@ -0,0 +1,70 @@
/* Boost interval/detail/x86gcc_rounding_control.hpp file
*
* This header provides a rounding control policy
* that avoids flushing results to memory. In
* order for this optimization to be reliable, it
* should be used only when no underflow or
* overflow would happen without it. Indeed, only
* values in range are correctly rounded.
*
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_EXT_X86_FAST_ROUNDING_CONTROL_HPP
#define BOOST_NUMERIC_INTERVAL_EXT_X86_FAST_ROUNDING_CONTROL_HPP
namespace boost {
namespace numeric {
namespace interval_lib {
namespace detail {
// exceptions masked, expected precision (the mask is 0x0300)
static const fpu_rounding_modes rnd_mode_f = { 0x107f, 0x147f, 0x187f, 0x1c7f };
static const fpu_rounding_modes rnd_mode_d = { 0x127f, 0x167f, 0x1a7f, 0x1e7f };
static const fpu_rounding_modes rnd_mode_l = { 0x137f, 0x177f, 0x1b7f, 0x1f7f };
} // namespace detail
template<class T>
struct x86_fast_rounding_control;
template<>
struct x86_fast_rounding_control<float>: detail::x86_rounding
{
static void to_nearest() { set_rounding_mode(detail::rnd_mode_f.to_nearest); }
static void downward() { set_rounding_mode(detail::rnd_mode_f.downward); }
static void upward() { set_rounding_mode(detail::rnd_mode_f.upward); }
static void toward_zero() { set_rounding_mode(detail::rnd_mode_f.toward_zero); }
static const float& force_rounding(const float& r) { return r; }
};
template<>
struct x86_fast_rounding_control<double>: detail::x86_rounding
{
static void to_nearest() { set_rounding_mode(detail::rnd_mode_d.to_nearest); }
static void downward() { set_rounding_mode(detail::rnd_mode_d.downward); }
static void upward() { set_rounding_mode(detail::rnd_mode_d.upward); }
static void toward_zero() { set_rounding_mode(detail::rnd_mode_d.toward_zero); }
static const double& force_rounding(const double& r) { return r; }
};
template<>
struct x86_fast_rounding_control<long double>: detail::x86_rounding
{
static void to_nearest() { set_rounding_mode(detail::rnd_mode_l.to_nearest); }
static void downward() { set_rounding_mode(detail::rnd_mode_l.downward); }
static void upward() { set_rounding_mode(detail::rnd_mode_l.upward); }
static void toward_zero() { set_rounding_mode(detail::rnd_mode_l.toward_zero); }
static const long double& force_rounding(const long double& r) { return r; }
};
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_EXT_X86_FAST_ROUNDING_CONTROL_HPP

View File

@@ -0,0 +1,70 @@
/* Boost interval/hw_rounding.hpp template implementation file
*
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
* Copyright 2005 Guillaume Melquiond
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_HW_ROUNDING_HPP
#define BOOST_NUMERIC_INTERVAL_HW_ROUNDING_HPP
#include <boost/numeric/interval/rounding.hpp>
#include <boost/numeric/interval/rounded_arith.hpp>
#define BOOST_NUMERIC_INTERVAL_NO_HARDWARE
// define appropriate specialization of rounding_control for built-in types
#if defined(__x86_64__) && defined(__USE_ISOC99)
# include <boost/numeric/interval/detail/c99_rounding_control.hpp>
#elif defined(__i386__) || defined(_M_IX86) || defined(__BORLANDC__) || defined(_M_X64)
# include <boost/numeric/interval/detail/x86_rounding_control.hpp>
#elif defined(powerpc) || defined(__powerpc__) || defined(__ppc__)
# include <boost/numeric/interval/detail/ppc_rounding_control.hpp>
#elif defined(sparc) || defined(__sparc__)
# include <boost/numeric/interval/detail/sparc_rounding_control.hpp>
#elif defined(alpha) || defined(__alpha__)
# include <boost/numeric/interval/detail/alpha_rounding_control.hpp>
#elif defined(ia64) || defined(__ia64) || defined(__ia64__)
# include <boost/numeric/interval/detail/ia64_rounding_control.hpp>
#endif
#if defined(BOOST_NUMERIC_INTERVAL_NO_HARDWARE) && (defined(__USE_ISOC99) || defined(__MSL__))
# include <boost/numeric/interval/detail/c99_rounding_control.hpp>
#endif
#if defined(BOOST_NUMERIC_INTERVAL_NO_HARDWARE)
# undef BOOST_NUMERIC_INTERVAL_NO_HARDWARE
# error Boost.Numeric.Interval: Please specify rounding control mechanism.
#endif
namespace boost {
namespace numeric {
namespace interval_lib {
/*
* Three specializations of rounded_math<T>
*/
template<>
struct rounded_math<float>
: save_state<rounded_arith_opp<float> >
{};
template<>
struct rounded_math<double>
: save_state<rounded_arith_opp<double> >
{};
template<>
struct rounded_math<long double>
: save_state<rounded_arith_opp<long double> >
{};
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_HW_ROUNDING_HPP

View File

@@ -0,0 +1,450 @@
/* Boost interval/interval.hpp header file
*
* Copyright 2002-2003 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_INTERVAL_HPP
#define BOOST_NUMERIC_INTERVAL_INTERVAL_HPP
#include <stdexcept>
#include <string>
#include <boost/numeric/interval/detail/interval_prototype.hpp>
namespace boost {
namespace numeric {
namespace interval_lib {
class comparison_error
: public std::runtime_error
{
public:
comparison_error()
: std::runtime_error("boost::interval: uncertain comparison")
{ }
};
} // namespace interval_lib
/*
* interval class
*/
template<class T, class Policies>
class interval
{
private:
struct interval_holder;
struct number_holder;
public:
typedef T base_type;
typedef Policies traits_type;
T const &lower() const;
T const &upper() const;
interval();
interval(T const &v);
template<class T1> interval(T1 const &v);
interval(T const &l, T const &u);
template<class T1, class T2> interval(T1 const &l, T2 const &u);
interval(interval<T, Policies> const &r);
template<class Policies1> interval(interval<T, Policies1> const &r);
template<class T1, class Policies1> interval(interval<T1, Policies1> const &r);
interval &operator=(T const &v);
template<class T1> interval &operator=(T1 const &v);
interval &operator=(interval<T, Policies> const &r);
template<class Policies1> interval &operator=(interval<T, Policies1> const &r);
template<class T1, class Policies1> interval &operator=(interval<T1, Policies1> const &r);
void assign(const T& l, const T& u);
static interval empty();
static interval whole();
static interval hull(const T& x, const T& y);
interval& operator+= (const T& r);
interval& operator+= (const interval& r);
interval& operator-= (const T& r);
interval& operator-= (const interval& r);
interval& operator*= (const T& r);
interval& operator*= (const interval& r);
interval& operator/= (const T& r);
interval& operator/= (const interval& r);
bool operator< (const interval_holder& r) const;
bool operator> (const interval_holder& r) const;
bool operator<= (const interval_holder& r) const;
bool operator>= (const interval_holder& r) const;
bool operator== (const interval_holder& r) const;
bool operator!= (const interval_holder& r) const;
bool operator< (const number_holder& r) const;
bool operator> (const number_holder& r) const;
bool operator<= (const number_holder& r) const;
bool operator>= (const number_holder& r) const;
bool operator== (const number_holder& r) const;
bool operator!= (const number_holder& r) const;
// the following is for internal use only, it is not a published interface
// nevertheless, it's public because friends don't always work correctly.
interval(const T& l, const T& u, bool): low(l), up(u) {}
void set_empty();
void set_whole();
void set(const T& l, const T& u);
private:
struct interval_holder {
template<class Policies2>
interval_holder(const interval<T, Policies2>& r)
: low(r.lower()), up(r.upper())
{
typedef typename Policies2::checking checking2;
if (checking2::is_empty(low, up))
throw interval_lib::comparison_error();
}
const T& low;
const T& up;
};
struct number_holder {
number_holder(const T& r) : val(r)
{
typedef typename Policies::checking checking;
if (checking::is_nan(r))
throw interval_lib::comparison_error();
}
const T& val;
};
typedef typename Policies::checking checking;
typedef typename Policies::rounding rounding;
T low;
T up;
};
template<class T, class Policies> inline
interval<T, Policies>::interval():
low(static_cast<T>(0)), up(static_cast<T>(0))
{}
template<class T, class Policies> inline
interval<T, Policies>::interval(T const &v): low(v), up(v)
{
if (checking::is_nan(v)) set_empty();
}
template<class T, class Policies> template<class T1> inline
interval<T, Policies>::interval(T1 const &v)
{
if (checking::is_nan(v)) set_empty();
else {
rounding rnd;
low = rnd.conv_down(v);
up = rnd.conv_up (v);
}
}
template<class T, class Policies> template<class T1, class T2> inline
interval<T, Policies>::interval(T1 const &l, T2 const &u)
{
if (checking::is_nan(l) || checking::is_nan(u) || !(l <= u)) set_empty();
else {
rounding rnd;
low = rnd.conv_down(l);
up = rnd.conv_up (u);
}
}
template<class T, class Policies> inline
interval<T, Policies>::interval(T const &l, T const &u): low(l), up(u)
{
if (checking::is_nan(l) || checking::is_nan(u) || !(l <= u))
set_empty();
}
template<class T, class Policies> inline
interval<T, Policies>::interval(interval<T, Policies> const &r): low(r.lower()), up(r.upper())
{}
template<class T, class Policies> template<class Policies1> inline
interval<T, Policies>::interval(interval<T, Policies1> const &r): low(r.lower()), up(r.upper())
{
typedef typename Policies1::checking checking1;
if (checking1::is_empty(r.lower(), r.upper())) set_empty();
}
template<class T, class Policies> template<class T1, class Policies1> inline
interval<T, Policies>::interval(interval<T1, Policies1> const &r)
{
typedef typename Policies1::checking checking1;
if (checking1::is_empty(r.lower(), r.upper())) set_empty();
else {
rounding rnd;
low = rnd.conv_down(r.lower());
up = rnd.conv_up (r.upper());
}
}
template<class T, class Policies> inline
interval<T, Policies> &interval<T, Policies>::operator=(T const &v)
{
if (checking::is_nan(v)) set_empty();
else low = up = v;
return *this;
}
template<class T, class Policies> template<class T1> inline
interval<T, Policies> &interval<T, Policies>::operator=(T1 const &v)
{
if (checking::is_nan(v)) set_empty();
else {
rounding rnd;
low = rnd.conv_down(v);
up = rnd.conv_up (v);
}
return *this;
}
template<class T, class Policies> inline
interval<T, Policies> &interval<T, Policies>::operator=(interval<T, Policies> const &r)
{
low = r.lower();
up = r.upper();
return *this;
}
template<class T, class Policies> template<class Policies1> inline
interval<T, Policies> &interval<T, Policies>::operator=(interval<T, Policies1> const &r)
{
typedef typename Policies1::checking checking1;
if (checking1::is_empty(r.lower(), r.upper())) set_empty();
else {
low = r.lower();
up = r.upper();
}
return *this;
}
template<class T, class Policies> template<class T1, class Policies1> inline
interval<T, Policies> &interval<T, Policies>::operator=(interval<T1, Policies1> const &r)
{
typedef typename Policies1::checking checking1;
if (checking1::is_empty(r.lower(), r.upper())) set_empty();
else {
rounding rnd;
low = rnd.conv_down(r.lower());
up = rnd.conv_up (r.upper());
}
return *this;
}
template<class T, class Policies> inline
void interval<T, Policies>::assign(const T& l, const T& u)
{
if (checking::is_nan(l) || checking::is_nan(u) || !(l <= u))
set_empty();
else set(l, u);
}
template<class T, class Policies> inline
void interval<T, Policies>::set(const T& l, const T& u)
{
low = l;
up = u;
}
template<class T, class Policies> inline
void interval<T, Policies>::set_empty()
{
low = checking::empty_lower();
up = checking::empty_upper();
}
template<class T, class Policies> inline
void interval<T, Policies>::set_whole()
{
low = checking::neg_inf();
up = checking::pos_inf();
}
template<class T, class Policies> inline
interval<T, Policies> interval<T, Policies>::hull(const T& x, const T& y)
{
bool bad_x = checking::is_nan(x);
bool bad_y = checking::is_nan(y);
if (bad_x)
if (bad_y) return interval::empty();
else return interval(y, y, true);
else
if (bad_y) return interval(x, x, true);
if (x <= y) return interval(x, y, true);
else return interval(y, x, true);
}
template<class T, class Policies> inline
interval<T, Policies> interval<T, Policies>::empty()
{
return interval<T, Policies>(checking::empty_lower(),
checking::empty_upper(), true);
}
template<class T, class Policies> inline
interval<T, Policies> interval<T, Policies>::whole()
{
return interval<T, Policies>(checking::neg_inf(), checking::pos_inf(), true);
}
template<class T, class Policies> inline
const T& interval<T, Policies>::lower() const
{
return low;
}
template<class T, class Policies> inline
const T& interval<T, Policies>::upper() const
{
return up;
}
/*
* interval/interval comparisons
*/
template<class T, class Policies> inline
bool interval<T, Policies>::operator< (const interval_holder& r) const
{
if (!checking::is_empty(low, up)) {
if (up < r.low) return true;
else if (low >= r.up) return false;
}
throw interval_lib::comparison_error();
}
template<class T, class Policies> inline
bool interval<T, Policies>::operator> (const interval_holder& r) const
{
if (!checking::is_empty(low, up)) {
if (low > r.up) return true;
else if (up <= r.low) return false;
}
throw interval_lib::comparison_error();
}
template<class T, class Policies> inline
bool interval<T, Policies>::operator<= (const interval_holder& r) const
{
if (!checking::is_empty(low, up)) {
if (up <= r.low) return true;
else if (low > r.up) return false;
}
throw interval_lib::comparison_error();
}
template<class T, class Policies> inline
bool interval<T, Policies>::operator>= (const interval_holder& r) const
{
if (!checking::is_empty(low, up)) {
if (low >= r.up) return true;
else if (up < r.low) return false;
}
throw interval_lib::comparison_error();
}
template<class T, class Policies> inline
bool interval<T, Policies>::operator== (const interval_holder& r) const
{
if (!checking::is_empty(low, up)) {
if (up == r.low && low == r.up) return true;
else if (up < r.low || low > r.up) return false;
}
throw interval_lib::comparison_error();
}
template<class T, class Policies> inline
bool interval<T, Policies>::operator!= (const interval_holder& r) const
{
if (!checking::is_empty(low, up)) {
if (up < r.low || low > r.up) return true;
else if (up == r.low && low == r.up) return false;
}
throw interval_lib::comparison_error();
}
/*
* interval/number comparisons
*/
template<class T, class Policies> inline
bool interval<T, Policies>::operator< (const number_holder& r) const
{
if (!checking::is_empty(low, up)) {
if (up < r.val) return true;
else if (low >= r.val) return false;
}
throw interval_lib::comparison_error();
}
template<class T, class Policies> inline
bool interval<T, Policies>::operator> (const number_holder& r) const
{
if (!checking::is_empty(low, up)) {
if (low > r.val) return true;
else if (up <= r.val) return false;
}
throw interval_lib::comparison_error();
}
template<class T, class Policies> inline
bool interval<T, Policies>::operator<= (const number_holder& r) const
{
if (!checking::is_empty(low, up)) {
if (up <= r.val) return true;
else if (low > r.val) return false;
}
throw interval_lib::comparison_error();
}
template<class T, class Policies> inline
bool interval<T, Policies>::operator>= (const number_holder& r) const
{
if (!checking::is_empty(low, up)) {
if (low >= r.val) return true;
else if (up < r.val) return false;
}
throw interval_lib::comparison_error();
}
template<class T, class Policies> inline
bool interval<T, Policies>::operator== (const number_holder& r) const
{
if (!checking::is_empty(low, up)) {
if (up == r.val && low == r.val) return true;
else if (up < r.val || low > r.val) return false;
}
throw interval_lib::comparison_error();
}
template<class T, class Policies> inline
bool interval<T, Policies>::operator!= (const number_holder& r) const
{
if (!checking::is_empty(low, up)) {
if (up < r.val || low > r.val) return true;
else if (up == r.val && low == r.val) return false;
}
throw interval_lib::comparison_error();
}
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_INTERVAL_HPP

View File

@@ -0,0 +1,41 @@
/* Boost interval/io.hpp header file
*
* This file is only meant to provide a quick
* implementation of the output operator. It is
* provided for test programs that aren't even
* interested in the precision of the results.
* A real progam should define its own operators
* and never include this header.
*
* Copyright 2003 Guillaume Melquiond
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_IO_HPP
#define BOOST_NUMERIC_INTERVAL_IO_HPP
#include <boost/numeric/interval/interval.hpp>
#include <boost/numeric/interval/utility.hpp>
#include <ostream>
namespace boost {
namespace numeric {
template<class CharType, class CharTraits, class T, class Policies>
std::basic_ostream<CharType, CharTraits> &operator<<
(std::basic_ostream<CharType, CharTraits> &stream,
interval<T, Policies> const &value)
{
if (empty(value))
return stream << "[]";
else
return stream << '[' << lower(value) << ',' << upper(value) << ']';
}
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_IO_HPP

View File

@@ -0,0 +1,51 @@
/* Boost interval/limits.hpp template implementation file
*
* Copyright 2000 Jens Maurer
* Copyright 2002-2003 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_LIMITS_HPP
#define BOOST_NUMERIC_INTERVAL_LIMITS_HPP
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#include <boost/config.hpp>
#include <boost/limits.hpp>
#include <boost/numeric/interval/detail/interval_prototype.hpp>
namespace std {
template<class T, class Policies>
class numeric_limits<boost::numeric::interval<T, Policies> >
: public numeric_limits<T>
{
private:
typedef boost::numeric::interval<T, Policies> I;
typedef numeric_limits<T> bl;
public:
static I min BOOST_PREVENT_MACRO_SUBSTITUTION () throw() { return I((bl::min)(), (bl::min)()); }
static I max BOOST_PREVENT_MACRO_SUBSTITUTION () throw() { return I((bl::max)(), (bl::max)()); }
static I epsilon() throw() { return I(bl::epsilon(), bl::epsilon()); }
BOOST_STATIC_CONSTANT(float_round_style, round_style = round_indeterminate);
BOOST_STATIC_CONSTANT(bool, is_iec559 = false);
static I infinity () throw() { return I::whole(); }
static I quiet_NaN() throw() { return I::empty(); }
static I signaling_NaN() throw()
{ return I(bl::signaling_NaN(), bl::signaling_Nan()); }
static I denorm_min() throw()
{ return I(bl::denorm_min(), bl::denorm_min()); }
private:
static I round_error(); // hide this on purpose, not yet implemented
};
} // namespace std
#endif
#endif // BOOST_NUMERIC_INTERVAL_LIMITS_HPP

View File

@@ -0,0 +1,75 @@
/* Boost interval/policies.hpp template implementation file
*
* Copyright 2003 Guillaume Melquiond
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_POLICIES_HPP
#define BOOST_NUMERIC_INTERVAL_POLICIES_HPP
#include <boost/numeric/interval/interval.hpp>
namespace boost {
namespace numeric {
namespace interval_lib {
/*
* policies class
*/
template<class Rounding, class Checking>
struct policies
{
typedef Rounding rounding;
typedef Checking checking;
};
/*
* policies switching classes
*/
template<class OldInterval, class NewRounding>
class change_rounding
{
typedef typename OldInterval::base_type T;
typedef typename OldInterval::traits_type p;
typedef typename p::checking checking;
public:
typedef interval<T, policies<NewRounding, checking> > type;
};
template<class OldInterval, class NewChecking>
class change_checking
{
typedef typename OldInterval::base_type T;
typedef typename OldInterval::traits_type p;
typedef typename p::rounding rounding;
public:
typedef interval<T, policies<rounding, NewChecking> > type;
};
/*
* Protect / unprotect: control whether the rounding mode is set/reset
* at each operation, rather than once and for all.
*/
template<class OldInterval>
class unprotect
{
typedef typename OldInterval::base_type T;
typedef typename OldInterval::traits_type p;
typedef typename p::rounding r;
typedef typename r::unprotected_rounding newRounding;
public:
typedef typename change_rounding<OldInterval, newRounding>::type type;
};
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_POLICIES_HPP

View File

@@ -0,0 +1,120 @@
/* Boost interval/rounded_arith.hpp template implementation file
*
* Copyright 2002-2003 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_ROUNDED_ARITH_HPP
#define BOOST_NUMERIC_INTERVAL_ROUNDED_ARITH_HPP
#include <boost/numeric/interval/rounding.hpp>
#include <boost/numeric/interval/detail/bugs.hpp>
#include <boost/config/no_tr1/cmath.hpp>
namespace boost {
namespace numeric {
namespace interval_lib {
/*
* Three classes of rounding: exact, std, opp
* See documentation for details.
*/
template<class T, class Rounding>
struct rounded_arith_exact: Rounding {
void init() { }
template<class U> T conv_down(U const &v) { return v; }
template<class U> T conv_up (U const &v) { return v; }
T add_down (const T& x, const T& y) { return x + y; }
T add_up (const T& x, const T& y) { return x + y; }
T sub_down (const T& x, const T& y) { return x - y; }
T sub_up (const T& x, const T& y) { return x - y; }
T mul_down (const T& x, const T& y) { return x * y; }
T mul_up (const T& x, const T& y) { return x * y; }
T div_down (const T& x, const T& y) { return x / y; }
T div_up (const T& x, const T& y) { return x / y; }
T median (const T& x, const T& y) { return (x + y) / 2; }
T sqrt_down(const T& x)
{ BOOST_NUMERIC_INTERVAL_using_math(sqrt); return sqrt(x); }
T sqrt_up (const T& x)
{ BOOST_NUMERIC_INTERVAL_using_math(sqrt); return sqrt(x); }
T int_down (const T& x)
{ BOOST_NUMERIC_INTERVAL_using_math(floor); return floor(x); }
T int_up (const T& x)
{ BOOST_NUMERIC_INTERVAL_using_math(ceil); return ceil(x); }
};
template<class T, class Rounding>
struct rounded_arith_std: Rounding {
# define BOOST_DN(EXPR) this->downward(); return this->force_rounding(EXPR)
# define BOOST_NR(EXPR) this->to_nearest(); return this->force_rounding(EXPR)
# define BOOST_UP(EXPR) this->upward(); return this->force_rounding(EXPR)
void init() { }
template<class U> T conv_down(U const &v) { BOOST_DN(v); }
template<class U> T conv_up (U const &v) { BOOST_UP(v); }
T add_down(const T& x, const T& y) { BOOST_DN(x + y); }
T sub_down(const T& x, const T& y) { BOOST_DN(x - y); }
T mul_down(const T& x, const T& y) { BOOST_DN(x * y); }
T div_down(const T& x, const T& y) { BOOST_DN(x / y); }
T add_up (const T& x, const T& y) { BOOST_UP(x + y); }
T sub_up (const T& x, const T& y) { BOOST_UP(x - y); }
T mul_up (const T& x, const T& y) { BOOST_UP(x * y); }
T div_up (const T& x, const T& y) { BOOST_UP(x / y); }
T median(const T& x, const T& y) { BOOST_NR((x + y) / 2); }
T sqrt_down(const T& x)
{ BOOST_NUMERIC_INTERVAL_using_math(sqrt); BOOST_DN(sqrt(x)); }
T sqrt_up (const T& x)
{ BOOST_NUMERIC_INTERVAL_using_math(sqrt); BOOST_UP(sqrt(x)); }
T int_down(const T& x) { this->downward(); return to_int(x); }
T int_up (const T& x) { this->upward(); return to_int(x); }
# undef BOOST_DN
# undef BOOST_NR
# undef BOOST_UP
};
template<class T, class Rounding>
struct rounded_arith_opp: Rounding {
void init() { this->upward(); }
# define BOOST_DN(EXPR) \
this->downward(); \
T r = this->force_rounding(EXPR); \
this->upward(); \
return r
# define BOOST_NR(EXPR) \
this->to_nearest(); \
T r = this->force_rounding(EXPR); \
this->upward(); \
return r
# define BOOST_UP(EXPR) return this->force_rounding(EXPR)
# define BOOST_UP_NEG(EXPR) return -this->force_rounding(EXPR)
template<class U> T conv_down(U const &v) { BOOST_UP_NEG(-v); }
template<class U> T conv_up (U const &v) { BOOST_UP(v); }
T add_down(const T& x, const T& y) { BOOST_UP_NEG((-x) - y); }
T sub_down(const T& x, const T& y) { BOOST_UP_NEG(y - x); }
T mul_down(const T& x, const T& y) { BOOST_UP_NEG(x * (-y)); }
T div_down(const T& x, const T& y) { BOOST_UP_NEG(x / (-y)); }
T add_up (const T& x, const T& y) { BOOST_UP(x + y); }
T sub_up (const T& x, const T& y) { BOOST_UP(x - y); }
T mul_up (const T& x, const T& y) { BOOST_UP(x * y); }
T div_up (const T& x, const T& y) { BOOST_UP(x / y); }
T median (const T& x, const T& y) { BOOST_NR((x + y) / 2); }
T sqrt_down(const T& x)
{ BOOST_NUMERIC_INTERVAL_using_math(sqrt); BOOST_DN(sqrt(x)); }
T sqrt_up (const T& x)
{ BOOST_NUMERIC_INTERVAL_using_math(sqrt); BOOST_UP(sqrt(x)); }
T int_down(const T& x) { return -to_int(-x); }
T int_up (const T& x) { return to_int(x); }
# undef BOOST_DN
# undef BOOST_NR
# undef BOOST_UP
# undef BOOST_UP_NEG
};
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_ROUNDED_ARITH_HPP

View File

@@ -0,0 +1,140 @@
/* Boost interval/rounded_transc.hpp template implementation file
*
* Copyright 2002-2003 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_ROUNDED_TRANSC_HPP
#define BOOST_NUMERIC_INTERVAL_ROUNDED_TRANSC_HPP
#include <boost/numeric/interval/rounding.hpp>
#include <boost/numeric/interval/detail/bugs.hpp>
#include <boost/config/no_tr1/cmath.hpp>
namespace boost {
namespace numeric {
namespace interval_lib {
template<class T, class Rounding>
struct rounded_transc_exact: Rounding
{
# define BOOST_NUMERIC_INTERVAL_new_func(f) \
T f##_down(const T& x) { BOOST_NUMERIC_INTERVAL_using_math(f); return f(x); } \
T f##_up (const T& x) { BOOST_NUMERIC_INTERVAL_using_math(f); return f(x); }
BOOST_NUMERIC_INTERVAL_new_func(exp)
BOOST_NUMERIC_INTERVAL_new_func(log)
BOOST_NUMERIC_INTERVAL_new_func(sin)
BOOST_NUMERIC_INTERVAL_new_func(cos)
BOOST_NUMERIC_INTERVAL_new_func(tan)
BOOST_NUMERIC_INTERVAL_new_func(asin)
BOOST_NUMERIC_INTERVAL_new_func(acos)
BOOST_NUMERIC_INTERVAL_new_func(atan)
BOOST_NUMERIC_INTERVAL_new_func(sinh)
BOOST_NUMERIC_INTERVAL_new_func(cosh)
BOOST_NUMERIC_INTERVAL_new_func(tanh)
# undef BOOST_NUMERIC_INTERVAL_new_func
# define BOOST_NUMERIC_INTERVAL_new_func(f) \
T f##_down(const T& x) { BOOST_NUMERIC_INTERVAL_using_ahyp(f); return f(x); } \
T f##_up (const T& x) { BOOST_NUMERIC_INTERVAL_using_ahyp(f); return f(x); }
BOOST_NUMERIC_INTERVAL_new_func(asinh)
BOOST_NUMERIC_INTERVAL_new_func(acosh)
BOOST_NUMERIC_INTERVAL_new_func(atanh)
# undef BOOST_NUMERIC_INTERVAL_new_func
};
template<class T, class Rounding>
struct rounded_transc_std: Rounding
{
# define BOOST_NUMERIC_INTERVAL_new_func(f) \
T f##_down(const T& x) \
{ BOOST_NUMERIC_INTERVAL_using_math(f); \
this->downward(); return this->force_rounding(f(x)); } \
T f##_up (const T& x) \
{ BOOST_NUMERIC_INTERVAL_using_math(f); \
this->upward(); return this->force_rounding(f(x)); }
BOOST_NUMERIC_INTERVAL_new_func(exp)
BOOST_NUMERIC_INTERVAL_new_func(log)
BOOST_NUMERIC_INTERVAL_new_func(sin)
BOOST_NUMERIC_INTERVAL_new_func(cos)
BOOST_NUMERIC_INTERVAL_new_func(tan)
BOOST_NUMERIC_INTERVAL_new_func(asin)
BOOST_NUMERIC_INTERVAL_new_func(acos)
BOOST_NUMERIC_INTERVAL_new_func(atan)
BOOST_NUMERIC_INTERVAL_new_func(sinh)
BOOST_NUMERIC_INTERVAL_new_func(cosh)
BOOST_NUMERIC_INTERVAL_new_func(tanh)
# undef BOOST_NUMERIC_INTERVAL_new_func
# define BOOST_NUMERIC_INTERVAL_new_func(f) \
T f##_down(const T& x) \
{ BOOST_NUMERIC_INTERVAL_using_ahyp(f); \
this->downward(); return this->force_rounding(f(x)); } \
T f##_up (const T& x) \
{ BOOST_NUMERIC_INTERVAL_using_ahyp(f); \
this->upward(); return this->force_rounding(f(x)); }
BOOST_NUMERIC_INTERVAL_new_func(asinh)
BOOST_NUMERIC_INTERVAL_new_func(acosh)
BOOST_NUMERIC_INTERVAL_new_func(atanh)
# undef BOOST_NUMERIC_INTERVAL_new_func
};
template<class T, class Rounding>
struct rounded_transc_opp: Rounding
{
# define BOOST_NUMERIC_INTERVAL_new_func(f) \
T f##_down(const T& x) \
{ BOOST_NUMERIC_INTERVAL_using_math(f); \
this->downward(); T y = this->force_rounding(f(x)); \
this->upward(); return y; } \
T f##_up (const T& x) \
{ BOOST_NUMERIC_INTERVAL_using_math(f); \
return this->force_rounding(f(x)); }
BOOST_NUMERIC_INTERVAL_new_func(exp)
BOOST_NUMERIC_INTERVAL_new_func(log)
BOOST_NUMERIC_INTERVAL_new_func(cos)
BOOST_NUMERIC_INTERVAL_new_func(acos)
BOOST_NUMERIC_INTERVAL_new_func(cosh)
# undef BOOST_NUMERIC_INTERVAL_new_func
# define BOOST_NUMERIC_INTERVAL_new_func(f) \
T f##_down(const T& x) \
{ BOOST_NUMERIC_INTERVAL_using_math(f); \
return -this->force_rounding(-f(x)); } \
T f##_up (const T& x) \
{ BOOST_NUMERIC_INTERVAL_using_math(f); \
return this->force_rounding(f(x)); }
BOOST_NUMERIC_INTERVAL_new_func(sin)
BOOST_NUMERIC_INTERVAL_new_func(tan)
BOOST_NUMERIC_INTERVAL_new_func(asin)
BOOST_NUMERIC_INTERVAL_new_func(atan)
BOOST_NUMERIC_INTERVAL_new_func(sinh)
BOOST_NUMERIC_INTERVAL_new_func(tanh)
# undef BOOST_NUMERIC_INTERVAL_new_func
# define BOOST_NUMERIC_INTERVAL_new_func(f) \
T f##_down(const T& x) \
{ BOOST_NUMERIC_INTERVAL_using_ahyp(f); \
this->downward(); T y = this->force_rounding(f(x)); \
this->upward(); return y; } \
T f##_up (const T& x) \
{ BOOST_NUMERIC_INTERVAL_using_ahyp(f); \
return this->force_rounding(f(x)); }
BOOST_NUMERIC_INTERVAL_new_func(asinh)
BOOST_NUMERIC_INTERVAL_new_func(atanh)
# undef BOOST_NUMERIC_INTERVAL_new_func
# define BOOST_NUMERIC_INTERVAL_new_func(f) \
T f##_down(const T& x) \
{ BOOST_NUMERIC_INTERVAL_using_ahyp(f); \
return -this->force_rounding(-f(x)); } \
T f##_up (const T& x) \
{ BOOST_NUMERIC_INTERVAL_using_ahyp(f); \
return this->force_rounding(f(x)); }
BOOST_NUMERIC_INTERVAL_new_func(acosh)
# undef BOOST_NUMERIC_INTERVAL_new_func
};
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_ROUNDED_TRANSC_HPP

View File

@@ -0,0 +1,101 @@
/* Boost interval/rounding.hpp template implementation file
*
* Copyright 2002-2003 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_ROUNDING_HPP
#define BOOST_NUMERIC_INTERVAL_ROUNDING_HPP
namespace boost {
namespace numeric {
namespace interval_lib {
/*
* Default rounding_control class (does nothing)
*/
template<class T>
struct rounding_control
{
typedef int rounding_mode;
static void get_rounding_mode(rounding_mode&) {}
static void set_rounding_mode(rounding_mode) {}
static void upward() {}
static void downward() {}
static void to_nearest() {}
static const T& to_int(const T& x) { return x; }
static const T& force_rounding(const T& x) { return x; }
};
/*
* A few rounding control classes (exact/std/opp: see documentation)
* rounded_arith_* control the rounding of the arithmetic operators
* rounded_transc_* control the rounding of the transcendental functions
*/
template<class T, class Rounding = rounding_control<T> >
struct rounded_arith_exact;
template<class T, class Rounding = rounding_control<T> >
struct rounded_arith_std;
template<class T, class Rounding = rounding_control<T> >
struct rounded_arith_opp;
template<class T, class Rounding>
struct rounded_transc_dummy;
template<class T, class Rounding = rounded_arith_exact<T> >
struct rounded_transc_exact;
template<class T, class Rounding = rounded_arith_std<T> >
struct rounded_transc_std;
template<class T, class Rounding = rounded_arith_opp<T> >
struct rounded_transc_opp;
/*
* State-saving classes: allow to set and reset rounding control
*/
namespace detail {
template<class Rounding>
struct save_state_unprotected: Rounding
{
typedef save_state_unprotected<Rounding> unprotected_rounding;
};
} // namespace detail
template<class Rounding>
struct save_state: Rounding
{
typename Rounding::rounding_mode mode;
save_state() {
this->get_rounding_mode(mode);
this->init();
}
~save_state() { this->set_rounding_mode(mode); }
typedef detail::save_state_unprotected<Rounding> unprotected_rounding;
};
template<class Rounding>
struct save_state_nothing: Rounding
{
typedef save_state_nothing<Rounding> unprotected_rounding;
};
template<class T>
struct rounded_math: save_state_nothing<rounded_arith_exact<T> >
{};
} // namespace interval_lib
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_ROUNDING_HPP

View File

@@ -0,0 +1,232 @@
/* Boost interval/transc.hpp template implementation file
*
* Copyright 2000 Jens Maurer
* Copyright 2002 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_TRANSC_HPP
#define BOOST_NUMERIC_INTERVAL_TRANSC_HPP
#include <boost/config.hpp>
#include <boost/numeric/interval/detail/interval_prototype.hpp>
#include <boost/numeric/interval/detail/bugs.hpp>
#include <boost/numeric/interval/detail/test_input.hpp>
#include <boost/numeric/interval/rounding.hpp>
#include <boost/numeric/interval/constants.hpp>
#include <boost/numeric/interval/arith.hpp>
#include <boost/numeric/interval/arith2.hpp>
#include <algorithm>
namespace boost {
namespace numeric {
template<class T, class Policies> inline
interval<T, Policies> exp(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x))
return I::empty();
typename Policies::rounding rnd;
return I(rnd.exp_down(x.lower()), rnd.exp_up(x.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> log(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x) ||
!interval_lib::user::is_pos(x.upper()))
return I::empty();
typename Policies::rounding rnd;
typedef typename Policies::checking checking;
T l = !interval_lib::user::is_pos(x.lower())
? checking::neg_inf() : rnd.log_down(x.lower());
return I(l, rnd.log_up(x.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> cos(const interval<T, Policies>& x)
{
if (interval_lib::detail::test_input(x))
return interval<T, Policies>::empty();
typename Policies::rounding rnd;
typedef interval<T, Policies> I;
typedef typename interval_lib::unprotect<I>::type R;
// get lower bound within [0, pi]
const R pi2 = interval_lib::pi_twice<R>();
R tmp = fmod((const R&)x, pi2);
if (width(tmp) >= pi2.lower())
return I(static_cast<T>(-1), static_cast<T>(1), true); // we are covering a full period
if (tmp.lower() >= interval_lib::constants::pi_upper<T>())
return -cos(tmp - interval_lib::pi<R>());
T l = tmp.lower();
T u = tmp.upper();
BOOST_USING_STD_MIN();
// separate into monotone subintervals
if (u <= interval_lib::constants::pi_lower<T>())
return I(rnd.cos_down(u), rnd.cos_up(l), true);
else if (u <= pi2.lower())
return I(static_cast<T>(-1), rnd.cos_up(min BOOST_PREVENT_MACRO_SUBSTITUTION(rnd.sub_down(pi2.lower(), u), l)), true);
else
return I(static_cast<T>(-1), static_cast<T>(1), true);
}
template<class T, class Policies> inline
interval<T, Policies> sin(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x))
return I::empty();
typename Policies::rounding rnd;
typedef typename interval_lib::unprotect<I>::type R;
I r = cos((const R&)x - interval_lib::pi_half<R>());
(void)&rnd;
return r;
}
template<class T, class Policies> inline
interval<T, Policies> tan(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x))
return I::empty();
typename Policies::rounding rnd;
typedef typename interval_lib::unprotect<I>::type R;
// get lower bound within [-pi/2, pi/2]
const R pi = interval_lib::pi<R>();
R tmp = fmod((const R&)x, pi);
const T pi_half_d = interval_lib::constants::pi_half_lower<T>();
if (tmp.lower() >= pi_half_d)
tmp -= pi;
if (tmp.lower() <= -pi_half_d || tmp.upper() >= pi_half_d)
return I::whole();
return I(rnd.tan_down(tmp.lower()), rnd.tan_up(tmp.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> asin(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x)
|| x.upper() < static_cast<T>(-1) || x.lower() > static_cast<T>(1))
return I::empty();
typename Policies::rounding rnd;
T l = (x.lower() <= static_cast<T>(-1))
? -interval_lib::constants::pi_half_upper<T>()
: rnd.asin_down(x.lower());
T u = (x.upper() >= static_cast<T>(1) )
? interval_lib::constants::pi_half_upper<T>()
: rnd.asin_up (x.upper());
return I(l, u, true);
}
template<class T, class Policies> inline
interval<T, Policies> acos(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x)
|| x.upper() < static_cast<T>(-1) || x.lower() > static_cast<T>(1))
return I::empty();
typename Policies::rounding rnd;
T l = (x.upper() >= static_cast<T>(1) )
? static_cast<T>(0)
: rnd.acos_down(x.upper());
T u = (x.lower() <= static_cast<T>(-1))
? interval_lib::constants::pi_upper<T>()
: rnd.acos_up (x.lower());
return I(l, u, true);
}
template<class T, class Policies> inline
interval<T, Policies> atan(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x))
return I::empty();
typename Policies::rounding rnd;
return I(rnd.atan_down(x.lower()), rnd.atan_up(x.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> sinh(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x))
return I::empty();
typename Policies::rounding rnd;
return I(rnd.sinh_down(x.lower()), rnd.sinh_up(x.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> cosh(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x))
return I::empty();
typename Policies::rounding rnd;
if (interval_lib::user::is_neg(x.upper()))
return I(rnd.cosh_down(x.upper()), rnd.cosh_up(x.lower()), true);
else if (!interval_lib::user::is_neg(x.lower()))
return I(rnd.cosh_down(x.lower()), rnd.cosh_up(x.upper()), true);
else
return I(static_cast<T>(0), rnd.cosh_up(-x.lower() > x.upper() ? x.lower() : x.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> tanh(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x))
return I::empty();
typename Policies::rounding rnd;
return I(rnd.tanh_down(x.lower()), rnd.tanh_up(x.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> asinh(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x))
return I::empty();
typename Policies::rounding rnd;
return I(rnd.asinh_down(x.lower()), rnd.asinh_up(x.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> acosh(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x) || x.upper() < static_cast<T>(1))
return I::empty();
typename Policies::rounding rnd;
T l = x.lower() <= static_cast<T>(1) ? static_cast<T>(0) : rnd.acosh_down(x.lower());
return I(l, rnd.acosh_up(x.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> atanh(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x)
|| x.upper() < static_cast<T>(-1) || x.lower() > static_cast<T>(1))
return I::empty();
typename Policies::rounding rnd;
typedef typename Policies::checking checking;
T l = (x.lower() <= static_cast<T>(-1))
? checking::neg_inf() : rnd.atanh_down(x.lower());
T u = (x.upper() >= static_cast<T>(1) )
? checking::pos_inf() : rnd.atanh_up (x.upper());
return I(l, u, true);
}
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_TRANSC_HPP

View File

@@ -0,0 +1,337 @@
/* Boost interval/utility.hpp template implementation file
*
* Copyright 2000 Jens Maurer
* Copyright 2002-2003 Herv<72> Br<42>nnimann, Guillaume Melquiond, Sylvain Pion
*
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or
* copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_INTERVAL_UTILITY_HPP
#define BOOST_NUMERIC_INTERVAL_UTILITY_HPP
#include <boost/config.hpp>
#include <boost/numeric/interval/detail/interval_prototype.hpp>
#include <boost/numeric/interval/detail/test_input.hpp>
#include <boost/numeric/interval/detail/bugs.hpp>
#include <algorithm>
#include <utility>
/*
* Implementation of simple functions
*/
namespace boost {
namespace numeric {
/*
* Utility Functions
*/
template<class T, class Policies> inline
const T& lower(const interval<T, Policies>& x)
{
return x.lower();
}
template<class T, class Policies> inline
const T& upper(const interval<T, Policies>& x)
{
return x.upper();
}
template<class T, class Policies> inline
T checked_lower(const interval<T, Policies>& x)
{
if (empty(x)) {
typedef typename Policies::checking checking;
return checking::nan();
}
return x.lower();
}
template<class T, class Policies> inline
T checked_upper(const interval<T, Policies>& x)
{
if (empty(x)) {
typedef typename Policies::checking checking;
return checking::nan();
}
return x.upper();
}
template<class T, class Policies> inline
T width(const interval<T, Policies>& x)
{
if (interval_lib::detail::test_input(x)) return static_cast<T>(0);
typename Policies::rounding rnd;
return rnd.sub_up(x.upper(), x.lower());
}
template<class T, class Policies> inline
T median(const interval<T, Policies>& x)
{
if (interval_lib::detail::test_input(x)) {
typedef typename Policies::checking checking;
return checking::nan();
}
typename Policies::rounding rnd;
return rnd.median(x.lower(), x.upper());
}
template<class T, class Policies> inline
interval<T, Policies> widen(const interval<T, Policies>& x, const T& v)
{
if (interval_lib::detail::test_input(x))
return interval<T, Policies>::empty();
typename Policies::rounding rnd;
return interval<T, Policies>(rnd.sub_down(x.lower(), v),
rnd.add_up (x.upper(), v), true);
}
/*
* Set-like operations
*/
template<class T, class Policies> inline
bool empty(const interval<T, Policies>& x)
{
return interval_lib::detail::test_input(x);
}
template<class T, class Policies> inline
bool zero_in(const interval<T, Policies>& x)
{
if (interval_lib::detail::test_input(x)) return false;
return (!interval_lib::user::is_pos(x.lower())) &&
(!interval_lib::user::is_neg(x.upper()));
}
template<class T, class Policies> inline
bool in_zero(const interval<T, Policies>& x) // DEPRECATED
{
return zero_in<T, Policies>(x);
}
template<class T, class Policies> inline
bool in(const T& x, const interval<T, Policies>& y)
{
if (interval_lib::detail::test_input(x, y)) return false;
return y.lower() <= x && x <= y.upper();
}
template<class T, class Policies> inline
bool subset(const interval<T, Policies>& x,
const interval<T, Policies>& y)
{
if (empty(x)) return true;
return !empty(y) && y.lower() <= x.lower() && x.upper() <= y.upper();
}
template<class T, class Policies1, class Policies2> inline
bool proper_subset(const interval<T, Policies1>& x,
const interval<T, Policies2>& y)
{
if (empty(y)) return false;
if (empty(x)) return true;
return y.lower() <= x.lower() && x.upper() <= y.upper() &&
(y.lower() != x.lower() || x.upper() != y.upper());
}
template<class T, class Policies1, class Policies2> inline
bool overlap(const interval<T, Policies1>& x,
const interval<T, Policies2>& y)
{
if (interval_lib::detail::test_input(x, y)) return false;
return x.lower() <= y.lower() && y.lower() <= x.upper() ||
y.lower() <= x.lower() && x.lower() <= y.upper();
}
template<class T, class Policies> inline
bool singleton(const interval<T, Policies>& x)
{
return !empty(x) && x.lower() == x.upper();
}
template<class T, class Policies1, class Policies2> inline
bool equal(const interval<T, Policies1>& x, const interval<T, Policies2>& y)
{
if (empty(x)) return empty(y);
return !empty(y) && x.lower() == y.lower() && x.upper() == y.upper();
}
template<class T, class Policies> inline
interval<T, Policies> intersect(const interval<T, Policies>& x,
const interval<T, Policies>& y)
{
BOOST_USING_STD_MIN();
BOOST_USING_STD_MAX();
if (interval_lib::detail::test_input(x, y))
return interval<T, Policies>::empty();
const T& l = max BOOST_PREVENT_MACRO_SUBSTITUTION(x.lower(), y.lower());
const T& u = min BOOST_PREVENT_MACRO_SUBSTITUTION(x.upper(), y.upper());
if (l <= u) return interval<T, Policies>(l, u, true);
else return interval<T, Policies>::empty();
}
template<class T, class Policies> inline
interval<T, Policies> hull(const interval<T, Policies>& x,
const interval<T, Policies>& y)
{
BOOST_USING_STD_MIN();
BOOST_USING_STD_MAX();
bool bad_x = interval_lib::detail::test_input(x);
bool bad_y = interval_lib::detail::test_input(y);
if (bad_x)
if (bad_y) return interval<T, Policies>::empty();
else return y;
else
if (bad_y) return x;
return interval<T, Policies>(min BOOST_PREVENT_MACRO_SUBSTITUTION(x.lower(), y.lower()),
max BOOST_PREVENT_MACRO_SUBSTITUTION(x.upper(), y.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> hull(const interval<T, Policies>& x, const T& y)
{
BOOST_USING_STD_MIN();
BOOST_USING_STD_MAX();
bool bad_x = interval_lib::detail::test_input(x);
bool bad_y = interval_lib::detail::test_input<T, Policies>(y);
if (bad_y)
if (bad_x) return interval<T, Policies>::empty();
else return x;
else
if (bad_x) return interval<T, Policies>(y, y, true);
return interval<T, Policies>(min BOOST_PREVENT_MACRO_SUBSTITUTION(x.lower(), y),
max BOOST_PREVENT_MACRO_SUBSTITUTION(x.upper(), y), true);
}
template<class T, class Policies> inline
interval<T, Policies> hull(const T& x, const interval<T, Policies>& y)
{
BOOST_USING_STD_MIN();
BOOST_USING_STD_MAX();
bool bad_x = interval_lib::detail::test_input<T, Policies>(x);
bool bad_y = interval_lib::detail::test_input(y);
if (bad_x)
if (bad_y) return interval<T, Policies>::empty();
else return y;
else
if (bad_y) return interval<T, Policies>(x, x, true);
return interval<T, Policies>(min BOOST_PREVENT_MACRO_SUBSTITUTION(x, y.lower()),
max BOOST_PREVENT_MACRO_SUBSTITUTION(x, y.upper()), true);
}
template<class T> inline
interval<T> hull(const T& x, const T& y)
{
return interval<T>::hull(x, y);
}
template<class T, class Policies> inline
std::pair<interval<T, Policies>, interval<T, Policies> >
bisect(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x))
return std::pair<I,I>(I::empty(), I::empty());
const T m = median(x);
return std::pair<I,I>(I(x.lower(), m, true), I(m, x.upper(), true));
}
/*
* Elementary functions
*/
template<class T, class Policies> inline
T norm(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x)) {
typedef typename Policies::checking checking;
return checking::nan();
}
BOOST_USING_STD_MAX();
return max BOOST_PREVENT_MACRO_SUBSTITUTION(static_cast<T>(-x.lower()), x.upper());
}
template<class T, class Policies> inline
interval<T, Policies> abs(const interval<T, Policies>& x)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x))
return I::empty();
if (!interval_lib::user::is_neg(x.lower())) return x;
if (!interval_lib::user::is_pos(x.upper())) return -x;
BOOST_USING_STD_MAX();
return I(static_cast<T>(0), max BOOST_PREVENT_MACRO_SUBSTITUTION(static_cast<T>(-x.lower()), x.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> max BOOST_PREVENT_MACRO_SUBSTITUTION (const interval<T, Policies>& x,
const interval<T, Policies>& y)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x, y))
return I::empty();
BOOST_USING_STD_MAX();
return I(max BOOST_PREVENT_MACRO_SUBSTITUTION(x.lower(), y.lower()), max BOOST_PREVENT_MACRO_SUBSTITUTION(x.upper(), y.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> max BOOST_PREVENT_MACRO_SUBSTITUTION (const interval<T, Policies>& x, const T& y)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x, y))
return I::empty();
BOOST_USING_STD_MAX();
return I(max BOOST_PREVENT_MACRO_SUBSTITUTION(x.lower(), y), max BOOST_PREVENT_MACRO_SUBSTITUTION(x.upper(), y), true);
}
template<class T, class Policies> inline
interval<T, Policies> max BOOST_PREVENT_MACRO_SUBSTITUTION (const T& x, const interval<T, Policies>& y)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x, y))
return I::empty();
BOOST_USING_STD_MAX();
return I(max BOOST_PREVENT_MACRO_SUBSTITUTION(x, y.lower()), max BOOST_PREVENT_MACRO_SUBSTITUTION(x, y.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> min BOOST_PREVENT_MACRO_SUBSTITUTION (const interval<T, Policies>& x,
const interval<T, Policies>& y)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x, y))
return I::empty();
BOOST_USING_STD_MIN();
return I(min BOOST_PREVENT_MACRO_SUBSTITUTION(x.lower(), y.lower()), min BOOST_PREVENT_MACRO_SUBSTITUTION(x.upper(), y.upper()), true);
}
template<class T, class Policies> inline
interval<T, Policies> min BOOST_PREVENT_MACRO_SUBSTITUTION (const interval<T, Policies>& x, const T& y)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x, y))
return I::empty();
BOOST_USING_STD_MIN();
return I(min BOOST_PREVENT_MACRO_SUBSTITUTION(x.lower(), y), min BOOST_PREVENT_MACRO_SUBSTITUTION(x.upper(), y), true);
}
template<class T, class Policies> inline
interval<T, Policies> min BOOST_PREVENT_MACRO_SUBSTITUTION (const T& x, const interval<T, Policies>& y)
{
typedef interval<T, Policies> I;
if (interval_lib::detail::test_input(x, y))
return I::empty();
BOOST_USING_STD_MIN();
return I(min BOOST_PREVENT_MACRO_SUBSTITUTION(x, y.lower()), min BOOST_PREVENT_MACRO_SUBSTITUTION(x, y.upper()), true);
}
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_INTERVAL_UTILITY_HPP

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,296 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_BLAS_
#define _BOOST_UBLAS_BLAS_
#include <boost/numeric/ublas/traits.hpp>
namespace boost { namespace numeric { namespace ublas {
namespace blas_1 {
/** \namespace boost::numeric::ublas::blas_1
\brief wrapper functions for level 1 blas
*/
/** \brief 1-Norm: \f$\sum_i |x_i|\f$
\ingroup blas1
*/
template<class V>
typename type_traits<typename V::value_type>::real_type
asum (const V &v) {
return norm_1 (v);
}
/** \brief 2-Norm: \f$\sum_i |x_i|^2\f$
\ingroup blas1
*/
template<class V>
typename type_traits<typename V::value_type>::real_type
nrm2 (const V &v) {
return norm_2 (v);
}
/** \brief element with larges absolute value: \f$\max_i |x_i|\f$
\ingroup blas1
*/
template<class V>
typename type_traits<typename V::value_type>::real_type
amax (const V &v) {
return norm_inf (v);
}
/** \brief inner product of vectors \a v1 and \a v2
\ingroup blas1
*/
template<class V1, class V2>
typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type
dot (const V1 &v1, const V2 &v2) {
return inner_prod (v1, v2);
}
/** \brief copy vector \a v2 to \a v1
\ingroup blas1
*/
template<class V1, class V2>
V1 &
copy (V1 &v1, const V2 &v2) {
return v1.assign (v2);
}
/** \brief swap vectors \a v1 and \a v2
\ingroup blas1
*/
template<class V1, class V2>
void swap (V1 &v1, V2 &v2) {
v1.swap (v2);
}
/** \brief scale vector \a v with scalar \a t
\ingroup blas1
*/
template<class V, class T>
V &
scal (V &v, const T &t) {
return v *= t;
}
/** \brief compute \a v1 = \a v1 + \a t * \a v2
\ingroup blas1
*/
template<class V1, class T, class V2>
V1 &
axpy (V1 &v1, const T &t, const V2 &v2) {
return v1.plus_assign (t * v2);
}
/** \brief apply plane rotation
\ingroup blas1
*/
template<class T1, class V1, class T2, class V2>
void
rot (const T1 &t1, V1 &v1, const T2 &t2, V2 &v2) {
typedef typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type promote_type;
vector<promote_type> vt (t1 * v1 + t2 * v2);
v2.assign (- t2 * v1 + t1 * v2);
v1.assign (vt);
}
}
namespace blas_2 {
/** \namespace boost::numeric::ublas::blas_2
\brief wrapper functions for level 2 blas
*/
/** \brief multiply vector \a v with triangular matrix \a m
\ingroup blas2
\todo: check that matrix is really triangular
*/
template<class V, class M>
V &
tmv (V &v, const M &m) {
return v = prod (m, v);
}
/** \brief solve \a m \a x = \a v in place, \a m is triangular matrix
\ingroup blas2
*/
template<class V, class M, class C>
V &
tsv (V &v, const M &m, C) {
return v = solve (m, v, C ());
}
/** \brief compute \a v1 = \a t1 * \a v1 + \a t2 * (\a m * \a v2)
\ingroup blas2
*/
template<class V1, class T1, class T2, class M, class V2>
V1 &
gmv (V1 &v1, const T1 &t1, const T2 &t2, const M &m, const V2 &v2) {
return v1 = t1 * v1 + t2 * prod (m, v2);
}
/** \brief rank 1 update: \a m = \a m + \a t * (\a v1 * \a v2<sup>T</sup>)
\ingroup blas2
*/
template<class M, class T, class V1, class V2>
M &
gr (M &m, const T &t, const V1 &v1, const V2 &v2) {
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v1, v2);
#else
return m = m + t * outer_prod (v1, v2);
#endif
}
/** \brief symmetric rank 1 update: \a m = \a m + \a t * (\a v * \a v<sup>T</sup>)
\ingroup blas2
*/
template<class M, class T, class V>
M &
sr (M &m, const T &t, const V &v) {
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v, v);
#else
return m = m + t * outer_prod (v, v);
#endif
}
/** \brief hermitian rank 1 update: \a m = \a m + \a t * (\a v * \a v<sup>H</sup>)
\ingroup blas2
*/
template<class M, class T, class V>
M &
hr (M &m, const T &t, const V &v) {
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v, conj (v));
#else
return m = m + t * outer_prod (v, conj (v));
#endif
}
/** \brief symmetric rank 2 update: \a m = \a m + \a t *
(\a v1 * \a v2<sup>T</sup> + \a v2 * \a v1<sup>T</sup>)
\ingroup blas2
*/
template<class M, class T, class V1, class V2>
M &
sr2 (M &m, const T &t, const V1 &v1, const V2 &v2) {
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * (outer_prod (v1, v2) + outer_prod (v2, v1));
#else
return m = m + t * (outer_prod (v1, v2) + outer_prod (v2, v1));
#endif
}
/** \brief hermitian rank 2 update: \a m = \a m +
\a t * (\a v1 * \a v2<sup>H</sup>)
+ \a v2 * (\a t * \a v1)<sup>H</sup>)
\ingroup blas2
*/
template<class M, class T, class V1, class V2>
M &
hr2 (M &m, const T &t, const V1 &v1, const V2 &v2) {
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
#else
return m = m + t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
#endif
}
}
namespace blas_3 {
/** \namespace boost::numeric::ublas::blas_3
\brief wrapper functions for level 3 blas
*/
/** \brief triangular matrix multiplication
\ingroup blas3
*/
template<class M1, class T, class M2, class M3>
M1 &
tmm (M1 &m1, const T &t, const M2 &m2, const M3 &m3) {
return m1 = t * prod (m2, m3);
}
/** \brief triangular solve \a m2 * \a x = \a t * \a m1 in place,
\a m2 is a triangular matrix
\ingroup blas3
*/
template<class M1, class T, class M2, class C>
M1 &
tsm (M1 &m1, const T &t, const M2 &m2, C) {
return m1 = solve (m2, t * m1, C ());
}
/** \brief general matrix multiplication
\ingroup blas3
*/
template<class M1, class T1, class T2, class M2, class M3>
M1 &
gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) {
return m1 = t1 * m1 + t2 * prod (m2, m3);
}
/** \brief symmetric rank k update: \a m1 = \a t * \a m1 +
\a t2 * (\a m2 * \a m2<sup>T</sup>)
\ingroup blas3
\todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2>
M1 &
srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) {
return m1 = t1 * m1 + t2 * prod (m2, trans (m2));
}
/** \brief hermitian rank k update: \a m1 = \a t * \a m1 +
\a t2 * (\a m2 * \a m2<sup>H</sup>)
\ingroup blas3
\todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2>
M1 &
hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2) {
return m1 = t1 * m1 + t2 * prod (m2, herm (m2));
}
/** \brief generalized symmetric rank k update:
\a m1 = \a t1 * \a m1 + \a t2 * (\a m2 * \a m3<sup>T</sup>)
+ \a t2 * (\a m3 * \a m2<sup>T</sup>)
\ingroup blas3
\todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2, class M3>
M1 &
sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) {
return m1 = t1 * m1 + t2 * (prod (m2, trans (m3)) + prod (m3, trans (m2)));
}
/** \brief generalized hermitian rank k update:
\a m1 = \a t1 * \a m1 + \a t2 * (\a m2 * \a m3<sup>H</sup>)
+ (\a m3 * (\a t2 * \a m2)<sup>H</sup>)
\ingroup blas3
\todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2, class M3>
M1 &
hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3) {
return m1 = t1 * m1 + t2 * prod (m2, herm (m3)) + type_traits<T2>::conj (t2) * prod (m3, herm (m2));
}
}
}}}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,290 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_CONFIG_
#define _BOOST_UBLAS_CONFIG_
#include <cassert>
#include <cstddef>
#include <algorithm>
#include <limits>
#include <boost/config.hpp>
#include <boost/static_assert.hpp>
#include <boost/noncopyable.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/and.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/type_traits/is_const.hpp>
#include <boost/type_traits/remove_reference.hpp>
// Microsoft Visual C++
#if defined (BOOST_MSVC) && ! defined (BOOST_STRICT_CONFIG)
// Version 6.0 and 7.0
#if BOOST_MSVC <= 1300
#define BOOST_UBLAS_UNSUPPORTED_COMPILER 1
#endif
// Version 7.1
#if BOOST_MSVC == 1310
// One of these workarounds is needed for MSVC 7.1 AFAIK
// (thanks to John Maddock and Martin Lauer).
#if !(defined(BOOST_UBLAS_NO_NESTED_CLASS_RELATION) || defined(BOOST_UBLAS_MSVC_NESTED_CLASS_RELATION))
#define BOOST_UBLAS_NO_NESTED_CLASS_RELATION
#endif
#endif
#endif
// GNU Compiler Collection
#if defined (__GNUC__) && ! defined (BOOST_STRICT_CONFIG)
#if __GNUC__ >= 4 || (__GNUC__ >= 3 && __GNUC_MINOR__ >= 4)
// Specified by ABI definition see GCC bug id 9982
#define BOOST_UBLAS_USEFUL_ARRAY_PLACEMENT_NEW
#endif
#if __GNUC__ < 3
#define BOOST_UBLAS_UNSUPPORTED_COMPILER 1
#endif
#endif
// Intel Compiler
#if defined (BOOST_INTEL) && ! defined (BOOST_STRICT_CONFIG)
#if defined (BOOST_INTEL_LINUX) && (BOOST_INTEL_LINUX >= 800)
// By inspection of compiler results
#define BOOST_UBLAS_USEFUL_ARRAY_PLACEMENT_NEW
#endif
#if (BOOST_INTEL < 700)
#define BOOST_UBLAS_UNSUPPORTED_COMPILER 1
#endif
// Define swap for index_pair and triple.
#if (BOOST_INTEL <= 800)
namespace boost { namespace numeric { namespace ublas {
template<class C, class IC>
class indexed_iterator;
template<class V>
class index_pair;
template<class M>
class index_triple;
}}}
namespace std {
template<class V>
inline
void swap (boost::numeric::ublas::index_pair<V> i1, boost::numeric::ublas::index_pair<V> i2) {
i1.swap (i2);
}
template<class M>
inline
void swap (boost::numeric::ublas::index_triple<M> i1, boost::numeric::ublas::index_triple<M> i2) {
i1.swap (i2);
}
// iter_swap also needed for ICC on Itanium?
template<class C, class IC>
inline
void iter_swap (boost::numeric::ublas::indexed_iterator<C, IC> it1,
boost::numeric::ublas::indexed_iterator<C, IC> it2) {
swap (*it1, *it2);
}
}
#endif
#endif
// Comeau compiler - thanks to Kresimir Fresl
#if defined (__COMO__) && ! defined (BOOST_STRICT_CONFIG)
// Missing std::abs overloads for float types in <cmath> are in <cstdlib>
#if defined(__LIBCOMO__) && (__LIBCOMO_VERSION__ <= 31)
#include <cstdlib>
#endif
#endif
// HP aCC C++ compiler
#if defined (__HP_aCC) && ! defined (BOOST_STRICT_CONFIG)
# if (__HP_aCC >= 60000 )
# define BOOST_UBLAS_USEFUL_ARRAY_PLACEMENT_NEW
#endif
#endif
// SGI MIPSpro C++ compiler
#if defined (__sgi) && ! defined (BOOST_STRICT_CONFIG)
// Missing std::abs overloads for float types in <cmath> are in <cstdlib>
// This test should be library version specific.
#include <cstdlib>
#if __COMPILER_VERSION >=650
// By inspection of compiler results - thanks to Peter Schmitteckert
#define BOOST_UBLAS_USEFUL_ARRAY_PLACEMENT_NEW
#endif
#endif
// Metrowerks Codewarrior
#if defined (__MWERKS__) && ! defined (BOOST_STRICT_CONFIG)
// 8.x
#if __MWERKS__ <= 0x3003
#define BOOST_UBLAS_UNSUPPORTED_COMPILER 1
#endif
#endif
// Detect other compilers with serious defects - override by defineing BOOST_UBLAS_UNSUPPORTED_COMPILER=0
#ifndef BOOST_UBLAS_UNSUPPORTED_COMPILER
#if defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING) || defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) || defined(BOOST_NO_SFINAE) || defined(BOOST_NO_STDC_NAMESPACE)
#define BOOST_UBLAS_UNSUPPORTED_COMPILER 1
#endif
#endif
// Cannot continue with an unsupported compiler
#if defined(BOOST_UBLAS_UNSUPPORTED_COMPILER) && (BOOST_UBLAS_UNSUPPORTED_COMPILER != 0)
#error Your compiler and/or configuration is unsupported by this verions of uBLAS. Define BOOST_UBLAS_UNSUPPORTED_COMPILER=0 to override this message. Boost 1.32.0 includes uBLAS with support for many older compilers.
#endif
// Enable performance options in RELEASE mode
#if defined (NDEBUG) || defined (BOOST_UBLAS_NDEBUG)
#ifndef BOOST_UBLAS_INLINE
#define BOOST_UBLAS_INLINE inline
#endif
// Do not check sizes!
#define BOOST_UBLAS_USE_FAST_SAME
// NO runtime error checks with BOOST_UBLAS_CHECK macro
#ifndef BOOST_UBLAS_CHECK_ENABLE
#define BOOST_UBLAS_CHECK_ENABLE 0
#endif
// NO type compatibility numeric checks
#ifndef BOOST_UBLAS_TYPE_CHECK
#define BOOST_UBLAS_TYPE_CHECK 0
#endif
// Disable performance options in DEBUG mode
#else
#ifndef BOOST_UBLAS_INLINE
#define BOOST_UBLAS_INLINE
#endif
// Enable runtime error checks with BOOST_UBLAS_CHECK macro. Check bounds etc
#ifndef BOOST_UBLAS_CHECK_ENABLE
#define BOOST_UBLAS_CHECK_ENABLE 1
#endif
// Type compatibiltity numeric checks
#ifndef BOOST_UBLAS_TYPE_CHECK
#define BOOST_UBLAS_TYPE_CHECK 1
#endif
#endif
/*
* Type compatibility checks
* Control type compatibility numeric runtime checks for non dense matrices.
* Require additional storage and complexity
*/
#if BOOST_UBLAS_TYPE_CHECK
template <class Dummy>
struct disable_type_check
{
static bool value;
};
template <class Dummy>
bool disable_type_check<Dummy>::value = false;
#endif
#ifndef BOOST_UBLAS_TYPE_CHECK_EPSILON
#define BOOST_UBLAS_TYPE_CHECK_EPSILON (type_traits<real_type>::type_sqrt (std::numeric_limits<real_type>::epsilon ()))
#endif
#ifndef BOOST_UBLAS_TYPE_CHECK_MIN
#define BOOST_UBLAS_TYPE_CHECK_MIN (type_traits<real_type>::type_sqrt ( (std::numeric_limits<real_type>::min) ()))
#endif
/*
* General Configuration
*/
// Proxy shortcuts overload the alreadly heavily over used operator ()
//#define BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
// In order to simplify debugging is is possible to simplify expression template
// so they are restricted to a single operation
// #define BOOST_UBLAS_SIMPLE_ET_DEBUG
// Use invariant hoisting.
// #define BOOST_UBLAS_USE_INVARIANT_HOISTING
// Use Duff's device in element access loops
// #define BOOST_UBLAS_USE_DUFF_DEVICE
// Choose evaluation method for dense vectors and matrices
#if !(defined(BOOST_UBLAS_USE_INDEXING) || defined(BOOST_UBLAS_USE_ITERATING))
#define BOOST_UBLAS_USE_INDEXING
#endif
// #define BOOST_UBLAS_ITERATOR_THRESHOLD 0
// Use indexed iterators - unsupported implementation experiment
// #define BOOST_UBLAS_USE_INDEXED_ITERATOR
// Alignment of bounded_array type
#ifndef BOOST_UBLAS_BOUNDED_ARRAY_ALIGN
#define BOOST_UBLAS_BOUNDED_ARRAY_ALIGN
#endif
// Enable different sparse element proxies
#ifndef BOOST_UBLAS_NO_ELEMENT_PROXIES
// Sparse proxies prevent reference invalidation problems in expressions such as:
// a [1] = a [0] = 1 Thanks to Marc Duflot for spotting this.
// #define BOOST_UBLAS_STRICT_MAP_ARRAY
#define BOOST_UBLAS_STRICT_VECTOR_SPARSE
#define BOOST_UBLAS_STRICT_MATRIX_SPARSE
// Hermitian matrices use element proxies to allow assignment to conjugate triangle
#define BOOST_UBLAS_STRICT_HERMITIAN
#endif
// Define to configure special settings for reference returning members
// #define BOOST_UBLAS_REFERENCE_CONST_MEMBER
// #define BOOST_UBLAS_PROXY_CONST_MEMBER
// Include type declerations and functions
#include <boost/numeric/ublas/fwd.hpp>
#include <boost/numeric/ublas/detail/definitions.hpp>
#endif

View File

@@ -0,0 +1,212 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_DEFINITIONS_
#define _BOOST_UBLAS_DEFINITIONS_
namespace boost { namespace numeric { namespace ublas {
namespace detail {
/* Borrowed from boost/concept_checks.hpp
"inline" is used for ignore_unused_variable_warning()
to make sure there is no overhead with g++.
*/
template <class T> inline
void ignore_unused_variable_warning(const T&) {}
} // namespace detail
// Borrowed from Dave Abraham's noncopyable.
// I believe this should be part of utility.hpp one day...
namespace nonassignable_ // protection from unintended ADL
{
class nonassignable {
protected:
nonassignable () {}
~nonassignable () {}
private: // emphasize the following members are private
const nonassignable& operator= (const nonassignable &);
}; // nonassignable
}
typedef nonassignable_::nonassignable nonassignable;
// Assignment proxy.
// Provides temporary free assigment when LHS has no alias on RHS
template<class C>
class noalias_proxy:
private nonassignable {
public:
typedef typename C::closure_type closure_type;
BOOST_UBLAS_INLINE
noalias_proxy (C& lval):
nonassignable (), lval_ (lval) {}
BOOST_UBLAS_INLINE
noalias_proxy (const noalias_proxy& p):
nonassignable (), lval_ (p.lval_) {}
template <class E>
BOOST_UBLAS_INLINE
closure_type &operator= (const E& e) {
lval_.assign (e);
return lval_;
}
template <class E>
BOOST_UBLAS_INLINE
closure_type &operator+= (const E& e) {
lval_.plus_assign (e);
return lval_;
}
template <class E>
BOOST_UBLAS_INLINE
closure_type &operator-= (const E& e) {
lval_.minus_assign (e);
return lval_;
}
private:
closure_type lval_;
};
// Improve syntax of effcient assignment where no aliases of LHS appear on the RHS
// noalias(lhs) = rhs_expression
template <class C>
BOOST_UBLAS_INLINE
noalias_proxy<C> noalias (C& lvalue) {
return noalias_proxy<C> (lvalue);
}
template <class C>
BOOST_UBLAS_INLINE
noalias_proxy<const C> noalias (const C& lvalue) {
return noalias_proxy<const C> (lvalue);
}
// Possible future compatible syntax where lvalue possible has an unsafe alias on the RHS
// safe(lhs) = rhs_expression
template <class C>
BOOST_UBLAS_INLINE
C& safe (C& lvalue) {
return lvalue;
}
template <class C>
BOOST_UBLAS_INLINE
const C& safe (const C& lvalue) {
return lvalue;
}
// Dimension accessors
namespace dimension {
// Generic accessors
template<unsigned dimension>
struct dimension_properties {};
template<>
struct dimension_properties<1> {
template <class E>
BOOST_UBLAS_INLINE static
typename E::size_type size (const vector_expression<E> &e) {
return e ().size ();
}
template <class E>
BOOST_UBLAS_INLINE static
typename E::size_type size (const matrix_expression<E> &e) {
return e ().size1 ();
}
// Note: Index functions cannot deduce dependant template parameter V or M from i
template <class V>
BOOST_UBLAS_INLINE static
typename V::size_type index (const typename V::iterator &i) {
return i.index ();
}
template <class M>
BOOST_UBLAS_INLINE static
typename M::size_type index (const typename M::iterator1 &i) {
return i.index1 ();
}
template <class M>
BOOST_UBLAS_INLINE static
typename M::size_type index (const typename M::iterator2 &i) {
return i.index1 ();
}
};
template<>
struct dimension_properties<2> {
template <class E>
BOOST_UBLAS_INLINE static
typename E::size_type size (const vector_expression<E> &) {
return 1;
}
template <class E>
BOOST_UBLAS_INLINE static
typename E::size_type size (const matrix_expression<E> &e) {
return e ().size2 ();
}
template <class V>
BOOST_UBLAS_INLINE static
typename V::size_type index (const typename V::iterator &) {
return 1;
}
template <class M>
BOOST_UBLAS_INLINE static
typename M::size_type index (const typename M::iterator1 &i) {
return i.index2 ();
}
template <class M>
BOOST_UBLAS_INLINE static
typename M::size_type index (const typename M::iterator2 &i) {
return i.index2 ();
}
};
template<unsigned dimension, class E>
BOOST_UBLAS_INLINE
typename E::size_type size (const E& e) {
return dimension_properties<dimension>::size (e);
}
template<unsigned dimension, class I>
BOOST_UBLAS_INLINE
typename I::container_type::size_type
index (const I& i) {
typedef typename I::container_type container_type;
return dimension_properties<dimension>::template index<container_type> (i);
}
// Named accessors - just syntactic sugar
template<class V>
typename V::size_type num_elements (const V &v) {
return v.size ();
}
template<class M>
typename M::size_type num_rows (const M &m) {
return m.size1 ();
}
template<class M>
typename M::size_type num_columns (const M &m) {
return m.size2 ();
}
template<class MV>
typename MV::size_type num_non_zeros (const MV &mv) {
return mv.non_zeros ();
}
}
}}}
#endif

View File

@@ -0,0 +1,33 @@
//
// Copyright (c) 2000-2004
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
// this file should not contain any code, but the documentation
// global to all files
/** \namespace boost::numeric::ublas
\brief contains all important classes and functions of uBLAS
all ublas definitions ...
\todo expand this section
*/
/** \defgroup blas1 Level 1 BLAS
\brief level 1 basic linear algebra subroutines
*/
/** \defgroup blas2 Level 2 BLAS
\brief level 2 basic linear algebra subroutines
*/
/** \defgroup blas3 Level 3 BLAS
\brief level 3 basic linear algebra subroutines
*/

View File

@@ -0,0 +1,56 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_DUFF_
#define _BOOST_UBLAS_DUFF_
#define DD_SWITCH(n, d, r, expr) \
{ \
unsigned r = ((n) + (d) - 1) / (d); \
switch ((n) % (d)) { \
case 0: do { expr;
#define DD_CASE_I(i, expr) \
case (i): expr;
#define DD_WHILE(r) \
} while (-- (r) > 0); \
} \
}
#define DD_1T(n, d, r, expr) \
DD_WHILE(r)
#define DD_2T(n, d, r, expr) \
DD_CASE_I(1, expr) \
DD_1T(n, d, r, expr)
#define DD_3T(n, d, r, expr) \
DD_CASE_I(2, expr) \
DD_2T(n, d, r, expr)
#define DD_4T(n, d, r, expr) \
DD_CASE_I(3, expr) \
DD_3T(n, d, r, expr)
#define DD_5T(n, d, r, expr) \
DD_CASE_I(4, expr) \
DD_4T(n, d, r, expr)
#define DD_6T(n, d, r, expr) \
DD_CASE_I(5, expr) \
DD_5T(n, d, r, expr)
#define DD_7T(n, d, r, expr) \
DD_CASE_I(6, expr) \
DD_6T(n, d, r, expr)
#define DD_8T(n, d, r, expr) \
DD_CASE_I(7, expr) \
DD_7T(n, d, r, expr)
#define DD(n, d, r, expr) \
DD_SWITCH(n, d, r, expr) \
DD_##d##T(n, d, r, expr)
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,878 @@
//
// Copyright (c) 2002-2003
// Toon Knapen, Kresimir Fresl, Joerg Walter
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
//
#ifndef _BOOST_UBLAS_RAW_
#define _BOOST_UBLAS_RAW_
namespace boost { namespace numeric { namespace ublas { namespace raw {
// We need data_const() mostly due to MSVC 6.0.
// But how shall we write portable code otherwise?
template < typename V >
BOOST_UBLAS_INLINE
int size( const V &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
int size( const vector_reference<V> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
int size1( const M &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
int size2( const M &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
int size1( const matrix_reference<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
int size2( const matrix_reference<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
int leading_dimension( const M &m, row_major_tag ) ;
template < typename M >
BOOST_UBLAS_INLINE
int leading_dimension( const M &m, column_major_tag ) ;
template < typename M >
BOOST_UBLAS_INLINE
int leading_dimension( const M &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
int leading_dimension( const matrix_reference<M> &m ) ;
template < typename V >
BOOST_UBLAS_INLINE
int stride( const V &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
int stride( const vector_range<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
int stride( const vector_slice<V> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
int stride( const matrix_row<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
int stride( const matrix_column<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
int stride1( const M &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
int stride2( const M &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
int stride1( const matrix_reference<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
int stride2( const matrix_reference<M> &m ) ;
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
int stride1( const c_matrix<T, M, N> &m ) ;
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
int stride2( const c_matrix<T, M, N> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
int stride1( const matrix_range<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
int stride1( const matrix_slice<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
int stride2( const matrix_range<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
int stride2( const matrix_slice<M> &m ) ;
template < typename MV >
BOOST_UBLAS_INLINE
typename MV::array_type::array_type::const_pointer data( const MV &mv ) ;
template < typename MV >
BOOST_UBLAS_INLINE
typename MV::array_type::array_type::const_pointer data_const( const MV &mv ) ;
template < typename MV >
BOOST_UBLAS_INLINE
typename MV::array_type::pointer data( MV &mv ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer data( const vector_reference<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer data_const( const vector_reference<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::pointer data( vector_reference<V> &v ) ;
template < typename T, std::size_t N >
BOOST_UBLAS_INLINE
typename c_vector<T, N>::array_type::array_type::const_pointer data( const c_vector<T, N> &v ) ;
template < typename T, std::size_t N >
BOOST_UBLAS_INLINE
typename c_vector<T, N>::array_type::array_type::const_pointer data_const( const c_vector<T, N> &v ) ;
template < typename T, std::size_t N >
BOOST_UBLAS_INLINE
typename c_vector<T, N>::pointer data( c_vector<T, N> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer data( const vector_range<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer data( const vector_slice<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer data_const( const vector_range<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer data_const( const vector_slice<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::pointer data( vector_range<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::pointer data( vector_slice<V> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer data( const matrix_reference<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer data_const( const matrix_reference<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer data( matrix_reference<M> &m ) ;
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
typename c_matrix<T, M, N>::array_type::array_type::const_pointer data( const c_matrix<T, M, N> &m ) ;
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
typename c_matrix<T, M, N>::array_type::array_type::const_pointer data_const( const c_matrix<T, M, N> &m ) ;
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
typename c_matrix<T, M, N>::pointer data( c_matrix<T, M, N> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer data( const matrix_row<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer data( const matrix_column<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer data_const( const matrix_row<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer data_const( const matrix_column<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer data( matrix_row<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer data( matrix_column<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer data( const matrix_range<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer data( const matrix_slice<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer data_const( const matrix_range<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer data_const( const matrix_slice<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer data( matrix_range<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer data( matrix_slice<M> &m ) ;
template < typename MV >
BOOST_UBLAS_INLINE
typename MV::array_type::array_type::const_pointer base( const MV &mv ) ;
template < typename MV >
BOOST_UBLAS_INLINE
typename MV::array_type::array_type::const_pointer base_const( const MV &mv ) ;
template < typename MV >
BOOST_UBLAS_INLINE
typename MV::array_type::pointer base( MV &mv ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer base( const vector_reference<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer base_const( const vector_reference<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::pointer base( vector_reference<V> &v ) ;
template < typename T, std::size_t N >
BOOST_UBLAS_INLINE
typename c_vector<T, N>::array_type::array_type::const_pointer base( const c_vector<T, N> &v ) ;
template < typename T, std::size_t N >
BOOST_UBLAS_INLINE
typename c_vector<T, N>::array_type::array_type::const_pointer base_const( const c_vector<T, N> &v ) ;
template < typename T, std::size_t N >
BOOST_UBLAS_INLINE
typename c_vector<T, N>::pointer base( c_vector<T, N> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer base( const vector_range<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer base( const vector_slice<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer base_const( const vector_range<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer base_const( const vector_slice<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::pointer base( vector_range<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::pointer base( vector_slice<V> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer base( const matrix_reference<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer base_const( const matrix_reference<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer base( matrix_reference<M> &m ) ;
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
typename c_matrix<T, M, N>::array_type::array_type::const_pointer base( const c_matrix<T, M, N> &m ) ;
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
typename c_matrix<T, M, N>::array_type::array_type::const_pointer base_const( const c_matrix<T, M, N> &m ) ;
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
typename c_matrix<T, M, N>::pointer base( c_matrix<T, M, N> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer base( const matrix_row<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer base( const matrix_column<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer base_const( const matrix_row<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer base_const( const matrix_column<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer base( matrix_row<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer base( matrix_column<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer base( const matrix_range<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer base( const matrix_slice<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer base_const( const matrix_range<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::array_type::const_pointer base_const( const matrix_slice<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer base( matrix_range<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer base( matrix_slice<M> &m ) ;
template < typename MV >
BOOST_UBLAS_INLINE
typename MV::size_type start( const MV &mv ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::size_type start( const vector_range<V> &v ) ;
template < typename V >
BOOST_UBLAS_INLINE
typename V::size_type start( const vector_slice<V> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::size_type start( const matrix_row<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::size_type start( const matrix_column<M> &v ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::size_type start( const matrix_range<M> &m ) ;
template < typename M >
BOOST_UBLAS_INLINE
typename M::size_type start( const matrix_slice<M> &m ) ;
template < typename V >
BOOST_UBLAS_INLINE
int size( const V &v ) {
return v.size() ;
}
template < typename V >
BOOST_UBLAS_INLINE
int size( const vector_reference<V> &v ) {
return size( v ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
int size1( const M &m ) {
return m.size1() ;
}
template < typename M >
BOOST_UBLAS_INLINE
int size2( const M &m ) {
return m.size2() ;
}
template < typename M >
BOOST_UBLAS_INLINE
int size1( const matrix_reference<M> &m ) {
return size1( m.expression() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
int size2( const matrix_reference<M> &m ) {
return size2( m.expression() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
int leading_dimension( const M &m, row_major_tag ) {
return m.size2() ;
}
template < typename M >
BOOST_UBLAS_INLINE
int leading_dimension( const M &m, column_major_tag ) {
return m.size1() ;
}
template < typename M >
BOOST_UBLAS_INLINE
int leading_dimension( const M &m ) {
return leading_dimension( m, typename M::orientation_category() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
int leading_dimension( const matrix_reference<M> &m ) {
return leading_dimension( m.expression() ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
int stride( const V &v ) {
return 1 ;
}
template < typename V >
BOOST_UBLAS_INLINE
int stride( const vector_range<V> &v ) {
return stride( v.data() ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
int stride( const vector_slice<V> &v ) {
return v.stride() * stride( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
int stride( const matrix_row<M> &v ) {
return stride2( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
int stride( const matrix_column<M> &v ) {
return stride1( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
int stride1( const M &m ) {
typedef typename M::functor_type functor_type;
return functor_type::one1( m.size1(), m.size2() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
int stride2( const M &m ) {
typedef typename M::functor_type functor_type;
return functor_type::one2( m.size1(), m.size2() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
int stride1( const matrix_reference<M> &m ) {
return stride1( m.expression() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
int stride2( const matrix_reference<M> &m ) {
return stride2( m.expression() ) ;
}
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
int stride1( const c_matrix<T, M, N> &m ) {
return N ;
}
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
int stride2( const c_matrix<T, M, N> &m ) {
return 1 ;
}
template < typename M >
BOOST_UBLAS_INLINE
int stride1( const matrix_range<M> &m ) {
return stride1( m.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
int stride1( const matrix_slice<M> &m ) {
return m.stride1() * stride1( m.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
int stride2( const matrix_range<M> &m ) {
return stride2( m.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
int stride2( const matrix_slice<M> &m ) {
return m.stride2() * stride2( m.data() ) ;
}
template < typename MV >
BOOST_UBLAS_INLINE
typename MV::array_type::array_type::array_type::const_pointer data( const MV &mv ) {
return &mv.data().begin()[0] ;
}
template < typename MV >
BOOST_UBLAS_INLINE
typename MV::array_type::array_type::const_pointer data_const( const MV &mv ) {
return &mv.data().begin()[0] ;
}
template < typename MV >
BOOST_UBLAS_INLINE
typename MV::array_type::pointer data( MV &mv ) {
return &mv.data().begin()[0] ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer data( const vector_reference<V> &v ) {
return data( v.expression () ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer data_const( const vector_reference<V> &v ) {
return data_const( v.expression () ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::pointer data( vector_reference<V> &v ) {
return data( v.expression () ) ;
}
template < typename T, std::size_t N >
BOOST_UBLAS_INLINE
typename c_vector<T, N>::array_type::array_type::const_pointer data( const c_vector<T, N> &v ) {
return v.data() ;
}
template < typename T, std::size_t N >
BOOST_UBLAS_INLINE
typename c_vector<T, N>::array_type::array_type::const_pointer data_const( const c_vector<T, N> &v ) {
return v.data() ;
}
template < typename T, std::size_t N >
BOOST_UBLAS_INLINE
typename c_vector<T, N>::pointer data( c_vector<T, N> &v ) {
return v.data() ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer data( const vector_range<V> &v ) {
return data( v.data() ) + v.start() * stride (v.data() ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer data( const vector_slice<V> &v ) {
return data( v.data() ) + v.start() * stride (v.data() ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::array_type::const_pointer data_const( const vector_range<V> &v ) {
return data_const( v.data() ) + v.start() * stride (v.data() ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::const_pointer data_const( const vector_slice<V> &v ) {
return data_const( v.data() ) + v.start() * stride (v.data() ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::pointer data( vector_range<V> &v ) {
return data( v.data() ) + v.start() * stride (v.data() ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::pointer data( vector_slice<V> &v ) {
return data( v.data() ) + v.start() * stride (v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer data( const matrix_reference<M> &m ) {
return data( m.expression () ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer data_const( const matrix_reference<M> &m ) {
return data_const( m.expression () ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer data( matrix_reference<M> &m ) {
return data( m.expression () ) ;
}
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
typename c_matrix<T, M, N>::array_type::const_pointer data( const c_matrix<T, M, N> &m ) {
return m.data() ;
}
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
typename c_matrix<T, M, N>::array_type::const_pointer data_const( const c_matrix<T, M, N> &m ) {
return m.data() ;
}
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
typename c_matrix<T, M, N>::pointer data( c_matrix<T, M, N> &m ) {
return m.data() ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer data( const matrix_row<M> &v ) {
return data( v.data() ) + v.index() * stride1( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer data( const matrix_column<M> &v ) {
return data( v.data() ) + v.index() * stride2( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer data_const( const matrix_row<M> &v ) {
return data_const( v.data() ) + v.index() * stride1( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer data_const( const matrix_column<M> &v ) {
return data_const( v.data() ) + v.index() * stride2( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer data( matrix_row<M> &v ) {
return data( v.data() ) + v.index() * stride1( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer data( matrix_column<M> &v ) {
return data( v.data() ) + v.index() * stride2( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer data( const matrix_range<M> &m ) {
return data( m.data() ) + m.start1() * stride1( m.data () ) + m.start2() * stride2( m.data () ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer data( const matrix_slice<M> &m ) {
return data( m.data() ) + m.start1() * stride1( m.data () ) + m.start2() * stride2( m.data () ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer data_const( const matrix_range<M> &m ) {
return data_const( m.data() ) + m.start1() * stride1( m.data () ) + m.start2() * stride2( m.data () ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer data_const( const matrix_slice<M> &m ) {
return data_const( m.data() ) + m.start1() * stride1( m.data () ) + m.start2() * stride2( m.data () ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer data( matrix_range<M> &m ) {
return data( m.data() ) + m.start1() * stride1( m.data () ) + m.start2() * stride2( m.data () ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer data( matrix_slice<M> &m ) {
return data( m.data() ) + m.start1() * stride1( m.data () ) + m.start2() * stride2( m.data () ) ;
}
template < typename MV >
BOOST_UBLAS_INLINE
typename MV::array_type::const_pointer base( const MV &mv ) {
return &mv.data().begin()[0] ;
}
template < typename MV >
BOOST_UBLAS_INLINE
typename MV::array_type::const_pointer base_const( const MV &mv ) {
return &mv.data().begin()[0] ;
}
template < typename MV >
BOOST_UBLAS_INLINE
typename MV::array_type::pointer base( MV &mv ) {
return &mv.data().begin()[0] ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::const_pointer base( const vector_reference<V> &v ) {
return base( v.expression () ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::const_pointer base_const( const vector_reference<V> &v ) {
return base_const( v.expression () ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::pointer base( vector_reference<V> &v ) {
return base( v.expression () ) ;
}
template < typename T, std::size_t N >
BOOST_UBLAS_INLINE
typename c_vector<T, N>::array_type::const_pointer base( const c_vector<T, N> &v ) {
return v.data() ;
}
template < typename T, std::size_t N >
BOOST_UBLAS_INLINE
typename c_vector<T, N>::array_type::const_pointer base_const( const c_vector<T, N> &v ) {
return v.data() ;
}
template < typename T, std::size_t N >
BOOST_UBLAS_INLINE
typename c_vector<T, N>::pointer base( c_vector<T, N> &v ) {
return v.data() ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::const_pointer base( const vector_range<V> &v ) {
return base( v.data() ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::const_pointer base( const vector_slice<V> &v ) {
return base( v.data() ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::const_pointer base_const( const vector_range<V> &v ) {
return base_const( v.data() ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::const_pointer base_const( const vector_slice<V> &v ) {
return base_const( v.data() ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::pointer base( vector_range<V> &v ) {
return base( v.data() ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::array_type::pointer base( vector_slice<V> &v ) {
return base( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer base( const matrix_reference<M> &m ) {
return base( m.expression () ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer base_const( const matrix_reference<M> &m ) {
return base_const( m.expression () ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer base( matrix_reference<M> &m ) {
return base( m.expression () ) ;
}
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
typename c_matrix<T, M, N>::array_type::const_pointer base( const c_matrix<T, M, N> &m ) {
return m.data() ;
}
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
typename c_matrix<T, M, N>::array_type::const_pointer base_const( const c_matrix<T, M, N> &m ) {
return m.data() ;
}
template < typename T, std::size_t M, std::size_t N >
BOOST_UBLAS_INLINE
typename c_matrix<T, M, N>::pointer base( c_matrix<T, M, N> &m ) {
return m.data() ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer base( const matrix_row<M> &v ) {
return base( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer base( const matrix_column<M> &v ) {
return base( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer base_const( const matrix_row<M> &v ) {
return base_const( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer base_const( const matrix_column<M> &v ) {
return base_const( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer base( matrix_row<M> &v ) {
return base( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer base( matrix_column<M> &v ) {
return base( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer base( const matrix_range<M> &m ) {
return base( m.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer base( const matrix_slice<M> &m ) {
return base( m.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer base_const( const matrix_range<M> &m ) {
return base_const( m.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::const_pointer base_const( const matrix_slice<M> &m ) {
return base_const( m.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer base( matrix_range<M> &m ) {
return base( m.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::array_type::pointer base( matrix_slice<M> &m ) {
return base( m.data() ) ;
}
template < typename MV >
BOOST_UBLAS_INLINE
typename MV::size_type start( const MV &mv ) {
return 0 ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::size_type start( const vector_range<V> &v ) {
return v.start() * stride (v.data() ) ;
}
template < typename V >
BOOST_UBLAS_INLINE
typename V::size_type start( const vector_slice<V> &v ) {
return v.start() * stride (v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::size_type start( const matrix_row<M> &v ) {
return v.index() * stride1( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::size_type start( const matrix_column<M> &v ) {
return v.index() * stride2( v.data() ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::size_type start( const matrix_range<M> &m ) {
return m.start1() * stride1( m.data () ) + m.start2() * stride2( m.data () ) ;
}
template < typename M >
BOOST_UBLAS_INLINE
typename M::size_type start( const matrix_slice<M> &m ) {
return m.start1() * stride1( m.data () ) + m.start2() * stride2( m.data () ) ;
}
}}}}
#endif

View File

@@ -0,0 +1,174 @@
/*
* Copyright (c) 2001-2003 Joel de Guzman
*
* Use, modification and distribution is subject to the Boost Software
* License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef _BOOST_UBLAS_NUMERICTYPE_DEDUCTION_
#define _BOOST_UBLAS_NUMERICTYPE_DEDUCTION_
// See original in boost-sandbox/boost/utility/type_deduction.hpp for comments
#include <boost/mpl/vector/vector20.hpp>
#include <boost/mpl/at.hpp>
#include <boost/mpl/or.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/type_traits/remove_cv.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/utility/enable_if.hpp>
namespace boost { namespace numeric { namespace ublas {
struct error_cant_deduce_type {};
namespace type_deduction_detail
{
typedef char(&bool_value_type)[1];
typedef char(&float_value_type)[2];
typedef char(&double_value_type)[3];
typedef char(&long_double_value_type)[4];
typedef char(&char_value_type)[5];
typedef char(&schar_value_type)[6];
typedef char(&uchar_value_type)[7];
typedef char(&short_value_type)[8];
typedef char(&ushort_value_type)[9];
typedef char(&int_value_type)[10];
typedef char(&uint_value_type)[11];
typedef char(&long_value_type)[12];
typedef char(&ulong_value_type)[13];
typedef char(&x_value_type)[14];
typedef char(&y_value_type)[15];
typedef char(&cant_deduce_type)[16];
template <typename T, typename PlainT = typename remove_cv<T>::type>
struct is_basic
: mpl::or_<
typename mpl::or_<
is_same<PlainT, bool>
, is_same<PlainT, float>
, is_same<PlainT, double>
, is_same<PlainT, long double>
> ::type,
typename mpl::or_<
is_same<PlainT, char>
, is_same<PlainT, signed char>
, is_same<PlainT, unsigned char>
, is_same<PlainT, short>
, is_same<PlainT, unsigned short>
> ::type,
typename mpl::or_<
is_same<PlainT, int>
, is_same<PlainT, unsigned int>
, is_same<PlainT, long>
, is_same<PlainT, unsigned long>
> ::type
> {};
struct asymmetric;
template <typename X, typename Y>
cant_deduce_type
test(...); // The black hole !!!
template <typename X, typename Y>
bool_value_type
test(bool const&);
template <typename X, typename Y>
float_value_type
test(float const&);
template <typename X, typename Y>
double_value_type
test(double const&);
template <typename X, typename Y>
long_double_value_type
test(long double const&);
template <typename X, typename Y>
char_value_type
test(char const&);
template <typename X, typename Y>
schar_value_type
test(signed char const&);
template <typename X, typename Y>
uchar_value_type
test(unsigned char const&);
template <typename X, typename Y>
short_value_type
test(short const&);
template <typename X, typename Y>
ushort_value_type
test(unsigned short const&);
template <typename X, typename Y>
int_value_type
test(int const&);
template <typename X, typename Y>
uint_value_type
test(unsigned int const&);
template <typename X, typename Y>
long_value_type
test(long const&);
template <typename X, typename Y>
ulong_value_type
test(unsigned long const&);
template <typename X, typename Y>
typename disable_if<
is_basic<X>, x_value_type
>::type
test(X const&);
template <typename X, typename Y>
typename disable_if<
mpl::or_<
is_basic<Y>
, is_same<Y, asymmetric>
, is_same<const X, const Y>
>
, y_value_type
>::type
test(Y const&);
template <typename X, typename Y>
struct base_result_of
{
typedef typename remove_cv<X>::type x_type;
typedef typename remove_cv<Y>::type y_type;
typedef mpl::vector16<
mpl::identity<bool>
, mpl::identity<float>
, mpl::identity<double>
, mpl::identity<long double>
, mpl::identity<char>
, mpl::identity<signed char>
, mpl::identity<unsigned char>
, mpl::identity<short>
, mpl::identity<unsigned short>
, mpl::identity<int>
, mpl::identity<unsigned int>
, mpl::identity<long>
, mpl::identity<unsigned long>
, mpl::identity<x_type>
, mpl::identity<y_type>
, mpl::identity<error_cant_deduce_type>
>
types;
};
}}} } // namespace boost::numeric::ublas ::type_deduction_detail
#endif

View File

@@ -0,0 +1,33 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_TEMPORARY_
#define _BOOST_UBLAS_TEMPORARY_
namespace boost { namespace numeric { namespace ublas {
/// For the creation of temporary vectors in the assignment of proxies
template <class M>
struct vector_temporary_traits {
typedef typename M::vector_temporary_type type ;
};
/// For the creation of temporary vectors in the assignment of proxies
template <class M>
struct matrix_temporary_traits {
typedef typename M::matrix_temporary_type type ;
};
} } }
#endif

View File

@@ -0,0 +1,571 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_VECTOR_ASSIGN_
#define _BOOST_UBLAS_VECTOR_ASSIGN_
#include <boost/numeric/ublas/functional.hpp> // scalar_assign
// Required for make_conformant storage
#include <vector>
// Iterators based on ideas of Jeremy Siek
namespace boost { namespace numeric { namespace ublas {
namespace detail {
// Weak equality check - useful to compare equality two arbitary vector expression results.
// Since the actual expressions are unknown, we check for and arbitary error bound
// on the relative error.
// For a linear expression the infinity norm makes sense as we do not know how the elements will be
// combined in the expression. False positive results are inevitable for arbirary expressions!
template<class E1, class E2, class S>
BOOST_UBLAS_INLINE
bool equals (const vector_expression<E1> &e1, const vector_expression<E2> &e2, S epsilon, S min_norm) {
return norm_inf (e1 - e2) < epsilon *
std::max<S> (std::max<S> (norm_inf (e1), norm_inf (e2)), min_norm);
}
template<class E1, class E2>
BOOST_UBLAS_INLINE
bool expression_type_check (const vector_expression<E1> &e1, const vector_expression<E2> &e2) {
typedef typename type_traits<typename promote_traits<typename E1::value_type,
typename E2::value_type>::promote_type>::real_type real_type;
return equals (e1, e2, BOOST_UBLAS_TYPE_CHECK_EPSILON, BOOST_UBLAS_TYPE_CHECK_MIN);
}
// Make sparse proxies conformant
template<class V, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void make_conformant (V &v, const vector_expression<E> &e) {
BOOST_UBLAS_CHECK (v.size () == e ().size (), bad_size ());
typedef typename V::size_type size_type;
typedef typename V::difference_type difference_type;
typedef typename V::value_type value_type;
// FIXME unbounded_array with push_back maybe better
std::vector<size_type> index;
typename V::iterator it (v.begin ());
typename V::iterator it_end (v.end ());
typename E::const_iterator ite (e ().begin ());
typename E::const_iterator ite_end (e ().end ());
if (it != it_end && ite != ite_end) {
size_type it_index = it.index (), ite_index = ite.index ();
while (true) {
difference_type compare = it_index - ite_index;
if (compare == 0) {
++ it, ++ ite;
if (it != it_end && ite != ite_end) {
it_index = it.index ();
ite_index = ite.index ();
} else
break;
} else if (compare < 0) {
increment (it, it_end, - compare);
if (it != it_end)
it_index = it.index ();
else
break;
} else if (compare > 0) {
if (*ite != value_type/*zero*/())
index.push_back (ite.index ());
++ ite;
if (ite != ite_end)
ite_index = ite.index ();
else
break;
}
}
}
while (ite != ite_end) {
if (*ite != value_type/*zero*/())
index.push_back (ite.index ());
++ ite;
}
for (size_type k = 0; k < index.size (); ++ k)
v (index [k]) = value_type/*zero*/();
}
}//namespace detail
// Explicitly iterating
template<template <class T1, class T2> class F, class V, class T>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void iterating_vector_assign_scalar (V &v, const T &t) {
typedef F<typename V::iterator::reference, T> functor_type;
typedef typename V::difference_type difference_type;
difference_type size (v.size ());
typename V::iterator it (v.begin ());
BOOST_UBLAS_CHECK (v.end () - it == size, bad_size ());
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
while (-- size >= 0)
functor_type::apply (*it, t), ++ it;
#else
DD (size, 4, r, (functor_type::apply (*it, t), ++ it));
#endif
}
// Explicitly case
template<template <class T1, class T2> class F, class V, class T>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void indexing_vector_assign_scalar (V &v, const T &t) {
typedef F<typename V::reference, T> functor_type;
typedef typename V::size_type size_type;
size_type size (v.size ());
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
for (size_type i = 0; i < size; ++ i)
functor_type::apply (v (i), t);
#else
size_type i (0);
DD (size, 4, r, (functor_type::apply (v (i), t), ++ i));
#endif
}
// Dense (proxy) case
template<template <class T1, class T2> class F, class V, class T>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void vector_assign_scalar (V &v, const T &t, dense_proxy_tag) {
#ifdef BOOST_UBLAS_USE_INDEXING
indexing_vector_assign_scalar<F> (v, t);
#elif BOOST_UBLAS_USE_ITERATING
iterating_vector_assign_scalar<F> (v, t);
#else
typedef typename V::size_type size_type;
size_type size (v.size ());
if (size >= BOOST_UBLAS_ITERATOR_THRESHOLD)
iterating_vector_assign_scalar<F> (v, t);
else
indexing_vector_assign_scalar<F> (v, t);
#endif
}
// Packed (proxy) case
template<template <class T1, class T2> class F, class V, class T>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void vector_assign_scalar (V &v, const T &t, packed_proxy_tag) {
typedef F<typename V::iterator::reference, T> functor_type;
typedef typename V::difference_type difference_type;
typename V::iterator it (v.begin ());
difference_type size (v.end () - it);
while (-- size >= 0)
functor_type::apply (*it, t), ++ it;
}
// Sparse (proxy) case
template<template <class T1, class T2> class F, class V, class T>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void vector_assign_scalar (V &v, const T &t, sparse_proxy_tag) {
typedef F<typename V::iterator::reference, T> functor_type;
typename V::iterator it (v.begin ());
typename V::iterator it_end (v.end ());
while (it != it_end)
functor_type::apply (*it, t), ++ it;
}
// Dispatcher
template<template <class T1, class T2> class F, class V, class T>
BOOST_UBLAS_INLINE
void vector_assign_scalar (V &v, const T &t) {
typedef typename V::storage_category storage_category;
vector_assign_scalar<F> (v, t, storage_category ());
}
template<class SC, bool COMPUTED, class RI>
struct vector_assign_traits {
typedef SC storage_category;
};
template<bool COMPUTED>
struct vector_assign_traits<dense_tag, COMPUTED, packed_random_access_iterator_tag> {
typedef packed_tag storage_category;
};
template<>
struct vector_assign_traits<dense_tag, false, sparse_bidirectional_iterator_tag> {
typedef sparse_tag storage_category;
};
template<>
struct vector_assign_traits<dense_tag, true, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<bool COMPUTED>
struct vector_assign_traits<dense_proxy_tag, COMPUTED, packed_random_access_iterator_tag> {
typedef packed_proxy_tag storage_category;
};
template<>
struct vector_assign_traits<dense_proxy_tag, false, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct vector_assign_traits<dense_proxy_tag, true, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct vector_assign_traits<packed_tag, false, sparse_bidirectional_iterator_tag> {
typedef sparse_tag storage_category;
};
template<>
struct vector_assign_traits<packed_tag, true, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<bool COMPUTED>
struct vector_assign_traits<packed_proxy_tag, COMPUTED, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct vector_assign_traits<sparse_tag, true, dense_random_access_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct vector_assign_traits<sparse_tag, true, packed_random_access_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct vector_assign_traits<sparse_tag, true, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
// Explicitly iterating
template<template <class T1, class T2> class F, class V, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void iterating_vector_assign (V &v, const vector_expression<E> &e) {
typedef F<typename V::iterator::reference, typename E::value_type> functor_type;
typedef typename V::difference_type difference_type;
difference_type size (BOOST_UBLAS_SAME (v.size (), e ().size ()));
typename V::iterator it (v.begin ());
BOOST_UBLAS_CHECK (v.end () - it == size, bad_size ());
typename E::const_iterator ite (e ().begin ());
BOOST_UBLAS_CHECK (e ().end () - ite == size, bad_size ());
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
while (-- size >= 0)
functor_type::apply (*it, *ite), ++ it, ++ ite;
#else
DD (size, 2, r, (functor_type::apply (*it, *ite), ++ it, ++ ite));
#endif
}
// Explicitly indexing
template<template <class T1, class T2> class F, class V, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void indexing_vector_assign (V &v, const vector_expression<E> &e) {
typedef F<typename V::reference, typename E::value_type> functor_type;
typedef typename V::size_type size_type;
size_type size (BOOST_UBLAS_SAME (v.size (), e ().size ()));
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
for (size_type i = 0; i < size; ++ i)
functor_type::apply (v (i), e () (i));
#else
size_type i (0);
DD (size, 2, r, (functor_type::apply (v (i), e () (i)), ++ i));
#endif
}
// Dense (proxy) case
template<template <class T1, class T2> class F, class V, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void vector_assign (V &v, const vector_expression<E> &e, dense_proxy_tag) {
#ifdef BOOST_UBLAS_USE_INDEXING
indexing_vector_assign<F> (v, e);
#elif BOOST_UBLAS_USE_ITERATING
iterating_vector_assign<F> (v, e);
#else
typedef typename V::size_type size_type;
size_type size (BOOST_UBLAS_SAME (v.size (), e ().size ()));
if (size >= BOOST_UBLAS_ITERATOR_THRESHOLD)
iterating_vector_assign<F> (v, e);
else
indexing_vector_assign<F> (v, e);
#endif
}
// Packed (proxy) case
template<template <class T1, class T2> class F, class V, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void vector_assign (V &v, const vector_expression<E> &e, packed_proxy_tag) {
BOOST_UBLAS_CHECK (v.size () == e ().size (), bad_size ());
typedef F<typename V::iterator::reference, typename E::value_type> functor_type;
typedef typename V::difference_type difference_type;
typedef typename V::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v.size ());
indexing_vector_assign<scalar_assign> (cv, v);
indexing_vector_assign<F> (cv, e);
#endif
typename V::iterator it (v.begin ());
typename V::iterator it_end (v.end ());
typename E::const_iterator ite (e ().begin ());
typename E::const_iterator ite_end (e ().end ());
difference_type it_size (it_end - it);
difference_type ite_size (ite_end - ite);
if (it_size > 0 && ite_size > 0) {
difference_type size ((std::min) (difference_type (it.index () - ite.index ()), ite_size));
if (size > 0) {
ite += size;
ite_size -= size;
}
}
if (it_size > 0 && ite_size > 0) {
difference_type size ((std::min) (difference_type (ite.index () - it.index ()), it_size));
if (size > 0) {
it_size -= size;
if (!functor_type::computed) {
while (-- size >= 0) // zeroing
functor_type::apply (*it, value_type/*zero*/()), ++ it;
} else {
it += size;
}
}
}
difference_type size ((std::min) (it_size, ite_size));
it_size -= size;
ite_size -= size;
while (-- size >= 0)
functor_type::apply (*it, *ite), ++ it, ++ ite;
size = it_size;
if (!functor_type::computed) {
while (-- size >= 0) // zeroing
functor_type::apply (*it, value_type/*zero*/()), ++ it;
} else {
it += size;
}
#if BOOST_UBLAS_TYPE_CHECK
if (! disable_type_check<bool>::value)
BOOST_UBLAS_CHECK (detail::expression_type_check (v, cv),
external_logic ("external logic or bad condition of inputs"));
#endif
}
// Sparse case
template<template <class T1, class T2> class F, class V, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void vector_assign (V &v, const vector_expression<E> &e, sparse_tag) {
BOOST_UBLAS_CHECK (v.size () == e ().size (), bad_size ());
typedef F<typename V::iterator::reference, typename E::value_type> functor_type;
BOOST_STATIC_ASSERT ((!functor_type::computed));
typedef typename V::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v.size ());
indexing_vector_assign<scalar_assign> (cv, v);
indexing_vector_assign<F> (cv, e);
#endif
v.clear ();
typename E::const_iterator ite (e ().begin ());
typename E::const_iterator ite_end (e ().end ());
while (ite != ite_end) {
value_type t (*ite);
if (t != value_type/*zero*/())
v.insert_element (ite.index (), t);
++ ite;
}
#if BOOST_UBLAS_TYPE_CHECK
if (! disable_type_check<bool>::value)
BOOST_UBLAS_CHECK (detail::expression_type_check (v, cv),
external_logic ("external logic or bad condition of inputs"));
#endif
}
// Sparse proxy or functional case
template<template <class T1, class T2> class F, class V, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void vector_assign (V &v, const vector_expression<E> &e, sparse_proxy_tag) {
BOOST_UBLAS_CHECK (v.size () == e ().size (), bad_size ());
typedef F<typename V::iterator::reference, typename E::value_type> functor_type;
typedef typename V::size_type size_type;
typedef typename V::difference_type difference_type;
typedef typename V::value_type value_type;
typedef typename V::reference reference;
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v.size ());
indexing_vector_assign<scalar_assign> (cv, v);
indexing_vector_assign<F> (cv, e);
#endif
detail::make_conformant (v, e);
typename V::iterator it (v.begin ());
typename V::iterator it_end (v.end ());
typename E::const_iterator ite (e ().begin ());
typename E::const_iterator ite_end (e ().end ());
if (it != it_end && ite != ite_end) {
size_type it_index = it.index (), ite_index = ite.index ();
while (true) {
difference_type compare = it_index - ite_index;
if (compare == 0) {
functor_type::apply (*it, *ite);
++ it, ++ ite;
if (it != it_end && ite != ite_end) {
it_index = it.index ();
ite_index = ite.index ();
} else
break;
} else if (compare < 0) {
if (!functor_type::computed) {
functor_type::apply (*it, value_type/*zero*/());
++ it;
} else
increment (it, it_end, - compare);
if (it != it_end)
it_index = it.index ();
else
break;
} else if (compare > 0) {
increment (ite, ite_end, compare);
if (ite != ite_end)
ite_index = ite.index ();
else
break;
}
}
}
if (!functor_type::computed) {
while (it != it_end) { // zeroing
functor_type::apply (*it, value_type/*zero*/());
++ it;
}
} else {
it = it_end;
}
#if BOOST_UBLAS_TYPE_CHECK
if (! disable_type_check<bool>::value)
BOOST_UBLAS_CHECK (detail::expression_type_check (v, cv),
external_logic ("external logic or bad condition of inputs"));
#endif
}
// Dispatcher
template<template <class T1, class T2> class F, class V, class E>
BOOST_UBLAS_INLINE
void vector_assign (V &v, const vector_expression<E> &e) {
typedef typename vector_assign_traits<typename V::storage_category,
F<typename V::reference, typename E::value_type>::computed,
typename E::const_iterator::iterator_category>::storage_category storage_category;
vector_assign<F> (v, e, storage_category ());
}
template<class SC, class RI>
struct vector_swap_traits {
typedef SC storage_category;
};
template<>
struct vector_swap_traits<dense_proxy_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct vector_swap_traits<packed_proxy_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
// Dense (proxy) case
template<template <class T1, class T2> class F, class V, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void vector_swap (V &v, vector_expression<E> &e, dense_proxy_tag) {
typedef F<typename V::iterator::reference, typename E::iterator::reference> functor_type;
typedef typename V::difference_type difference_type;
difference_type size (BOOST_UBLAS_SAME (v.size (), e ().size ()));
typename V::iterator it (v.begin ());
typename E::iterator ite (e ().begin ());
while (-- size >= 0)
functor_type::apply (*it, *ite), ++ it, ++ ite;
}
// Packed (proxy) case
template<template <class T1, class T2> class F, class V, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void vector_swap (V &v, vector_expression<E> &e, packed_proxy_tag) {
typedef F<typename V::iterator::reference, typename E::iterator::reference> functor_type;
typedef typename V::difference_type difference_type;
typename V::iterator it (v.begin ());
typename V::iterator it_end (v.end ());
typename E::iterator ite (e ().begin ());
typename E::iterator ite_end (e ().end ());
difference_type it_size (it_end - it);
difference_type ite_size (ite_end - ite);
if (it_size > 0 && ite_size > 0) {
difference_type size ((std::min) (difference_type (it.index () - ite.index ()), ite_size));
if (size > 0) {
ite += size;
ite_size -= size;
}
}
if (it_size > 0 && ite_size > 0) {
difference_type size ((std::min) (difference_type (ite.index () - it.index ()), it_size));
if (size > 0)
it_size -= size;
}
difference_type size ((std::min) (it_size, ite_size));
it_size -= size;
ite_size -= size;
while (-- size >= 0)
functor_type::apply (*it, *ite), ++ it, ++ ite;
}
// Sparse proxy case
template<template <class T1, class T2> class F, class V, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void vector_swap (V &v, vector_expression<E> &e, sparse_proxy_tag) {
BOOST_UBLAS_CHECK (v.size () == e ().size (), bad_size ());
typedef F<typename V::iterator::reference, typename E::iterator::reference> functor_type;
typedef typename V::size_type size_type;
typedef typename V::difference_type difference_type;
typedef typename V::value_type value_type;
detail::make_conformant (v, e);
// FIXME should be a seperate restriction for E
detail::make_conformant (e (), v);
typename V::iterator it (v.begin ());
typename V::iterator it_end (v.end ());
typename E::iterator ite (e ().begin ());
typename E::iterator ite_end (e ().end ());
if (it != it_end && ite != ite_end) {
size_type it_index = it.index (), ite_index = ite.index ();
while (true) {
difference_type compare = it_index - ite_index;
if (compare == 0) {
functor_type::apply (*it, *ite);
++ it, ++ ite;
if (it != it_end && ite != ite_end) {
it_index = it.index ();
ite_index = ite.index ();
} else
break;
} else if (compare < 0) {
increment (it, it_end, - compare);
if (it != it_end)
it_index = it.index ();
else
break;
} else if (compare > 0) {
increment (ite, ite_end, compare);
if (ite != ite_end)
ite_index = ite.index ();
else
break;
}
}
}
#if BOOST_UBLAS_TYPE_CHECK
increment (ite, ite_end);
increment (it, it_end);
#endif
}
// Dispatcher
template<template <class T1, class T2> class F, class V, class E>
BOOST_UBLAS_INLINE
void vector_swap (V &v, vector_expression<E> &e) {
typedef typename vector_swap_traits<typename V::storage_category,
typename E::const_iterator::iterator_category>::storage_category storage_category;
vector_swap<F> (v, e, storage_category ());
}
}}}
#endif

View File

@@ -0,0 +1,296 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_EXCEPTION_
#define _BOOST_UBLAS_EXCEPTION_
#if ! defined (BOOST_NO_EXCEPTIONS) && ! defined (BOOST_UBLAS_NO_EXCEPTIONS)
#include <stdexcept>
#else
#include <cstdlib>
#endif
#ifndef BOOST_UBLAS_NO_STD_CERR
#include <iostream>
#endif
#include <boost/numeric/ublas/detail/config.hpp>
namespace boost { namespace numeric { namespace ublas {
struct divide_by_zero
#if ! defined (BOOST_NO_EXCEPTIONS) && ! defined (BOOST_UBLAS_NO_EXCEPTIONS)
// Inherit from standard exceptions as requested during review.
: public std::runtime_error {
explicit divide_by_zero (const char *s = "divide by zero") :
std::runtime_error (s) {}
void raise () {
throw *this;
}
#else
{
divide_by_zero ()
{}
explicit divide_by_zero (const char *)
{}
void raise () {
std::abort ();
}
#endif
};
struct internal_logic
#if ! defined (BOOST_NO_EXCEPTIONS) && ! defined (BOOST_UBLAS_NO_EXCEPTIONS)
// Inherit from standard exceptions as requested during review.
: public std::logic_error {
explicit internal_logic (const char *s = "internal logic") :
std::logic_error (s) {}
void raise () {
throw *this;
}
#else
{
internal_logic ()
{}
explicit internal_logic (const char *)
{}
void raise () {
std::abort ();
}
#endif
};
struct external_logic
#if ! defined (BOOST_NO_EXCEPTIONS) && ! defined (BOOST_UBLAS_NO_EXCEPTIONS)
// Inherit from standard exceptions as requested during review.
: public std::logic_error {
explicit external_logic (const char *s = "external logic") :
std::logic_error (s) {}
// virtual const char *what () const throw () {
// return "exception: external logic";
// }
void raise () {
throw *this;
}
#else
{
external_logic ()
{}
explicit external_logic (const char *)
{}
void raise () {
std::abort ();
}
#endif
};
struct bad_argument
#if ! defined (BOOST_NO_EXCEPTIONS) && ! defined (BOOST_UBLAS_NO_EXCEPTIONS)
// Inherit from standard exceptions as requested during review.
: public std::invalid_argument {
explicit bad_argument (const char *s = "bad argument") :
std::invalid_argument (s) {}
void raise () {
throw *this;
}
#else
{
bad_argument ()
{}
explicit bad_argument (const char *)
{}
void raise () {
std::abort ();
}
#endif
};
struct bad_size
#if ! defined (BOOST_NO_EXCEPTIONS) && ! defined (BOOST_UBLAS_NO_EXCEPTIONS)
// Inherit from standard exceptions as requested during review.
: public std::domain_error {
explicit bad_size (const char *s = "bad size") :
std::domain_error (s) {}
void raise () {
throw *this;
}
#else
{
bad_size ()
{}
explicit bad_size (const char *)
{}
void raise () {
std::abort ();
}
#endif
};
struct bad_index
#if ! defined (BOOST_NO_EXCEPTIONS) && ! defined (BOOST_UBLAS_NO_EXCEPTIONS)
// Inherit from standard exceptions as requested during review.
: public std::out_of_range {
explicit bad_index (const char *s = "bad index") :
std::out_of_range (s) {}
void raise () {
throw *this;
}
#else
{
bad_index ()
{}
explicit bad_index (const char *)
{}
void raise () {
std::abort ();
}
#endif
};
struct singular
#if ! defined (BOOST_NO_EXCEPTIONS) && ! defined (BOOST_UBLAS_NO_EXCEPTIONS)
// Inherit from standard exceptions as requested during review.
: public std::runtime_error {
explicit singular (const char *s = "singular") :
std::runtime_error (s) {}
void raise () {
throw *this;
}
#else
{
singular ()
{}
explicit singular (const char *)
{}
void raise () {
std::abort ();
}
#endif
};
struct non_real
#if ! defined (BOOST_NO_EXCEPTIONS) && ! defined (BOOST_UBLAS_NO_EXCEPTIONS)
// Inherit from standard exceptions as requested during review.
: public std::domain_error {
explicit non_real (const char *s = "exception: non real") :
std::domain_error (s) {}
void raise () {
throw *this;
}
#else
{
non_real ()
{}
explicit non_real (const char *)
{}
void raise () {
std::abort ();
}
#endif
};
#if BOOST_UBLAS_CHECK_ENABLE
// Macros are equivilent to
// template<class E>
// BOOST_UBLAS_INLINE
// void check (bool expression, const E &e) {
// if (! expression)
// e.raise ();
// }
// template<class E>
// BOOST_UBLAS_INLINE
// void check_ex (bool expression, const char *file, int line, const E &e) {
// if (! expression)
// e.raise ();
// }
#ifndef BOOST_UBLAS_NO_STD_CERR
#define BOOST_UBLAS_CHECK_FALSE(e) \
std::cerr << "Check failed in file " << __FILE__ << " at line " << __LINE__ << ":" << std::endl; \
e.raise ();
#define BOOST_UBLAS_CHECK(expression, e) \
if (! (expression)) { \
std::cerr << "Check failed in file " << __FILE__ << " at line " << __LINE__ << ":" << std::endl; \
std::cerr << #expression << std::endl; \
e.raise (); \
}
#define BOOST_UBLAS_CHECK_EX(expression, file, line, e) \
if (! (expression)) { \
std::cerr << "Check failed in file " << (file) << " at line " << (line) << ":" << std::endl; \
std::cerr << #expression << std::endl; \
e.raise (); \
}
#else
#define BOOST_UBLAS_CHECK_FALSE(e) \
e.raise ();
#define BOOST_UBLAS_CHECK(expression, e) \
if (! (expression)) { \
e.raise (); \
}
#define BOOST_UBLAS_CHECK_EX(expression, file, line, e) \
if (! (expression)) { \
e.raise (); \
}
#endif
#else
// Macros are equivilent to
// template<class E>
// BOOST_UBLAS_INLINE
// void check (bool expression, const E &e) {}
// template<class E>
// BOOST_UBLAS_INLINE
// void check_ex (bool expression, const char *file, int line, const E &e) {}
#define BOOST_UBLAS_CHECK_FALSE(e)
#define BOOST_UBLAS_CHECK(expression, e)
#define BOOST_UBLAS_CHECK_EX(expression, file, line, e)
#endif
#ifndef BOOST_UBLAS_USE_FAST_SAME
// Macro is equivilent to
// template<class T>
// BOOST_UBLAS_INLINE
// const T &same_impl (const T &size1, const T &size2) {
// BOOST_UBLAS_CHECK (size1 == size2, bad_argument ());
// return (std::min) (size1, size2);
// }
// #define BOOST_UBLAS_SAME(size1, size2) same_impl ((size1), (size2))
// need two types here because different containers can have
// different size_types (especially sparse types)
template<class T1, class T2>
BOOST_UBLAS_INLINE
// Kresimir Fresl and Dan Muller reported problems with COMO.
// We better change the signature instead of libcomo ;-)
// const T &same_impl_ex (const T &size1, const T &size2, const char *file, int line) {
T1 same_impl_ex (const T1 &size1, const T2 &size2, const char *file, int line) {
BOOST_UBLAS_CHECK_EX (size1 == size2, file, line, bad_argument ());
return (size1 < size2)?(size1):(size2);
}
template<class T>
BOOST_UBLAS_INLINE
T same_impl_ex (const T &size1, const T &size2, const char *file, int line) {
BOOST_UBLAS_CHECK_EX (size1 == size2, file, line, bad_argument ());
return (std::min) (size1, size2);
}
#define BOOST_UBLAS_SAME(size1, size2) same_impl_ex ((size1), (size2), __FILE__, __LINE__)
#else
// Macros are equivilent to
// template<class T>
// BOOST_UBLAS_INLINE
// const T &same_impl (const T &size1, const T &size2) {
// return size1;
// }
// #define BOOST_UBLAS_SAME(size1, size2) same_impl ((size1), (size2))
#define BOOST_UBLAS_SAME(size1, size2) (size1)
#endif
}}}
#endif

View File

@@ -0,0 +1,490 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_EXPRESSION_TYPE_
#define _BOOST_UBLAS_EXPRESSION_TYPE_
#include <boost/numeric/ublas/exception.hpp>
#include <boost/numeric/ublas/traits.hpp>
#include <boost/numeric/ublas/functional.hpp>
// Expression templates based on ideas of Todd Veldhuizen and Geoffrey Furnish
// Iterators based on ideas of Jeremy Siek
namespace boost { namespace numeric { namespace ublas {
// Base class for uBLAS staticaly derived expressions - see the Barton Nackman trick
// Provides numeric properties for linear algebra
template<class E>
class ublas_expression {
public:
typedef E expression_type;
/* E can be an incomplete type - to define the following we would need more template arguments
typedef typename E::type_category type_category;
typedef typename E::value_type value_type;
*/
// Directly implement nonassignable - simplifes debugging call trace!
protected:
ublas_expression () {}
~ublas_expression () {}
private:
const ublas_expression& operator= (const ublas_expression &);
};
// Base class for Scalar Expression models -
// it does not model the Scalar Expression concept but all derived types should.
// The class defines a common base type and some common interface for all
// statically derived Scalar Expression classes
// We implement the casts to the statically derived type.
template<class E>
class scalar_expression:
public ublas_expression<E> {
public:
typedef E expression_type;
typedef scalar_tag type_category;
BOOST_UBLAS_INLINE
const expression_type &operator () () const {
return *static_cast<const expression_type *> (this);
}
BOOST_UBLAS_INLINE
expression_type &operator () () {
return *static_cast<expression_type *> (this);
}
};
template<class T>
class scalar_reference:
public scalar_expression<scalar_reference<T> > {
typedef scalar_reference<T> self_type;
public:
typedef T value_type;
typedef const value_type &const_reference;
typedef typename boost::mpl::if_<boost::is_const<T>,
const_reference,
value_type &>::type reference;
typedef const self_type const_closure_type;
typedef const_closure_type closure_type;
// Construction and destruction
BOOST_UBLAS_INLINE
explicit scalar_reference (reference t):
t_ (t) {}
// Conversion
BOOST_UBLAS_INLINE
operator value_type () const {
return t_;
}
// Assignment
BOOST_UBLAS_INLINE
scalar_reference &operator = (const scalar_reference &s) {
t_ = s.t_;
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
scalar_reference &operator = (const scalar_expression<AE> &ae) {
t_ = ae;
return *this;
}
// Closure comparison
BOOST_UBLAS_INLINE
bool same_closure (const scalar_reference &sr) const {
return &t_ == &sr.t_;
}
private:
reference t_;
};
template<class T>
class scalar_value:
public scalar_expression<scalar_value<T> > {
typedef scalar_value<T> self_type;
public:
typedef T value_type;
typedef const value_type &const_reference;
typedef typename boost::mpl::if_<boost::is_const<T>,
const_reference,
value_type &>::type reference;
typedef const scalar_reference<const self_type> const_closure_type;
typedef scalar_reference<self_type> closure_type;
// Construction and destruction
BOOST_UBLAS_INLINE
scalar_value ():
t_ () {}
BOOST_UBLAS_INLINE
scalar_value (const value_type &t):
t_ (t) {}
BOOST_UBLAS_INLINE
operator value_type () const {
return t_;
}
// Assignment
BOOST_UBLAS_INLINE
scalar_value &operator = (const scalar_value &s) {
t_ = s.t_;
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
scalar_value &operator = (const scalar_expression<AE> &ae) {
t_ = ae;
return *this;
}
// Closure comparison
BOOST_UBLAS_INLINE
bool same_closure (const scalar_value &sv) const {
return this == &sv; // self closing on instances value
}
private:
value_type t_;
};
// Base class for Vector Expression models -
// it does not model the Vector Expression concept but all derived types should.
// The class defines a common base type and some common interface for all
// statically derived Vector Expression classes
// We implement the casts to the statically derived type.
template<class E>
class vector_expression:
public ublas_expression<E> {
public:
static const unsigned complexity = 0;
typedef E expression_type;
typedef vector_tag type_category;
/* E can be an incomplete type - to define the following we would need more template arguments
typedef typename E::size_type size_type;
*/
BOOST_UBLAS_INLINE
const expression_type &operator () () const {
return *static_cast<const expression_type *> (this);
}
BOOST_UBLAS_INLINE
expression_type &operator () () {
return *static_cast<expression_type *> (this);
}
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
private:
// projection types
typedef vector_range<E> vector_range_type;
typedef vector_range<const E> const_vector_range_type;
typedef vector_slice<E> vector_slice_type;
typedef vector_slice<const E> const_vector_slice_type;
// vector_indirect_type will depend on the A template parameter
typedef basic_range<> default_range; // required to avoid range/slice name confusion
typedef basic_slice<> default_slice;
public:
BOOST_UBLAS_INLINE
const_vector_range_type operator () (const default_range &r) const {
return const_vector_range_type (operator () (), r);
}
BOOST_UBLAS_INLINE
vector_range_type operator () (const default_range &r) {
return vector_range_type (operator () (), r);
}
BOOST_UBLAS_INLINE
const_vector_slice_type operator () (const default_slice &s) const {
return const_vector_slice_type (operator () (), s);
}
BOOST_UBLAS_INLINE
vector_slice_type operator () (const default_slice &s) {
return vector_slice_type (operator () (), s);
}
template<class A>
BOOST_UBLAS_INLINE
const vector_indirect<const E, indirect_array<A> > operator () (const indirect_array<A> &ia) const {
return vector_indirect<const E, indirect_array<A> > (operator () (), ia);
}
template<class A>
BOOST_UBLAS_INLINE
vector_indirect<E, indirect_array<A> > operator () (const indirect_array<A> &ia) {
return vector_indirect<E, indirect_array<A> > (operator () (), ia);
}
BOOST_UBLAS_INLINE
const_vector_range_type project (const default_range &r) const {
return const_vector_range_type (operator () (), r);
}
BOOST_UBLAS_INLINE
vector_range_type project (const default_range &r) {
return vector_range_type (operator () (), r);
}
BOOST_UBLAS_INLINE
const_vector_slice_type project (const default_slice &s) const {
return const_vector_slice_type (operator () (), s);
}
BOOST_UBLAS_INLINE
vector_slice_type project (const default_slice &s) {
return vector_slice_type (operator () (), s);
}
template<class A>
BOOST_UBLAS_INLINE
const vector_indirect<const E, indirect_array<A> > project (const indirect_array<A> &ia) const {
return vector_indirect<const E, indirect_array<A> > (operator () (), ia);
}
template<class A>
BOOST_UBLAS_INLINE
vector_indirect<E, indirect_array<A> > project (const indirect_array<A> &ia) {
return vector_indirect<E, indirect_array<A> > (operator () (), ia);
}
#endif
};
// Base class for Vector container models -
// it does not model the Vector concept but all derived types should.
// The class defines a common base type and some common interface for all
// statically derived Vector classes
// We implement the casts to the statically derived type.
template<class C>
class vector_container:
public vector_expression<C> {
public:
static const unsigned complexity = 0;
typedef C container_type;
typedef vector_tag type_category;
BOOST_UBLAS_INLINE
const container_type &operator () () const {
return *static_cast<const container_type *> (this);
}
BOOST_UBLAS_INLINE
container_type &operator () () {
return *static_cast<container_type *> (this);
}
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using vector_expression<C>::operator ();
#endif
};
// Base class for Matrix Expression models -
// it does not model the Matrix Expression concept but all derived types should.
// The class defines a common base type and some common interface for all
// statically derived Matrix Expression classes
// We implement the casts to the statically derived type.
template<class E>
class matrix_expression:
public ublas_expression<E> {
private:
typedef matrix_expression<E> self_type;
public:
static const unsigned complexity = 0;
typedef E expression_type;
typedef matrix_tag type_category;
/* E can be an incomplete type - to define the following we would need more template arguments
typedef typename E::size_type size_type;
*/
BOOST_UBLAS_INLINE
const expression_type &operator () () const {
return *static_cast<const expression_type *> (this);
}
BOOST_UBLAS_INLINE
expression_type &operator () () {
return *static_cast<expression_type *> (this);
}
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
private:
// projection types
typedef vector_range<E> vector_range_type;
typedef const vector_range<const E> const_vector_range_type;
typedef vector_slice<E> vector_slice_type;
typedef const vector_slice<const E> const_vector_slice_type;
typedef matrix_row<E> matrix_row_type;
typedef const matrix_row<const E> const_matrix_row_type;
typedef matrix_column<E> matrix_column_type;
typedef const matrix_column<const E> const_matrix_column_type;
typedef matrix_range<E> matrix_range_type;
typedef const matrix_range<const E> const_matrix_range_type;
typedef matrix_slice<E> matrix_slice_type;
typedef const matrix_slice<const E> const_matrix_slice_type;
// matrix_indirect_type will depend on the A template parameter
typedef basic_range<> default_range; // required to avoid range/slice name confusion
typedef basic_slice<> default_slice;
public:
BOOST_UBLAS_INLINE
const_matrix_row_type operator [] (std::size_t i) const {
return const_matrix_row_type (operator () (), i);
}
BOOST_UBLAS_INLINE
matrix_row_type operator [] (std::size_t i) {
return matrix_row_type (operator () (), i);
}
BOOST_UBLAS_INLINE
const_matrix_row_type row (std::size_t i) const {
return const_matrix_row_type (operator () (), i);
}
BOOST_UBLAS_INLINE
matrix_row_type row (std::size_t i) {
return matrix_row_type (operator () (), i);
}
BOOST_UBLAS_INLINE
const_matrix_column_type column (std::size_t j) const {
return const_matrix_column_type (operator () (), j);
}
BOOST_UBLAS_INLINE
matrix_column_type column (std::size_t j) {
return matrix_column_type (operator () (), j);
}
BOOST_UBLAS_INLINE
const_matrix_range_type operator () (const default_range &r1, const default_range &r2) const {
return const_matrix_range_type (operator () (), r1, r2);
}
BOOST_UBLAS_INLINE
matrix_range_type operator () (const default_range &r1, const default_range &r2) {
return matrix_range_type (operator () (), r1, r2);
}
BOOST_UBLAS_INLINE
const_matrix_slice_type operator () (const default_slice &s1, const default_slice &s2) const {
return const_matrix_slice_type (operator () (), s1, s2);
}
BOOST_UBLAS_INLINE
matrix_slice_type operator () (const default_slice &s1, const default_slice &s2) {
return matrix_slice_type (operator () (), s1, s2);
}
template<class A>
BOOST_UBLAS_INLINE
const matrix_indirect<const E, indirect_array<A> > operator () (const indirect_array<A> &ia1, const indirect_array<A> &ia2) const {
return matrix_indirect<const E, indirect_array<A> > (operator () (), ia1, ia2);
}
template<class A>
BOOST_UBLAS_INLINE
matrix_indirect<E, indirect_array<A> > operator () (const indirect_array<A> &ia1, const indirect_array<A> &ia2) {
return matrix_indirect<E, indirect_array<A> > (operator () (), ia1, ia2);
}
BOOST_UBLAS_INLINE
const_matrix_range_type project (const default_range &r1, const default_range &r2) const {
return const_matrix_range_type (operator () (), r1, r2);
}
BOOST_UBLAS_INLINE
matrix_range_type project (const default_range &r1, const default_range &r2) {
return matrix_range_type (operator () (), r1, r2);
}
BOOST_UBLAS_INLINE
const_matrix_slice_type project (const default_slice &s1, const default_slice &s2) const {
return const_matrix_slice_type (operator () (), s1, s2);
}
BOOST_UBLAS_INLINE
matrix_slice_type project (const default_slice &s1, const default_slice &s2) {
return matrix_slice_type (operator () (), s1, s2);
}
template<class A>
BOOST_UBLAS_INLINE
const matrix_indirect<const E, indirect_array<A> > project (const indirect_array<A> &ia1, const indirect_array<A> &ia2) const {
return matrix_indirect<const E, indirect_array<A> > (operator () (), ia1, ia2);
}
template<class A>
BOOST_UBLAS_INLINE
matrix_indirect<E, indirect_array<A> > project (const indirect_array<A> &ia1, const indirect_array<A> &ia2) {
return matrix_indirect<E, indirect_array<A> > (operator () (), ia1, ia2);
}
#endif
};
#ifdef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
struct iterator1_tag {};
struct iterator2_tag {};
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_iterator_type begin (const I &it, iterator1_tag) {
return it ().find2 (1, it.index1 (), 0);
}
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_iterator_type end (const I &it, iterator1_tag) {
return it ().find2 (1, it.index1 (), it ().size2 ());
}
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_reverse_iterator_type rbegin (const I &it, iterator1_tag) {
return typename I::dual_reverse_iterator_type (end (it, iterator1_tag ()));
}
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_reverse_iterator_type rend (const I &it, iterator1_tag) {
return typename I::dual_reverse_iterator_type (begin (it, iterator1_tag ()));
}
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_iterator_type begin (const I &it, iterator2_tag) {
return it ().find1 (1, 0, it.index2 ());
}
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_iterator_type end (const I &it, iterator2_tag) {
return it ().find1 (1, it ().size1 (), it.index2 ());
}
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_reverse_iterator_type rbegin (const I &it, iterator2_tag) {
return typename I::dual_reverse_iterator_type (end (it, iterator2_tag ()));
}
template<class I>
BOOST_UBLAS_INLINE
typename I::dual_reverse_iterator_type rend (const I &it, iterator2_tag) {
return typename I::dual_reverse_iterator_type (begin (it, iterator2_tag ()));
}
#endif
// Base class for Matrix container models -
// it does not model the Matrix concept but all derived types should.
// The class defines a common base type and some common interface for all
// statically derived Matrix classes
// We implement the casts to the statically derived type.
template<class C>
class matrix_container:
public matrix_expression<C> {
public:
static const unsigned complexity = 0;
typedef C container_type;
typedef matrix_tag type_category;
BOOST_UBLAS_INLINE
const container_type &operator () () const {
return *static_cast<const container_type *> (this);
}
BOOST_UBLAS_INLINE
container_type &operator () () {
return *static_cast<container_type *> (this);
}
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using matrix_expression<C>::operator ();
#endif
};
}}}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,215 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef BOOST_UBLAS_FWD_H
#define BOOST_UBLAS_FWD_H
#include <memory>
namespace boost { namespace numeric { namespace ublas {
// Storage types
template<class T, class ALLOC = std::allocator<T> >
class unbounded_array;
template<class T, std::size_t N, class ALLOC = std::allocator<T> >
class bounded_array;
template <class Z = std::size_t, class D = std::ptrdiff_t>
class basic_range;
template <class Z = std::size_t, class D = std::ptrdiff_t>
class basic_slice;
typedef basic_range<> range;
typedef basic_slice<> slice;
template<class A = unbounded_array<std::size_t> >
class indirect_array;
template<class I, class T, class ALLOC = std::allocator<std::pair<const I, T> > >
class map_std;
template<class I, class T, class ALLOC = std::allocator<std::pair<I, T> > >
class map_array;
// Expression types
struct scalar_tag {};
struct vector_tag {};
template<class E>
class vector_expression;
template<class C>
class vector_container;
template<class E>
class vector_reference;
struct matrix_tag {};
template<class E>
class matrix_expression;
template<class C>
class matrix_container;
template<class E>
class matrix_reference;
template<class V>
class vector_range;
template<class V>
class vector_slice;
template<class V, class IA = indirect_array<> >
class vector_indirect;
template<class M>
class matrix_row;
template<class M>
class matrix_column;
template<class M>
class matrix_vector_range;
template<class M>
class matrix_vector_slice;
template<class M, class IA = indirect_array<> >
class matrix_vector_indirect;
template<class M>
class matrix_range;
template<class M>
class matrix_slice;
template<class M, class IA = indirect_array<> >
class matrix_indirect;
template<class T, class A = unbounded_array<T> >
class vector;
template<class T, std::size_t N>
class bounded_vector;
template<class T = int, class ALLOC = std::allocator<T> >
class unit_vector;
template<class T = int, class ALLOC = std::allocator<T> >
class zero_vector;
template<class T = int, class ALLOC = std::allocator<T> >
class scalar_vector;
template<class T, std::size_t N>
class c_vector;
// Sparse vectors
template<class T, class A = map_std<std::size_t, T> >
class mapped_vector;
template<class T, std::size_t IB = 0, class IA = unbounded_array<std::size_t>, class TA = unbounded_array<T> >
class compressed_vector;
template<class T, std::size_t IB = 0, class IA = unbounded_array<std::size_t>, class TA = unbounded_array<T> >
class coordinate_vector;
// Matrix orientation type
struct unknown_orientation_tag {};
struct row_major_tag {};
struct column_major_tag {};
// Matrix storage layout parameterisation
template <class Z = std::size_t, class D = std::ptrdiff_t>
struct basic_row_major;
typedef basic_row_major<> row_major;
template <class Z = std::size_t, class D = std::ptrdiff_t>
struct basic_column_major;
typedef basic_column_major<> column_major;
template<class T, class L = row_major, class A = unbounded_array<T> >
class matrix;
template<class T, std::size_t M, std::size_t N, class L = row_major>
class bounded_matrix;
template<class T = int, class ALLOC = std::allocator<T> >
class identity_matrix;
template<class T = int, class ALLOC = std::allocator<T> >
class zero_matrix;
template<class T = int, class ALLOC = std::allocator<T> >
class scalar_matrix;
template<class T, std::size_t M, std::size_t N>
class c_matrix;
template<class T, class L = row_major, class A = unbounded_array<unbounded_array<T> > >
class vector_of_vector;
template<class T, class L = row_major, class A = vector<compressed_vector<T> > >
class generalized_vector_of_vector;
// Triangular matrix type
struct lower_tag {};
struct upper_tag {};
struct unit_lower_tag : public lower_tag {};
struct unit_upper_tag : public upper_tag {};
struct strict_lower_tag : public lower_tag {};
struct strict_upper_tag : public upper_tag {};
// Triangular matrix parameterisation
template <class Z = std::size_t>
struct basic_full;
typedef basic_full<> full;
template <class Z = std::size_t>
struct basic_lower;
typedef basic_lower<> lower;
template <class Z = std::size_t>
struct basic_upper;
typedef basic_upper<> upper;
template <class Z = std::size_t>
struct basic_unit_lower;
typedef basic_unit_lower<> unit_lower;
template <class Z = std::size_t>
struct basic_unit_upper;
typedef basic_unit_upper<> unit_upper;
template <class Z = std::size_t>
struct basic_strict_lower;
typedef basic_strict_lower<> strict_lower;
template <class Z = std::size_t>
struct basic_strict_upper;
typedef basic_strict_upper<> strict_upper;
// Special matrices
template<class T, class L = row_major, class A = unbounded_array<T> >
class banded_matrix;
template<class T, class L = row_major, class A = unbounded_array<T> >
class diagonal_matrix;
template<class T, class TRI = lower, class L = row_major, class A = unbounded_array<T> >
class triangular_matrix;
template<class M, class TRI = lower>
class triangular_adaptor;
template<class T, class TRI = lower, class L = row_major, class A = unbounded_array<T> >
class symmetric_matrix;
template<class M, class TRI = lower>
class symmetric_adaptor;
template<class T, class TRI = lower, class L = row_major, class A = unbounded_array<T> >
class hermitian_matrix;
template<class M, class TRI = lower>
class hermitian_adaptor;
// Sparse matrices
template<class T, class L = row_major, class A = map_std<std::size_t, T> >
class mapped_matrix;
template<class T, class L = row_major, class A = map_std<std::size_t, map_std<std::size_t, T> > >
class mapped_vector_of_mapped_vector;
template<class T, class L = row_major, std::size_t IB = 0, class IA = unbounded_array<std::size_t>, class TA = unbounded_array<T> >
class compressed_matrix;
template<class T, class L = row_major, std::size_t IB = 0, class IA = unbounded_array<std::size_t>, class TA = unbounded_array<T> >
class coordinate_matrix;
}}}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,249 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_IO_
#define _BOOST_UBLAS_IO_
// Only forward definition required to define stream operations
#include <iosfwd>
#include <sstream>
#include <boost/numeric/ublas/matrix_expression.hpp>
namespace boost { namespace numeric { namespace ublas {
template<class E, class T, class VE>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
std::basic_ostream<E, T> &operator << (std::basic_ostream<E, T> &os,
const vector_expression<VE> &v) {
typedef typename VE::size_type size_type;
size_type size = v ().size ();
std::basic_ostringstream<E, T, std::allocator<E> > s;
s.flags (os.flags ());
s.imbue (os.getloc ());
s.precision (os.precision ());
s << '[' << size << "](";
if (size > 0)
s << v () (0);
for (size_type i = 1; i < size; ++ i)
s << ',' << v () (i);
s << ')';
return os << s.str ().c_str ();
}
template<class E, class T, class VT, class VA>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
std::basic_istream<E, T> &operator >> (std::basic_istream<E, T> &is,
vector<VT, VA> &v) {
typedef typename vector<VT, VA>::size_type size_type;
E ch;
size_type size;
if (is >> ch && ch != '[') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (is >> size >> ch && ch != ']') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (! is.fail ()) {
vector<VT, VA> s (size);
if (is >> ch && ch != '(') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (! is.fail ()) {
for (size_type i = 0; i < size; i ++) {
if (is >> s (i) >> ch && ch != ',') {
is.putback (ch);
if (i < size - 1)
is.setstate (std::ios_base::failbit);
break;
}
}
if (is >> ch && ch != ')') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
}
}
if (! is.fail ())
v.swap (s);
}
return is;
}
template<class E, class T, class ME>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
std::basic_ostream<E, T> &operator << (std::basic_ostream<E, T> &os,
const matrix_expression<ME> &m) {
typedef typename ME::size_type size_type;
size_type size1 = m ().size1 ();
size_type size2 = m ().size2 ();
std::basic_ostringstream<E, T, std::allocator<E> > s;
s.flags (os.flags ());
s.imbue (os.getloc ());
s.precision (os.precision ());
s << '[' << size1 << ',' << size2 << "](";
if (size1 > 0) {
s << '(' ;
if (size2 > 0)
s << m () (0, 0);
for (size_type j = 1; j < size2; ++ j)
s << ',' << m () (0, j);
s << ')';
}
for (size_type i = 1; i < size1; ++ i) {
s << ",(" ;
if (size2 > 0)
s << m () (i, 0);
for (size_type j = 1; j < size2; ++ j)
s << ',' << m () (i, j);
s << ')';
}
s << ')';
return os << s.str ().c_str ();
}
template<class E, class T, class MT, class MF, class MA>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
std::basic_istream<E, T> &operator >> (std::basic_istream<E, T> &is,
matrix<MT, MF, MA> &m) {
typedef typename matrix<MT, MF, MA>::size_type size_type;
E ch;
size_type size1, size2;
if (is >> ch && ch != '[') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (is >> size1 >> ch && ch != ',') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (is >> size2 >> ch && ch != ']') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (! is.fail ()) {
matrix<MT, MF, MA> s (size1, size2);
if (is >> ch && ch != '(') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (! is.fail ()) {
for (size_type i = 0; i < size1; i ++) {
if (is >> ch && ch != '(') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
break;
}
for (size_type j = 0; j < size2; j ++) {
if (is >> s (i, j) >> ch && ch != ',') {
is.putback (ch);
if (j < size2 - 1) {
is.setstate (std::ios_base::failbit);
break;
}
}
}
if (is >> ch && ch != ')') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
break;
}
if (is >> ch && ch != ',') {
is.putback (ch);
if (i < size1 - 1) {
is.setstate (std::ios_base::failbit);
break;
}
}
}
if (is >> ch && ch != ')') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
}
}
if (! is.fail ())
m.swap (s);
}
return is;
}
// Special input operator for symmetrix_matrix
template<class E, class T, class MT, class MF1, class MF2, class MA>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
std::basic_istream<E, T> &operator >> (std::basic_istream<E, T> &is,
symmetric_matrix<MT, MF1, MF2, MA> &m) {
typedef typename symmetric_matrix<MT, MF1, MF2, MA>::size_type size_type;
E ch;
size_type size1, size2;
MT value;
if (is >> ch && ch != '[') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (is >> size1 >> ch && ch != ',') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (is >> size2 >> ch && (size2 != size1 || ch != ']')) { // symmetric matrix must be square
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (! is.fail ()) {
symmetric_matrix<MT, MF1, MF2, MA> s (size1, size2);
if (is >> ch && ch != '(') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
} else if (! is.fail ()) {
for (size_type i = 0; i < size1; i ++) {
if (is >> ch && ch != '(') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
break;
}
for (size_type j = 0; j < size2; j ++) {
if (is >> value >> ch && ch != ',') {
is.putback (ch);
if (j < size2 - 1) {
is.setstate (std::ios_base::failbit);
break;
}
}
if (i <= j) {
// this is the first time we read this element - set the value
s(i,j) = value;
}
else if ( s(i,j) != value ) {
// matrix is not symmetric
is.setstate (std::ios_base::failbit);
break;
}
}
if (is >> ch && ch != ')') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
break;
}
if (is >> ch && ch != ',') {
is.putback (ch);
if (i < size1 - 1) {
is.setstate (std::ios_base::failbit);
break;
}
}
}
if (is >> ch && ch != ')') {
is.putback (ch);
is.setstate (std::ios_base::failbit);
}
}
if (! is.fail ())
m.swap (s);
}
return is;
}
}}}
#endif

View File

@@ -0,0 +1,346 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_LU_
#define _BOOST_UBLAS_LU_
#include <boost/numeric/ublas/operation.hpp>
#include <boost/numeric/ublas/vector_proxy.hpp>
#include <boost/numeric/ublas/matrix_proxy.hpp>
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/triangular.hpp>
// LU factorizations in the spirit of LAPACK and Golub & van Loan
namespace boost { namespace numeric { namespace ublas {
template<class T = std::size_t, class A = unbounded_array<T> >
class permutation_matrix:
public vector<T, A> {
public:
typedef vector<T, A> vector_type;
typedef typename vector_type::size_type size_type;
// Construction and destruction
BOOST_UBLAS_INLINE
explicit
permutation_matrix (size_type size):
vector<T, A> (size) {
for (size_type i = 0; i < size; ++ i)
(*this) (i) = i;
}
BOOST_UBLAS_INLINE
explicit
permutation_matrix (const vector_type & init)
: vector_type(init)
{ }
BOOST_UBLAS_INLINE
~permutation_matrix () {}
// Assignment
BOOST_UBLAS_INLINE
permutation_matrix &operator = (const permutation_matrix &m) {
vector_type::operator = (m);
return *this;
}
};
template<class PM, class MV>
BOOST_UBLAS_INLINE
void swap_rows (const PM &pm, MV &mv, vector_tag) {
typedef typename PM::size_type size_type;
typedef typename MV::value_type value_type;
size_type size = pm.size ();
for (size_type i = 0; i < size; ++ i) {
if (i != pm (i))
std::swap (mv (i), mv (pm (i)));
}
}
template<class PM, class MV>
BOOST_UBLAS_INLINE
void swap_rows (const PM &pm, MV &mv, matrix_tag) {
typedef typename PM::size_type size_type;
typedef typename MV::value_type value_type;
size_type size = pm.size ();
for (size_type i = 0; i < size; ++ i) {
if (i != pm (i))
row (mv, i).swap (row (mv, pm (i)));
}
}
// Dispatcher
template<class PM, class MV>
BOOST_UBLAS_INLINE
void swap_rows (const PM &pm, MV &mv) {
swap_rows (pm, mv, typename MV::type_category ());
}
// LU factorization without pivoting
template<class M>
typename M::size_type lu_factorize (M &m) {
typedef M matrix_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix_type cm (m);
#endif
int singular = 0;
size_type size1 = m.size1 ();
size_type size2 = m.size2 ();
size_type size = (std::min) (size1, size2);
for (size_type i = 0; i < size; ++ i) {
matrix_column<M> mci (column (m, i));
matrix_row<M> mri (row (m, i));
if (m (i, i) != value_type/*zero*/()) {
value_type m_inv = value_type (1) / m (i, i);
project (mci, range (i + 1, size1)) *= m_inv;
} else if (singular == 0) {
singular = i + 1;
}
project (m, range (i + 1, size1), range (i + 1, size2)).minus_assign (
outer_prod (project (mci, range (i + 1, size1)),
project (mri, range (i + 1, size2))));
}
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (singular != 0 ||
detail::expression_type_check (prod (triangular_adaptor<matrix_type, unit_lower> (m),
triangular_adaptor<matrix_type, upper> (m)),
cm), internal_logic ());
#endif
return singular;
}
// LU factorization with partial pivoting
template<class M, class PM>
typename M::size_type lu_factorize (M &m, PM &pm) {
typedef M matrix_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix_type cm (m);
#endif
int singular = 0;
size_type size1 = m.size1 ();
size_type size2 = m.size2 ();
size_type size = (std::min) (size1, size2);
for (size_type i = 0; i < size; ++ i) {
matrix_column<M> mci (column (m, i));
matrix_row<M> mri (row (m, i));
size_type i_norm_inf = i + index_norm_inf (project (mci, range (i, size1)));
BOOST_UBLAS_CHECK (i_norm_inf < size1, external_logic ());
if (m (i_norm_inf, i) != value_type/*zero*/()) {
if (i_norm_inf != i) {
pm (i) = i_norm_inf;
row (m, i_norm_inf).swap (mri);
} else {
BOOST_UBLAS_CHECK (pm (i) == i_norm_inf, external_logic ());
}
value_type m_inv = value_type (1) / m (i, i);
project (mci, range (i + 1, size1)) *= m_inv;
} else if (singular == 0) {
singular = i + 1;
}
project (m, range (i + 1, size1), range (i + 1, size2)).minus_assign (
outer_prod (project (mci, range (i + 1, size1)),
project (mri, range (i + 1, size2))));
}
#if BOOST_UBLAS_TYPE_CHECK
swap_rows (pm, cm);
BOOST_UBLAS_CHECK (singular != 0 ||
detail::expression_type_check (prod (triangular_adaptor<matrix_type, unit_lower> (m),
triangular_adaptor<matrix_type, upper> (m)), cm), internal_logic ());
#endif
return singular;
}
template<class M, class PM>
typename M::size_type axpy_lu_factorize (M &m, PM &pm) {
typedef M matrix_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
typedef vector<value_type> vector_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix_type cm (m);
#endif
int singular = 0;
size_type size1 = m.size1 ();
size_type size2 = m.size2 ();
size_type size = (std::min) (size1, size2);
#ifndef BOOST_UBLAS_LU_WITH_INPLACE_SOLVE
matrix_type mr (m);
mr.assign (zero_matrix<value_type> (size1, size2));
vector_type v (size1);
for (size_type i = 0; i < size; ++ i) {
matrix_range<matrix_type> lrr (project (mr, range (0, i), range (0, i)));
vector_range<matrix_column<matrix_type> > urr (project (column (mr, i), range (0, i)));
urr.assign (solve (lrr, project (column (m, i), range (0, i)), unit_lower_tag ()));
project (v, range (i, size1)).assign (
project (column (m, i), range (i, size1)) -
axpy_prod<vector_type> (project (mr, range (i, size1), range (0, i)), urr));
size_type i_norm_inf = i + index_norm_inf (project (v, range (i, size1)));
BOOST_UBLAS_CHECK (i_norm_inf < size1, external_logic ());
if (v (i_norm_inf) != value_type/*zero*/()) {
if (i_norm_inf != i) {
pm (i) = i_norm_inf;
std::swap (v (i_norm_inf), v (i));
project (row (m, i_norm_inf), range (i + 1, size2)).swap (project (row (m, i), range (i + 1, size2)));
} else {
BOOST_UBLAS_CHECK (pm (i) == i_norm_inf, external_logic ());
}
project (column (mr, i), range (i + 1, size1)).assign (
project (v, range (i + 1, size1)) / v (i));
if (i_norm_inf != i) {
project (row (mr, i_norm_inf), range (0, i)).swap (project (row (mr, i), range (0, i)));
}
} else if (singular == 0) {
singular = i + 1;
}
mr (i, i) = v (i);
}
m.assign (mr);
#else
matrix_type lr (m);
matrix_type ur (m);
lr.assign (identity_matrix<value_type> (size1, size2));
ur.assign (zero_matrix<value_type> (size1, size2));
vector_type v (size1);
for (size_type i = 0; i < size; ++ i) {
matrix_range<matrix_type> lrr (project (lr, range (0, i), range (0, i)));
vector_range<matrix_column<matrix_type> > urr (project (column (ur, i), range (0, i)));
urr.assign (project (column (m, i), range (0, i)));
inplace_solve (lrr, urr, unit_lower_tag ());
project (v, range (i, size1)).assign (
project (column (m, i), range (i, size1)) -
axpy_prod<vector_type> (project (lr, range (i, size1), range (0, i)), urr));
size_type i_norm_inf = i + index_norm_inf (project (v, range (i, size1)));
BOOST_UBLAS_CHECK (i_norm_inf < size1, external_logic ());
if (v (i_norm_inf) != value_type/*zero*/()) {
if (i_norm_inf != i) {
pm (i) = i_norm_inf;
std::swap (v (i_norm_inf), v (i));
project (row (m, i_norm_inf), range (i + 1, size2)).swap (project (row (m, i), range (i + 1, size2)));
} else {
BOOST_UBLAS_CHECK (pm (i) == i_norm_inf, external_logic ());
}
project (column (lr, i), range (i + 1, size1)).assign (
project (v, range (i + 1, size1)) / v (i));
if (i_norm_inf != i) {
project (row (lr, i_norm_inf), range (0, i)).swap (project (row (lr, i), range (0, i)));
}
} else if (singular == 0) {
singular = i + 1;
}
ur (i, i) = v (i);
}
m.assign (triangular_adaptor<matrix_type, strict_lower> (lr) +
triangular_adaptor<matrix_type, upper> (ur));
#endif
#if BOOST_UBLAS_TYPE_CHECK
swap_rows (pm, cm);
BOOST_UBLAS_CHECK (singular != 0 ||
detail::expression_type_check (prod (triangular_adaptor<matrix_type, unit_lower> (m),
triangular_adaptor<matrix_type, upper> (m)), cm), internal_logic ());
#endif
return singular;
}
// LU substitution
template<class M, class E>
void lu_substitute (const M &m, vector_expression<E> &e) {
typedef const M const_matrix_type;
typedef vector<typename E::value_type> vector_type;
#if BOOST_UBLAS_TYPE_CHECK
vector_type cv1 (e);
#endif
inplace_solve (m, e, unit_lower_tag ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (detail::expression_type_check (prod (triangular_adaptor<const_matrix_type, unit_lower> (m), e), cv1), internal_logic ());
vector_type cv2 (e);
#endif
inplace_solve (m, e, upper_tag ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (detail::expression_type_check (prod (triangular_adaptor<const_matrix_type, upper> (m), e), cv2), internal_logic ());
#endif
}
template<class M, class E>
void lu_substitute (const M &m, matrix_expression<E> &e) {
typedef const M const_matrix_type;
typedef matrix<typename E::value_type> matrix_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix_type cm1 (e);
#endif
inplace_solve (m, e, unit_lower_tag ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (detail::expression_type_check (prod (triangular_adaptor<const_matrix_type, unit_lower> (m), e), cm1), internal_logic ());
matrix_type cm2 (e);
#endif
inplace_solve (m, e, upper_tag ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (detail::expression_type_check (prod (triangular_adaptor<const_matrix_type, upper> (m), e), cm2), internal_logic ());
#endif
}
template<class M, class PMT, class PMA, class MV>
void lu_substitute (const M &m, const permutation_matrix<PMT, PMA> &pm, MV &mv) {
swap_rows (pm, mv);
lu_substitute (m, mv);
}
template<class E, class M>
void lu_substitute (vector_expression<E> &e, const M &m) {
typedef const M const_matrix_type;
typedef vector<typename E::value_type> vector_type;
#if BOOST_UBLAS_TYPE_CHECK
vector_type cv1 (e);
#endif
inplace_solve (e, m, upper_tag ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (detail::expression_type_check (prod (e, triangular_adaptor<const_matrix_type, upper> (m)), cv1), internal_logic ());
vector_type cv2 (e);
#endif
inplace_solve (e, m, unit_lower_tag ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (detail::expression_type_check (prod (e, triangular_adaptor<const_matrix_type, unit_lower> (m)), cv2), internal_logic ());
#endif
}
template<class E, class M>
void lu_substitute (matrix_expression<E> &e, const M &m) {
typedef const M const_matrix_type;
typedef matrix<typename E::value_type> matrix_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix_type cm1 (e);
#endif
inplace_solve (e, m, upper_tag ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (detail::expression_type_check (prod (e, triangular_adaptor<const_matrix_type, upper> (m)), cm1), internal_logic ());
matrix_type cm2 (e);
#endif
inplace_solve (e, m, unit_lower_tag ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (detail::expression_type_check (prod (e, triangular_adaptor<const_matrix_type, unit_lower> (m)), cm2), internal_logic ());
#endif
}
template<class MV, class M, class PMT, class PMA>
void lu_substitute (MV &mv, const M &m, const permutation_matrix<PMT, PMA> &pm) {
swap_rows (pm, mv);
lu_substitute (mv, m);
}
}}}
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,851 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_OPERATION_
#define _BOOST_UBLAS_OPERATION_
#include <boost/numeric/ublas/matrix_proxy.hpp>
/** \file operation.hpp
* \brief This file contains some specialized products.
*/
// axpy-based products
// Alexei Novakov had a lot of ideas to improve these. Thanks.
// Hendrik Kueck proposed some new kernel. Thanks again.
namespace boost { namespace numeric { namespace ublas {
template<class V, class T1, class L1, class IA1, class TA1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
const vector_expression<E2> &e2,
V &v, row_major_tag) {
typedef typename V::size_type size_type;
typedef typename V::value_type value_type;
for (size_type i = 0; i < e1.filled1 () -1; ++ i) {
size_type begin = e1.index1_data () [i];
size_type end = e1.index1_data () [i + 1];
value_type t (v (i));
for (size_type j = begin; j < end; ++ j)
t += e1.value_data () [j] * e2 () (e1.index2_data () [j]);
v (i) = t;
}
return v;
}
template<class V, class T1, class L1, class IA1, class TA1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
const vector_expression<E2> &e2,
V &v, column_major_tag) {
typedef typename V::size_type size_type;
for (size_type j = 0; j < e1.filled1 () -1; ++ j) {
size_type begin = e1.index1_data () [j];
size_type end = e1.index1_data () [j + 1];
for (size_type i = begin; i < end; ++ i)
v (e1.index2_data () [i]) += e1.value_data () [i] * e2 () (j);
}
return v;
}
// Dispatcher
template<class V, class T1, class L1, class IA1, class TA1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
const vector_expression<E2> &e2,
V &v, bool init = true) {
typedef typename V::value_type value_type;
typedef typename L1::orientation_category orientation_category;
if (init)
v.assign (zero_vector<value_type> (e1.size1 ()));
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v);
typedef typename type_traits<value_type>::real_type real_type;
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
#endif
axpy_prod (e1, e2, v, orientation_category ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
return v;
}
template<class V, class T1, class L1, class IA1, class TA1, class E2>
BOOST_UBLAS_INLINE
V
axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
const vector_expression<E2> &e2) {
typedef V vector_type;
vector_type v (e1.size1 ());
return axpy_prod (e1, e2, v, true);
}
template<class V, class T1, class L1, class IA1, class TA1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const coordinate_matrix<T1, L1, 0, IA1, TA1> &e1,
const vector_expression<E2> &e2,
V &v, bool init = true) {
typedef typename V::size_type size_type;
typedef typename V::value_type value_type;
typedef L1 layout_type;
size_type size1 = e1.size1();
size_type size2 = e1.size2();
if (init) {
noalias(v) = zero_vector<value_type>(size1);
}
for (size_type i = 0; i < e1.nnz(); ++i) {
size_type row_index = layout_type::index_M( e1.index1_data () [i], e1.index2_data () [i] );
size_type col_index = layout_type::index_m( e1.index1_data () [i], e1.index2_data () [i] );
v( row_index ) += e1.value_data () [i] * e2 () (col_index);
}
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2,
V &v, packed_random_access_iterator_tag, row_major_tag) {
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
while (it1 != it1_end) {
size_type index1 (it1.index1 ());
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression1_type::const_iterator2 it2 (it1.begin ());
typename expression1_type::const_iterator2 it2_end (it1.end ());
#else
typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
#endif
while (it2 != it2_end) {
v (index1) += *it2 * e2 () (it2.index2 ());
++ it2;
}
++ it1;
}
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2,
V &v, packed_random_access_iterator_tag, column_major_tag) {
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typename expression1_type::const_iterator2 it2 (e1 ().begin2 ());
typename expression1_type::const_iterator2 it2_end (e1 ().end2 ());
while (it2 != it2_end) {
size_type index2 (it2.index2 ());
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression1_type::const_iterator1 it1 (it2.begin ());
typename expression1_type::const_iterator1 it1_end (it2.end ());
#else
typename expression1_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
typename expression1_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
#endif
while (it1 != it1_end) {
v (it1.index1 ()) += *it1 * e2 () (index2);
++ it1;
}
++ it2;
}
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2,
V &v, sparse_bidirectional_iterator_tag) {
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typename expression2_type::const_iterator it (e2 ().begin ());
typename expression2_type::const_iterator it_end (e2 ().end ());
while (it != it_end) {
v.plus_assign (column (e1 (), it.index ()) * *it);
++ it;
}
return v;
}
// Dispatcher
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2,
V &v, packed_random_access_iterator_tag) {
typedef typename E1::orientation_category orientation_category;
return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ());
}
/** \brief computes <tt>v += A x</tt> or <tt>v = A x</tt> in an
optimized fashion.
\param e1 the matrix expression \c A
\param e2 the vector expression \c x
\param v the result vector \c v
\param init a boolean parameter
<tt>axpy_prod(A, x, v, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
Up to now there are some specialisation for compressed
matrices that give a large speed up compared to prod.
\ingroup blas2
\internal
template parameters:
\param V type of the result vector \c v
\param E1 type of a matrix expression \c A
\param E2 type of a vector expression \c x
*/
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2,
V &v, bool init = true) {
typedef typename V::value_type value_type;
typedef typename E2::const_iterator::iterator_category iterator_category;
if (init)
v.assign (zero_vector<value_type> (e1 ().size1 ()));
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v);
typedef typename type_traits<value_type>::real_type real_type;
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
#endif
axpy_prod (e1, e2, v, iterator_category ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V
axpy_prod (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2) {
typedef V vector_type;
vector_type v (e1 ().size1 ());
return axpy_prod (e1, e2, v, true);
}
template<class V, class E1, class T2, class IA2, class TA2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const compressed_matrix<T2, column_major, 0, IA2, TA2> &e2,
V &v, column_major_tag) {
typedef typename V::size_type size_type;
typedef typename V::value_type value_type;
for (size_type j = 0; j < e2.filled1 () -1; ++ j) {
size_type begin = e2.index1_data () [j];
size_type end = e2.index1_data () [j + 1];
value_type t (v (j));
for (size_type i = begin; i < end; ++ i)
t += e2.value_data () [i] * e1 () (e2.index2_data () [i]);
v (j) = t;
}
return v;
}
template<class V, class E1, class T2, class IA2, class TA2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const compressed_matrix<T2, row_major, 0, IA2, TA2> &e2,
V &v, row_major_tag) {
typedef typename V::size_type size_type;
for (size_type i = 0; i < e2.filled1 () -1; ++ i) {
size_type begin = e2.index1_data () [i];
size_type end = e2.index1_data () [i + 1];
for (size_type j = begin; j < end; ++ j)
v (e2.index2_data () [j]) += e2.value_data () [j] * e1 () (i);
}
return v;
}
// Dispatcher
template<class V, class E1, class T2, class L2, class IA2, class TA2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const compressed_matrix<T2, L2, 0, IA2, TA2> &e2,
V &v, bool init = true) {
typedef typename V::value_type value_type;
typedef typename L2::orientation_category orientation_category;
if (init)
v.assign (zero_vector<value_type> (e2.size2 ()));
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v);
typedef typename type_traits<value_type>::real_type real_type;
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
#endif
axpy_prod (e1, e2, v, orientation_category ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
return v;
}
template<class V, class E1, class T2, class L2, class IA2, class TA2>
BOOST_UBLAS_INLINE
V
axpy_prod (const vector_expression<E1> &e1,
const compressed_matrix<T2, L2, 0, IA2, TA2> &e2) {
typedef V vector_type;
vector_type v (e2.size2 ());
return axpy_prod (e1, e2, v, true);
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, packed_random_access_iterator_tag, column_major_tag) {
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
while (it2 != it2_end) {
size_type index2 (it2.index2 ());
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression2_type::const_iterator1 it1 (it2.begin ());
typename expression2_type::const_iterator1 it1_end (it2.end ());
#else
typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
#endif
while (it1 != it1_end) {
v (index2) += *it1 * e1 () (it1.index1 ());
++ it1;
}
++ it2;
}
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, packed_random_access_iterator_tag, row_major_tag) {
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typename expression2_type::const_iterator1 it1 (e2 ().begin1 ());
typename expression2_type::const_iterator1 it1_end (e2 ().end1 ());
while (it1 != it1_end) {
size_type index1 (it1.index1 ());
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression2_type::const_iterator2 it2 (it1.begin ());
typename expression2_type::const_iterator2 it2_end (it1.end ());
#else
typename expression2_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
typename expression2_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
#endif
while (it2 != it2_end) {
v (it2.index2 ()) += *it2 * e1 () (index1);
++ it2;
}
++ it1;
}
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, sparse_bidirectional_iterator_tag) {
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typename expression1_type::const_iterator it (e1 ().begin ());
typename expression1_type::const_iterator it_end (e1 ().end ());
while (it != it_end) {
v.plus_assign (*it * row (e2 (), it.index ()));
++ it;
}
return v;
}
// Dispatcher
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, packed_random_access_iterator_tag) {
typedef typename E2::orientation_category orientation_category;
return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ());
}
/** \brief computes <tt>v += A<sup>T</sup> x</tt> or <tt>v = A<sup>T</sup> x</tt> in an
optimized fashion.
\param e1 the vector expression \c x
\param e2 the matrix expression \c A
\param v the result vector \c v
\param init a boolean parameter
<tt>axpy_prod(x, A, v, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
Up to now there are some specialisation for compressed
matrices that give a large speed up compared to prod.
\ingroup blas2
\internal
template parameters:
\param V type of the result vector \c v
\param E1 type of a vector expression \c x
\param E2 type of a matrix expression \c A
*/
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V &
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2,
V &v, bool init = true) {
typedef typename V::value_type value_type;
typedef typename E1::const_iterator::iterator_category iterator_category;
if (init)
v.assign (zero_vector<value_type> (e2 ().size2 ()));
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v);
typedef typename type_traits<value_type>::real_type real_type;
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
#endif
axpy_prod (e1, e2, v, iterator_category ());
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
return v;
}
template<class V, class E1, class E2>
BOOST_UBLAS_INLINE
V
axpy_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef V vector_type;
vector_type v (e2 ().size2 ());
return axpy_prod (e1, e2, v, true);
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI,
dense_proxy_tag, row_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
#endif
size_type size1 (e1 ().size1 ());
size_type size2 (e1 ().size2 ());
for (size_type i = 0; i < size1; ++ i)
for (size_type j = 0; j < size2; ++ j)
row (m, i).plus_assign (e1 () (i, j) * row (e2 (), j));
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI,
sparse_proxy_tag, row_major_tag) {
typedef M matrix_type;
typedef TRI triangular_restriction;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
#endif
typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
while (it1 != it1_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression1_type::const_iterator2 it2 (it1.begin ());
typename expression1_type::const_iterator2 it2_end (it1.end ());
#else
typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
#endif
while (it2 != it2_end) {
// row (m, it1.index1 ()).plus_assign (*it2 * row (e2 (), it2.index2 ()));
matrix_row<expression2_type> mr (e2 (), it2.index2 ());
typename matrix_row<expression2_type>::const_iterator itr (mr.begin ());
typename matrix_row<expression2_type>::const_iterator itr_end (mr.end ());
while (itr != itr_end) {
if (triangular_restriction::other (it1.index1 (), itr.index ()))
m (it1.index1 (), itr.index ()) += *it2 * *itr;
++ itr;
}
++ it2;
}
++ it1;
}
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI,
dense_proxy_tag, column_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, column_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
#endif
size_type size1 (e2 ().size1 ());
size_type size2 (e2 ().size2 ());
for (size_type j = 0; j < size2; ++ j)
for (size_type i = 0; i < size1; ++ i)
column (m, j).plus_assign (e2 () (i, j) * column (e1 (), i));
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI,
sparse_proxy_tag, column_major_tag) {
typedef M matrix_type;
typedef TRI triangular_restriction;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, column_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
#endif
typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
while (it2 != it2_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression2_type::const_iterator1 it1 (it2.begin ());
typename expression2_type::const_iterator1 it1_end (it2.end ());
#else
typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
#endif
while (it1 != it1_end) {
// column (m, it2.index2 ()).plus_assign (*it1 * column (e1 (), it1.index1 ()));
matrix_column<expression1_type> mc (e1 (), it1.index1 ());
typename matrix_column<expression1_type>::const_iterator itc (mc.begin ());
typename matrix_column<expression1_type>::const_iterator itc_end (mc.end ());
while (itc != itc_end) {
if(triangular_restriction::other (itc.index (), it2.index2 ()))
m (itc.index (), it2.index2 ()) += *it1 * *itc;
++ itc;
}
++ it1;
}
++ it2;
}
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
// Dispatcher
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI, bool init = true) {
typedef typename M::value_type value_type;
typedef typename M::storage_category storage_category;
typedef typename M::orientation_category orientation_category;
typedef TRI triangular_restriction;
if (init)
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
return axpy_prod (e1, e2, m, triangular_restriction (), storage_category (), orientation_category ());
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
TRI) {
typedef M matrix_type;
typedef TRI triangular_restriction;
matrix_type m (e1 ().size1 (), e2 ().size2 ());
return axpy_prod (e1, e2, m, triangular_restriction (), true);
}
/** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an
optimized fashion.
\param e1 the matrix expression \c A
\param e2 the matrix expression \c X
\param m the result matrix \c M
\param init a boolean parameter
<tt>axpy_prod(A, X, M, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>M.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
Up to now there are no specialisations.
\ingroup blas3
\internal
template parameters:
\param M type of the result matrix \c M
\param E1 type of a matrix expression \c A
\param E2 type of a matrix expression \c X
*/
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M &
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, bool init = true) {
typedef typename M::value_type value_type;
typedef typename M::storage_category storage_category;
typedef typename M::orientation_category orientation_category;
if (init)
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
return axpy_prod (e1, e2, m, full (), storage_category (), orientation_category ());
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M
axpy_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef M matrix_type;
matrix_type m (e1 ().size1 (), e2 ().size2 ());
return axpy_prod (e1, e2, m, full (), true);
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M &
opb_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m,
dense_proxy_tag, row_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
#endif
size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
for (size_type k = 0; k < size; ++ k) {
vector<value_type> ce1 (column (e1 (), k));
vector<value_type> re2 (row (e2 (), k));
m.plus_assign (outer_prod (ce1, re2));
}
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M &
opb_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m,
dense_proxy_tag, column_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, column_major> cm (m);
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
#endif
size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
for (size_type k = 0; k < size; ++ k) {
vector<value_type> ce1 (column (e1 (), k));
vector<value_type> re2 (row (e2 (), k));
m.plus_assign (outer_prod (ce1, re2));
}
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
// Dispatcher
/** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an
optimized fashion.
\param e1 the matrix expression \c A
\param e2 the matrix expression \c X
\param m the result matrix \c M
\param init a boolean parameter
<tt>opb_prod(A, X, M, init)</tt> implements the well known
axpy-product. Setting \a init to \c true is equivalent to call
<tt>M.clear()</tt> before <tt>opb_prod</tt>. Currently \a init
defaults to \c true, but this may change in the future.
This function may give a speedup if \c A has less columns than
rows, because the product is computed as a sum of outer
products.
\ingroup blas3
\internal
template parameters:
\param M type of the result matrix \c M
\param E1 type of a matrix expression \c A
\param E2 type of a matrix expression \c X
*/
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M &
opb_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, bool init = true) {
typedef typename M::value_type value_type;
typedef typename M::storage_category storage_category;
typedef typename M::orientation_category orientation_category;
if (init)
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
return opb_prod (e1, e2, m, storage_category (), orientation_category ());
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M
opb_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef M matrix_type;
matrix_type m (e1 ().size1 (), e2 ().size2 ());
return opb_prod (e1, e2, m, true);
}
}}}
#endif

View File

@@ -0,0 +1,266 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_OPERATION_BLOCKED_
#define _BOOST_UBLAS_OPERATION_BLOCKED_
#include <boost/numeric/ublas/traits.hpp>
#include <boost/numeric/ublas/detail/vector_assign.hpp> // indexing_vector_assign
#include <boost/numeric/ublas/detail/matrix_assign.hpp> // indexing_matrix_assign
namespace boost { namespace numeric { namespace ublas {
template<class V, typename V::size_type BS, class E1, class E2>
BOOST_UBLAS_INLINE
V
block_prod (const matrix_expression<E1> &e1,
const vector_expression<E2> &e2) {
typedef V vector_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typedef typename V::value_type value_type;
const size_type block_size = BS;
V v (e1 ().size1 ());
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v.size ());
typedef typename type_traits<value_type>::real_type real_type;
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
indexing_vector_assign<scalar_assign> (cv, prod (e1, e2));
#endif
size_type i_size = e1 ().size1 ();
size_type j_size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size ());
for (size_type i_begin = 0; i_begin < i_size; i_begin += block_size) {
size_type i_end = i_begin + (std::min) (i_size - i_begin, block_size);
// FIX: never ignore Martin Weiser's advice ;-(
#ifdef BOOST_UBLAS_NO_CACHE
vector_range<vector_type> v_range (v, range (i_begin, i_end));
#else
// vector<value_type, bounded_array<value_type, block_size> > v_range (i_end - i_begin);
vector<value_type> v_range (i_end - i_begin);
#endif
v_range.assign (zero_vector<value_type> (i_end - i_begin));
for (size_type j_begin = 0; j_begin < j_size; j_begin += block_size) {
size_type j_end = j_begin + (std::min) (j_size - j_begin, block_size);
#ifdef BOOST_UBLAS_NO_CACHE
const matrix_range<expression1_type> e1_range (e1 (), range (i_begin, i_end), range (j_begin, j_end));
const vector_range<expression2_type> e2_range (e2 (), range (j_begin, j_end));
v_range.plus_assign (prod (e1_range, e2_range));
#else
// const matrix<value_type, row_major, bounded_array<value_type, block_size * block_size> > e1_range (project (e1 (), range (i_begin, i_end), range (j_begin, j_end)));
// const vector<value_type, bounded_array<value_type, block_size> > e2_range (project (e2 (), range (j_begin, j_end)));
const matrix<value_type, row_major> e1_range (project (e1 (), range (i_begin, i_end), range (j_begin, j_end)));
const vector<value_type> e2_range (project (e2 (), range (j_begin, j_end)));
v_range.plus_assign (prod (e1_range, e2_range));
#endif
}
#ifndef BOOST_UBLAS_NO_CACHE
project (v, range (i_begin, i_end)).assign (v_range);
#endif
}
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
return v;
}
template<class V, typename V::size_type BS, class E1, class E2>
BOOST_UBLAS_INLINE
V
block_prod (const vector_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef V vector_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename V::size_type size_type;
typedef typename V::value_type value_type;
const size_type block_size = BS;
V v (e2 ().size2 ());
#if BOOST_UBLAS_TYPE_CHECK
vector<value_type> cv (v.size ());
typedef typename type_traits<value_type>::real_type real_type;
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
indexing_vector_assign<scalar_assign> (cv, prod (e1, e2));
#endif
size_type i_size = BOOST_UBLAS_SAME (e1 ().size (), e2 ().size1 ());
size_type j_size = e2 ().size2 ();
for (size_type j_begin = 0; j_begin < j_size; j_begin += block_size) {
size_type j_end = j_begin + (std::min) (j_size - j_begin, block_size);
// FIX: never ignore Martin Weiser's advice ;-(
#ifdef BOOST_UBLAS_NO_CACHE
vector_range<vector_type> v_range (v, range (j_begin, j_end));
#else
// vector<value_type, bounded_array<value_type, block_size> > v_range (j_end - j_begin);
vector<value_type> v_range (j_end - j_begin);
#endif
v_range.assign (zero_vector<value_type> (j_end - j_begin));
for (size_type i_begin = 0; i_begin < i_size; i_begin += block_size) {
size_type i_end = i_begin + (std::min) (i_size - i_begin, block_size);
#ifdef BOOST_UBLAS_NO_CACHE
const vector_range<expression1_type> e1_range (e1 (), range (i_begin, i_end));
const matrix_range<expression2_type> e2_range (e2 (), range (i_begin, i_end), range (j_begin, j_end));
#else
// const vector<value_type, bounded_array<value_type, block_size> > e1_range (project (e1 (), range (i_begin, i_end)));
// const matrix<value_type, column_major, bounded_array<value_type, block_size * block_size> > e2_range (project (e2 (), range (i_begin, i_end), range (j_begin, j_end)));
const vector<value_type> e1_range (project (e1 (), range (i_begin, i_end)));
const matrix<value_type, column_major> e2_range (project (e2 (), range (i_begin, i_end), range (j_begin, j_end)));
#endif
v_range.plus_assign (prod (e1_range, e2_range));
}
#ifndef BOOST_UBLAS_NO_CACHE
project (v, range (j_begin, j_end)).assign (v_range);
#endif
}
#if BOOST_UBLAS_TYPE_CHECK
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
#endif
return v;
}
template<class M, typename M::size_type BS, class E1, class E2>
BOOST_UBLAS_INLINE
M
block_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
row_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
const size_type block_size = BS;
M m (e1 ().size1 (), e2 ().size2 ());
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, row_major> cm (m.size1 (), m.size2 ());
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_assign> (cm, prod (e1, e2), row_major_tag ());
disable_type_check<bool>::value = true;
#endif
size_type i_size = e1 ().size1 ();
size_type j_size = e2 ().size2 ();
size_type k_size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ());
for (size_type i_begin = 0; i_begin < i_size; i_begin += block_size) {
size_type i_end = i_begin + (std::min) (i_size - i_begin, block_size);
for (size_type j_begin = 0; j_begin < j_size; j_begin += block_size) {
size_type j_end = j_begin + (std::min) (j_size - j_begin, block_size);
// FIX: never ignore Martin Weiser's advice ;-(
#ifdef BOOST_UBLAS_NO_CACHE
matrix_range<matrix_type> m_range (m, range (i_begin, i_end), range (j_begin, j_end));
#else
// matrix<value_type, row_major, bounded_array<value_type, block_size * block_size> > m_range (i_end - i_begin, j_end - j_begin);
matrix<value_type, row_major> m_range (i_end - i_begin, j_end - j_begin);
#endif
m_range.assign (zero_matrix<value_type> (i_end - i_begin, j_end - j_begin));
for (size_type k_begin = 0; k_begin < k_size; k_begin += block_size) {
size_type k_end = k_begin + (std::min) (k_size - k_begin, block_size);
#ifdef BOOST_UBLAS_NO_CACHE
const matrix_range<expression1_type> e1_range (e1 (), range (i_begin, i_end), range (k_begin, k_end));
const matrix_range<expression2_type> e2_range (e2 (), range (k_begin, k_end), range (j_begin, j_end));
#else
// const matrix<value_type, row_major, bounded_array<value_type, block_size * block_size> > e1_range (project (e1 (), range (i_begin, i_end), range (k_begin, k_end)));
// const matrix<value_type, column_major, bounded_array<value_type, block_size * block_size> > e2_range (project (e2 (), range (k_begin, k_end), range (j_begin, j_end)));
const matrix<value_type, row_major> e1_range (project (e1 (), range (i_begin, i_end), range (k_begin, k_end)));
const matrix<value_type, column_major> e2_range (project (e2 (), range (k_begin, k_end), range (j_begin, j_end)));
#endif
m_range.plus_assign (prod (e1_range, e2_range));
}
#ifndef BOOST_UBLAS_NO_CACHE
project (m, range (i_begin, i_end), range (j_begin, j_end)).assign (m_range);
#endif
}
}
#if BOOST_UBLAS_TYPE_CHECK
disable_type_check<bool>::value = false;
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
template<class M, typename M::size_type BS, class E1, class E2>
BOOST_UBLAS_INLINE
M
block_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
column_major_tag) {
typedef M matrix_type;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
const size_type block_size = BS;
M m (e1 ().size1 (), e2 ().size2 ());
#if BOOST_UBLAS_TYPE_CHECK
matrix<value_type, column_major> cm (m.size1 (), m.size2 ());
typedef typename type_traits<value_type>::real_type real_type;
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
indexing_matrix_assign<scalar_assign> (cm, prod (e1, e2), column_major_tag ());
disable_type_check<bool>::value = true;
#endif
size_type i_size = e1 ().size1 ();
size_type j_size = e2 ().size2 ();
size_type k_size = BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ());
for (size_type j_begin = 0; j_begin < j_size; j_begin += block_size) {
size_type j_end = j_begin + (std::min) (j_size - j_begin, block_size);
for (size_type i_begin = 0; i_begin < i_size; i_begin += block_size) {
size_type i_end = i_begin + (std::min) (i_size - i_begin, block_size);
// FIX: never ignore Martin Weiser's advice ;-(
#ifdef BOOST_UBLAS_NO_CACHE
matrix_range<matrix_type> m_range (m, range (i_begin, i_end), range (j_begin, j_end));
#else
// matrix<value_type, column_major, bounded_array<value_type, block_size * block_size> > m_range (i_end - i_begin, j_end - j_begin);
matrix<value_type, column_major> m_range (i_end - i_begin, j_end - j_begin);
#endif
m_range.assign (zero_matrix<value_type> (i_end - i_begin, j_end - j_begin));
for (size_type k_begin = 0; k_begin < k_size; k_begin += block_size) {
size_type k_end = k_begin + (std::min) (k_size - k_begin, block_size);
#ifdef BOOST_UBLAS_NO_CACHE
const matrix_range<expression1_type> e1_range (e1 (), range (i_begin, i_end), range (k_begin, k_end));
const matrix_range<expression2_type> e2_range (e2 (), range (k_begin, k_end), range (j_begin, j_end));
#else
// const matrix<value_type, row_major, bounded_array<value_type, block_size * block_size> > e1_range (project (e1 (), range (i_begin, i_end), range (k_begin, k_end)));
// const matrix<value_type, column_major, bounded_array<value_type, block_size * block_size> > e2_range (project (e2 (), range (k_begin, k_end), range (j_begin, j_end)));
const matrix<value_type, row_major> e1_range (project (e1 (), range (i_begin, i_end), range (k_begin, k_end)));
const matrix<value_type, column_major> e2_range (project (e2 (), range (k_begin, k_end), range (j_begin, j_end)));
#endif
m_range.plus_assign (prod (e1_range, e2_range));
}
#ifndef BOOST_UBLAS_NO_CACHE
project (m, range (i_begin, i_end), range (j_begin, j_end)).assign (m_range);
#endif
}
}
#if BOOST_UBLAS_TYPE_CHECK
disable_type_check<bool>::value = false;
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
#endif
return m;
}
// Dispatcher
template<class M, typename M::size_type BS, class E1, class E2>
BOOST_UBLAS_INLINE
M
block_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef typename M::orientation_category orientation_category;
return block_prod<M, BS> (e1, e2, orientation_category ());
}
}}}
#endif

View File

@@ -0,0 +1,198 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_OPERATION_SPARSE_
#define _BOOST_UBLAS_OPERATION_SPARSE_
#include <boost/numeric/ublas/traits.hpp>
// These scaled additions were borrowed from MTL unashamedly.
// But Alexei Novakov had a lot of ideas to improve these. Thanks.
namespace boost { namespace numeric { namespace ublas {
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
sparse_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI,
row_major_tag) {
typedef M matrix_type;
typedef TRI triangular_restriction;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
// ISSUE why is there a dense vector here?
vector<value_type> temporary (e2 ().size2 ());
temporary.clear ();
typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
while (it1 != it1_end) {
size_type jb (temporary.size ());
size_type je (0);
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression1_type::const_iterator2 it2 (it1.begin ());
typename expression1_type::const_iterator2 it2_end (it1.end ());
#else
typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
#endif
while (it2 != it2_end) {
// temporary.plus_assign (*it2 * row (e2 (), it2.index2 ()));
matrix_row<expression2_type> mr (e2 (), it2.index2 ());
typename matrix_row<expression2_type>::const_iterator itr (mr.begin ());
typename matrix_row<expression2_type>::const_iterator itr_end (mr.end ());
while (itr != itr_end) {
size_type j (itr.index ());
temporary (j) += *it2 * *itr;
jb = (std::min) (jb, j);
je = (std::max) (je, j);
++ itr;
}
++ it2;
}
for (size_type j = jb; j < je + 1; ++ j) {
if (temporary (j) != value_type/*zero*/()) {
// FIXME we'll need to extend the container interface!
// m.push_back (it1.index1 (), j, temporary (j));
// FIXME What to do with adaptors?
// m.insert (it1.index1 (), j, temporary (j));
if (triangular_restriction::other (it1.index1 (), j))
m (it1.index1 (), j) = temporary (j);
temporary (j) = value_type/*zero*/();
}
}
++ it1;
}
return m;
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
sparse_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI,
column_major_tag) {
typedef M matrix_type;
typedef TRI triangular_restriction;
typedef const E1 expression1_type;
typedef const E2 expression2_type;
typedef typename M::size_type size_type;
typedef typename M::value_type value_type;
// ISSUE why is there a dense vector here?
vector<value_type> temporary (e1 ().size1 ());
temporary.clear ();
typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
while (it2 != it2_end) {
size_type ib (temporary.size ());
size_type ie (0);
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename expression2_type::const_iterator1 it1 (it2.begin ());
typename expression2_type::const_iterator1 it1_end (it2.end ());
#else
typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
#endif
while (it1 != it1_end) {
// column (m, it2.index2 ()).plus_assign (*it1 * column (e1 (), it1.index1 ()));
matrix_column<expression1_type> mc (e1 (), it1.index1 ());
typename matrix_column<expression1_type>::const_iterator itc (mc.begin ());
typename matrix_column<expression1_type>::const_iterator itc_end (mc.end ());
while (itc != itc_end) {
size_type i (itc.index ());
temporary (i) += *it1 * *itc;
ib = (std::min) (ib, i);
ie = (std::max) (ie, i);
++ itc;
}
++ it1;
}
for (size_type i = ib; i < ie + 1; ++ i) {
if (temporary (i) != value_type/*zero*/()) {
// FIXME we'll need to extend the container interface!
// m.push_back (i, it2.index2 (), temporary (i));
// FIXME What to do with adaptors?
// m.insert (i, it2.index2 (), temporary (i));
if (triangular_restriction::other (i, it2.index2 ()))
m (i, it2.index2 ()) = temporary (i);
temporary (i) = value_type/*zero*/();
}
}
++ it2;
}
return m;
}
// Dispatcher
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M &
sparse_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, TRI, bool init = true) {
typedef typename M::value_type value_type;
typedef TRI triangular_restriction;
typedef typename M::orientation_category orientation_category;
if (init)
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
return sparse_prod (e1, e2, m, triangular_restriction (), orientation_category ());
}
template<class M, class E1, class E2, class TRI>
BOOST_UBLAS_INLINE
M
sparse_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
TRI) {
typedef M matrix_type;
typedef TRI triangular_restriction;
matrix_type m (e1 ().size1 (), e2 ().size2 ());
// FIXME needed for c_matrix?!
// return sparse_prod (e1, e2, m, triangular_restriction (), false);
return sparse_prod (e1, e2, m, triangular_restriction (), true);
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M &
sparse_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2,
M &m, bool init = true) {
typedef typename M::value_type value_type;
typedef typename M::orientation_category orientation_category;
if (init)
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
return sparse_prod (e1, e2, m, full (), orientation_category ());
}
template<class M, class E1, class E2>
BOOST_UBLAS_INLINE
M
sparse_prod (const matrix_expression<E1> &e1,
const matrix_expression<E2> &e2) {
typedef M matrix_type;
matrix_type m (e1 ().size1 (), e2 ().size2 ());
// FIXME needed for c_matrix?!
// return sparse_prod (e1, e2, m, full (), false);
return sparse_prod (e1, e2, m, full (), true);
}
}}}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,562 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_STORAGE_SPARSE_
#define _BOOST_UBLAS_STORAGE_SPARSE_
#include <map>
#include <boost/serialization/collection_size_type.hpp>
#include <boost/serialization/nvp.hpp>
#include <boost/serialization/array.hpp>
#include <boost/serialization/map.hpp>
#include <boost/serialization/base_object.hpp>
#include <boost/numeric/ublas/storage.hpp>
namespace boost { namespace numeric { namespace ublas {
namespace detail {
template<class I, class T, class C>
BOOST_UBLAS_INLINE
I lower_bound (const I &begin, const I &end, const T &t, C compare) {
// t <= *begin <=> ! (*begin < t)
if (begin == end || ! compare (*begin, t))
return begin;
if (compare (*(end - 1), t))
return end;
return std::lower_bound (begin, end, t, compare);
}
template<class I, class T, class C>
BOOST_UBLAS_INLINE
I upper_bound (const I &begin, const I &end, const T &t, C compare) {
if (begin == end || compare (t, *begin))
return begin;
// (*end - 1) <= t <=> ! (t < *end)
if (! compare (t, *(end - 1)))
return end;
return std::upper_bound (begin, end, t, compare);
}
template<class P>
struct less_pair {
BOOST_UBLAS_INLINE
bool operator () (const P &p1, const P &p2) {
return p1.first < p2.first;
}
};
template<class T>
struct less_triple {
BOOST_UBLAS_INLINE
bool operator () (const T &t1, const T &t2) {
return t1.first.first < t2.first.first ||
(t1.first.first == t2.first.first && t1.first.second < t2.first.second);
}
};
}
#ifdef BOOST_UBLAS_STRICT_MAP_ARRAY
template<class A>
class sparse_storage_element:
public container_reference<A> {
public:
typedef A array_type;
typedef typename A::key_type index_type;
typedef typename A::mapped_type data_value_type;
// typedef const data_value_type &data_const_reference;
typedef typename type_traits<data_value_type>::const_reference data_const_reference;
typedef data_value_type &data_reference;
typedef typename A::value_type value_type;
typedef value_type *pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
sparse_storage_element (array_type &a, pointer it):
container_reference<array_type> (a), it_ (it), i_ (it->first), d_ (it->second), dirty_ (false) {}
BOOST_UBLAS_INLINE
sparse_storage_element (array_type &a, index_type i):
container_reference<array_type> (a), it_ (), i_ (i), d_ (), dirty_ (false) {
pointer it = (*this) ().find (i_);
if (it == (*this) ().end ())
it = (*this) ().insert ((*this) ().end (), value_type (i_, d_));
d_ = it->second;
}
BOOST_UBLAS_INLINE
~sparse_storage_element () {
if (dirty_) {
if (! it_)
it_ = (*this) ().find (i_);
BOOST_UBLAS_CHECK (it_ != (*this) ().end (), internal_logic ());
it_->second = d_;
}
}
// Element access - only if data_const_reference is defined
BOOST_UBLAS_INLINE
typename data_value_type::data_const_reference
operator [] (index_type i) const {
return d_ [i];
}
// Assignment
BOOST_UBLAS_INLINE
sparse_storage_element &operator = (const sparse_storage_element &p) {
// Overide the implict copy assignment
d_ = p.d_;
dirty_ = true;
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_storage_element &operator = (const D &d) {
d_ = d;
dirty_ = true;
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_storage_element &operator += (const D &d) {
d_ += d;
dirty_ = true;
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_storage_element &operator -= (const D &d) {
d_ -= d;
dirty_ = true;
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_storage_element &operator *= (const D &d) {
d_ *= d;
dirty_ = true;
return *this;
}
template<class D>
BOOST_UBLAS_INLINE
sparse_storage_element &operator /= (const D &d) {
d_ /= d;
dirty_ = true;
return *this;
}
// Comparison
template<class D>
BOOST_UBLAS_INLINE
bool operator == (const D &d) const {
return d_ == d;
}
template<class D>
BOOST_UBLAS_INLINE
bool operator != (const D &d) const {
return d_ != d;
}
// Conversion
BOOST_UBLAS_INLINE
operator data_const_reference () const {
return d_;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (sparse_storage_element p) {
if (this != &p) {
dirty_ = true;
p.dirty_ = true;
std::swap (d_, p.d_);
}
}
BOOST_UBLAS_INLINE
friend void swap (sparse_storage_element p1, sparse_storage_element p2) {
p1.swap (p2);
}
private:
pointer it_;
index_type i_;
data_value_type d_;
bool dirty_;
};
#endif
// Default map type is simply forwarded to std::map
// FIXME should use ALLOC for map but std::allocator of std::pair<const I, T> and std::pair<I,T> fail to compile
template<class I, class T, class ALLOC>
class map_std : public std::map<I, T /*, ALLOC */> {
public:
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
ar & serialization::make_nvp("base", boost::serialization::base_object< std::map<I, T /*, ALLOC */> >(*this));
}
};
// Map array
// Implementation requires pair<I, T> allocator definition (without const)
template<class I, class T, class ALLOC>
class map_array {
public:
typedef ALLOC allocator_type;
typedef typename ALLOC::size_type size_type;
typedef typename ALLOC::difference_type difference_type;
typedef std::pair<I,T> value_type;
typedef I key_type;
typedef T mapped_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef const value_type *const_pointer;
typedef value_type *pointer;
// Iterators simply are pointers.
typedef const_pointer const_iterator;
typedef pointer iterator;
typedef const T &data_const_reference;
#ifndef BOOST_UBLAS_STRICT_MAP_ARRAY
typedef T &data_reference;
#else
typedef sparse_storage_element<map_array> data_reference;
#endif
// Construction and destruction
BOOST_UBLAS_INLINE
map_array (const ALLOC &a = ALLOC()):
alloc_(a), capacity_ (0), size_ (0) {
data_ = 0;
}
BOOST_UBLAS_INLINE
map_array (const map_array &c):
alloc_ (c.alloc_), capacity_ (c.size_), size_ (c.size_) {
if (capacity_) {
data_ = alloc_.allocate (capacity_);
std::uninitialized_copy (data_, data_ + capacity_, c.data_);
// capacity != size_ requires uninitialized_fill (size_ to capacity_)
}
else
data_ = 0;
}
BOOST_UBLAS_INLINE
~map_array () {
if (capacity_) {
std::for_each (data_, data_ + capacity_, static_destroy);
alloc_.deallocate (data_, capacity_);
}
}
private:
// Resizing - implicitly exposses uninitialized (but default constructed) mapped_type
BOOST_UBLAS_INLINE
void resize (size_type size) {
BOOST_UBLAS_CHECK (size_ <= capacity_, internal_logic ());
if (size > capacity_) {
const size_type capacity = size << 1;
BOOST_UBLAS_CHECK (capacity, internal_logic ());
pointer data = alloc_.allocate (capacity);
std::uninitialized_copy (data_, data_ + (std::min) (size, size_), data);
std::uninitialized_fill (data + (std::min) (size, size_), data + capacity, value_type ());
if (capacity_) {
std::for_each (data_, data_ + capacity_, static_destroy);
alloc_.deallocate (data_, capacity_);
}
capacity_ = capacity;
data_ = data;
}
size_ = size;
BOOST_UBLAS_CHECK (size_ <= capacity_, internal_logic ());
}
public:
// Reserving
BOOST_UBLAS_INLINE
void reserve (size_type capacity) {
BOOST_UBLAS_CHECK (size_ <= capacity_, internal_logic ());
// Reduce capacity_ if size_ allows
BOOST_UBLAS_CHECK (capacity >= size_, bad_size ());
pointer data;
if (capacity) {
data = alloc_.allocate (capacity);
std::uninitialized_copy (data_, data_ + size_, data);
std::uninitialized_fill (data + size_, data + capacity, value_type ());
}
else
data = 0;
if (capacity_) {
std::for_each (data_, data_ + capacity_, static_destroy);
alloc_.deallocate (data_, capacity_);
}
capacity_ = capacity;
data_ = data;
BOOST_UBLAS_CHECK (size_ <= capacity_, internal_logic ());
}
// Random Access Container
BOOST_UBLAS_INLINE
size_type size () const {
return size_;
}
BOOST_UBLAS_INLINE
size_type capacity () const {
return capacity_;
}
BOOST_UBLAS_INLINE
size_type max_size () const {
return 0; //TODO
}
BOOST_UBLAS_INLINE
bool empty () const {
return size_ == 0;
}
// Element access
BOOST_UBLAS_INLINE
data_reference operator [] (key_type i) {
#ifndef BOOST_UBLAS_STRICT_MAP_ARRAY
pointer it = find (i);
if (it == end ())
it = insert (end (), value_type (i, mapped_type (0)));
BOOST_UBLAS_CHECK (it != end (), internal_logic ());
return it->second;
#else
return data_reference (*this, i);
#endif
}
// Assignment
BOOST_UBLAS_INLINE
map_array &operator = (const map_array &a) {
if (this != &a) {
resize (a.size_);
std::copy (a.data_, a.data_ + a.size_, data_);
}
return *this;
}
BOOST_UBLAS_INLINE
map_array &assign_temporary (map_array &a) {
swap (a);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (map_array &a) {
if (this != &a) {
std::swap (capacity_, a.capacity_);
std::swap (data_, a.data_);
std::swap (size_, a.size_);
}
}
BOOST_UBLAS_INLINE
friend void swap (map_array &a1, map_array &a2) {
a1.swap (a2);
}
// Element insertion and deletion
// From Back Insertion Sequence concept
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator push_back (iterator it, const value_type &p) {
if (size () == 0 || (it = end () - 1)->first < p.first) {
resize (size () + 1);
*(it = end () - 1) = p;
return it;
}
external_logic ().raise ();
return it;
}
// Form Unique Associative Container concept
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
std::pair<iterator,bool> insert (const value_type &p) {
iterator it = detail::lower_bound (begin (), end (), p, detail::less_pair<value_type> ());
if (it != end () && it->first == p.first)
return std::make_pair (it, false);
difference_type n = it - begin ();
resize (size () + 1);
it = begin () + n; // allow for invalidation
std::copy_backward (it, end () - 1, end ());
*it = p;
return std::make_pair (it, true);
}
// Form Sorted Associative Container concept
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator insert (iterator hint, const value_type &p) {
return insert (p).first;
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void erase (iterator it) {
BOOST_UBLAS_CHECK (begin () <= it && it < end (), bad_index ());
std::copy (it + 1, end (), it);
resize (size () - 1);
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void erase (iterator it1, iterator it2) {
if (it1 == it2) return /* nothing to erase */;
BOOST_UBLAS_CHECK (begin () <= it1 && it1 < it2 && it2 <= end (), bad_index ());
std::copy (it2, end (), it1);
resize (size () - (it2 - it1));
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void clear () {
resize (0);
}
// Element lookup
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator find (key_type i) const {
const_iterator it (detail::lower_bound (begin (), end (), value_type (i, mapped_type (0)), detail::less_pair<value_type> ()));
if (it == end () || it->first != i)
it = end ();
return it;
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator find (key_type i) {
iterator it (detail::lower_bound (begin (), end (), value_type (i, mapped_type (0)), detail::less_pair<value_type> ()));
if (it == end () || it->first != i)
it = end ();
return it;
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
const_iterator lower_bound (key_type i) const {
return detail::lower_bound (begin (), end (), value_type (i, mapped_type (0)), detail::less_pair<value_type> ());
}
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
iterator lower_bound (key_type i) {
return detail::lower_bound (begin (), end (), value_type (i, mapped_type (0)), detail::less_pair<value_type> ());
}
BOOST_UBLAS_INLINE
const_iterator begin () const {
return data_;
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return data_ + size_;
}
BOOST_UBLAS_INLINE
iterator begin () {
return data_;
}
BOOST_UBLAS_INLINE
iterator end () {
return data_ + size_;
}
// Reverse iterators
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
reverse_iterator rbegin () {
return reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
reverse_iterator rend () {
return reverse_iterator (begin ());
}
// Allocator
allocator_type get_allocator () {
return alloc_;
}
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /* file_version */){
serialization::collection_size_type s (size_);
ar & serialization::make_nvp("size",s);
if (Archive::is_loading::value) {
resize(s);
}
ar & serialization::make_array(data_, s);
}
private:
// Provide destroy as a non member function
BOOST_UBLAS_INLINE
static void static_destroy (reference p) {
(&p) -> ~value_type ();
}
ALLOC alloc_;
size_type capacity_;
pointer data_;
size_type size_;
};
namespace detail {
template<class A, class T>
struct map_traits {
typedef typename A::mapped_type &reference;
};
template<class I, class T, class ALLOC>
struct map_traits<map_array<I, T, ALLOC>, T > {
typedef typename map_array<I, T, ALLOC>::data_reference reference;
};
// reserve helpers for map_array and generic maps
// ISSUE should be in map_traits but want to use on all compilers
template<class M>
BOOST_UBLAS_INLINE
void map_reserve (M &/* m */, typename M::size_type /* capacity */) {
}
template<class I, class T, class ALLOC>
BOOST_UBLAS_INLINE
void map_reserve (map_array<I, T, ALLOC> &m, typename map_array<I, T, ALLOC>::size_type capacity) {
m.reserve (capacity);
}
template<class M>
struct map_capacity_traits {
typedef typename M::size_type type ;
type operator() ( M const& m ) const {
return m.size ();
}
} ;
template<class I, class T, class ALLOC>
struct map_capacity_traits< map_array<I, T, ALLOC> > {
typedef typename map_array<I, T, ALLOC>::size_type type ;
type operator() ( map_array<I, T, ALLOC> const& m ) const {
return m.capacity ();
}
} ;
template<class M>
BOOST_UBLAS_INLINE
typename map_capacity_traits<M>::type map_capacity (M const& m) {
return map_capacity_traits<M>() ( m );
}
}
}}}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,599 @@
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_TRAITS_
#define _BOOST_UBLAS_TRAITS_
#include <iterator>
#include <complex>
#include <boost/config/no_tr1/cmath.hpp>
#include <boost/numeric/ublas/detail/config.hpp>
#include <boost/numeric/ublas/detail/iterator.hpp>
#include <boost/numeric/ublas/detail/returntype_deduction.hpp>
#include <boost/type_traits.hpp>
#include <complex>
// anonymous namespace to avoid ADL issues
namespace {
template<class T> T boost_numeric_ublas_sqrt (const T& t) {
using namespace std;
// we'll find either std::sqrt or else another version via ADL:
return sqrt (t);
}
template<class T> T boost_numeric_ublas_abs (const T& t) {
using namespace std;
// we'll find either std::abs or else another version via ADL:
return abs (t);
}
}
namespace boost { namespace numeric { namespace ublas {
// Use Joel de Guzman's return type deduction
// uBLAS assumes a common return type for all binary arithmetic operators
template<class X, class Y>
struct promote_traits {
typedef type_deduction_detail::base_result_of<X, Y> base_type;
static typename base_type::x_type x;
static typename base_type::y_type y;
static const std::size_t size = sizeof (
type_deduction_detail::test<
typename base_type::x_type
, typename base_type::y_type
>(x + y) // Use x+y to stand of all the arithmetic actions
);
static const std::size_t index = (size / sizeof (char)) - 1;
typedef typename mpl::at_c<
typename base_type::types, index>::type id;
typedef typename id::type promote_type;
};
// Type traits - generic numeric properties and functions
template<class T>
struct type_traits;
// Define properties for a generic scalar type
template<class T>
struct scalar_traits {
typedef scalar_traits<T> self_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef T real_type;
typedef real_type precision_type; // we do not know what type has more precision then the real_type
static const unsigned plus_complexity = 1;
static const unsigned multiplies_complexity = 1;
static
BOOST_UBLAS_INLINE
real_type real (const_reference t) {
return t;
}
static
BOOST_UBLAS_INLINE
real_type imag (const_reference /*t*/) {
return 0;
}
static
BOOST_UBLAS_INLINE
value_type conj (const_reference t) {
return t;
}
static
BOOST_UBLAS_INLINE
real_type type_abs (const_reference t) {
return boost_numeric_ublas_abs (t);
}
static
BOOST_UBLAS_INLINE
value_type type_sqrt (const_reference t) {
// force a type conversion back to value_type for intgral types
return value_type (boost_numeric_ublas_sqrt (t));
}
static
BOOST_UBLAS_INLINE
real_type norm_1 (const_reference t) {
return self_type::type_abs (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_2 (const_reference t) {
return self_type::type_abs (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_inf (const_reference t) {
return self_type::type_abs (t);
}
static
BOOST_UBLAS_INLINE
bool equals (const_reference t1, const_reference t2) {
return self_type::norm_inf (t1 - t2) < BOOST_UBLAS_TYPE_CHECK_EPSILON *
(std::max) ((std::max) (self_type::norm_inf (t1),
self_type::norm_inf (t2)),
BOOST_UBLAS_TYPE_CHECK_MIN);
}
};
// Define default type traits, assume T is a scalar type
template<class T>
struct type_traits : scalar_traits <T> {
typedef type_traits<T> self_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef T real_type;
typedef real_type precision_type;
static const unsigned multiplies_complexity = 1;
};
// Define real type traits
template<>
struct type_traits<float> : scalar_traits<float> {
typedef type_traits<float> self_type;
typedef float value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef value_type real_type;
typedef double precision_type;
};
template<>
struct type_traits<double> : scalar_traits<double> {
typedef type_traits<double> self_type;
typedef double value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef value_type real_type;
typedef long double precision_type;
};
template<>
struct type_traits<long double> : scalar_traits<long double> {
typedef type_traits<long double> self_type;
typedef long double value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef value_type real_type;
typedef value_type precision_type;
};
// Define properties for a generic complex type
template<class T>
struct complex_traits {
typedef complex_traits<T> self_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef typename T::value_type real_type;
typedef real_type precision_type; // we do not know what type has more precision then the real_type
static const unsigned plus_complexity = 2;
static const unsigned multiplies_complexity = 6;
static
BOOST_UBLAS_INLINE
real_type real (const_reference t) {
return std::real (t);
}
static
BOOST_UBLAS_INLINE
real_type imag (const_reference t) {
return std::imag (t);
}
static
BOOST_UBLAS_INLINE
value_type conj (const_reference t) {
return std::conj (t);
}
static
BOOST_UBLAS_INLINE
real_type type_abs (const_reference t) {
return abs (t);
}
static
BOOST_UBLAS_INLINE
value_type type_sqrt (const_reference t) {
return sqrt (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_1 (const_reference t) {
return type_traits<real_type>::type_abs (self_type::real (t)) +
type_traits<real_type>::type_abs (self_type::imag (t));
}
static
BOOST_UBLAS_INLINE
real_type norm_2 (const_reference t) {
return self_type::type_abs (t);
}
static
BOOST_UBLAS_INLINE
real_type norm_inf (const_reference t) {
return (std::max) (type_traits<real_type>::type_abs (self_type::real (t)),
type_traits<real_type>::type_abs (self_type::imag (t)));
}
static
BOOST_UBLAS_INLINE
bool equals (const_reference t1, const_reference t2) {
return self_type::norm_inf (t1 - t2) < BOOST_UBLAS_TYPE_CHECK_EPSILON *
(std::max) ((std::max) (self_type::norm_inf (t1),
self_type::norm_inf (t2)),
BOOST_UBLAS_TYPE_CHECK_MIN);
}
};
// Define complex type traits
template<>
struct type_traits<std::complex<float> > : complex_traits<std::complex<float> >{
typedef type_traits<std::complex<float> > self_type;
typedef std::complex<float> value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef float real_type;
typedef std::complex<double> precision_type;
};
template<>
struct type_traits<std::complex<double> > : complex_traits<std::complex<double> >{
typedef type_traits<std::complex<double> > self_type;
typedef std::complex<double> value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef double real_type;
typedef std::complex<long double> precision_type;
};
template<>
struct type_traits<std::complex<long double> > : complex_traits<std::complex<long double> > {
typedef type_traits<std::complex<long double> > self_type;
typedef std::complex<long double> value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef long double real_type;
typedef value_type precision_type;
};
#ifdef BOOST_UBLAS_USE_INTERVAL
// Define scalar interval type traits
template<>
struct type_traits<boost::numeric::interval<float> > : scalar_traits<boost::numeric::interval<float> > {
typedef type_traits<boost::numeric::interval<float> > self_type;
typedef boost::numeric::interval<float> value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef value_type real_type;
typedef boost::numeric::interval<double> precision_type;
};
template<>
struct type_traits<boost::numeric::interval<double> > : scalar_traits<boost::numeric::interval<double> > {
typedef type_traits<boost::numeric::interval<double> > self_type;
typedef boost::numeric::interval<double> value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef value_type real_type;
typedef boost::numeric::interval<long double> precision_type;
};
template<>
struct type_traits<boost::numeric::interval<long double> > : scalar_traits<boost::numeric::interval<long double> > {
typedef type_traits<boost::numeric::interval<long double> > self_type;
typedef boost::numeric::interval<long double> value_type;
typedef const value_type &const_reference;
typedef value_type &reference;
typedef value_type real_type;
typedef value_type precision_type;
};
#endif
// Storage tags -- hierarchical definition of storage characteristics
struct unknown_storage_tag {};
struct sparse_proxy_tag: public unknown_storage_tag {};
struct sparse_tag: public sparse_proxy_tag {};
struct packed_proxy_tag: public sparse_proxy_tag {};
struct packed_tag: public packed_proxy_tag {};
struct dense_proxy_tag: public packed_proxy_tag {};
struct dense_tag: public dense_proxy_tag {};
template<class S1, class S2>
struct storage_restrict_traits {
typedef S1 storage_category;
};
template<>
struct storage_restrict_traits<sparse_tag, dense_proxy_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<sparse_tag, packed_proxy_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<sparse_tag, sparse_proxy_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<packed_tag, dense_proxy_tag> {
typedef packed_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<packed_tag, packed_proxy_tag> {
typedef packed_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<packed_tag, sparse_proxy_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<packed_proxy_tag, sparse_proxy_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<dense_tag, dense_proxy_tag> {
typedef dense_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<dense_tag, packed_proxy_tag> {
typedef packed_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<dense_tag, sparse_proxy_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<dense_proxy_tag, packed_proxy_tag> {
typedef packed_proxy_tag storage_category;
};
template<>
struct storage_restrict_traits<dense_proxy_tag, sparse_proxy_tag> {
typedef sparse_proxy_tag storage_category;
};
// Iterator tags -- hierarchical definition of storage characteristics
struct sparse_bidirectional_iterator_tag : public std::bidirectional_iterator_tag {};
struct packed_random_access_iterator_tag : public std::random_access_iterator_tag {};
struct dense_random_access_iterator_tag : public packed_random_access_iterator_tag {};
// Thanks to Kresimir Fresl for convincing Comeau with iterator_base_traits ;-)
template<class IC>
struct iterator_base_traits {};
template<>
struct iterator_base_traits<std::forward_iterator_tag> {
template<class I, class T>
struct iterator_base {
typedef forward_iterator_base<std::forward_iterator_tag, I, T> type;
};
};
template<>
struct iterator_base_traits<std::bidirectional_iterator_tag> {
template<class I, class T>
struct iterator_base {
typedef bidirectional_iterator_base<std::bidirectional_iterator_tag, I, T> type;
};
};
template<>
struct iterator_base_traits<sparse_bidirectional_iterator_tag> {
template<class I, class T>
struct iterator_base {
typedef bidirectional_iterator_base<sparse_bidirectional_iterator_tag, I, T> type;
};
};
template<>
struct iterator_base_traits<std::random_access_iterator_tag> {
template<class I, class T>
struct iterator_base {
typedef random_access_iterator_base<std::random_access_iterator_tag, I, T> type;
};
};
template<>
struct iterator_base_traits<packed_random_access_iterator_tag> {
template<class I, class T>
struct iterator_base {
typedef random_access_iterator_base<packed_random_access_iterator_tag, I, T> type;
};
};
template<>
struct iterator_base_traits<dense_random_access_iterator_tag> {
template<class I, class T>
struct iterator_base {
typedef random_access_iterator_base<dense_random_access_iterator_tag, I, T> type;
};
};
template<class I1, class I2>
struct iterator_restrict_traits {
typedef I1 iterator_category;
};
template<>
struct iterator_restrict_traits<packed_random_access_iterator_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_bidirectional_iterator_tag iterator_category;
};
template<>
struct iterator_restrict_traits<sparse_bidirectional_iterator_tag, packed_random_access_iterator_tag> {
typedef sparse_bidirectional_iterator_tag iterator_category;
};
template<>
struct iterator_restrict_traits<dense_random_access_iterator_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_bidirectional_iterator_tag iterator_category;
};
template<>
struct iterator_restrict_traits<sparse_bidirectional_iterator_tag, dense_random_access_iterator_tag> {
typedef sparse_bidirectional_iterator_tag iterator_category;
};
template<>
struct iterator_restrict_traits<dense_random_access_iterator_tag, packed_random_access_iterator_tag> {
typedef packed_random_access_iterator_tag iterator_category;
};
template<>
struct iterator_restrict_traits<packed_random_access_iterator_tag, dense_random_access_iterator_tag> {
typedef packed_random_access_iterator_tag iterator_category;
};
template<class I>
BOOST_UBLAS_INLINE
void increment (I &it, const I &it_end, typename I::difference_type compare, packed_random_access_iterator_tag) {
it += (std::min) (compare, it_end - it);
}
template<class I>
BOOST_UBLAS_INLINE
void increment (I &it, const I &/* it_end */, typename I::difference_type /* compare */, sparse_bidirectional_iterator_tag) {
++ it;
}
template<class I>
BOOST_UBLAS_INLINE
void increment (I &it, const I &it_end, typename I::difference_type compare) {
increment (it, it_end, compare, typename I::iterator_category ());
}
template<class I>
BOOST_UBLAS_INLINE
void increment (I &it, const I &it_end) {
#if BOOST_UBLAS_TYPE_CHECK
I cit (it);
while (cit != it_end) {
BOOST_UBLAS_CHECK (*cit == typename I::value_type/*zero*/(), internal_logic ());
++ cit;
}
#endif
it = it_end;
}
namespace detail {
// specialisation which define whether a type has a trivial constructor
// or not. This is used by array types.
template<typename T>
struct has_trivial_constructor : public boost::has_trivial_constructor<T> {};
template<typename T>
struct has_trivial_destructor : public boost::has_trivial_destructor<T> {};
template<typename FLT>
struct has_trivial_constructor<std::complex<FLT> > : public boost::true_type {};
template<typename FLT>
struct has_trivial_destructor<std::complex<FLT> > : public boost::true_type {};
}
/** \brief Traits class to extract type information from a matrix or vector CONTAINER.
*
*/
template < class E >
struct container_traits {
/// type of indices
typedef typename E::size_type size_type;
/// type of differences of indices
typedef typename E::difference_type difference_type;
/// storage category: \c unknown_storage_tag, \c dense_tag, \c packed_tag, ...
typedef typename E::storage_category storage_category;
/// type of elements
typedef typename E::value_type value_type;
/// reference to an element
typedef typename E::reference reference;
/// const reference to an element
typedef typename E::const_reference const_reference;
/// type used in expressions to mark a reference to this class (usually a container_reference<E> or the class itself)
typedef typename E::closure_type closure_type;
/// type used in expressions to mark a reference to this class (usually a const container_reference<const E> or the class itself)
typedef typename E::const_closure_type const_closure_type;
};
/** \brief Traits class to extract type information from a MATRIX.
*
*/
template < class MATRIX >
struct matrix_traits : container_traits <MATRIX> {
/// orientation of the matrix, either \c row_major_tag, \c column_major_tag or \c unknown_orientation_tag
typedef typename MATRIX::orientation_category orientation_category;
};
/** \brief Traits class to extract type information from a VECTOR.
*
*/
template < class VECTOR >
struct vector_traits : container_traits <VECTOR> {
};
template < class T, int M, int N >
struct matrix_traits < T[M][N] > {
typedef T matrix_type[M][N];
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef row_major_tag orientation_category;
typedef dense_tag storage_category;
typedef T value_type;
typedef T *reference;
typedef const T *const_reference;
// \todo { define correct wrapper }
typedef matrix_reference<matrix_type> closure_type;
typedef const matrix_reference<const matrix_type> const_closure_type;
};
template < class T, int N >
struct vector_traits < T[N] > {
typedef T vector_type[N];
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef dense_tag storage_category;
typedef T value_type;
typedef T *reference;
typedef const T *const_reference;
// \todo { define correct wrapper }
typedef vector_reference<vector_type> closure_type;
typedef const vector_reference<const vector_type> const_closure_type;
};
}}}
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff