Imported existing code

This commit is contained in:
Hazim Gazov
2010-04-02 02:48:44 -03:00
parent 48fbc5ae91
commit 7a86d01598
13996 changed files with 2468699 additions and 0 deletions

View File

@@ -0,0 +1,805 @@
//
// basic_datagram_socket.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BASIC_DATAGRAM_SOCKET_HPP
#define BOOST_ASIO_BASIC_DATAGRAM_SOCKET_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/basic_socket.hpp>
#include <boost/asio/datagram_socket_service.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/throw_error.hpp>
namespace boost {
namespace asio {
/// Provides datagram-oriented socket functionality.
/**
* The basic_datagram_socket class template provides asynchronous and blocking
* datagram-oriented socket functionality.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*/
template <typename Protocol,
typename DatagramSocketService = datagram_socket_service<Protocol> >
class basic_datagram_socket
: public basic_socket<Protocol, DatagramSocketService>
{
public:
/// The native representation of a socket.
typedef typename DatagramSocketService::native_type native_type;
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
/// Construct a basic_datagram_socket without opening it.
/**
* This constructor creates a datagram socket without opening it. The open()
* function must be called before data can be sent or received on the socket.
*
* @param io_service The io_service object that the datagram socket will use
* to dispatch handlers for any asynchronous operations performed on the
* socket.
*/
explicit basic_datagram_socket(boost::asio::io_service& io_service)
: basic_socket<Protocol, DatagramSocketService>(io_service)
{
}
/// Construct and open a basic_datagram_socket.
/**
* This constructor creates and opens a datagram socket.
*
* @param io_service The io_service object that the datagram socket will use
* to dispatch handlers for any asynchronous operations performed on the
* socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_datagram_socket(boost::asio::io_service& io_service,
const protocol_type& protocol)
: basic_socket<Protocol, DatagramSocketService>(io_service, protocol)
{
}
/// Construct a basic_datagram_socket, opening it and binding it to the given
/// local endpoint.
/**
* This constructor creates a datagram socket and automatically opens it bound
* to the specified endpoint on the local machine. The protocol used is the
* protocol associated with the given endpoint.
*
* @param io_service The io_service object that the datagram socket will use
* to dispatch handlers for any asynchronous operations performed on the
* socket.
*
* @param endpoint An endpoint on the local machine to which the datagram
* socket will be bound.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_datagram_socket(boost::asio::io_service& io_service,
const endpoint_type& endpoint)
: basic_socket<Protocol, DatagramSocketService>(io_service, endpoint)
{
}
/// Construct a basic_datagram_socket on an existing native socket.
/**
* This constructor creates a datagram socket object to hold an existing
* native socket.
*
* @param io_service The io_service object that the datagram socket will use
* to dispatch handlers for any asynchronous operations performed on the
* socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_socket The new underlying socket implementation.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_datagram_socket(boost::asio::io_service& io_service,
const protocol_type& protocol, const native_type& native_socket)
: basic_socket<Protocol, DatagramSocketService>(
io_service, protocol, native_socket)
{
}
/// Send some data on a connected socket.
/**
* This function is used to send data on the datagram socket. The function
* call will block until the data has been sent successfully or an error
* occurs.
*
* @param buffers One ore more data buffers to be sent on the socket.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*
* @note The send operation can only be used with a connected socket. Use
* the send_to function to send data on an unconnected datagram socket.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code socket.send(boost::asio::buffer(data, size)); @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers)
{
boost::system::error_code ec;
std::size_t s = this->service.send(this->implementation, buffers, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Send some data on a connected socket.
/**
* This function is used to send data on the datagram socket. The function
* call will block until the data has been sent successfully or an error
* occurs.
*
* @param buffers One ore more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*
* @note The send operation can only be used with a connected socket. Use
* the send_to function to send data on an unconnected datagram socket.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->service.send(
this->implementation, buffers, flags, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Send some data on a connected socket.
/**
* This function is used to send data on the datagram socket. The function
* call will block until the data has been sent successfully or an error
* occurs.
*
* @param buffers One or more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes sent.
*
* @note The send operation can only be used with a connected socket. Use
* the send_to function to send data on an unconnected datagram socket.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
return this->service.send(this->implementation, buffers, flags, ec);
}
/// Start an asynchronous send on a connected socket.
/**
* This function is used to send data on the datagram socket. The function
* call will block until the data has been sent successfully or an error
* occurs.
*
* @param buffers One or more data buffers to be sent on the socket. Although
* the buffers object may be copied as necessary, ownership of the underlying
* memory blocks is retained by the caller, which must guarantee that they
* remain valid until the handler is called.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The async_send operation can only be used with a connected socket.
* Use the async_send_to function to send data on an unconnected datagram
* socket.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* socket.async_send(boost::asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_send(const ConstBufferSequence& buffers, WriteHandler handler)
{
this->service.async_send(this->implementation, buffers, 0, handler);
}
/// Start an asynchronous send on a connected socket.
/**
* This function is used to send data on the datagram socket. The function
* call will block until the data has been sent successfully or an error
* occurs.
*
* @param buffers One or more data buffers to be sent on the socket. Although
* the buffers object may be copied as necessary, ownership of the underlying
* memory blocks is retained by the caller, which must guarantee that they
* remain valid until the handler is called.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The async_send operation can only be used with a connected socket.
* Use the async_send_to function to send data on an unconnected datagram
* socket.
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_send(const ConstBufferSequence& buffers,
socket_base::message_flags flags, WriteHandler handler)
{
this->service.async_send(this->implementation, buffers, flags, handler);
}
/// Send a datagram to the specified endpoint.
/**
* This function is used to send a datagram to the specified remote endpoint.
* The function call will block until the data has been sent successfully or
* an error occurs.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
*
* @param destination The remote endpoint to which the data will be sent.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* boost::asio::ip::udp::endpoint destination(
* boost::asio::ip::address::from_string("1.2.3.4"), 12345);
* socket.send_to(boost::asio::buffer(data, size), destination);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination)
{
boost::system::error_code ec;
std::size_t s = this->service.send_to(
this->implementation, buffers, destination, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Send a datagram to the specified endpoint.
/**
* This function is used to send a datagram to the specified remote endpoint.
* The function call will block until the data has been sent successfully or
* an error occurs.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
*
* @param destination The remote endpoint to which the data will be sent.
*
* @param flags Flags specifying how the send call is to be made.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*/
template <typename ConstBufferSequence>
std::size_t send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->service.send_to(
this->implementation, buffers, destination, flags, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Send a datagram to the specified endpoint.
/**
* This function is used to send a datagram to the specified remote endpoint.
* The function call will block until the data has been sent successfully or
* an error occurs.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
*
* @param destination The remote endpoint to which the data will be sent.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes sent.
*/
template <typename ConstBufferSequence>
std::size_t send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags,
boost::system::error_code& ec)
{
return this->service.send_to(this->implementation,
buffers, destination, flags, ec);
}
/// Start an asynchronous send.
/**
* This function is used to asynchronously send a datagram to the specified
* remote endpoint. The function call always returns immediately.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param destination The remote endpoint to which the data will be sent.
* Copies will be made of the endpoint as required.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* boost::asio::ip::udp::endpoint destination(
* boost::asio::ip::address::from_string("1.2.3.4"), 12345);
* socket.async_send_to(
* boost::asio::buffer(data, size), destination, handler);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination, WriteHandler handler)
{
this->service.async_send_to(this->implementation, buffers, destination, 0,
handler);
}
/// Start an asynchronous send.
/**
* This function is used to asynchronously send a datagram to the specified
* remote endpoint. The function call always returns immediately.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param destination The remote endpoint to which the data will be sent.
* Copies will be made of the endpoint as required.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags,
WriteHandler handler)
{
this->service.async_send_to(this->implementation, buffers, destination,
flags, handler);
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the datagram socket. The function
* call will block until data has been received successfully or an error
* occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure.
*
* @note The receive operation can only be used with a connected socket. Use
* the receive_from function to receive data on an unconnected datagram
* socket.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code socket.receive(boost::asio::buffer(data, size)); @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers)
{
boost::system::error_code ec;
std::size_t s = this->service.receive(
this->implementation, buffers, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the datagram socket. The function
* call will block until data has been received successfully or an error
* occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure.
*
* @note The receive operation can only be used with a connected socket. Use
* the receive_from function to receive data on an unconnected datagram
* socket.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->service.receive(
this->implementation, buffers, flags, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the datagram socket. The function
* call will block until data has been received successfully or an error
* occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes received.
*
* @note The receive operation can only be used with a connected socket. Use
* the receive_from function to receive data on an unconnected datagram
* socket.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
return this->service.receive(this->implementation, buffers, flags, ec);
}
/// Start an asynchronous receive on a connected socket.
/**
* This function is used to asynchronously receive data from the datagram
* socket. The function call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The async_receive operation can only be used with a connected socket.
* Use the async_receive_from function to receive data on an unconnected
* datagram socket.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.async_receive(boost::asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive(const MutableBufferSequence& buffers, ReadHandler handler)
{
this->service.async_receive(this->implementation, buffers, 0, handler);
}
/// Start an asynchronous receive on a connected socket.
/**
* This function is used to asynchronously receive data from the datagram
* socket. The function call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The async_receive operation can only be used with a connected socket.
* Use the async_receive_from function to receive data on an unconnected
* datagram socket.
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive(const MutableBufferSequence& buffers,
socket_base::message_flags flags, ReadHandler handler)
{
this->service.async_receive(this->implementation, buffers, flags, handler);
}
/// Receive a datagram with the endpoint of the sender.
/**
* This function is used to receive a datagram. The function call will block
* until data has been received successfully or an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the datagram.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* boost::asio::ip::udp::endpoint sender_endpoint;
* socket.receive_from(
* boost::asio::buffer(data, size), sender_endpoint);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint)
{
boost::system::error_code ec;
std::size_t s = this->service.receive_from(
this->implementation, buffers, sender_endpoint, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Receive a datagram with the endpoint of the sender.
/**
* This function is used to receive a datagram. The function call will block
* until data has been received successfully or an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the datagram.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure.
*/
template <typename MutableBufferSequence>
std::size_t receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->service.receive_from(
this->implementation, buffers, sender_endpoint, flags, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Receive a datagram with the endpoint of the sender.
/**
* This function is used to receive a datagram. The function call will block
* until data has been received successfully or an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the datagram.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes received.
*/
template <typename MutableBufferSequence>
std::size_t receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags,
boost::system::error_code& ec)
{
return this->service.receive_from(this->implementation, buffers,
sender_endpoint, flags, ec);
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive a datagram. The function
* call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the datagram. Ownership of the sender_endpoint object
* is retained by the caller, which must guarantee that it is valid until the
* handler is called.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code socket.async_receive_from(
* boost::asio::buffer(data, size), 0, sender_endpoint, handler); @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, ReadHandler handler)
{
this->service.async_receive_from(this->implementation, buffers,
sender_endpoint, 0, handler);
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive a datagram. The function
* call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the datagram. Ownership of the sender_endpoint object
* is retained by the caller, which must guarantee that it is valid until the
* handler is called.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags,
ReadHandler handler)
{
this->service.async_receive_from(this->implementation, buffers,
sender_endpoint, flags, handler);
}
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BASIC_DATAGRAM_SOCKET_HPP

View File

@@ -0,0 +1,383 @@
//
// basic_deadline_timer.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BASIC_DEADLINE_TIMER_HPP
#define BOOST_ASIO_BASIC_DEADLINE_TIMER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/basic_io_object.hpp>
#include <boost/asio/deadline_timer_service.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/throw_error.hpp>
namespace boost {
namespace asio {
/// Provides waitable timer functionality.
/**
* The basic_deadline_timer class template provides the ability to perform a
* blocking or asynchronous wait for a timer to expire.
*
* Most applications will use the boost::asio::deadline_timer typedef.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* @par Examples
* Performing a blocking wait:
* @code
* // Construct a timer without setting an expiry time.
* boost::asio::deadline_timer timer(io_service);
*
* // Set an expiry time relative to now.
* timer.expires_from_now(boost::posix_time::seconds(5));
*
* // Wait for the timer to expire.
* timer.wait();
* @endcode
*
* @par
* Performing an asynchronous wait:
* @code
* void handler(const boost::system::error_code& error)
* {
* if (!error)
* {
* // Timer expired.
* }
* }
*
* ...
*
* // Construct a timer with an absolute expiry time.
* boost::asio::deadline_timer timer(io_service,
* boost::posix_time::time_from_string("2005-12-07 23:59:59.000"));
*
* // Start an asynchronous wait.
* timer.async_wait(handler);
* @endcode
*
* @par Changing an active deadline_timer's expiry time
*
* Changing the expiry time of a timer while there are pending asynchronous
* waits causes those wait operations to be cancelled. To ensure that the action
* associated with the timer is performed only once, use something like this:
* used:
*
* @code
* void on_some_event()
* {
* if (my_timer.expires_from_now(seconds(5)) > 0)
* {
* // We managed to cancel the timer. Start new asynchronous wait.
* my_timer.async_wait(on_timeout);
* }
* else
* {
* // Too late, timer has already expired!
* }
* }
*
* void on_timeout(const boost::system::error_code& e)
* {
* if (e != boost::asio::error::operation_aborted)
* {
* // Timer was not cancelled, take necessary action.
* }
* }
* @endcode
*
* @li The boost::asio::basic_deadline_timer::expires_from_now() function
* cancels any pending asynchronous waits, and returns the number of
* asynchronous waits that were cancelled. If it returns 0 then you were too
* late and the wait handler has already been executed, or will soon be
* executed. If it returns 1 then the wait handler was successfully cancelled.
*
* @li If a wait handler is cancelled, the boost::system::error_code passed to
* it contains the value boost::asio::error::operation_aborted.
*/
template <typename Time,
typename TimeTraits = boost::asio::time_traits<Time>,
typename TimerService = deadline_timer_service<Time, TimeTraits> >
class basic_deadline_timer
: public basic_io_object<TimerService>
{
public:
/// The time traits type.
typedef TimeTraits traits_type;
/// The time type.
typedef typename traits_type::time_type time_type;
/// The duration type.
typedef typename traits_type::duration_type duration_type;
/// Constructor.
/**
* This constructor creates a timer without setting an expiry time. The
* expires_at() or expires_from_now() functions must be called to set an
* expiry time before the timer can be waited on.
*
* @param io_service The io_service object that the timer will use to dispatch
* handlers for any asynchronous operations performed on the timer.
*/
explicit basic_deadline_timer(boost::asio::io_service& io_service)
: basic_io_object<TimerService>(io_service)
{
}
/// Constructor to set a particular expiry time as an absolute time.
/**
* This constructor creates a timer and sets the expiry time.
*
* @param io_service The io_service object that the timer will use to dispatch
* handlers for any asynchronous operations performed on the timer.
*
* @param expiry_time The expiry time to be used for the timer, expressed
* as an absolute time.
*/
basic_deadline_timer(boost::asio::io_service& io_service,
const time_type& expiry_time)
: basic_io_object<TimerService>(io_service)
{
boost::system::error_code ec;
this->service.expires_at(this->implementation, expiry_time, ec);
boost::asio::detail::throw_error(ec);
}
/// Constructor to set a particular expiry time relative to now.
/**
* This constructor creates a timer and sets the expiry time.
*
* @param io_service The io_service object that the timer will use to dispatch
* handlers for any asynchronous operations performed on the timer.
*
* @param expiry_time The expiry time to be used for the timer, relative to
* now.
*/
basic_deadline_timer(boost::asio::io_service& io_service,
const duration_type& expiry_time)
: basic_io_object<TimerService>(io_service)
{
boost::system::error_code ec;
this->service.expires_from_now(this->implementation, expiry_time, ec);
boost::asio::detail::throw_error(ec);
}
/// Cancel any asynchronous operations that are waiting on the timer.
/**
* This function forces the completion of any pending asynchronous wait
* operations against the timer. The handler for each cancelled operation will
* be invoked with the boost::asio::error::operation_aborted error code.
*
* Cancelling the timer does not change the expiry time.
*
* @return The number of asynchronous operations that were cancelled.
*
* @throws boost::system::system_error Thrown on failure.
*/
std::size_t cancel()
{
boost::system::error_code ec;
std::size_t s = this->service.cancel(this->implementation, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Cancel any asynchronous operations that are waiting on the timer.
/**
* This function forces the completion of any pending asynchronous wait
* operations against the timer. The handler for each cancelled operation will
* be invoked with the boost::asio::error::operation_aborted error code.
*
* Cancelling the timer does not change the expiry time.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of asynchronous operations that were cancelled.
*/
std::size_t cancel(boost::system::error_code& ec)
{
return this->service.cancel(this->implementation, ec);
}
/// Get the timer's expiry time as an absolute time.
/**
* This function may be used to obtain the timer's current expiry time.
* Whether the timer has expired or not does not affect this value.
*/
time_type expires_at() const
{
return this->service.expires_at(this->implementation);
}
/// Set the timer's expiry time as an absolute time.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the boost::asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @return The number of asynchronous operations that were cancelled.
*
* @throws boost::system::system_error Thrown on failure.
*/
std::size_t expires_at(const time_type& expiry_time)
{
boost::system::error_code ec;
std::size_t s = this->service.expires_at(
this->implementation, expiry_time, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Set the timer's expiry time as an absolute time.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the boost::asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of asynchronous operations that were cancelled.
*/
std::size_t expires_at(const time_type& expiry_time,
boost::system::error_code& ec)
{
return this->service.expires_at(this->implementation, expiry_time, ec);
}
/// Get the timer's expiry time relative to now.
/**
* This function may be used to obtain the timer's current expiry time.
* Whether the timer has expired or not does not affect this value.
*/
duration_type expires_from_now() const
{
return this->service.expires_from_now(this->implementation);
}
/// Set the timer's expiry time relative to now.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the boost::asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @return The number of asynchronous operations that were cancelled.
*
* @throws boost::system::system_error Thrown on failure.
*/
std::size_t expires_from_now(const duration_type& expiry_time)
{
boost::system::error_code ec;
std::size_t s = this->service.expires_from_now(
this->implementation, expiry_time, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Set the timer's expiry time relative to now.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the boost::asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of asynchronous operations that were cancelled.
*/
std::size_t expires_from_now(const duration_type& expiry_time,
boost::system::error_code& ec)
{
return this->service.expires_from_now(
this->implementation, expiry_time, ec);
}
/// Perform a blocking wait on the timer.
/**
* This function is used to wait for the timer to expire. This function
* blocks and does not return until the timer has expired.
*
* @throws boost::system::system_error Thrown on failure.
*/
void wait()
{
boost::system::error_code ec;
this->service.wait(this->implementation, ec);
boost::asio::detail::throw_error(ec);
}
/// Perform a blocking wait on the timer.
/**
* This function is used to wait for the timer to expire. This function
* blocks and does not return until the timer has expired.
*
* @param ec Set to indicate what error occurred, if any.
*/
void wait(boost::system::error_code& ec)
{
this->service.wait(this->implementation, ec);
}
/// Start an asynchronous wait on the timer.
/**
* This function may be used to initiate an asynchronous wait against the
* timer. It always returns immediately.
*
* For each call to async_wait(), the supplied handler will be called exactly
* once. The handler will be called when:
*
* @li The timer has expired.
*
* @li The timer was cancelled, in which case the handler is passed the error
* code boost::asio::error::operation_aborted.
*
* @param handler The handler to be called when the timer expires. Copies
* will be made of the handler as required. The function signature of the
* handler must be:
* @code void handler(
* const boost::system::error_code& error // Result of operation.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*/
template <typename WaitHandler>
void async_wait(WaitHandler handler)
{
this->service.async_wait(this->implementation, handler);
}
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BASIC_DEADLINE_TIMER_HPP

View File

@@ -0,0 +1,99 @@
//
// basic_io_object.hpp
// ~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BASIC_IO_OBJECT_HPP
#define BOOST_ASIO_BASIC_IO_OBJECT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
/// Base class for all I/O objects.
template <typename IoObjectService>
class basic_io_object
: private noncopyable
{
public:
/// The type of the service that will be used to provide I/O operations.
typedef IoObjectService service_type;
/// The underlying implementation type of I/O object.
typedef typename service_type::implementation_type implementation_type;
/// (Deprecated: use get_io_service().) Get the io_service associated with
/// the object.
/**
* This function may be used to obtain the io_service object that the I/O
* object uses to dispatch handlers for asynchronous operations.
*
* @return A reference to the io_service object that the I/O object will use
* to dispatch handlers. Ownership is not transferred to the caller.
*/
boost::asio::io_service& io_service()
{
return service.get_io_service();
}
/// Get the io_service associated with the object.
/**
* This function may be used to obtain the io_service object that the I/O
* object uses to dispatch handlers for asynchronous operations.
*
* @return A reference to the io_service object that the I/O object will use
* to dispatch handlers. Ownership is not transferred to the caller.
*/
boost::asio::io_service& get_io_service()
{
return service.get_io_service();
}
protected:
/// Construct a basic_io_object.
/**
* Performs:
* @code service.construct(implementation); @endcode
*/
explicit basic_io_object(boost::asio::io_service& io_service)
: service(boost::asio::use_service<IoObjectService>(io_service))
{
service.construct(implementation);
}
/// Protected destructor to prevent deletion through this type.
/**
* Performs:
* @code service.destroy(implementation); @endcode
*/
~basic_io_object()
{
service.destroy(implementation);
}
/// The service associated with the I/O object.
service_type& service;
/// The underlying implementation of the I/O object.
implementation_type implementation;
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BASIC_IO_OBJECT_HPP

View File

@@ -0,0 +1,800 @@
//
// basic_raw_socket.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BASIC_RAW_SOCKET_HPP
#define BOOST_ASIO_BASIC_RAW_SOCKET_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/basic_socket.hpp>
#include <boost/asio/raw_socket_service.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/throw_error.hpp>
namespace boost {
namespace asio {
/// Provides raw-oriented socket functionality.
/**
* The basic_raw_socket class template provides asynchronous and blocking
* raw-oriented socket functionality.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*/
template <typename Protocol,
typename RawSocketService = raw_socket_service<Protocol> >
class basic_raw_socket
: public basic_socket<Protocol, RawSocketService>
{
public:
/// The native representation of a socket.
typedef typename RawSocketService::native_type native_type;
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
/// Construct a basic_raw_socket without opening it.
/**
* This constructor creates a raw socket without opening it. The open()
* function must be called before data can be sent or received on the socket.
*
* @param io_service The io_service object that the raw socket will use
* to dispatch handlers for any asynchronous operations performed on the
* socket.
*/
explicit basic_raw_socket(boost::asio::io_service& io_service)
: basic_socket<Protocol, RawSocketService>(io_service)
{
}
/// Construct and open a basic_raw_socket.
/**
* This constructor creates and opens a raw socket.
*
* @param io_service The io_service object that the raw socket will use
* to dispatch handlers for any asynchronous operations performed on the
* socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_raw_socket(boost::asio::io_service& io_service,
const protocol_type& protocol)
: basic_socket<Protocol, RawSocketService>(io_service, protocol)
{
}
/// Construct a basic_raw_socket, opening it and binding it to the given
/// local endpoint.
/**
* This constructor creates a raw socket and automatically opens it bound
* to the specified endpoint on the local machine. The protocol used is the
* protocol associated with the given endpoint.
*
* @param io_service The io_service object that the raw socket will use
* to dispatch handlers for any asynchronous operations performed on the
* socket.
*
* @param endpoint An endpoint on the local machine to which the raw
* socket will be bound.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_raw_socket(boost::asio::io_service& io_service,
const endpoint_type& endpoint)
: basic_socket<Protocol, RawSocketService>(io_service, endpoint)
{
}
/// Construct a basic_raw_socket on an existing native socket.
/**
* This constructor creates a raw socket object to hold an existing
* native socket.
*
* @param io_service The io_service object that the raw socket will use
* to dispatch handlers for any asynchronous operations performed on the
* socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_socket The new underlying socket implementation.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_raw_socket(boost::asio::io_service& io_service,
const protocol_type& protocol, const native_type& native_socket)
: basic_socket<Protocol, RawSocketService>(
io_service, protocol, native_socket)
{
}
/// Send some data on a connected socket.
/**
* This function is used to send data on the raw socket. The function call
* will block until the data has been sent successfully or an error occurs.
*
* @param buffers One ore more data buffers to be sent on the socket.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*
* @note The send operation can only be used with a connected socket. Use
* the send_to function to send data on an unconnected raw socket.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code socket.send(boost::asio::buffer(data, size)); @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers)
{
boost::system::error_code ec;
std::size_t s = this->service.send(this->implementation, buffers, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Send some data on a connected socket.
/**
* This function is used to send data on the raw socket. The function call
* will block until the data has been sent successfully or an error occurs.
*
* @param buffers One ore more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*
* @note The send operation can only be used with a connected socket. Use
* the send_to function to send data on an unconnected raw socket.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->service.send(
this->implementation, buffers, flags, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Send some data on a connected socket.
/**
* This function is used to send data on the raw socket. The function call
* will block until the data has been sent successfully or an error occurs.
*
* @param buffers One or more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes sent.
*
* @note The send operation can only be used with a connected socket. Use
* the send_to function to send data on an unconnected raw socket.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
return this->service.send(this->implementation, buffers, flags, ec);
}
/// Start an asynchronous send on a connected socket.
/**
* This function is used to send data on the raw socket. The function call
* will block until the data has been sent successfully or an error occurs.
*
* @param buffers One or more data buffers to be sent on the socket. Although
* the buffers object may be copied as necessary, ownership of the underlying
* memory blocks is retained by the caller, which must guarantee that they
* remain valid until the handler is called.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The async_send operation can only be used with a connected socket.
* Use the async_send_to function to send data on an unconnected raw
* socket.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* socket.async_send(boost::asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_send(const ConstBufferSequence& buffers, WriteHandler handler)
{
this->service.async_send(this->implementation, buffers, 0, handler);
}
/// Start an asynchronous send on a connected socket.
/**
* This function is used to send data on the raw socket. The function call
* will block until the data has been sent successfully or an error occurs.
*
* @param buffers One or more data buffers to be sent on the socket. Although
* the buffers object may be copied as necessary, ownership of the underlying
* memory blocks is retained by the caller, which must guarantee that they
* remain valid until the handler is called.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The async_send operation can only be used with a connected socket.
* Use the async_send_to function to send data on an unconnected raw
* socket.
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_send(const ConstBufferSequence& buffers,
socket_base::message_flags flags, WriteHandler handler)
{
this->service.async_send(this->implementation, buffers, flags, handler);
}
/// Send raw data to the specified endpoint.
/**
* This function is used to send raw data to the specified remote endpoint.
* The function call will block until the data has been sent successfully or
* an error occurs.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
*
* @param destination The remote endpoint to which the data will be sent.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* boost::asio::ip::udp::endpoint destination(
* boost::asio::ip::address::from_string("1.2.3.4"), 12345);
* socket.send_to(boost::asio::buffer(data, size), destination);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination)
{
boost::system::error_code ec;
std::size_t s = this->service.send_to(
this->implementation, buffers, destination, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Send raw data to the specified endpoint.
/**
* This function is used to send raw data to the specified remote endpoint.
* The function call will block until the data has been sent successfully or
* an error occurs.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
*
* @param destination The remote endpoint to which the data will be sent.
*
* @param flags Flags specifying how the send call is to be made.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*/
template <typename ConstBufferSequence>
std::size_t send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->service.send_to(
this->implementation, buffers, destination, flags, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Send raw data to the specified endpoint.
/**
* This function is used to send raw data to the specified remote endpoint.
* The function call will block until the data has been sent successfully or
* an error occurs.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
*
* @param destination The remote endpoint to which the data will be sent.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes sent.
*/
template <typename ConstBufferSequence>
std::size_t send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags,
boost::system::error_code& ec)
{
return this->service.send_to(this->implementation,
buffers, destination, flags, ec);
}
/// Start an asynchronous send.
/**
* This function is used to asynchronously send raw data to the specified
* remote endpoint. The function call always returns immediately.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param destination The remote endpoint to which the data will be sent.
* Copies will be made of the endpoint as required.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* boost::asio::ip::udp::endpoint destination(
* boost::asio::ip::address::from_string("1.2.3.4"), 12345);
* socket.async_send_to(
* boost::asio::buffer(data, size), destination, handler);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination, WriteHandler handler)
{
this->service.async_send_to(this->implementation, buffers, destination, 0,
handler);
}
/// Start an asynchronous send.
/**
* This function is used to asynchronously send raw data to the specified
* remote endpoint. The function call always returns immediately.
*
* @param buffers One or more data buffers to be sent to the remote endpoint.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param destination The remote endpoint to which the data will be sent.
* Copies will be made of the endpoint as required.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_send_to(const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags,
WriteHandler handler)
{
this->service.async_send_to(this->implementation, buffers, destination,
flags, handler);
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the raw socket. The function
* call will block until data has been received successfully or an error
* occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure.
*
* @note The receive operation can only be used with a connected socket. Use
* the receive_from function to receive data on an unconnected raw
* socket.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code socket.receive(boost::asio::buffer(data, size)); @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers)
{
boost::system::error_code ec;
std::size_t s = this->service.receive(
this->implementation, buffers, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the raw socket. The function
* call will block until data has been received successfully or an error
* occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure.
*
* @note The receive operation can only be used with a connected socket. Use
* the receive_from function to receive data on an unconnected raw
* socket.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->service.receive(
this->implementation, buffers, flags, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the raw socket. The function
* call will block until data has been received successfully or an error
* occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes received.
*
* @note The receive operation can only be used with a connected socket. Use
* the receive_from function to receive data on an unconnected raw
* socket.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
return this->service.receive(this->implementation, buffers, flags, ec);
}
/// Start an asynchronous receive on a connected socket.
/**
* This function is used to asynchronously receive data from the raw
* socket. The function call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The async_receive operation can only be used with a connected socket.
* Use the async_receive_from function to receive data on an unconnected
* raw socket.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.async_receive(boost::asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive(const MutableBufferSequence& buffers, ReadHandler handler)
{
this->service.async_receive(this->implementation, buffers, 0, handler);
}
/// Start an asynchronous receive on a connected socket.
/**
* This function is used to asynchronously receive data from the raw
* socket. The function call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The async_receive operation can only be used with a connected socket.
* Use the async_receive_from function to receive data on an unconnected
* raw socket.
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive(const MutableBufferSequence& buffers,
socket_base::message_flags flags, ReadHandler handler)
{
this->service.async_receive(this->implementation, buffers, flags, handler);
}
/// Receive raw data with the endpoint of the sender.
/**
* This function is used to receive raw data. The function call will block
* until data has been received successfully or an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the data.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* boost::asio::ip::udp::endpoint sender_endpoint;
* socket.receive_from(
* boost::asio::buffer(data, size), sender_endpoint);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint)
{
boost::system::error_code ec;
std::size_t s = this->service.receive_from(
this->implementation, buffers, sender_endpoint, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Receive raw data with the endpoint of the sender.
/**
* This function is used to receive raw data. The function call will block
* until data has been received successfully or an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the data.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure.
*/
template <typename MutableBufferSequence>
std::size_t receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->service.receive_from(
this->implementation, buffers, sender_endpoint, flags, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Receive raw data with the endpoint of the sender.
/**
* This function is used to receive raw data. The function call will block
* until data has been received successfully or an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the data.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes received.
*/
template <typename MutableBufferSequence>
std::size_t receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags,
boost::system::error_code& ec)
{
return this->service.receive_from(this->implementation, buffers,
sender_endpoint, flags, ec);
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive raw data. The function
* call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the data. Ownership of the sender_endpoint object
* is retained by the caller, which must guarantee that it is valid until the
* handler is called.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code socket.async_receive_from(
* boost::asio::buffer(data, size), 0, sender_endpoint, handler); @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, ReadHandler handler)
{
this->service.async_receive_from(this->implementation, buffers,
sender_endpoint, 0, handler);
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive raw data. The function
* call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param sender_endpoint An endpoint object that receives the endpoint of
* the remote sender of the data. Ownership of the sender_endpoint object
* is retained by the caller, which must guarantee that it is valid until the
* handler is called.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive_from(const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags,
ReadHandler handler)
{
this->service.async_receive_from(this->implementation, buffers,
sender_endpoint, flags, handler);
}
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BASIC_RAW_SOCKET_HPP

View File

@@ -0,0 +1,624 @@
//
// basic_serial_port.hpp
// ~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2008 Rep Invariant Systems, Inc. (info@repinvariant.com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BASIC_SERIAL_PORT_HPP
#define BOOST_ASIO_BASIC_SERIAL_PORT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <string>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/basic_io_object.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/serial_port_base.hpp>
#include <boost/asio/serial_port_service.hpp>
#include <boost/asio/detail/throw_error.hpp>
#if defined(BOOST_ASIO_HAS_SERIAL_PORT) \
|| defined(GENERATING_DOCUMENTATION)
namespace boost {
namespace asio {
/// Provides serial port functionality.
/**
* The basic_serial_port class template provides functionality that is common
* to all serial ports.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*/
template <typename SerialPortService = serial_port_service>
class basic_serial_port
: public basic_io_object<SerialPortService>,
public serial_port_base
{
public:
/// The native representation of a serial port.
typedef typename SerialPortService::native_type native_type;
/// A basic_serial_port is always the lowest layer.
typedef basic_serial_port<SerialPortService> lowest_layer_type;
/// Construct a basic_serial_port without opening it.
/**
* This constructor creates a serial port without opening it.
*
* @param io_service The io_service object that the serial port will use to
* dispatch handlers for any asynchronous operations performed on the port.
*/
explicit basic_serial_port(boost::asio::io_service& io_service)
: basic_io_object<SerialPortService>(io_service)
{
}
/// Construct and open a basic_serial_port.
/**
* This constructor creates and opens a serial port for the specified device
* name.
*
* @param io_service The io_service object that the serial port will use to
* dispatch handlers for any asynchronous operations performed on the port.
*
* @param device The platform-specific device name for this serial
* port.
*/
explicit basic_serial_port(boost::asio::io_service& io_service,
const char* device)
: basic_io_object<SerialPortService>(io_service)
{
boost::system::error_code ec;
this->service.open(this->implementation, device, ec);
boost::asio::detail::throw_error(ec);
}
/// Construct and open a basic_serial_port.
/**
* This constructor creates and opens a serial port for the specified device
* name.
*
* @param io_service The io_service object that the serial port will use to
* dispatch handlers for any asynchronous operations performed on the port.
*
* @param device The platform-specific device name for this serial
* port.
*/
explicit basic_serial_port(boost::asio::io_service& io_service,
const std::string& device)
: basic_io_object<SerialPortService>(io_service)
{
boost::system::error_code ec;
this->service.open(this->implementation, device, ec);
boost::asio::detail::throw_error(ec);
}
/// Construct a basic_serial_port on an existing native serial port.
/**
* This constructor creates a serial port object to hold an existing native
* serial port.
*
* @param io_service The io_service object that the serial port will use to
* dispatch handlers for any asynchronous operations performed on the port.
*
* @param native_serial_port A native serial port.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_serial_port(boost::asio::io_service& io_service,
const native_type& native_serial_port)
: basic_io_object<SerialPortService>(io_service)
{
boost::system::error_code ec;
this->service.assign(this->implementation, native_serial_port, ec);
boost::asio::detail::throw_error(ec);
}
/// Get a reference to the lowest layer.
/**
* This function returns a reference to the lowest layer in a stack of
* layers. Since a basic_serial_port cannot contain any further layers, it
* simply returns a reference to itself.
*
* @return A reference to the lowest layer in the stack of layers. Ownership
* is not transferred to the caller.
*/
lowest_layer_type& lowest_layer()
{
return *this;
}
/// Get a const reference to the lowest layer.
/**
* This function returns a const reference to the lowest layer in a stack of
* layers. Since a basic_serial_port cannot contain any further layers, it
* simply returns a reference to itself.
*
* @return A const reference to the lowest layer in the stack of layers.
* Ownership is not transferred to the caller.
*/
const lowest_layer_type& lowest_layer() const
{
return *this;
}
/// Open the serial port using the specified device name.
/**
* This function opens the serial port for the specified device name.
*
* @param device The platform-specific device name.
*
* @throws boost::system::system_error Thrown on failure.
*/
void open(const std::string& device)
{
boost::system::error_code ec;
this->service.open(this->implementation, device, ec);
boost::asio::detail::throw_error(ec);
}
/// Open the serial port using the specified device name.
/**
* This function opens the serial port using the given platform-specific
* device name.
*
* @param device The platform-specific device name.
*
* @param ec Set the indicate what error occurred, if any.
*/
boost::system::error_code open(const std::string& device,
boost::system::error_code& ec)
{
return this->service.open(this->implementation, device, ec);
}
/// Assign an existing native serial port to the serial port.
/*
* This function opens the serial port to hold an existing native serial port.
*
* @param native_serial_port A native serial port.
*
* @throws boost::system::system_error Thrown on failure.
*/
void assign(const native_type& native_serial_port)
{
boost::system::error_code ec;
this->service.assign(this->implementation, native_serial_port, ec);
boost::asio::detail::throw_error(ec);
}
/// Assign an existing native serial port to the serial port.
/*
* This function opens the serial port to hold an existing native serial port.
*
* @param native_serial_port A native serial port.
*
* @param ec Set to indicate what error occurred, if any.
*/
boost::system::error_code assign(const native_type& native_serial_port,
boost::system::error_code& ec)
{
return this->service.assign(this->implementation, native_serial_port, ec);
}
/// Determine whether the serial port is open.
bool is_open() const
{
return this->service.is_open(this->implementation);
}
/// Close the serial port.
/**
* This function is used to close the serial port. Any asynchronous read or
* write operations will be cancelled immediately, and will complete with the
* boost::asio::error::operation_aborted error.
*
* @throws boost::system::system_error Thrown on failure.
*/
void close()
{
boost::system::error_code ec;
this->service.close(this->implementation, ec);
boost::asio::detail::throw_error(ec);
}
/// Close the serial port.
/**
* This function is used to close the serial port. Any asynchronous read or
* write operations will be cancelled immediately, and will complete with the
* boost::asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any.
*/
boost::system::error_code close(boost::system::error_code& ec)
{
return this->service.close(this->implementation, ec);
}
/// Get the native serial port representation.
/**
* This function may be used to obtain the underlying representation of the
* serial port. This is intended to allow access to native serial port
* functionality that is not otherwise provided.
*/
native_type native()
{
return this->service.native(this->implementation);
}
/// Cancel all asynchronous operations associated with the serial port.
/**
* This function causes all outstanding asynchronous read or write operations
* to finish immediately, and the handlers for cancelled operations will be
* passed the boost::asio::error::operation_aborted error.
*
* @throws boost::system::system_error Thrown on failure.
*/
void cancel()
{
boost::system::error_code ec;
this->service.cancel(this->implementation, ec);
boost::asio::detail::throw_error(ec);
}
/// Cancel all asynchronous operations associated with the serial port.
/**
* This function causes all outstanding asynchronous read or write operations
* to finish immediately, and the handlers for cancelled operations will be
* passed the boost::asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any.
*/
boost::system::error_code cancel(boost::system::error_code& ec)
{
return this->service.cancel(this->implementation, ec);
}
/// Send a break sequence to the serial port.
/**
* This function causes a break sequence of platform-specific duration to be
* sent out the serial port.
*
* @throws boost::system::system_error Thrown on failure.
*/
void send_break()
{
boost::system::error_code ec;
this->service.send_break(this->implementation, ec);
boost::asio::detail::throw_error(ec);
}
/// Send a break sequence to the serial port.
/**
* This function causes a break sequence of platform-specific duration to be
* sent out the serial port.
*
* @param ec Set to indicate what error occurred, if any.
*/
boost::system::error_code send_break(boost::system::error_code& ec)
{
return this->service.send_break(this->implementation, ec);
}
/// Set an option on the serial port.
/**
* This function is used to set an option on the serial port.
*
* @param option The option value to be set on the serial port.
*
* @throws boost::system::system_error Thrown on failure.
*
* @sa SettableSerialPortOption @n
* boost::asio::serial_port_base::baud_rate @n
* boost::asio::serial_port_base::flow_control @n
* boost::asio::serial_port_base::parity @n
* boost::asio::serial_port_base::stop_bits @n
* boost::asio::serial_port_base::character_size
*/
template <typename SettableSerialPortOption>
void set_option(const SettableSerialPortOption& option)
{
boost::system::error_code ec;
this->service.set_option(this->implementation, option, ec);
boost::asio::detail::throw_error(ec);
}
/// Set an option on the serial port.
/**
* This function is used to set an option on the serial port.
*
* @param option The option value to be set on the serial port.
*
* @param ec Set to indicate what error occurred, if any.
*
* @sa SettableSerialPortOption @n
* boost::asio::serial_port_base::baud_rate @n
* boost::asio::serial_port_base::flow_control @n
* boost::asio::serial_port_base::parity @n
* boost::asio::serial_port_base::stop_bits @n
* boost::asio::serial_port_base::character_size
*/
template <typename SettableSerialPortOption>
boost::system::error_code set_option(const SettableSerialPortOption& option,
boost::system::error_code& ec)
{
return this->service.set_option(this->implementation, option, ec);
}
/// Get an option from the serial port.
/**
* This function is used to get the current value of an option on the serial
* port.
*
* @param option The option value to be obtained from the serial port.
*
* @throws boost::system::system_error Thrown on failure.
*
* @sa GettableSerialPortOption @n
* boost::asio::serial_port_base::baud_rate @n
* boost::asio::serial_port_base::flow_control @n
* boost::asio::serial_port_base::parity @n
* boost::asio::serial_port_base::stop_bits @n
* boost::asio::serial_port_base::character_size
*/
template <typename GettableSerialPortOption>
void get_option(GettableSerialPortOption& option)
{
boost::system::error_code ec;
this->service.get_option(this->implementation, option, ec);
boost::asio::detail::throw_error(ec);
}
/// Get an option from the serial port.
/**
* This function is used to get the current value of an option on the serial
* port.
*
* @param option The option value to be obtained from the serial port.
*
* @param ec Set to indicate what error occured, if any.
*
* @sa GettableSerialPortOption @n
* boost::asio::serial_port_base::baud_rate @n
* boost::asio::serial_port_base::flow_control @n
* boost::asio::serial_port_base::parity @n
* boost::asio::serial_port_base::stop_bits @n
* boost::asio::serial_port_base::character_size
*/
template <typename GettableSerialPortOption>
boost::system::error_code get_option(GettableSerialPortOption& option,
boost::system::error_code& ec)
{
return this->service.get_option(this->implementation, option, ec);
}
/// Write some data to the serial port.
/**
* This function is used to write data to the serial port. The function call
* will block until one or more bytes of the data has been written
* successfully, or until an error occurs.
*
* @param buffers One or more data buffers to be written to the serial port.
*
* @returns The number of bytes written.
*
* @throws boost::system::system_error Thrown on failure. An error code of
* boost::asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The write_some operation may not transmit all of the data to the
* peer. Consider using the @ref write function if you need to ensure that
* all data is written before the blocking operation completes.
*
* @par Example
* To write a single data buffer use the @ref buffer function as follows:
* @code
* serial_port.write_some(boost::asio::buffer(data, size));
* @endcode
* See the @ref buffer documentation for information on writing multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers)
{
boost::system::error_code ec;
std::size_t s = this->service.write_some(this->implementation, buffers, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Write some data to the serial port.
/**
* This function is used to write data to the serial port. The function call
* will block until one or more bytes of the data has been written
* successfully, or until an error occurs.
*
* @param buffers One or more data buffers to be written to the serial port.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes written. Returns 0 if an error occurred.
*
* @note The write_some operation may not transmit all of the data to the
* peer. Consider using the @ref write function if you need to ensure that
* all data is written before the blocking operation completes.
*/
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers,
boost::system::error_code& ec)
{
return this->service.write_some(this->implementation, buffers, ec);
}
/// Start an asynchronous write.
/**
* This function is used to asynchronously write data to the serial port.
* The function call always returns immediately.
*
* @param buffers One or more data buffers to be written to the serial port.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param handler The handler to be called when the write operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes written.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The write operation may not transmit all of the data to the peer.
* Consider using the @ref async_write function if you need to ensure that all
* data is written before the asynchronous operation completes.
*
* @par Example
* To write a single data buffer use the @ref buffer function as follows:
* @code
* serial_port.async_write_some(boost::asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on writing multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_write_some(const ConstBufferSequence& buffers,
WriteHandler handler)
{
this->service.async_write_some(this->implementation, buffers, handler);
}
/// Read some data from the serial port.
/**
* This function is used to read data from the serial port. The function
* call will block until one or more bytes of data has been read successfully,
* or until an error occurs.
*
* @param buffers One or more buffers into which the data will be read.
*
* @returns The number of bytes read.
*
* @throws boost::system::system_error Thrown on failure. An error code of
* boost::asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that
* the requested amount of data is read before the blocking operation
* completes.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code
* serial_port.read_some(boost::asio::buffer(data, size));
* @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers)
{
boost::system::error_code ec;
std::size_t s = this->service.read_some(this->implementation, buffers, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Read some data from the serial port.
/**
* This function is used to read data from the serial port. The function
* call will block until one or more bytes of data has been read successfully,
* or until an error occurs.
*
* @param buffers One or more buffers into which the data will be read.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes read. Returns 0 if an error occurred.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that
* the requested amount of data is read before the blocking operation
* completes.
*/
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers,
boost::system::error_code& ec)
{
return this->service.read_some(this->implementation, buffers, ec);
}
/// Start an asynchronous read.
/**
* This function is used to asynchronously read data from the serial port.
* The function call always returns immediately.
*
* @param buffers One or more buffers into which the data will be read.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param handler The handler to be called when the read operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes read.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The read operation may not read all of the requested number of bytes.
* Consider using the @ref async_read function if you need to ensure that the
* requested amount of data is read before the asynchronous operation
* completes.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code
* serial_port.async_read_some(boost::asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_read_some(const MutableBufferSequence& buffers,
ReadHandler handler)
{
this->service.async_read_some(this->implementation, buffers, handler);
}
};
} // namespace asio
} // namespace boost
#endif // defined(BOOST_ASIO_HAS_SERIAL_PORT)
// || defined(GENERATING_DOCUMENTATION)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BASIC_SERIAL_PORT_HPP

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,826 @@
//
// basic_socket_acceptor.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BASIC_SOCKET_ACCEPTOR_HPP
#define BOOST_ASIO_BASIC_SOCKET_ACCEPTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/basic_io_object.hpp>
#include <boost/asio/basic_socket.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/socket_acceptor_service.hpp>
#include <boost/asio/socket_base.hpp>
#include <boost/asio/detail/throw_error.hpp>
namespace boost {
namespace asio {
/// Provides the ability to accept new connections.
/**
* The basic_socket_acceptor class template is used for accepting new socket
* connections.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* @par Example
* Opening a socket acceptor with the SO_REUSEADDR option enabled:
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* boost::asio::ip::tcp::endpoint endpoint(boost::asio::ip::tcp::v4(), port);
* acceptor.open(endpoint.protocol());
* acceptor.set_option(boost::asio::ip::tcp::acceptor::reuse_address(true));
* acceptor.bind(endpoint);
* acceptor.listen();
* @endcode
*/
template <typename Protocol,
typename SocketAcceptorService = socket_acceptor_service<Protocol> >
class basic_socket_acceptor
: public basic_io_object<SocketAcceptorService>,
public socket_base
{
public:
/// The native representation of an acceptor.
typedef typename SocketAcceptorService::native_type native_type;
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
/// Construct an acceptor without opening it.
/**
* This constructor creates an acceptor without opening it to listen for new
* connections. The open() function must be called before the acceptor can
* accept new socket connections.
*
* @param io_service The io_service object that the acceptor will use to
* dispatch handlers for any asynchronous operations performed on the
* acceptor.
*/
explicit basic_socket_acceptor(boost::asio::io_service& io_service)
: basic_io_object<SocketAcceptorService>(io_service)
{
}
/// Construct an open acceptor.
/**
* This constructor creates an acceptor and automatically opens it.
*
* @param io_service The io_service object that the acceptor will use to
* dispatch handlers for any asynchronous operations performed on the
* acceptor.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_socket_acceptor(boost::asio::io_service& io_service,
const protocol_type& protocol)
: basic_io_object<SocketAcceptorService>(io_service)
{
boost::system::error_code ec;
this->service.open(this->implementation, protocol, ec);
boost::asio::detail::throw_error(ec);
}
/// Construct an acceptor opened on the given endpoint.
/**
* This constructor creates an acceptor and automatically opens it to listen
* for new connections on the specified endpoint.
*
* @param io_service The io_service object that the acceptor will use to
* dispatch handlers for any asynchronous operations performed on the
* acceptor.
*
* @param endpoint An endpoint on the local machine on which the acceptor
* will listen for new connections.
*
* @param reuse_addr Whether the constructor should set the socket option
* socket_base::reuse_address.
*
* @throws boost::system::system_error Thrown on failure.
*
* @note This constructor is equivalent to the following code:
* @code
* basic_socket_acceptor<Protocol> acceptor(io_service);
* acceptor.open(endpoint.protocol());
* if (reuse_addr)
* acceptor.set_option(socket_base::reuse_address(true));
* acceptor.bind(endpoint);
* acceptor.listen(listen_backlog);
* @endcode
*/
basic_socket_acceptor(boost::asio::io_service& io_service,
const endpoint_type& endpoint, bool reuse_addr = true)
: basic_io_object<SocketAcceptorService>(io_service)
{
boost::system::error_code ec;
this->service.open(this->implementation, endpoint.protocol(), ec);
boost::asio::detail::throw_error(ec);
if (reuse_addr)
{
this->service.set_option(this->implementation,
socket_base::reuse_address(true), ec);
boost::asio::detail::throw_error(ec);
}
this->service.bind(this->implementation, endpoint, ec);
boost::asio::detail::throw_error(ec);
this->service.listen(this->implementation,
socket_base::max_connections, ec);
boost::asio::detail::throw_error(ec);
}
/// Construct a basic_socket_acceptor on an existing native acceptor.
/**
* This constructor creates an acceptor object to hold an existing native
* acceptor.
*
* @param io_service The io_service object that the acceptor will use to
* dispatch handlers for any asynchronous operations performed on the
* acceptor.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_acceptor A native acceptor.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_socket_acceptor(boost::asio::io_service& io_service,
const protocol_type& protocol, const native_type& native_acceptor)
: basic_io_object<SocketAcceptorService>(io_service)
{
boost::system::error_code ec;
this->service.assign(this->implementation, protocol, native_acceptor, ec);
boost::asio::detail::throw_error(ec);
}
/// Open the acceptor using the specified protocol.
/**
* This function opens the socket acceptor so that it will use the specified
* protocol.
*
* @param protocol An object specifying which protocol is to be used.
*
* @throws boost::system::system_error Thrown on failure.
*
* @par Example
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* acceptor.open(boost::asio::ip::tcp::v4());
* @endcode
*/
void open(const protocol_type& protocol = protocol_type())
{
boost::system::error_code ec;
this->service.open(this->implementation, protocol, ec);
boost::asio::detail::throw_error(ec);
}
/// Open the acceptor using the specified protocol.
/**
* This function opens the socket acceptor so that it will use the specified
* protocol.
*
* @param protocol An object specifying which protocol is to be used.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* boost::system::error_code ec;
* acceptor.open(boost::asio::ip::tcp::v4(), ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
boost::system::error_code open(const protocol_type& protocol,
boost::system::error_code& ec)
{
return this->service.open(this->implementation, protocol, ec);
}
/// Assigns an existing native acceptor to the acceptor.
/*
* This function opens the acceptor to hold an existing native acceptor.
*
* @param protocol An object specifying which protocol is to be used.
*
* @param native_acceptor A native acceptor.
*
* @throws boost::system::system_error Thrown on failure.
*/
void assign(const protocol_type& protocol, const native_type& native_acceptor)
{
boost::system::error_code ec;
this->service.assign(this->implementation, protocol, native_acceptor, ec);
boost::asio::detail::throw_error(ec);
}
/// Assigns an existing native acceptor to the acceptor.
/*
* This function opens the acceptor to hold an existing native acceptor.
*
* @param protocol An object specifying which protocol is to be used.
*
* @param native_acceptor A native acceptor.
*
* @param ec Set to indicate what error occurred, if any.
*/
boost::system::error_code assign(const protocol_type& protocol,
const native_type& native_acceptor, boost::system::error_code& ec)
{
return this->service.assign(this->implementation,
protocol, native_acceptor, ec);
}
/// Determine whether the acceptor is open.
bool is_open() const
{
return this->service.is_open(this->implementation);
}
/// Bind the acceptor to the given local endpoint.
/**
* This function binds the socket acceptor to the specified endpoint on the
* local machine.
*
* @param endpoint An endpoint on the local machine to which the socket
* acceptor will be bound.
*
* @throws boost::system::system_error Thrown on failure.
*
* @par Example
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* acceptor.open(boost::asio::ip::tcp::v4());
* acceptor.bind(boost::asio::ip::tcp::endpoint(12345));
* @endcode
*/
void bind(const endpoint_type& endpoint)
{
boost::system::error_code ec;
this->service.bind(this->implementation, endpoint, ec);
boost::asio::detail::throw_error(ec);
}
/// Bind the acceptor to the given local endpoint.
/**
* This function binds the socket acceptor to the specified endpoint on the
* local machine.
*
* @param endpoint An endpoint on the local machine to which the socket
* acceptor will be bound.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* acceptor.open(boost::asio::ip::tcp::v4());
* boost::system::error_code ec;
* acceptor.bind(boost::asio::ip::tcp::endpoint(12345), ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
boost::system::error_code bind(const endpoint_type& endpoint,
boost::system::error_code& ec)
{
return this->service.bind(this->implementation, endpoint, ec);
}
/// Place the acceptor into the state where it will listen for new
/// connections.
/**
* This function puts the socket acceptor into the state where it may accept
* new connections.
*
* @param backlog The maximum length of the queue of pending connections.
*
* @throws boost::system::system_error Thrown on failure.
*/
void listen(int backlog = socket_base::max_connections)
{
boost::system::error_code ec;
this->service.listen(this->implementation, backlog, ec);
boost::asio::detail::throw_error(ec);
}
/// Place the acceptor into the state where it will listen for new
/// connections.
/**
* This function puts the socket acceptor into the state where it may accept
* new connections.
*
* @param backlog The maximum length of the queue of pending connections.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* ...
* boost::system::error_code ec;
* acceptor.listen(boost::asio::socket_base::max_connections, ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
boost::system::error_code listen(int backlog, boost::system::error_code& ec)
{
return this->service.listen(this->implementation, backlog, ec);
}
/// Close the acceptor.
/**
* This function is used to close the acceptor. Any asynchronous accept
* operations will be cancelled immediately.
*
* A subsequent call to open() is required before the acceptor can again be
* used to again perform socket accept operations.
*
* @throws boost::system::system_error Thrown on failure.
*/
void close()
{
boost::system::error_code ec;
this->service.close(this->implementation, ec);
boost::asio::detail::throw_error(ec);
}
/// Close the acceptor.
/**
* This function is used to close the acceptor. Any asynchronous accept
* operations will be cancelled immediately.
*
* A subsequent call to open() is required before the acceptor can again be
* used to again perform socket accept operations.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* ...
* boost::system::error_code ec;
* acceptor.close(ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
boost::system::error_code close(boost::system::error_code& ec)
{
return this->service.close(this->implementation, ec);
}
/// Get the native acceptor representation.
/**
* This function may be used to obtain the underlying representation of the
* acceptor. This is intended to allow access to native acceptor functionality
* that is not otherwise provided.
*/
native_type native()
{
return this->service.native(this->implementation);
}
/// Cancel all asynchronous operations associated with the acceptor.
/**
* This function causes all outstanding asynchronous connect, send and receive
* operations to finish immediately, and the handlers for cancelled operations
* will be passed the boost::asio::error::operation_aborted error.
*
* @throws boost::system::system_error Thrown on failure.
*/
void cancel()
{
boost::system::error_code ec;
this->service.cancel(this->implementation, ec);
boost::asio::detail::throw_error(ec);
}
/// Cancel all asynchronous operations associated with the acceptor.
/**
* This function causes all outstanding asynchronous connect, send and receive
* operations to finish immediately, and the handlers for cancelled operations
* will be passed the boost::asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any.
*/
boost::system::error_code cancel(boost::system::error_code& ec)
{
return this->service.cancel(this->implementation, ec);
}
/// Set an option on the acceptor.
/**
* This function is used to set an option on the acceptor.
*
* @param option The new option value to be set on the acceptor.
*
* @throws boost::system::system_error Thrown on failure.
*
* @sa SettableSocketOption @n
* boost::asio::socket_base::reuse_address
* boost::asio::socket_base::enable_connection_aborted
*
* @par Example
* Setting the SOL_SOCKET/SO_REUSEADDR option:
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* ...
* boost::asio::ip::tcp::acceptor::reuse_address option(true);
* acceptor.set_option(option);
* @endcode
*/
template <typename SettableSocketOption>
void set_option(const SettableSocketOption& option)
{
boost::system::error_code ec;
this->service.set_option(this->implementation, option, ec);
boost::asio::detail::throw_error(ec);
}
/// Set an option on the acceptor.
/**
* This function is used to set an option on the acceptor.
*
* @param option The new option value to be set on the acceptor.
*
* @param ec Set to indicate what error occurred, if any.
*
* @sa SettableSocketOption @n
* boost::asio::socket_base::reuse_address
* boost::asio::socket_base::enable_connection_aborted
*
* @par Example
* Setting the SOL_SOCKET/SO_REUSEADDR option:
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* ...
* boost::asio::ip::tcp::acceptor::reuse_address option(true);
* boost::system::error_code ec;
* acceptor.set_option(option, ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
template <typename SettableSocketOption>
boost::system::error_code set_option(const SettableSocketOption& option,
boost::system::error_code& ec)
{
return this->service.set_option(this->implementation, option, ec);
}
/// Get an option from the acceptor.
/**
* This function is used to get the current value of an option on the
* acceptor.
*
* @param option The option value to be obtained from the acceptor.
*
* @throws boost::system::system_error Thrown on failure.
*
* @sa GettableSocketOption @n
* boost::asio::socket_base::reuse_address
*
* @par Example
* Getting the value of the SOL_SOCKET/SO_REUSEADDR option:
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* ...
* boost::asio::ip::tcp::acceptor::reuse_address option;
* acceptor.get_option(option);
* bool is_set = option.get();
* @endcode
*/
template <typename GettableSocketOption>
void get_option(GettableSocketOption& option)
{
boost::system::error_code ec;
this->service.get_option(this->implementation, option, ec);
boost::asio::detail::throw_error(ec);
}
/// Get an option from the acceptor.
/**
* This function is used to get the current value of an option on the
* acceptor.
*
* @param option The option value to be obtained from the acceptor.
*
* @param ec Set to indicate what error occurred, if any.
*
* @sa GettableSocketOption @n
* boost::asio::socket_base::reuse_address
*
* @par Example
* Getting the value of the SOL_SOCKET/SO_REUSEADDR option:
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* ...
* boost::asio::ip::tcp::acceptor::reuse_address option;
* boost::system::error_code ec;
* acceptor.get_option(option, ec);
* if (ec)
* {
* // An error occurred.
* }
* bool is_set = option.get();
* @endcode
*/
template <typename GettableSocketOption>
boost::system::error_code get_option(GettableSocketOption& option,
boost::system::error_code& ec)
{
return this->service.get_option(this->implementation, option, ec);
}
/// Get the local endpoint of the acceptor.
/**
* This function is used to obtain the locally bound endpoint of the acceptor.
*
* @returns An object that represents the local endpoint of the acceptor.
*
* @throws boost::system::system_error Thrown on failure.
*
* @par Example
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* ...
* boost::asio::ip::tcp::endpoint endpoint = acceptor.local_endpoint();
* @endcode
*/
endpoint_type local_endpoint() const
{
boost::system::error_code ec;
endpoint_type ep = this->service.local_endpoint(this->implementation, ec);
boost::asio::detail::throw_error(ec);
return ep;
}
/// Get the local endpoint of the acceptor.
/**
* This function is used to obtain the locally bound endpoint of the acceptor.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns An object that represents the local endpoint of the acceptor.
* Returns a default-constructed endpoint object if an error occurred and the
* error handler did not throw an exception.
*
* @par Example
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* ...
* boost::system::error_code ec;
* boost::asio::ip::tcp::endpoint endpoint = acceptor.local_endpoint(ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
endpoint_type local_endpoint(boost::system::error_code& ec) const
{
return this->service.local_endpoint(this->implementation, ec);
}
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer into the
* given socket. The function call will block until a new connection has been
* accepted successfully or an error occurs.
*
* @param peer The socket into which the new connection will be accepted.
*
* @throws boost::system::system_error Thrown on failure.
*
* @par Example
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* ...
* boost::asio::ip::tcp::socket socket(io_service);
* acceptor.accept(socket);
* @endcode
*/
template <typename SocketService>
void accept(basic_socket<protocol_type, SocketService>& peer)
{
boost::system::error_code ec;
this->service.accept(this->implementation, peer, 0, ec);
boost::asio::detail::throw_error(ec);
}
/// Accept a new connection.
/**
* This function is used to accept a new connection from a peer into the
* given socket. The function call will block until a new connection has been
* accepted successfully or an error occurs.
*
* @param peer The socket into which the new connection will be accepted.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* ...
* boost::asio::ip::tcp::soocket socket(io_service);
* boost::system::error_code ec;
* acceptor.accept(socket, ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
template <typename SocketService>
boost::system::error_code accept(
basic_socket<protocol_type, SocketService>& peer,
boost::system::error_code& ec)
{
return this->service.accept(this->implementation, peer, 0, ec);
}
/// Start an asynchronous accept.
/**
* This function is used to asynchronously accept a new connection into a
* socket. The function call always returns immediately.
*
* @param peer The socket into which the new connection will be accepted.
* Ownership of the peer object is retained by the caller, which must
* guarantee that it is valid until the handler is called.
*
* @param handler The handler to be called when the accept operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error // Result of operation.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @par Example
* @code
* void accept_handler(const boost::system::error_code& error)
* {
* if (!error)
* {
* // Accept succeeded.
* }
* }
*
* ...
*
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* ...
* boost::asio::ip::tcp::socket socket(io_service);
* acceptor.async_accept(socket, accept_handler);
* @endcode
*/
template <typename SocketService, typename AcceptHandler>
void async_accept(basic_socket<protocol_type, SocketService>& peer,
AcceptHandler handler)
{
this->service.async_accept(this->implementation, peer, 0, handler);
}
/// Accept a new connection and obtain the endpoint of the peer
/**
* This function is used to accept a new connection from a peer into the
* given socket, and additionally provide the endpoint of the remote peer.
* The function call will block until a new connection has been accepted
* successfully or an error occurs.
*
* @param peer The socket into which the new connection will be accepted.
*
* @param peer_endpoint An endpoint object which will receive the endpoint of
* the remote peer.
*
* @throws boost::system::system_error Thrown on failure.
*
* @par Example
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* ...
* boost::asio::ip::tcp::socket socket(io_service);
* boost::asio::ip::tcp::endpoint endpoint;
* acceptor.accept(socket, endpoint);
* @endcode
*/
template <typename SocketService>
void accept(basic_socket<protocol_type, SocketService>& peer,
endpoint_type& peer_endpoint)
{
boost::system::error_code ec;
this->service.accept(this->implementation, peer, &peer_endpoint, ec);
boost::asio::detail::throw_error(ec);
}
/// Accept a new connection and obtain the endpoint of the peer
/**
* This function is used to accept a new connection from a peer into the
* given socket, and additionally provide the endpoint of the remote peer.
* The function call will block until a new connection has been accepted
* successfully or an error occurs.
*
* @param peer The socket into which the new connection will be accepted.
*
* @param peer_endpoint An endpoint object which will receive the endpoint of
* the remote peer.
*
* @param ec Set to indicate what error occurred, if any.
*
* @par Example
* @code
* boost::asio::ip::tcp::acceptor acceptor(io_service);
* ...
* boost::asio::ip::tcp::socket socket(io_service);
* boost::asio::ip::tcp::endpoint endpoint;
* boost::system::error_code ec;
* acceptor.accept(socket, endpoint, ec);
* if (ec)
* {
* // An error occurred.
* }
* @endcode
*/
template <typename SocketService>
boost::system::error_code accept(
basic_socket<protocol_type, SocketService>& peer,
endpoint_type& peer_endpoint, boost::system::error_code& ec)
{
return this->service.accept(this->implementation, peer, &peer_endpoint, ec);
}
/// Start an asynchronous accept.
/**
* This function is used to asynchronously accept a new connection into a
* socket, and additionally obtain the endpoint of the remote peer. The
* function call always returns immediately.
*
* @param peer The socket into which the new connection will be accepted.
* Ownership of the peer object is retained by the caller, which must
* guarantee that it is valid until the handler is called.
*
* @param peer_endpoint An endpoint object into which the endpoint of the
* remote peer will be written. Ownership of the peer_endpoint object is
* retained by the caller, which must guarantee that it is valid until the
* handler is called.
*
* @param handler The handler to be called when the accept operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error // Result of operation.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*/
template <typename SocketService, typename AcceptHandler>
void async_accept(basic_socket<protocol_type, SocketService>& peer,
endpoint_type& peer_endpoint, AcceptHandler handler)
{
this->service.async_accept(this->implementation,
peer, &peer_endpoint, handler);
}
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BASIC_SOCKET_ACCEPTOR_HPP

View File

@@ -0,0 +1,150 @@
//
// basic_socket_iostream.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BASIC_SOCKET_IOSTREAM_HPP
#define BOOST_ASIO_BASIC_SOCKET_IOSTREAM_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/preprocessor/arithmetic/inc.hpp>
#include <boost/preprocessor/repetition/enum_binary_params.hpp>
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/repeat_from_to.hpp>
#include <boost/utility/base_from_member.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/basic_socket_streambuf.hpp>
#include <boost/asio/stream_socket_service.hpp>
#if !defined(BOOST_ASIO_SOCKET_IOSTREAM_MAX_ARITY)
#define BOOST_ASIO_SOCKET_IOSTREAM_MAX_ARITY 5
#endif // !defined(BOOST_ASIO_SOCKET_IOSTREAM_MAX_ARITY)
// A macro that should expand to:
// template <typename T1, ..., typename Tn>
// explicit basic_socket_iostream(T1 x1, ..., Tn xn)
// : basic_iostream<char>(&this->boost::base_from_member<
// basic_socket_streambuf<Protocol, StreamSocketService> >::member)
// {
// if (rdbuf()->connect(x1, ..., xn) == 0)
// this->setstate(std::ios_base::failbit);
// }
// This macro should only persist within this file.
#define BOOST_ASIO_PRIVATE_CTR_DEF(z, n, data) \
template <BOOST_PP_ENUM_PARAMS(n, typename T)> \
explicit basic_socket_iostream(BOOST_PP_ENUM_BINARY_PARAMS(n, T, x)) \
: std::basic_iostream<char>(&this->boost::base_from_member< \
basic_socket_streambuf<Protocol, StreamSocketService> >::member) \
{ \
tie(this); \
if (rdbuf()->connect(BOOST_PP_ENUM_PARAMS(n, x)) == 0) \
this->setstate(std::ios_base::failbit); \
} \
/**/
// A macro that should expand to:
// template <typename T1, ..., typename Tn>
// void connect(T1 x1, ..., Tn xn)
// {
// if (rdbuf()->connect(x1, ..., xn) == 0)
// this->setstate(std::ios_base::failbit);
// }
// This macro should only persist within this file.
#define BOOST_ASIO_PRIVATE_CONNECT_DEF(z, n, data) \
template <BOOST_PP_ENUM_PARAMS(n, typename T)> \
void connect(BOOST_PP_ENUM_BINARY_PARAMS(n, T, x)) \
{ \
if (rdbuf()->connect(BOOST_PP_ENUM_PARAMS(n, x)) == 0) \
this->setstate(std::ios_base::failbit); \
} \
/**/
namespace boost {
namespace asio {
/// Iostream interface for a socket.
template <typename Protocol,
typename StreamSocketService = stream_socket_service<Protocol> >
class basic_socket_iostream
: public boost::base_from_member<
basic_socket_streambuf<Protocol, StreamSocketService> >,
public std::basic_iostream<char>
{
public:
/// Construct a basic_socket_iostream without establishing a connection.
basic_socket_iostream()
: std::basic_iostream<char>(&this->boost::base_from_member<
basic_socket_streambuf<Protocol, StreamSocketService> >::member)
{
tie(this);
}
#if defined(GENERATING_DOCUMENTATION)
/// Establish a connection to an endpoint corresponding to a resolver query.
/**
* This constructor automatically establishes a connection based on the
* supplied resolver query parameters. The arguments are used to construct
* a resolver query object.
*/
template <typename T1, ..., typename TN>
explicit basic_socket_iostream(T1 t1, ..., TN tn);
#else
BOOST_PP_REPEAT_FROM_TO(
1, BOOST_PP_INC(BOOST_ASIO_SOCKET_IOSTREAM_MAX_ARITY),
BOOST_ASIO_PRIVATE_CTR_DEF, _ )
#endif
#if defined(GENERATING_DOCUMENTATION)
/// Establish a connection to an endpoint corresponding to a resolver query.
/**
* This function automatically establishes a connection based on the supplied
* resolver query parameters. The arguments are used to construct a resolver
* query object.
*/
template <typename T1, ..., typename TN>
void connect(T1 t1, ..., TN tn);
#else
BOOST_PP_REPEAT_FROM_TO(
1, BOOST_PP_INC(BOOST_ASIO_SOCKET_IOSTREAM_MAX_ARITY),
BOOST_ASIO_PRIVATE_CONNECT_DEF, _ )
#endif
/// Close the connection.
void close()
{
if (rdbuf()->close() == 0)
this->setstate(std::ios_base::failbit);
}
/// Return a pointer to the underlying streambuf.
basic_socket_streambuf<Protocol, StreamSocketService>* rdbuf() const
{
return const_cast<basic_socket_streambuf<Protocol, StreamSocketService>*>(
&this->boost::base_from_member<
basic_socket_streambuf<Protocol, StreamSocketService> >::member);
}
};
} // namespace asio
} // namespace boost
#undef BOOST_ASIO_PRIVATE_CTR_DEF
#undef BOOST_ASIO_PRIVATE_CONNECT_DEF
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BASIC_SOCKET_IOSTREAM_HPP

View File

@@ -0,0 +1,287 @@
//
// basic_socket_streambuf.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BASIC_SOCKET_STREAMBUF_HPP
#define BOOST_ASIO_BASIC_SOCKET_STREAMBUF_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <streambuf>
#include <boost/array.hpp>
#include <boost/preprocessor/arithmetic/inc.hpp>
#include <boost/preprocessor/repetition/enum_binary_params.hpp>
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/repeat_from_to.hpp>
#include <boost/utility/base_from_member.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/basic_socket.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/stream_socket_service.hpp>
#include <boost/asio/detail/throw_error.hpp>
#if !defined(BOOST_ASIO_SOCKET_STREAMBUF_MAX_ARITY)
#define BOOST_ASIO_SOCKET_STREAMBUF_MAX_ARITY 5
#endif // !defined(BOOST_ASIO_SOCKET_STREAMBUF_MAX_ARITY)
// A macro that should expand to:
// template <typename T1, ..., typename Tn>
// basic_socket_streambuf<Protocol, StreamSocketService>* connect(
// T1 x1, ..., Tn xn)
// {
// init_buffers();
// boost::system::error_code ec;
// this->basic_socket<Protocol, StreamSocketService>::close(ec);
// typedef typename Protocol::resolver_query resolver_query;
// resolver_query query(x1, ..., xn);
// resolve_and_connect(query, ec);
// return !ec ? this : 0;
// }
// This macro should only persist within this file.
#define BOOST_ASIO_PRIVATE_CONNECT_DEF( z, n, data ) \
template <BOOST_PP_ENUM_PARAMS(n, typename T)> \
basic_socket_streambuf<Protocol, StreamSocketService>* connect( \
BOOST_PP_ENUM_BINARY_PARAMS(n, T, x)) \
{ \
init_buffers(); \
boost::system::error_code ec; \
this->basic_socket<Protocol, StreamSocketService>::close(ec); \
typedef typename Protocol::resolver_query resolver_query; \
resolver_query query(BOOST_PP_ENUM_PARAMS(n, x)); \
resolve_and_connect(query, ec); \
return !ec ? this : 0; \
} \
/**/
namespace boost {
namespace asio {
/// Iostream streambuf for a socket.
template <typename Protocol,
typename StreamSocketService = stream_socket_service<Protocol> >
class basic_socket_streambuf
: public std::streambuf,
private boost::base_from_member<io_service>,
public basic_socket<Protocol, StreamSocketService>
{
public:
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
/// Construct a basic_socket_streambuf without establishing a connection.
basic_socket_streambuf()
: basic_socket<Protocol, StreamSocketService>(
boost::base_from_member<boost::asio::io_service>::member),
unbuffered_(false)
{
init_buffers();
}
/// Destructor flushes buffered data.
virtual ~basic_socket_streambuf()
{
if (pptr() != pbase())
overflow(traits_type::eof());
}
/// Establish a connection.
/**
* This function establishes a connection to the specified endpoint.
*
* @return \c this if a connection was successfully established, a null
* pointer otherwise.
*/
basic_socket_streambuf<Protocol, StreamSocketService>* connect(
const endpoint_type& endpoint)
{
init_buffers();
boost::system::error_code ec;
this->basic_socket<Protocol, StreamSocketService>::close(ec);
this->basic_socket<Protocol, StreamSocketService>::connect(endpoint, ec);
return !ec ? this : 0;
}
#if defined(GENERATING_DOCUMENTATION)
/// Establish a connection.
/**
* This function automatically establishes a connection based on the supplied
* resolver query parameters. The arguments are used to construct a resolver
* query object.
*
* @return \c this if a connection was successfully established, a null
* pointer otherwise.
*/
template <typename T1, ..., typename TN>
basic_socket_streambuf<Protocol, StreamSocketService>* connect(
T1 t1, ..., TN tn);
#else
BOOST_PP_REPEAT_FROM_TO(
1, BOOST_PP_INC(BOOST_ASIO_SOCKET_STREAMBUF_MAX_ARITY),
BOOST_ASIO_PRIVATE_CONNECT_DEF, _ )
#endif
/// Close the connection.
/**
* @return \c this if a connection was successfully established, a null
* pointer otherwise.
*/
basic_socket_streambuf<Protocol, StreamSocketService>* close()
{
boost::system::error_code ec;
sync();
this->basic_socket<Protocol, StreamSocketService>::close(ec);
if (!ec)
init_buffers();
return !ec ? this : 0;
}
protected:
int_type underflow()
{
if (gptr() == egptr())
{
boost::system::error_code ec;
std::size_t bytes_transferred = this->service.receive(
this->implementation,
boost::asio::buffer(boost::asio::buffer(get_buffer_) + putback_max),
0, ec);
if (ec)
return traits_type::eof();
setg(get_buffer_.begin(), get_buffer_.begin() + putback_max,
get_buffer_.begin() + putback_max + bytes_transferred);
return traits_type::to_int_type(*gptr());
}
else
{
return traits_type::eof();
}
}
int_type overflow(int_type c)
{
if (unbuffered_)
{
if (traits_type::eq_int_type(c, traits_type::eof()))
{
// Nothing to do.
return traits_type::not_eof(c);
}
else
{
// Send the single character immediately.
boost::system::error_code ec;
char_type ch = traits_type::to_char_type(c);
this->service.send(this->implementation,
boost::asio::buffer(&ch, sizeof(char_type)), 0, ec);
if (ec)
return traits_type::eof();
return c;
}
}
else
{
// Send all data in the output buffer.
boost::asio::const_buffer buffer =
boost::asio::buffer(pbase(), pptr() - pbase());
while (boost::asio::buffer_size(buffer) > 0)
{
boost::system::error_code ec;
std::size_t bytes_transferred = this->service.send(
this->implementation, boost::asio::buffer(buffer),
0, ec);
if (ec)
return traits_type::eof();
buffer = buffer + bytes_transferred;
}
setp(put_buffer_.begin(), put_buffer_.end());
// If the new character is eof then our work here is done.
if (traits_type::eq_int_type(c, traits_type::eof()))
return traits_type::not_eof(c);
// Add the new character to the output buffer.
*pptr() = traits_type::to_char_type(c);
pbump(1);
return c;
}
}
int sync()
{
return overflow(traits_type::eof());
}
std::streambuf* setbuf(char_type* s, std::streamsize n)
{
if (pptr() == pbase() && s == 0 && n == 0)
{
unbuffered_ = true;
setp(0, 0);
return this;
}
return 0;
}
private:
void init_buffers()
{
setg(get_buffer_.begin(),
get_buffer_.begin() + putback_max,
get_buffer_.begin() + putback_max);
if (unbuffered_)
setp(0, 0);
else
setp(put_buffer_.begin(), put_buffer_.end());
}
template <typename ResolverQuery>
void resolve_and_connect(const ResolverQuery& query,
boost::system::error_code& ec)
{
typedef typename Protocol::resolver resolver_type;
typedef typename Protocol::resolver_iterator iterator_type;
resolver_type resolver(
boost::base_from_member<boost::asio::io_service>::member);
iterator_type i = resolver.resolve(query, ec);
if (!ec)
{
iterator_type end;
ec = boost::asio::error::host_not_found;
while (ec && i != end)
{
this->basic_socket<Protocol, StreamSocketService>::close();
this->basic_socket<Protocol, StreamSocketService>::connect(*i, ec);
++i;
}
}
}
enum { putback_max = 8 };
enum { buffer_size = 512 };
boost::array<char, buffer_size> get_buffer_;
boost::array<char, buffer_size> put_buffer_;
bool unbuffered_;
};
} // namespace asio
} // namespace boost
#undef BOOST_ASIO_PRIVATE_CONNECT_DEF
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BASIC_SOCKET_STREAMBUF_HPP

View File

@@ -0,0 +1,720 @@
//
// basic_stream_socket.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BASIC_STREAM_SOCKET_HPP
#define BOOST_ASIO_BASIC_STREAM_SOCKET_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/basic_socket.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/stream_socket_service.hpp>
#include <boost/asio/detail/throw_error.hpp>
namespace boost {
namespace asio {
/// Provides stream-oriented socket functionality.
/**
* The basic_stream_socket class template provides asynchronous and blocking
* stream-oriented socket functionality.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* @par Concepts:
* AsyncReadStream, AsyncWriteStream, Stream, SyncReadStream, SyncWriteStream.
*/
template <typename Protocol,
typename StreamSocketService = stream_socket_service<Protocol> >
class basic_stream_socket
: public basic_socket<Protocol, StreamSocketService>
{
public:
/// The native representation of a socket.
typedef typename StreamSocketService::native_type native_type;
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
/// Construct a basic_stream_socket without opening it.
/**
* This constructor creates a stream socket without opening it. The socket
* needs to be opened and then connected or accepted before data can be sent
* or received on it.
*
* @param io_service The io_service object that the stream socket will use to
* dispatch handlers for any asynchronous operations performed on the socket.
*/
explicit basic_stream_socket(boost::asio::io_service& io_service)
: basic_socket<Protocol, StreamSocketService>(io_service)
{
}
/// Construct and open a basic_stream_socket.
/**
* This constructor creates and opens a stream socket. The socket needs to be
* connected or accepted before data can be sent or received on it.
*
* @param io_service The io_service object that the stream socket will use to
* dispatch handlers for any asynchronous operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_stream_socket(boost::asio::io_service& io_service,
const protocol_type& protocol)
: basic_socket<Protocol, StreamSocketService>(io_service, protocol)
{
}
/// Construct a basic_stream_socket, opening it and binding it to the given
/// local endpoint.
/**
* This constructor creates a stream socket and automatically opens it bound
* to the specified endpoint on the local machine. The protocol used is the
* protocol associated with the given endpoint.
*
* @param io_service The io_service object that the stream socket will use to
* dispatch handlers for any asynchronous operations performed on the socket.
*
* @param endpoint An endpoint on the local machine to which the stream
* socket will be bound.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_stream_socket(boost::asio::io_service& io_service,
const endpoint_type& endpoint)
: basic_socket<Protocol, StreamSocketService>(io_service, endpoint)
{
}
/// Construct a basic_stream_socket on an existing native socket.
/**
* This constructor creates a stream socket object to hold an existing native
* socket.
*
* @param io_service The io_service object that the stream socket will use to
* dispatch handlers for any asynchronous operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_socket The new underlying socket implementation.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_stream_socket(boost::asio::io_service& io_service,
const protocol_type& protocol, const native_type& native_socket)
: basic_socket<Protocol, StreamSocketService>(
io_service, protocol, native_socket)
{
}
/// Send some data on the socket.
/**
* This function is used to send data on the stream socket. The function
* call will block until one or more bytes of the data has been sent
* successfully, or an until error occurs.
*
* @param buffers One or more data buffers to be sent on the socket.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*
* @note The send operation may not transmit all of the data to the peer.
* Consider using the @ref write function if you need to ensure that all data
* is written before the blocking operation completes.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* socket.send(boost::asio::buffer(data, size));
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers)
{
boost::system::error_code ec;
std::size_t s = this->service.send(
this->implementation, buffers, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Send some data on the socket.
/**
* This function is used to send data on the stream socket. The function
* call will block until one or more bytes of the data has been sent
* successfully, or an until error occurs.
*
* @param buffers One or more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*
* @note The send operation may not transmit all of the data to the peer.
* Consider using the @ref write function if you need to ensure that all data
* is written before the blocking operation completes.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* socket.send(boost::asio::buffer(data, size), 0);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->service.send(
this->implementation, buffers, flags, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Send some data on the socket.
/**
* This function is used to send data on the stream socket. The function
* call will block until one or more bytes of the data has been sent
* successfully, or an until error occurs.
*
* @param buffers One or more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes sent. Returns 0 if an error occurred.
*
* @note The send operation may not transmit all of the data to the peer.
* Consider using the @ref write function if you need to ensure that all data
* is written before the blocking operation completes.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
return this->service.send(this->implementation, buffers, flags, ec);
}
/// Start an asynchronous send.
/**
* This function is used to asynchronously send data on the stream socket.
* The function call always returns immediately.
*
* @param buffers One or more data buffers to be sent on the socket. Although
* the buffers object may be copied as necessary, ownership of the underlying
* memory blocks is retained by the caller, which must guarantee that they
* remain valid until the handler is called.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The send operation may not transmit all of the data to the peer.
* Consider using the @ref async_write function if you need to ensure that all
* data is written before the asynchronous operation completes.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* socket.async_send(boost::asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_send(const ConstBufferSequence& buffers, WriteHandler handler)
{
this->service.async_send(this->implementation, buffers, 0, handler);
}
/// Start an asynchronous send.
/**
* This function is used to asynchronously send data on the stream socket.
* The function call always returns immediately.
*
* @param buffers One or more data buffers to be sent on the socket. Although
* the buffers object may be copied as necessary, ownership of the underlying
* memory blocks is retained by the caller, which must guarantee that they
* remain valid until the handler is called.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The send operation may not transmit all of the data to the peer.
* Consider using the @ref async_write function if you need to ensure that all
* data is written before the asynchronous operation completes.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* socket.async_send(boost::asio::buffer(data, size), 0, handler);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_send(const ConstBufferSequence& buffers,
socket_base::message_flags flags, WriteHandler handler)
{
this->service.async_send(this->implementation, buffers, flags, handler);
}
/// Receive some data on the socket.
/**
* This function is used to receive data on the stream socket. The function
* call will block until one or more bytes of data has been received
* successfully, or until an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure. An error code of
* boost::asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The receive operation may not receive all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that the
* requested amount of data is read before the blocking operation completes.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.receive(boost::asio::buffer(data, size));
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers)
{
boost::system::error_code ec;
std::size_t s = this->service.receive(this->implementation, buffers, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Receive some data on the socket.
/**
* This function is used to receive data on the stream socket. The function
* call will block until one or more bytes of data has been received
* successfully, or until an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure. An error code of
* boost::asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The receive operation may not receive all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that the
* requested amount of data is read before the blocking operation completes.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.receive(boost::asio::buffer(data, size), 0);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->service.receive(
this->implementation, buffers, flags, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the stream socket. The function
* call will block until one or more bytes of data has been received
* successfully, or until an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes received. Returns 0 if an error occurred.
*
* @note The receive operation may not receive all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that the
* requested amount of data is read before the blocking operation completes.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
return this->service.receive(this->implementation, buffers, flags, ec);
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive data from the stream
* socket. The function call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The receive operation may not receive all of the requested number of
* bytes. Consider using the @ref async_read function if you need to ensure
* that the requested amount of data is received before the asynchronous
* operation completes.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.async_receive(boost::asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive(const MutableBufferSequence& buffers, ReadHandler handler)
{
this->service.async_receive(this->implementation, buffers, 0, handler);
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive data from the stream
* socket. The function call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param flags Flags specifying how the receive call is to be made.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The receive operation may not receive all of the requested number of
* bytes. Consider using the @ref async_read function if you need to ensure
* that the requested amount of data is received before the asynchronous
* operation completes.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.async_receive(boost::asio::buffer(data, size), 0, handler);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive(const MutableBufferSequence& buffers,
socket_base::message_flags flags, ReadHandler handler)
{
this->service.async_receive(this->implementation, buffers, flags, handler);
}
/// Write some data to the socket.
/**
* This function is used to write data to the stream socket. The function call
* will block until one or more bytes of the data has been written
* successfully, or until an error occurs.
*
* @param buffers One or more data buffers to be written to the socket.
*
* @returns The number of bytes written.
*
* @throws boost::system::system_error Thrown on failure. An error code of
* boost::asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The write_some operation may not transmit all of the data to the
* peer. Consider using the @ref write function if you need to ensure that
* all data is written before the blocking operation completes.
*
* @par Example
* To write a single data buffer use the @ref buffer function as follows:
* @code
* socket.write_some(boost::asio::buffer(data, size));
* @endcode
* See the @ref buffer documentation for information on writing multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers)
{
boost::system::error_code ec;
std::size_t s = this->service.send(this->implementation, buffers, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Write some data to the socket.
/**
* This function is used to write data to the stream socket. The function call
* will block until one or more bytes of the data has been written
* successfully, or until an error occurs.
*
* @param buffers One or more data buffers to be written to the socket.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes written. Returns 0 if an error occurred.
*
* @note The write_some operation may not transmit all of the data to the
* peer. Consider using the @ref write function if you need to ensure that
* all data is written before the blocking operation completes.
*/
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers,
boost::system::error_code& ec)
{
return this->service.send(this->implementation, buffers, 0, ec);
}
/// Start an asynchronous write.
/**
* This function is used to asynchronously write data to the stream socket.
* The function call always returns immediately.
*
* @param buffers One or more data buffers to be written to the socket.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param handler The handler to be called when the write operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes written.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The write operation may not transmit all of the data to the peer.
* Consider using the @ref async_write function if you need to ensure that all
* data is written before the asynchronous operation completes.
*
* @par Example
* To write a single data buffer use the @ref buffer function as follows:
* @code
* socket.async_write_some(boost::asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on writing multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence, typename WriteHandler>
void async_write_some(const ConstBufferSequence& buffers,
WriteHandler handler)
{
this->service.async_send(this->implementation, buffers, 0, handler);
}
/// Read some data from the socket.
/**
* This function is used to read data from the stream socket. The function
* call will block until one or more bytes of data has been read successfully,
* or until an error occurs.
*
* @param buffers One or more buffers into which the data will be read.
*
* @returns The number of bytes read.
*
* @throws boost::system::system_error Thrown on failure. An error code of
* boost::asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that
* the requested amount of data is read before the blocking operation
* completes.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code
* socket.read_some(boost::asio::buffer(data, size));
* @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers)
{
boost::system::error_code ec;
std::size_t s = this->service.receive(this->implementation, buffers, 0, ec);
boost::asio::detail::throw_error(ec);
return s;
}
/// Read some data from the socket.
/**
* This function is used to read data from the stream socket. The function
* call will block until one or more bytes of data has been read successfully,
* or until an error occurs.
*
* @param buffers One or more buffers into which the data will be read.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes read. Returns 0 if an error occurred.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that
* the requested amount of data is read before the blocking operation
* completes.
*/
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers,
boost::system::error_code& ec)
{
return this->service.receive(this->implementation, buffers, 0, ec);
}
/// Start an asynchronous read.
/**
* This function is used to asynchronously read data from the stream socket.
* The function call always returns immediately.
*
* @param buffers One or more buffers into which the data will be read.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param handler The handler to be called when the read operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes read.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_service::post().
*
* @note The read operation may not read all of the requested number of bytes.
* Consider using the @ref async_read function if you need to ensure that the
* requested amount of data is read before the asynchronous operation
* completes.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code
* socket.async_read_some(boost::asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence, typename ReadHandler>
void async_read_some(const MutableBufferSequence& buffers,
ReadHandler handler)
{
this->service.async_receive(this->implementation, buffers, 0, handler);
}
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BASIC_STREAM_SOCKET_HPP

View File

@@ -0,0 +1,340 @@
//
// basic_streambuf.hpp
// ~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BASIC_STREAMBUF_HPP
#define BOOST_ASIO_BASIC_STREAMBUF_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <algorithm>
#include <cstring>
#include <limits>
#include <memory>
#include <stdexcept>
#include <streambuf>
#include <vector>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/buffer.hpp>
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
/// Automatically resizable buffer class based on std::streambuf.
/**
* The @c basic_streambuf class is derived from @c std::streambuf to associate
* the streambuf's input and output sequences with one or more character
* arrays. These character arrays are internal to the @c basic_streambuf
* object, but direct access to the array elements is provided to permit them
* to be used efficiently with I/O operations. Characters written to the output
* sequence of a @c basic_streambuf object are appended to the input sequence
* of the same object.
*
* The @c basic_streambuf class's public interface is intended to permit the
* following implementation strategies:
*
* @li A single contiguous character array, which is reallocated as necessary
* to accommodate changes in the size of the character sequence. This is the
* implementation approach currently used in Asio.
*
* @li A sequence of one or more character arrays, where each array is of the
* same size. Additional character array objects are appended to the sequence
* to accommodate changes in the size of the character sequence.
*
* @li A sequence of one or more character arrays of varying sizes. Additional
* character array objects are appended to the sequence to accommodate changes
* in the size of the character sequence.
*
* The constructor for basic_streambuf accepts a @c size_t argument specifying
* the maximum of the sum of the sizes of the input sequence and output
* sequence. During the lifetime of the @c basic_streambuf object, the following
* invariant holds:
* @code size() <= max_size()@endcode
* Any member function that would, if successful, cause the invariant to be
* violated shall throw an exception of class @c std::length_error.
*
* The constructor for @c basic_streambuf takes an Allocator argument. A copy
* of this argument is used for any memory allocation performed, by the
* constructor and by all member functions, during the lifetime of each @c
* basic_streambuf object.
*
* @par Examples
* Writing directly from an streambuf to a socket:
* @code
* boost::asio::streambuf b;
* std::ostream os(&b);
* os << "Hello, World!\n";
*
* // try sending some data in input sequence
* size_t n = sock.send(b.data());
*
* b.consume(n); // sent data is removed from input sequence
* @endcode
*
* Reading from a socket directly into a streambuf:
* @code
* boost::asio::streambuf b;
*
* // reserve 512 bytes in output sequence
* boost::asio::streambuf::const_buffers_type bufs = b.prepare(512);
*
* size_t n = sock.receive(bufs);
*
* // received data is "committed" from output sequence to input sequence
* b.commit(n);
*
* std::istream is(&b);
* std::string s;
* is >> s;
* @endcode
*/
template <typename Allocator = std::allocator<char> >
class basic_streambuf
: public std::streambuf,
private noncopyable
{
public:
#if defined(GENERATING_DOCUMENTATION)
/// The type used to represent the input sequence as a list of buffers.
typedef implementation_defined const_buffers_type;
/// The type used to represent the output sequence as a list of buffers.
typedef implementation_defined mutable_buffers_type;
#else
typedef boost::asio::const_buffers_1 const_buffers_type;
typedef boost::asio::mutable_buffers_1 mutable_buffers_type;
#endif
/// Construct a basic_streambuf object.
/**
* Constructs a streambuf with the specified maximum size. The initial size
* of the streambuf's input sequence is 0.
*/
explicit basic_streambuf(
std::size_t max_size = (std::numeric_limits<std::size_t>::max)(),
const Allocator& allocator = Allocator())
: max_size_(max_size),
buffer_(allocator)
{
std::size_t pend = (std::min<std::size_t>)(max_size_, buffer_delta);
buffer_.resize((std::max<std::size_t>)(pend, 1));
setg(&buffer_[0], &buffer_[0], &buffer_[0]);
setp(&buffer_[0], &buffer_[0] + pend);
}
/// Get the size of the input sequence.
/**
* @returns The size of the input sequence. The value is equal to that
* calculated for @c s in the following code:
* @code
* size_t s = 0;
* const_buffers_type bufs = data();
* const_buffers_type::const_iterator i = bufs.begin();
* while (i != bufs.end())
* {
* const_buffer buf(*i++);
* s += buffer_size(buf);
* }
* @endcode
*/
std::size_t size() const
{
return pptr() - gptr();
}
/// Get the maximum size of the basic_streambuf.
/**
* @returns The allowed maximum of the sum of the sizes of the input sequence
* and output sequence.
*/
std::size_t max_size() const
{
return max_size_;
}
/// Get a list of buffers that represents the input sequence.
/**
* @returns An object of type @c const_buffers_type that satisfies
* ConstBufferSequence requirements, representing all character arrays in the
* input sequence.
*
* @note The returned object is invalidated by any @c basic_streambuf member
* function that modifies the input sequence or output sequence.
*/
const_buffers_type data() const
{
return boost::asio::buffer(boost::asio::const_buffer(gptr(),
(pptr() - gptr()) * sizeof(char_type)));
}
/// Get a list of buffers that represents the output sequence, with the given
/// size.
/**
* Ensures that the output sequence can accommodate @c n characters,
* reallocating character array objects as necessary.
*
* @returns An object of type @c mutable_buffers_type that satisfies
* MutableBufferSequence requirements, representing character array objects
* at the start of the output sequence such that the sum of the buffer sizes
* is @c n.
*
* @throws std::length_error If <tt>size() + n > max_size()</tt>.
*
* @note The returned object is invalidated by any @c basic_streambuf member
* function that modifies the input sequence or output sequence.
*/
mutable_buffers_type prepare(std::size_t n)
{
reserve(n);
return boost::asio::buffer(boost::asio::mutable_buffer(
pptr(), n * sizeof(char_type)));
}
/// Move characters from the output sequence to the input sequence.
/**
* Appends @c n characters from the start of the output sequence to the input
* sequence. The beginning of the output sequence is advanced by @c n
* characters.
*
* Requires a preceding call <tt>prepare(x)</tt> where <tt>x >= n</tt>, and
* no intervening operations that modify the input or output sequence.
*
* @throws std::length_error If @c n is greater than the size of the output
* sequence.
*/
void commit(std::size_t n)
{
if (pptr() + n > epptr())
n = epptr() - pptr();
pbump(static_cast<int>(n));
setg(eback(), gptr(), pptr());
}
/// Remove characters from the input sequence.
/**
* Removes @c n characters from the beginning of the input sequence.
*
* @throws std::length_error If <tt>n > size()</tt>.
*/
void consume(std::size_t n)
{
if (gptr() + n > pptr())
n = pptr() - gptr();
gbump(static_cast<int>(n));
}
protected:
enum { buffer_delta = 128 };
/// Override std::streambuf behaviour.
/**
* Behaves according to the specification of @c std::streambuf::underflow().
*/
int_type underflow()
{
if (gptr() < pptr())
{
setg(&buffer_[0], gptr(), pptr());
return traits_type::to_int_type(*gptr());
}
else
{
return traits_type::eof();
}
}
/// Override std::streambuf behaviour.
/**
* Behaves according to the specification of @c std::streambuf::overflow(),
* with the specialisation that @c std::length_error is thrown if appending
* the character to the input sequence would require the condition
* <tt>size() > max_size()</tt> to be true.
*/
int_type overflow(int_type c)
{
if (!traits_type::eq_int_type(c, traits_type::eof()))
{
if (pptr() == epptr())
{
std::size_t buffer_size = pptr() - gptr();
if (buffer_size < max_size_ && max_size_ - buffer_size < buffer_delta)
{
reserve(max_size_ - buffer_size);
}
else
{
reserve(buffer_delta);
}
}
*pptr() = traits_type::to_char_type(c);
pbump(1);
return c;
}
return traits_type::not_eof(c);
}
void reserve(std::size_t n)
{
// Get current stream positions as offsets.
std::size_t gnext = gptr() - &buffer_[0];
std::size_t pnext = pptr() - &buffer_[0];
std::size_t pend = epptr() - &buffer_[0];
// Check if there is already enough space in the put area.
if (n <= pend - pnext)
{
return;
}
// Shift existing contents of get area to start of buffer.
if (gnext > 0)
{
pnext -= gnext;
std::memmove(&buffer_[0], &buffer_[0] + gnext, pnext);
}
// Ensure buffer is large enough to hold at least the specified size.
if (n > pend - pnext)
{
if (n <= max_size_ && pnext <= max_size_ - n)
{
pend = pnext + n;
buffer_.resize((std::max<std::size_t>)(pend, 1));
}
else
{
throw std::length_error("boost::asio::streambuf too long");
}
}
// Update stream positions.
setg(&buffer_[0], &buffer_[0], &buffer_[0] + pnext);
setp(&buffer_[0] + pnext, &buffer_[0] + pend);
}
private:
std::size_t max_size_;
std::vector<char_type, Allocator> buffer_;
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BASIC_STREAMBUF_HPP

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,422 @@
//
// buffered_read_stream.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BUFFERED_READ_STREAM_HPP
#define BOOST_ASIO_BUFFERED_READ_STREAM_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <cstring>
#include <boost/config.hpp>
#include <boost/type_traits.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/buffered_read_stream_fwd.hpp>
#include <boost/asio/buffer.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/bind_handler.hpp>
#include <boost/asio/detail/buffer_resize_guard.hpp>
#include <boost/asio/detail/buffered_stream_storage.hpp>
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
/// Adds buffering to the read-related operations of a stream.
/**
* The buffered_read_stream class template can be used to add buffering to the
* synchronous and asynchronous read operations of a stream.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* @par Concepts:
* AsyncReadStream, AsyncWriteStream, Stream, Sync_Read_Stream, SyncWriteStream.
*/
template <typename Stream>
class buffered_read_stream
: private noncopyable
{
public:
/// The type of the next layer.
typedef typename boost::remove_reference<Stream>::type next_layer_type;
/// The type of the lowest layer.
typedef typename next_layer_type::lowest_layer_type lowest_layer_type;
#if defined(GENERATING_DOCUMENTATION)
/// The default buffer size.
static const std::size_t default_buffer_size = implementation_defined;
#else
BOOST_STATIC_CONSTANT(std::size_t, default_buffer_size = 1024);
#endif
/// Construct, passing the specified argument to initialise the next layer.
template <typename Arg>
explicit buffered_read_stream(Arg& a)
: next_layer_(a),
storage_(default_buffer_size)
{
}
/// Construct, passing the specified argument to initialise the next layer.
template <typename Arg>
buffered_read_stream(Arg& a, std::size_t buffer_size)
: next_layer_(a),
storage_(buffer_size)
{
}
/// Get a reference to the next layer.
next_layer_type& next_layer()
{
return next_layer_;
}
/// Get a reference to the lowest layer.
lowest_layer_type& lowest_layer()
{
return next_layer_.lowest_layer();
}
/// Get a const reference to the lowest layer.
const lowest_layer_type& lowest_layer() const
{
return next_layer_.lowest_layer();
}
/// (Deprecated: use get_io_service().) Get the io_service associated with
/// the object.
boost::asio::io_service& io_service()
{
return next_layer_.get_io_service();
}
/// Get the io_service associated with the object.
boost::asio::io_service& get_io_service()
{
return next_layer_.get_io_service();
}
/// Close the stream.
void close()
{
next_layer_.close();
}
/// Close the stream.
boost::system::error_code close(boost::system::error_code& ec)
{
return next_layer_.close(ec);
}
/// Write the given data to the stream. Returns the number of bytes written.
/// Throws an exception on failure.
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers)
{
return next_layer_.write_some(buffers);
}
/// Write the given data to the stream. Returns the number of bytes written,
/// or 0 if an error occurred.
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers,
boost::system::error_code& ec)
{
return next_layer_.write_some(buffers, ec);
}
/// Start an asynchronous write. The data being written must be valid for the
/// lifetime of the asynchronous operation.
template <typename ConstBufferSequence, typename WriteHandler>
void async_write_some(const ConstBufferSequence& buffers,
WriteHandler handler)
{
next_layer_.async_write_some(buffers, handler);
}
/// Fill the buffer with some data. Returns the number of bytes placed in the
/// buffer as a result of the operation. Throws an exception on failure.
std::size_t fill()
{
detail::buffer_resize_guard<detail::buffered_stream_storage>
resize_guard(storage_);
std::size_t previous_size = storage_.size();
storage_.resize(storage_.capacity());
storage_.resize(previous_size + next_layer_.read_some(buffer(
storage_.data() + previous_size,
storage_.size() - previous_size)));
resize_guard.commit();
return storage_.size() - previous_size;
}
/// Fill the buffer with some data. Returns the number of bytes placed in the
/// buffer as a result of the operation, or 0 if an error occurred.
std::size_t fill(boost::system::error_code& ec)
{
detail::buffer_resize_guard<detail::buffered_stream_storage>
resize_guard(storage_);
std::size_t previous_size = storage_.size();
storage_.resize(storage_.capacity());
storage_.resize(previous_size + next_layer_.read_some(buffer(
storage_.data() + previous_size,
storage_.size() - previous_size),
ec));
resize_guard.commit();
return storage_.size() - previous_size;
}
template <typename ReadHandler>
class fill_handler
{
public:
fill_handler(boost::asio::io_service& io_service,
detail::buffered_stream_storage& storage,
std::size_t previous_size, ReadHandler handler)
: io_service_(io_service),
storage_(storage),
previous_size_(previous_size),
handler_(handler)
{
}
void operator()(const boost::system::error_code& ec,
std::size_t bytes_transferred)
{
storage_.resize(previous_size_ + bytes_transferred);
io_service_.dispatch(detail::bind_handler(
handler_, ec, bytes_transferred));
}
private:
boost::asio::io_service& io_service_;
detail::buffered_stream_storage& storage_;
std::size_t previous_size_;
ReadHandler handler_;
};
/// Start an asynchronous fill.
template <typename ReadHandler>
void async_fill(ReadHandler handler)
{
std::size_t previous_size = storage_.size();
storage_.resize(storage_.capacity());
next_layer_.async_read_some(
buffer(
storage_.data() + previous_size,
storage_.size() - previous_size),
fill_handler<ReadHandler>(get_io_service(),
storage_, previous_size, handler));
}
/// Read some data from the stream. Returns the number of bytes read. Throws
/// an exception on failure.
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers)
{
if (storage_.empty())
fill();
return copy(buffers);
}
/// Read some data from the stream. Returns the number of bytes read or 0 if
/// an error occurred.
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers,
boost::system::error_code& ec)
{
ec = boost::system::error_code();
if (storage_.empty() && !fill(ec))
return 0;
return copy(buffers);
}
template <typename MutableBufferSequence, typename ReadHandler>
class read_some_handler
{
public:
read_some_handler(boost::asio::io_service& io_service,
detail::buffered_stream_storage& storage,
const MutableBufferSequence& buffers, ReadHandler handler)
: io_service_(io_service),
storage_(storage),
buffers_(buffers),
handler_(handler)
{
}
void operator()(const boost::system::error_code& ec, std::size_t)
{
if (ec || storage_.empty())
{
std::size_t length = 0;
io_service_.dispatch(detail::bind_handler(handler_, ec, length));
}
else
{
using namespace std; // For memcpy.
std::size_t bytes_avail = storage_.size();
std::size_t bytes_copied = 0;
typename MutableBufferSequence::const_iterator iter = buffers_.begin();
typename MutableBufferSequence::const_iterator end = buffers_.end();
for (; iter != end && bytes_avail > 0; ++iter)
{
std::size_t max_length = buffer_size(*iter);
std::size_t length = (max_length < bytes_avail)
? max_length : bytes_avail;
memcpy(buffer_cast<void*>(*iter),
storage_.data() + bytes_copied, length);
bytes_copied += length;
bytes_avail -= length;
}
storage_.consume(bytes_copied);
io_service_.dispatch(detail::bind_handler(handler_, ec, bytes_copied));
}
}
private:
boost::asio::io_service& io_service_;
detail::buffered_stream_storage& storage_;
MutableBufferSequence buffers_;
ReadHandler handler_;
};
/// Start an asynchronous read. The buffer into which the data will be read
/// must be valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence, typename ReadHandler>
void async_read_some(const MutableBufferSequence& buffers,
ReadHandler handler)
{
if (storage_.empty())
{
async_fill(read_some_handler<MutableBufferSequence, ReadHandler>(
get_io_service(), storage_, buffers, handler));
}
else
{
std::size_t length = copy(buffers);
get_io_service().post(detail::bind_handler(
handler, boost::system::error_code(), length));
}
}
/// Peek at the incoming data on the stream. Returns the number of bytes read.
/// Throws an exception on failure.
template <typename MutableBufferSequence>
std::size_t peek(const MutableBufferSequence& buffers)
{
if (storage_.empty())
fill();
return peek_copy(buffers);
}
/// Peek at the incoming data on the stream. Returns the number of bytes read,
/// or 0 if an error occurred.
template <typename MutableBufferSequence>
std::size_t peek(const MutableBufferSequence& buffers,
boost::system::error_code& ec)
{
ec = boost::system::error_code();
if (storage_.empty() && !fill(ec))
return 0;
return peek_copy(buffers);
}
/// Determine the amount of data that may be read without blocking.
std::size_t in_avail()
{
return storage_.size();
}
/// Determine the amount of data that may be read without blocking.
std::size_t in_avail(boost::system::error_code& ec)
{
ec = boost::system::error_code();
return storage_.size();
}
private:
/// Copy data out of the internal buffer to the specified target buffer.
/// Returns the number of bytes copied.
template <typename MutableBufferSequence>
std::size_t copy(const MutableBufferSequence& buffers)
{
using namespace std; // For memcpy.
std::size_t bytes_avail = storage_.size();
std::size_t bytes_copied = 0;
typename MutableBufferSequence::const_iterator iter = buffers.begin();
typename MutableBufferSequence::const_iterator end = buffers.end();
for (; iter != end && bytes_avail > 0; ++iter)
{
std::size_t max_length = buffer_size(*iter);
std::size_t length = (max_length < bytes_avail)
? max_length : bytes_avail;
memcpy(buffer_cast<void*>(*iter), storage_.data() + bytes_copied, length);
bytes_copied += length;
bytes_avail -= length;
}
storage_.consume(bytes_copied);
return bytes_copied;
}
/// Copy data from the internal buffer to the specified target buffer, without
/// removing the data from the internal buffer. Returns the number of bytes
/// copied.
template <typename MutableBufferSequence>
std::size_t peek_copy(const MutableBufferSequence& buffers)
{
using namespace std; // For memcpy.
std::size_t bytes_avail = storage_.size();
std::size_t bytes_copied = 0;
typename MutableBufferSequence::const_iterator iter = buffers.begin();
typename MutableBufferSequence::const_iterator end = buffers.end();
for (; iter != end && bytes_avail > 0; ++iter)
{
std::size_t max_length = buffer_size(*iter);
std::size_t length = (max_length < bytes_avail)
? max_length : bytes_avail;
memcpy(buffer_cast<void*>(*iter), storage_.data() + bytes_copied, length);
bytes_copied += length;
bytes_avail -= length;
}
return bytes_copied;
}
/// The next layer.
Stream next_layer_;
// The data in the buffer.
detail::buffered_stream_storage storage_;
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BUFFERED_READ_STREAM_HPP

View File

@@ -0,0 +1,31 @@
//
// buffered_read_stream_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BUFFERED_READ_STREAM_FWD_HPP
#define BOOST_ASIO_BUFFERED_READ_STREAM_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
namespace boost {
namespace asio {
template <typename Stream>
class buffered_read_stream;
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BUFFERED_READ_STREAM_FWD_HPP

View File

@@ -0,0 +1,258 @@
//
// buffered_stream.hpp
// ~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BUFFERED_STREAM_HPP
#define BOOST_ASIO_BUFFERED_STREAM_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/buffered_read_stream.hpp>
#include <boost/asio/buffered_write_stream.hpp>
#include <boost/asio/buffered_stream_fwd.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
/// Adds buffering to the read- and write-related operations of a stream.
/**
* The buffered_stream class template can be used to add buffering to the
* synchronous and asynchronous read and write operations of a stream.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* @par Concepts:
* AsyncReadStream, AsyncWriteStream, Stream, SyncReadStream, SyncWriteStream.
*/
template <typename Stream>
class buffered_stream
: private noncopyable
{
public:
/// The type of the next layer.
typedef typename boost::remove_reference<Stream>::type next_layer_type;
/// The type of the lowest layer.
typedef typename next_layer_type::lowest_layer_type lowest_layer_type;
/// Construct, passing the specified argument to initialise the next layer.
template <typename Arg>
explicit buffered_stream(Arg& a)
: inner_stream_impl_(a),
stream_impl_(inner_stream_impl_)
{
}
/// Construct, passing the specified argument to initialise the next layer.
template <typename Arg>
explicit buffered_stream(Arg& a, std::size_t read_buffer_size,
std::size_t write_buffer_size)
: inner_stream_impl_(a, write_buffer_size),
stream_impl_(inner_stream_impl_, read_buffer_size)
{
}
/// Get a reference to the next layer.
next_layer_type& next_layer()
{
return stream_impl_.next_layer().next_layer();
}
/// Get a reference to the lowest layer.
lowest_layer_type& lowest_layer()
{
return stream_impl_.lowest_layer();
}
/// Get a const reference to the lowest layer.
const lowest_layer_type& lowest_layer() const
{
return stream_impl_.lowest_layer();
}
/// (Deprecated: use get_io_service().) Get the io_service associated with
/// the object.
boost::asio::io_service& io_service()
{
return stream_impl_.get_io_service();
}
/// Get the io_service associated with the object.
boost::asio::io_service& get_io_service()
{
return stream_impl_.get_io_service();
}
/// Close the stream.
void close()
{
stream_impl_.close();
}
/// Close the stream.
boost::system::error_code close(boost::system::error_code& ec)
{
return stream_impl_.close(ec);
}
/// Flush all data from the buffer to the next layer. Returns the number of
/// bytes written to the next layer on the last write operation. Throws an
/// exception on failure.
std::size_t flush()
{
return stream_impl_.next_layer().flush();
}
/// Flush all data from the buffer to the next layer. Returns the number of
/// bytes written to the next layer on the last write operation, or 0 if an
/// error occurred.
std::size_t flush(boost::system::error_code& ec)
{
return stream_impl_.next_layer().flush(ec);
}
/// Start an asynchronous flush.
template <typename WriteHandler>
void async_flush(WriteHandler handler)
{
return stream_impl_.next_layer().async_flush(handler);
}
/// Write the given data to the stream. Returns the number of bytes written.
/// Throws an exception on failure.
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers)
{
return stream_impl_.write_some(buffers);
}
/// Write the given data to the stream. Returns the number of bytes written,
/// or 0 if an error occurred.
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers,
boost::system::error_code& ec)
{
return stream_impl_.write_some(buffers, ec);
}
/// Start an asynchronous write. The data being written must be valid for the
/// lifetime of the asynchronous operation.
template <typename ConstBufferSequence, typename WriteHandler>
void async_write_some(const ConstBufferSequence& buffers,
WriteHandler handler)
{
stream_impl_.async_write_some(buffers, handler);
}
/// Fill the buffer with some data. Returns the number of bytes placed in the
/// buffer as a result of the operation. Throws an exception on failure.
std::size_t fill()
{
return stream_impl_.fill();
}
/// Fill the buffer with some data. Returns the number of bytes placed in the
/// buffer as a result of the operation, or 0 if an error occurred.
std::size_t fill(boost::system::error_code& ec)
{
return stream_impl_.fill(ec);
}
/// Start an asynchronous fill.
template <typename ReadHandler>
void async_fill(ReadHandler handler)
{
stream_impl_.async_fill(handler);
}
/// Read some data from the stream. Returns the number of bytes read. Throws
/// an exception on failure.
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers)
{
return stream_impl_.read_some(buffers);
}
/// Read some data from the stream. Returns the number of bytes read or 0 if
/// an error occurred.
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers,
boost::system::error_code& ec)
{
return stream_impl_.read_some(buffers, ec);
}
/// Start an asynchronous read. The buffer into which the data will be read
/// must be valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence, typename ReadHandler>
void async_read_some(const MutableBufferSequence& buffers,
ReadHandler handler)
{
stream_impl_.async_read_some(buffers, handler);
}
/// Peek at the incoming data on the stream. Returns the number of bytes read.
/// Throws an exception on failure.
template <typename MutableBufferSequence>
std::size_t peek(const MutableBufferSequence& buffers)
{
return stream_impl_.peek(buffers);
}
/// Peek at the incoming data on the stream. Returns the number of bytes read,
/// or 0 if an error occurred.
template <typename MutableBufferSequence>
std::size_t peek(const MutableBufferSequence& buffers,
boost::system::error_code& ec)
{
return stream_impl_.peek(buffers, ec);
}
/// Determine the amount of data that may be read without blocking.
std::size_t in_avail()
{
return stream_impl_.in_avail();
}
/// Determine the amount of data that may be read without blocking.
std::size_t in_avail(boost::system::error_code& ec)
{
return stream_impl_.in_avail(ec);
}
private:
// The buffered write stream.
typedef buffered_write_stream<Stream> write_stream_type;
write_stream_type inner_stream_impl_;
// The buffered read stream.
typedef buffered_read_stream<write_stream_type&> read_stream_type;
read_stream_type stream_impl_;
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BUFFERED_STREAM_HPP

View File

@@ -0,0 +1,31 @@
//
// buffered_stream_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BUFFERED_STREAM_FWD_HPP
#define BOOST_ASIO_BUFFERED_STREAM_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
namespace boost {
namespace asio {
template <typename Stream>
class buffered_stream;
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BUFFERED_STREAM_FWD_HPP

View File

@@ -0,0 +1,376 @@
//
// buffered_write_stream.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BUFFERED_WRITE_STREAM_HPP
#define BOOST_ASIO_BUFFERED_WRITE_STREAM_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <cstring>
#include <boost/config.hpp>
#include <boost/type_traits.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/buffered_write_stream_fwd.hpp>
#include <boost/asio/buffer.hpp>
#include <boost/asio/completion_condition.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/write.hpp>
#include <boost/asio/detail/bind_handler.hpp>
#include <boost/asio/detail/buffered_stream_storage.hpp>
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
/// Adds buffering to the write-related operations of a stream.
/**
* The buffered_write_stream class template can be used to add buffering to the
* synchronous and asynchronous write operations of a stream.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* @par Concepts:
* AsyncReadStream, AsyncWriteStream, Stream, SyncReadStream, SyncWriteStream.
*/
template <typename Stream>
class buffered_write_stream
: private noncopyable
{
public:
/// The type of the next layer.
typedef typename boost::remove_reference<Stream>::type next_layer_type;
/// The type of the lowest layer.
typedef typename next_layer_type::lowest_layer_type lowest_layer_type;
#if defined(GENERATING_DOCUMENTATION)
/// The default buffer size.
static const std::size_t default_buffer_size = implementation_defined;
#else
BOOST_STATIC_CONSTANT(std::size_t, default_buffer_size = 1024);
#endif
/// Construct, passing the specified argument to initialise the next layer.
template <typename Arg>
explicit buffered_write_stream(Arg& a)
: next_layer_(a),
storage_(default_buffer_size)
{
}
/// Construct, passing the specified argument to initialise the next layer.
template <typename Arg>
buffered_write_stream(Arg& a, std::size_t buffer_size)
: next_layer_(a),
storage_(buffer_size)
{
}
/// Get a reference to the next layer.
next_layer_type& next_layer()
{
return next_layer_;
}
/// Get a reference to the lowest layer.
lowest_layer_type& lowest_layer()
{
return next_layer_.lowest_layer();
}
/// Get a const reference to the lowest layer.
const lowest_layer_type& lowest_layer() const
{
return next_layer_.lowest_layer();
}
/// (Deprecated: use get_io_service().) Get the io_service associated with
/// the object.
boost::asio::io_service& io_service()
{
return next_layer_.get_io_service();
}
/// Get the io_service associated with the object.
boost::asio::io_service& get_io_service()
{
return next_layer_.get_io_service();
}
/// Close the stream.
void close()
{
next_layer_.close();
}
/// Close the stream.
boost::system::error_code close(boost::system::error_code& ec)
{
return next_layer_.close(ec);
}
/// Flush all data from the buffer to the next layer. Returns the number of
/// bytes written to the next layer on the last write operation. Throws an
/// exception on failure.
std::size_t flush()
{
std::size_t bytes_written = write(next_layer_,
buffer(storage_.data(), storage_.size()));
storage_.consume(bytes_written);
return bytes_written;
}
/// Flush all data from the buffer to the next layer. Returns the number of
/// bytes written to the next layer on the last write operation, or 0 if an
/// error occurred.
std::size_t flush(boost::system::error_code& ec)
{
std::size_t bytes_written = write(next_layer_,
buffer(storage_.data(), storage_.size()),
transfer_all(), ec);
storage_.consume(bytes_written);
return bytes_written;
}
template <typename WriteHandler>
class flush_handler
{
public:
flush_handler(boost::asio::io_service& io_service,
detail::buffered_stream_storage& storage, WriteHandler handler)
: io_service_(io_service),
storage_(storage),
handler_(handler)
{
}
void operator()(const boost::system::error_code& ec,
std::size_t bytes_written)
{
storage_.consume(bytes_written);
io_service_.dispatch(detail::bind_handler(handler_, ec, bytes_written));
}
private:
boost::asio::io_service& io_service_;
detail::buffered_stream_storage& storage_;
WriteHandler handler_;
};
/// Start an asynchronous flush.
template <typename WriteHandler>
void async_flush(WriteHandler handler)
{
async_write(next_layer_, buffer(storage_.data(), storage_.size()),
flush_handler<WriteHandler>(get_io_service(), storage_, handler));
}
/// Write the given data to the stream. Returns the number of bytes written.
/// Throws an exception on failure.
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers)
{
if (storage_.size() == storage_.capacity())
flush();
return copy(buffers);
}
/// Write the given data to the stream. Returns the number of bytes written,
/// or 0 if an error occurred and the error handler did not throw.
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers,
boost::system::error_code& ec)
{
ec = boost::system::error_code();
if (storage_.size() == storage_.capacity() && !flush(ec))
return 0;
return copy(buffers);
}
template <typename ConstBufferSequence, typename WriteHandler>
class write_some_handler
{
public:
write_some_handler(boost::asio::io_service& io_service,
detail::buffered_stream_storage& storage,
const ConstBufferSequence& buffers, WriteHandler handler)
: io_service_(io_service),
storage_(storage),
buffers_(buffers),
handler_(handler)
{
}
void operator()(const boost::system::error_code& ec, std::size_t)
{
if (ec)
{
std::size_t length = 0;
io_service_.dispatch(detail::bind_handler(handler_, ec, length));
}
else
{
using namespace std; // For memcpy.
std::size_t orig_size = storage_.size();
std::size_t space_avail = storage_.capacity() - orig_size;
std::size_t bytes_copied = 0;
typename ConstBufferSequence::const_iterator iter = buffers_.begin();
typename ConstBufferSequence::const_iterator end = buffers_.end();
for (; iter != end && space_avail > 0; ++iter)
{
std::size_t bytes_avail = buffer_size(*iter);
std::size_t length = (bytes_avail < space_avail)
? bytes_avail : space_avail;
storage_.resize(orig_size + bytes_copied + length);
memcpy(storage_.data() + orig_size + bytes_copied,
buffer_cast<const void*>(*iter), length);
bytes_copied += length;
space_avail -= length;
}
io_service_.dispatch(detail::bind_handler(handler_, ec, bytes_copied));
}
}
private:
boost::asio::io_service& io_service_;
detail::buffered_stream_storage& storage_;
ConstBufferSequence buffers_;
WriteHandler handler_;
};
/// Start an asynchronous write. The data being written must be valid for the
/// lifetime of the asynchronous operation.
template <typename ConstBufferSequence, typename WriteHandler>
void async_write_some(const ConstBufferSequence& buffers,
WriteHandler handler)
{
if (storage_.size() == storage_.capacity())
{
async_flush(write_some_handler<ConstBufferSequence, WriteHandler>(
get_io_service(), storage_, buffers, handler));
}
else
{
std::size_t bytes_copied = copy(buffers);
get_io_service().post(detail::bind_handler(
handler, boost::system::error_code(), bytes_copied));
}
}
/// Read some data from the stream. Returns the number of bytes read. Throws
/// an exception on failure.
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers)
{
return next_layer_.read_some(buffers);
}
/// Read some data from the stream. Returns the number of bytes read or 0 if
/// an error occurred.
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers,
boost::system::error_code& ec)
{
return next_layer_.read_some(buffers, ec);
}
/// Start an asynchronous read. The buffer into which the data will be read
/// must be valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence, typename ReadHandler>
void async_read_some(const MutableBufferSequence& buffers,
ReadHandler handler)
{
next_layer_.async_read_some(buffers, handler);
}
/// Peek at the incoming data on the stream. Returns the number of bytes read.
/// Throws an exception on failure.
template <typename MutableBufferSequence>
std::size_t peek(const MutableBufferSequence& buffers)
{
return next_layer_.peek(buffers);
}
/// Peek at the incoming data on the stream. Returns the number of bytes read,
/// or 0 if an error occurred.
template <typename MutableBufferSequence>
std::size_t peek(const MutableBufferSequence& buffers,
boost::system::error_code& ec)
{
return next_layer_.peek(buffers, ec);
}
/// Determine the amount of data that may be read without blocking.
std::size_t in_avail()
{
return next_layer_.in_avail();
}
/// Determine the amount of data that may be read without blocking.
std::size_t in_avail(boost::system::error_code& ec)
{
return next_layer_.in_avail(ec);
}
private:
/// Copy data into the internal buffer from the specified source buffer.
/// Returns the number of bytes copied.
template <typename ConstBufferSequence>
std::size_t copy(const ConstBufferSequence& buffers)
{
using namespace std; // For memcpy.
std::size_t orig_size = storage_.size();
std::size_t space_avail = storage_.capacity() - orig_size;
std::size_t bytes_copied = 0;
typename ConstBufferSequence::const_iterator iter = buffers.begin();
typename ConstBufferSequence::const_iterator end = buffers.end();
for (; iter != end && space_avail > 0; ++iter)
{
std::size_t bytes_avail = buffer_size(*iter);
std::size_t length = (bytes_avail < space_avail)
? bytes_avail : space_avail;
storage_.resize(orig_size + bytes_copied + length);
memcpy(storage_.data() + orig_size + bytes_copied,
buffer_cast<const void*>(*iter), length);
bytes_copied += length;
space_avail -= length;
}
return bytes_copied;
}
/// The next layer.
Stream next_layer_;
// The data in the buffer.
detail::buffered_stream_storage storage_;
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BUFFERED_WRITE_STREAM_HPP

View File

@@ -0,0 +1,31 @@
//
// buffered_write_stream_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BUFFERED_WRITE_STREAM_FWD_HPP
#define BOOST_ASIO_BUFFERED_WRITE_STREAM_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
namespace boost {
namespace asio {
template <typename Stream>
class buffered_write_stream;
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BUFFERED_WRITE_STREAM_FWD_HPP

View File

@@ -0,0 +1,327 @@
//
// buffers_iterator.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BUFFERS_ITERATOR_HPP
#define BOOST_ASIO_BUFFERS_ITERATOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <boost/assert.hpp>
#include <boost/config.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/type_traits/add_const.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/buffer.hpp>
namespace boost {
namespace asio {
namespace detail
{
template <bool IsMutable>
struct buffers_iterator_types_helper;
template <>
struct buffers_iterator_types_helper<false>
{
typedef const_buffer buffer_type;
template <typename ByteType>
struct byte_type
{
typedef typename boost::add_const<ByteType>::type type;
};
};
template <>
struct buffers_iterator_types_helper<true>
{
typedef mutable_buffer buffer_type;
template <typename ByteType>
struct byte_type
{
typedef ByteType type;
};
};
template <typename BufferSequence, typename ByteType>
struct buffers_iterator_types
{
enum
{
is_mutable = boost::is_convertible<
typename BufferSequence::value_type, mutable_buffer>::value
};
typedef buffers_iterator_types_helper<is_mutable> helper;
typedef typename helper::buffer_type buffer_type;
typedef typename helper::template byte_type<ByteType>::type byte_type;
};
}
/// A random access iterator over the bytes in a buffer sequence.
template <typename BufferSequence, typename ByteType = char>
class buffers_iterator
: public boost::iterator_facade<
buffers_iterator<BufferSequence, ByteType>,
typename detail::buffers_iterator_types<
BufferSequence, ByteType>::byte_type,
boost::random_access_traversal_tag>
{
private:
typedef typename detail::buffers_iterator_types<
BufferSequence, ByteType>::buffer_type buffer_type;
typedef typename detail::buffers_iterator_types<
BufferSequence, ByteType>::byte_type byte_type;
public:
/// Default constructor. Creates an iterator in an undefined state.
buffers_iterator()
: current_buffer_(),
current_buffer_position_(0),
begin_(),
current_(),
end_(),
position_(0)
{
}
/// Construct an iterator representing the beginning of the buffers' data.
static buffers_iterator begin(const BufferSequence& buffers)
#if BOOST_WORKAROUND(__GNUC__, == 4) && BOOST_WORKAROUND(__GNUC_MINOR__, == 3)
__attribute__ ((noinline))
#endif
{
buffers_iterator new_iter;
new_iter.begin_ = buffers.begin();
new_iter.current_ = buffers.begin();
new_iter.end_ = buffers.end();
while (new_iter.current_ != new_iter.end_)
{
new_iter.current_buffer_ = *new_iter.current_;
if (boost::asio::buffer_size(new_iter.current_buffer_) > 0)
break;
++new_iter.current_;
}
return new_iter;
}
/// Construct an iterator representing the end of the buffers' data.
static buffers_iterator end(const BufferSequence& buffers)
#if BOOST_WORKAROUND(__GNUC__, == 4) && BOOST_WORKAROUND(__GNUC_MINOR__, == 3)
__attribute__ ((noinline))
#endif
{
buffers_iterator new_iter;
new_iter.begin_ = buffers.begin();
new_iter.current_ = buffers.begin();
new_iter.end_ = buffers.end();
while (new_iter.current_ != new_iter.end_)
{
buffer_type buffer = *new_iter.current_;
new_iter.position_ += boost::asio::buffer_size(buffer);
++new_iter.current_;
}
return new_iter;
}
private:
friend class boost::iterator_core_access;
// Dereference the iterator.
byte_type& dereference() const
{
return buffer_cast<byte_type*>(current_buffer_)[current_buffer_position_];
}
// Compare two iterators for equality.
bool equal(const buffers_iterator& other) const
{
return position_ == other.position_;
}
// Increment the iterator.
void increment()
{
BOOST_ASSERT(current_ != end_ && "iterator out of bounds");
++position_;
// Check if the increment can be satisfied by the current buffer.
++current_buffer_position_;
if (current_buffer_position_ != boost::asio::buffer_size(current_buffer_))
return;
// Find the next non-empty buffer.
++current_;
current_buffer_position_ = 0;
while (current_ != end_)
{
current_buffer_ = *current_;
if (boost::asio::buffer_size(current_buffer_) > 0)
return;
++current_;
}
}
// Decrement the iterator.
void decrement()
{
BOOST_ASSERT(position_ > 0 && "iterator out of bounds");
--position_;
// Check if the decrement can be satisfied by the current buffer.
if (current_buffer_position_ != 0)
{
--current_buffer_position_;
return;
}
// Find the previous non-empty buffer.
typename BufferSequence::const_iterator iter = current_;
while (iter != begin_)
{
--iter;
buffer_type buffer = *iter;
std::size_t buffer_size = boost::asio::buffer_size(buffer);
if (buffer_size > 0)
{
current_ = iter;
current_buffer_ = buffer;
current_buffer_position_ = buffer_size - 1;
return;
}
}
}
// Advance the iterator by the specified distance.
void advance(std::ptrdiff_t n)
{
if (n > 0)
{
BOOST_ASSERT(current_ != end_ && "iterator out of bounds");
for (;;)
{
std::ptrdiff_t current_buffer_balance
= boost::asio::buffer_size(current_buffer_)
- current_buffer_position_;
// Check if the advance can be satisfied by the current buffer.
if (current_buffer_balance > n)
{
position_ += n;
current_buffer_position_ += n;
return;
}
// Update position.
n -= current_buffer_balance;
position_ += current_buffer_balance;
// Move to next buffer. If it is empty then it will be skipped on the
// next iteration of this loop.
if (++current_ == end_)
{
BOOST_ASSERT(n == 0 && "iterator out of bounds");
current_buffer_ = buffer_type();
current_buffer_position_ = 0;
return;
}
current_buffer_ = *current_;
current_buffer_position_ = 0;
}
}
else if (n < 0)
{
std::size_t abs_n = -n;
BOOST_ASSERT(position_ >= abs_n && "iterator out of bounds");
for (;;)
{
// Check if the advance can be satisfied by the current buffer.
if (current_buffer_position_ >= abs_n)
{
position_ -= abs_n;
current_buffer_position_ -= abs_n;
return;
}
// Update position.
abs_n -= current_buffer_position_;
position_ -= current_buffer_position_;
// Check if we've reached the beginning of the buffers.
if (current_ == begin_)
{
BOOST_ASSERT(abs_n == 0 && "iterator out of bounds");
current_buffer_position_ = 0;
return;
}
// Find the previous non-empty buffer.
typename BufferSequence::const_iterator iter = current_;
while (iter != begin_)
{
--iter;
buffer_type buffer = *iter;
std::size_t buffer_size = boost::asio::buffer_size(buffer);
if (buffer_size > 0)
{
current_ = iter;
current_buffer_ = buffer;
current_buffer_position_ = buffer_size;
break;
}
}
}
}
}
// Determine the distance between two iterators.
std::ptrdiff_t distance_to(const buffers_iterator& other) const
{
return other.position_ - position_;
}
buffer_type current_buffer_;
std::size_t current_buffer_position_;
typename BufferSequence::const_iterator begin_;
typename BufferSequence::const_iterator current_;
typename BufferSequence::const_iterator end_;
std::size_t position_;
};
/// Construct an iterator representing the beginning of the buffers' data.
template <typename BufferSequence>
inline buffers_iterator<BufferSequence> buffers_begin(
const BufferSequence& buffers)
{
return buffers_iterator<BufferSequence>::begin(buffers);
}
/// Construct an iterator representing the end of the buffers' data.
template <typename BufferSequence>
inline buffers_iterator<BufferSequence> buffers_end(
const BufferSequence& buffers)
{
return buffers_iterator<BufferSequence>::end(buffers);
}
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BUFFERS_ITERATOR_HPP

View File

@@ -0,0 +1,166 @@
//
// completion_condition.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_COMPLETION_CONDITION_HPP
#define BOOST_ASIO_COMPLETION_CONDITION_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
namespace boost {
namespace asio {
namespace detail {
// The default maximum number of bytes to transfer in a single operation.
enum { default_max_transfer_size = 65536 };
// Adapt result of old-style completion conditions (which had a bool result
// where true indicated that the operation was complete).
inline std::size_t adapt_completion_condition_result(bool result)
{
return result ? 0 : default_max_transfer_size;
}
// Adapt result of current completion conditions (which have a size_t result
// where 0 means the operation is complete, and otherwise the result is the
// maximum number of bytes to transfer on the next underlying operation).
inline std::size_t adapt_completion_condition_result(std::size_t result)
{
return result;
}
class transfer_all_t
{
public:
typedef std::size_t result_type;
template <typename Error>
std::size_t operator()(const Error& err, std::size_t)
{
return !!err ? 0 : default_max_transfer_size;
}
};
class transfer_at_least_t
{
public:
typedef std::size_t result_type;
explicit transfer_at_least_t(std::size_t minimum)
: minimum_(minimum)
{
}
template <typename Error>
std::size_t operator()(const Error& err, std::size_t bytes_transferred)
{
return (!!err || bytes_transferred >= minimum_)
? 0 : default_max_transfer_size;
}
private:
std::size_t minimum_;
};
} // namespace detail
/**
* @defgroup completion_condition Completion Condition Function Objects
*
* Function objects used for determining when a read or write operation should
* complete.
*/
/*@{*/
/// Return a completion condition function object that indicates that a read or
/// write operation should continue until all of the data has been transferred,
/// or until an error occurs.
/**
* This function is used to create an object, of unspecified type, that meets
* CompletionCondition requirements.
*
* @par Example
* Reading until a buffer is full:
* @code
* boost::array<char, 128> buf;
* boost::system::error_code ec;
* std::size_t n = boost::asio::read(
* sock, boost::asio::buffer(buf),
* boost::asio::transfer_all(), ec);
* if (ec)
* {
* // An error occurred.
* }
* else
* {
* // n == 128
* }
* @endcode
*/
#if defined(GENERATING_DOCUMENTATION)
unspecified transfer_all();
#else
inline detail::transfer_all_t transfer_all()
{
return detail::transfer_all_t();
}
#endif
/// Return a completion condition function object that indicates that a read or
/// write operation should continue until a minimum number of bytes has been
/// transferred, or until an error occurs.
/**
* This function is used to create an object, of unspecified type, that meets
* CompletionCondition requirements.
*
* @par Example
* Reading until a buffer is full or contains at least 64 bytes:
* @code
* boost::array<char, 128> buf;
* boost::system::error_code ec;
* std::size_t n = boost::asio::read(
* sock, boost::asio::buffer(buf),
* boost::asio::transfer_at_least(64), ec);
* if (ec)
* {
* // An error occurred.
* }
* else
* {
* // n >= 64 && n <= 128
* }
* @endcode
*/
#if defined(GENERATING_DOCUMENTATION)
unspecified transfer_at_least(std::size_t minimum);
#else
inline detail::transfer_at_least_t transfer_at_least(std::size_t minimum)
{
return detail::transfer_at_least_t(minimum);
}
#endif
/*@}*/
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_COMPLETION_CONDITION_HPP

View File

@@ -0,0 +1,325 @@
//
// datagram_socket_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DATAGRAM_SOCKET_SERVICE_HPP
#define BOOST_ASIO_DATAGRAM_SOCKET_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/epoll_reactor.hpp>
#include <boost/asio/detail/kqueue_reactor.hpp>
#include <boost/asio/detail/select_reactor.hpp>
#include <boost/asio/detail/service_base.hpp>
#include <boost/asio/detail/reactive_socket_service.hpp>
#include <boost/asio/detail/win_iocp_socket_service.hpp>
namespace boost {
namespace asio {
/// Default service implementation for a datagram socket.
template <typename Protocol>
class datagram_socket_service
#if defined(GENERATING_DOCUMENTATION)
: public boost::asio::io_service::service
#else
: public boost::asio::detail::service_base<datagram_socket_service<Protocol> >
#endif
{
public:
#if defined(GENERATING_DOCUMENTATION)
/// The unique service identifier.
static boost::asio::io_service::id id;
#endif
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
private:
// The type of the platform-specific implementation.
#if defined(BOOST_ASIO_HAS_IOCP)
typedef detail::win_iocp_socket_service<Protocol> service_impl_type;
#elif defined(BOOST_ASIO_HAS_EPOLL)
typedef detail::reactive_socket_service<
Protocol, detail::epoll_reactor<false> > service_impl_type;
#elif defined(BOOST_ASIO_HAS_KQUEUE)
typedef detail::reactive_socket_service<
Protocol, detail::kqueue_reactor<false> > service_impl_type;
#elif defined(BOOST_ASIO_HAS_DEV_POLL)
typedef detail::reactive_socket_service<
Protocol, detail::dev_poll_reactor<false> > service_impl_type;
#else
typedef detail::reactive_socket_service<
Protocol, detail::select_reactor<false> > service_impl_type;
#endif
public:
/// The type of a datagram socket.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined implementation_type;
#else
typedef typename service_impl_type::implementation_type implementation_type;
#endif
/// The native socket type.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined native_type;
#else
typedef typename service_impl_type::native_type native_type;
#endif
/// Construct a new datagram socket service for the specified io_service.
explicit datagram_socket_service(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<
datagram_socket_service<Protocol> >(io_service),
service_impl_(boost::asio::use_service<service_impl_type>(io_service))
{
}
/// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
}
/// Construct a new datagram socket implementation.
void construct(implementation_type& impl)
{
service_impl_.construct(impl);
}
/// Destroy a datagram socket implementation.
void destroy(implementation_type& impl)
{
service_impl_.destroy(impl);
}
// Open a new datagram socket implementation.
boost::system::error_code open(implementation_type& impl,
const protocol_type& protocol, boost::system::error_code& ec)
{
if (protocol.type() == SOCK_DGRAM)
service_impl_.open(impl, protocol, ec);
else
ec = boost::asio::error::invalid_argument;
return ec;
}
/// Assign an existing native socket to a datagram socket.
boost::system::error_code assign(implementation_type& impl,
const protocol_type& protocol, const native_type& native_socket,
boost::system::error_code& ec)
{
return service_impl_.assign(impl, protocol, native_socket, ec);
}
/// Determine whether the socket is open.
bool is_open(const implementation_type& impl) const
{
return service_impl_.is_open(impl);
}
/// Close a datagram socket implementation.
boost::system::error_code close(implementation_type& impl,
boost::system::error_code& ec)
{
return service_impl_.close(impl, ec);
}
/// Get the native socket implementation.
native_type native(implementation_type& impl)
{
return service_impl_.native(impl);
}
/// Cancel all asynchronous operations associated with the socket.
boost::system::error_code cancel(implementation_type& impl,
boost::system::error_code& ec)
{
return service_impl_.cancel(impl, ec);
}
/// Determine whether the socket is at the out-of-band data mark.
bool at_mark(const implementation_type& impl,
boost::system::error_code& ec) const
{
return service_impl_.at_mark(impl, ec);
}
/// Determine the number of bytes available for reading.
std::size_t available(const implementation_type& impl,
boost::system::error_code& ec) const
{
return service_impl_.available(impl, ec);
}
// Bind the datagram socket to the specified local endpoint.
boost::system::error_code bind(implementation_type& impl,
const endpoint_type& endpoint, boost::system::error_code& ec)
{
return service_impl_.bind(impl, endpoint, ec);
}
/// Connect the datagram socket to the specified endpoint.
boost::system::error_code connect(implementation_type& impl,
const endpoint_type& peer_endpoint, boost::system::error_code& ec)
{
return service_impl_.connect(impl, peer_endpoint, ec);
}
/// Start an asynchronous connect.
template <typename ConnectHandler>
void async_connect(implementation_type& impl,
const endpoint_type& peer_endpoint, ConnectHandler handler)
{
service_impl_.async_connect(impl, peer_endpoint, handler);
}
/// Set a socket option.
template <typename SettableSocketOption>
boost::system::error_code set_option(implementation_type& impl,
const SettableSocketOption& option, boost::system::error_code& ec)
{
return service_impl_.set_option(impl, option, ec);
}
/// Get a socket option.
template <typename GettableSocketOption>
boost::system::error_code get_option(const implementation_type& impl,
GettableSocketOption& option, boost::system::error_code& ec) const
{
return service_impl_.get_option(impl, option, ec);
}
/// Perform an IO control command on the socket.
template <typename IoControlCommand>
boost::system::error_code io_control(implementation_type& impl,
IoControlCommand& command, boost::system::error_code& ec)
{
return service_impl_.io_control(impl, command, ec);
}
/// Get the local endpoint.
endpoint_type local_endpoint(const implementation_type& impl,
boost::system::error_code& ec) const
{
return service_impl_.local_endpoint(impl, ec);
}
/// Get the remote endpoint.
endpoint_type remote_endpoint(const implementation_type& impl,
boost::system::error_code& ec) const
{
return service_impl_.remote_endpoint(impl, ec);
}
/// Disable sends or receives on the socket.
boost::system::error_code shutdown(implementation_type& impl,
socket_base::shutdown_type what, boost::system::error_code& ec)
{
return service_impl_.shutdown(impl, what, ec);
}
/// Send the given data to the peer.
template <typename ConstBufferSequence>
std::size_t send(implementation_type& impl,
const ConstBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
return service_impl_.send(impl, buffers, flags, ec);
}
/// Start an asynchronous send.
template <typename ConstBufferSequence, typename WriteHandler>
void async_send(implementation_type& impl, const ConstBufferSequence& buffers,
socket_base::message_flags flags, WriteHandler handler)
{
service_impl_.async_send(impl, buffers, flags, handler);
}
/// Send a datagram to the specified endpoint.
template <typename ConstBufferSequence>
std::size_t send_to(implementation_type& impl,
const ConstBufferSequence& buffers, const endpoint_type& destination,
socket_base::message_flags flags, boost::system::error_code& ec)
{
return service_impl_.send_to(impl, buffers, destination, flags, ec);
}
/// Start an asynchronous send.
template <typename ConstBufferSequence, typename WriteHandler>
void async_send_to(implementation_type& impl,
const ConstBufferSequence& buffers, const endpoint_type& destination,
socket_base::message_flags flags, WriteHandler handler)
{
service_impl_.async_send_to(impl, buffers, destination, flags, handler);
}
/// Receive some data from the peer.
template <typename MutableBufferSequence>
std::size_t receive(implementation_type& impl,
const MutableBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
return service_impl_.receive(impl, buffers, flags, ec);
}
/// Start an asynchronous receive.
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive(implementation_type& impl,
const MutableBufferSequence& buffers,
socket_base::message_flags flags, ReadHandler handler)
{
service_impl_.async_receive(impl, buffers, flags, handler);
}
/// Receive a datagram with the endpoint of the sender.
template <typename MutableBufferSequence>
std::size_t receive_from(implementation_type& impl,
const MutableBufferSequence& buffers, endpoint_type& sender_endpoint,
socket_base::message_flags flags, boost::system::error_code& ec)
{
return service_impl_.receive_from(impl, buffers, sender_endpoint, flags,
ec);
}
/// Start an asynchronous receive that will get the endpoint of the sender.
template <typename MutableBufferSequence, typename ReadHandler>
void async_receive_from(implementation_type& impl,
const MutableBufferSequence& buffers, endpoint_type& sender_endpoint,
socket_base::message_flags flags, ReadHandler handler)
{
service_impl_.async_receive_from(impl, buffers, sender_endpoint, flags,
handler);
}
private:
// The service that provides the platform-specific implementation.
service_impl_type& service_impl_;
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DATAGRAM_SOCKET_SERVICE_HPP

View File

@@ -0,0 +1,39 @@
//
// deadline_timer.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DEADLINE_TIMER_HPP
#define BOOST_ASIO_DEADLINE_TIMER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/socket_types.hpp> // Must come before posix_time.
#include <boost/asio/detail/push_options.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/basic_deadline_timer.hpp>
namespace boost {
namespace asio {
/// Typedef for the typical usage of timer.
typedef basic_deadline_timer<boost::posix_time::ptime> deadline_timer;
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DEADLINE_TIMER_HPP

View File

@@ -0,0 +1,170 @@
//
// deadline_timer_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DEADLINE_TIMER_SERVICE_HPP
#define BOOST_ASIO_DEADLINE_TIMER_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/time_traits.hpp>
#include <boost/asio/detail/deadline_timer_service.hpp>
#include <boost/asio/detail/epoll_reactor.hpp>
#include <boost/asio/detail/kqueue_reactor.hpp>
#include <boost/asio/detail/select_reactor.hpp>
#include <boost/asio/detail/service_base.hpp>
#include <boost/asio/detail/win_iocp_io_service.hpp>
namespace boost {
namespace asio {
/// Default service implementation for a timer.
template <typename TimeType,
typename TimeTraits = boost::asio::time_traits<TimeType> >
class deadline_timer_service
#if defined(GENERATING_DOCUMENTATION)
: public boost::asio::io_service::service
#else
: public boost::asio::detail::service_base<
deadline_timer_service<TimeType, TimeTraits> >
#endif
{
public:
#if defined(GENERATING_DOCUMENTATION)
/// The unique service identifier.
static boost::asio::io_service::id id;
#endif
/// The time traits type.
typedef TimeTraits traits_type;
/// The time type.
typedef typename traits_type::time_type time_type;
/// The duration type.
typedef typename traits_type::duration_type duration_type;
private:
// The type of the platform-specific implementation.
#if defined(BOOST_ASIO_HAS_IOCP)
typedef detail::deadline_timer_service<
traits_type, detail::win_iocp_io_service> service_impl_type;
#elif defined(BOOST_ASIO_HAS_EPOLL)
typedef detail::deadline_timer_service<
traits_type, detail::epoll_reactor<false> > service_impl_type;
#elif defined(BOOST_ASIO_HAS_KQUEUE)
typedef detail::deadline_timer_service<
traits_type, detail::kqueue_reactor<false> > service_impl_type;
#elif defined(BOOST_ASIO_HAS_DEV_POLL)
typedef detail::deadline_timer_service<
traits_type, detail::dev_poll_reactor<false> > service_impl_type;
#else
typedef detail::deadline_timer_service<
traits_type, detail::select_reactor<false> > service_impl_type;
#endif
public:
/// The implementation type of the deadline timer.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined implementation_type;
#else
typedef typename service_impl_type::implementation_type implementation_type;
#endif
/// Construct a new timer service for the specified io_service.
explicit deadline_timer_service(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<
deadline_timer_service<TimeType, TimeTraits> >(io_service),
service_impl_(boost::asio::use_service<service_impl_type>(io_service))
{
}
/// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
}
/// Construct a new timer implementation.
void construct(implementation_type& impl)
{
service_impl_.construct(impl);
}
/// Destroy a timer implementation.
void destroy(implementation_type& impl)
{
service_impl_.destroy(impl);
}
/// Cancel any asynchronous wait operations associated with the timer.
std::size_t cancel(implementation_type& impl, boost::system::error_code& ec)
{
return service_impl_.cancel(impl, ec);
}
/// Get the expiry time for the timer as an absolute time.
time_type expires_at(const implementation_type& impl) const
{
return service_impl_.expires_at(impl);
}
/// Set the expiry time for the timer as an absolute time.
std::size_t expires_at(implementation_type& impl,
const time_type& expiry_time, boost::system::error_code& ec)
{
return service_impl_.expires_at(impl, expiry_time, ec);
}
/// Get the expiry time for the timer relative to now.
duration_type expires_from_now(const implementation_type& impl) const
{
return service_impl_.expires_from_now(impl);
}
/// Set the expiry time for the timer relative to now.
std::size_t expires_from_now(implementation_type& impl,
const duration_type& expiry_time, boost::system::error_code& ec)
{
return service_impl_.expires_from_now(impl, expiry_time, ec);
}
// Perform a blocking wait on the timer.
void wait(implementation_type& impl, boost::system::error_code& ec)
{
service_impl_.wait(impl, ec);
}
// Start an asynchronous wait on the timer.
template <typename WaitHandler>
void async_wait(implementation_type& impl, WaitHandler handler)
{
service_impl_.async_wait(impl, handler);
}
private:
// The service that provides the platform-specific implementation.
service_impl_type& service_impl_;
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DEADLINE_TIMER_SERVICE_HPP

View File

@@ -0,0 +1,351 @@
//
// bind_handler.hpp
// ~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_BIND_HANDLER_HPP
#define BOOST_ASIO_DETAIL_BIND_HANDLER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/handler_alloc_helpers.hpp>
#include <boost/asio/detail/handler_invoke_helpers.hpp>
namespace boost {
namespace asio {
namespace detail {
template <typename Handler, typename Arg1>
class binder1
{
public:
binder1(const Handler& handler, const Arg1& arg1)
: handler_(handler),
arg1_(arg1)
{
}
void operator()()
{
handler_(arg1_);
}
void operator()() const
{
handler_(arg1_);
}
//private:
Handler handler_;
Arg1 arg1_;
};
template <typename Handler, typename Arg1>
inline void* asio_handler_allocate(std::size_t size,
binder1<Handler, Arg1>* this_handler)
{
return boost_asio_handler_alloc_helpers::allocate(
size, &this_handler->handler_);
}
template <typename Handler, typename Arg1>
inline void asio_handler_deallocate(void* pointer, std::size_t size,
binder1<Handler, Arg1>* this_handler)
{
boost_asio_handler_alloc_helpers::deallocate(
pointer, size, &this_handler->handler_);
}
template <typename Function, typename Handler, typename Arg1>
inline void asio_handler_invoke(const Function& function,
binder1<Handler, Arg1>* this_handler)
{
boost_asio_handler_invoke_helpers::invoke(
function, &this_handler->handler_);
}
template <typename Handler, typename Arg1>
inline binder1<Handler, Arg1> bind_handler(const Handler& handler,
const Arg1& arg1)
{
return binder1<Handler, Arg1>(handler, arg1);
}
template <typename Handler, typename Arg1, typename Arg2>
class binder2
{
public:
binder2(const Handler& handler, const Arg1& arg1, const Arg2& arg2)
: handler_(handler),
arg1_(arg1),
arg2_(arg2)
{
}
void operator()()
{
handler_(arg1_, arg2_);
}
void operator()() const
{
handler_(arg1_, arg2_);
}
//private:
Handler handler_;
Arg1 arg1_;
Arg2 arg2_;
};
template <typename Handler, typename Arg1, typename Arg2>
inline void* asio_handler_allocate(std::size_t size,
binder2<Handler, Arg1, Arg2>* this_handler)
{
return boost_asio_handler_alloc_helpers::allocate(
size, &this_handler->handler_);
}
template <typename Handler, typename Arg1, typename Arg2>
inline void asio_handler_deallocate(void* pointer, std::size_t size,
binder2<Handler, Arg1, Arg2>* this_handler)
{
boost_asio_handler_alloc_helpers::deallocate(
pointer, size, &this_handler->handler_);
}
template <typename Function, typename Handler, typename Arg1, typename Arg2>
inline void asio_handler_invoke(const Function& function,
binder2<Handler, Arg1, Arg2>* this_handler)
{
boost_asio_handler_invoke_helpers::invoke(
function, &this_handler->handler_);
}
template <typename Handler, typename Arg1, typename Arg2>
inline binder2<Handler, Arg1, Arg2> bind_handler(const Handler& handler,
const Arg1& arg1, const Arg2& arg2)
{
return binder2<Handler, Arg1, Arg2>(handler, arg1, arg2);
}
template <typename Handler, typename Arg1, typename Arg2, typename Arg3>
class binder3
{
public:
binder3(const Handler& handler, const Arg1& arg1, const Arg2& arg2,
const Arg3& arg3)
: handler_(handler),
arg1_(arg1),
arg2_(arg2),
arg3_(arg3)
{
}
void operator()()
{
handler_(arg1_, arg2_, arg3_);
}
void operator()() const
{
handler_(arg1_, arg2_, arg3_);
}
//private:
Handler handler_;
Arg1 arg1_;
Arg2 arg2_;
Arg3 arg3_;
};
template <typename Handler, typename Arg1, typename Arg2, typename Arg3>
inline void* asio_handler_allocate(std::size_t size,
binder3<Handler, Arg1, Arg2, Arg3>* this_handler)
{
return boost_asio_handler_alloc_helpers::allocate(
size, &this_handler->handler_);
}
template <typename Handler, typename Arg1, typename Arg2, typename Arg3>
inline void asio_handler_deallocate(void* pointer, std::size_t size,
binder3<Handler, Arg1, Arg2, Arg3>* this_handler)
{
boost_asio_handler_alloc_helpers::deallocate(
pointer, size, &this_handler->handler_);
}
template <typename Function, typename Handler, typename Arg1, typename Arg2,
typename Arg3>
inline void asio_handler_invoke(const Function& function,
binder3<Handler, Arg1, Arg2, Arg3>* this_handler)
{
boost_asio_handler_invoke_helpers::invoke(
function, &this_handler->handler_);
}
template <typename Handler, typename Arg1, typename Arg2, typename Arg3>
inline binder3<Handler, Arg1, Arg2, Arg3> bind_handler(const Handler& handler,
const Arg1& arg1, const Arg2& arg2, const Arg3& arg3)
{
return binder3<Handler, Arg1, Arg2, Arg3>(handler, arg1, arg2, arg3);
}
template <typename Handler, typename Arg1, typename Arg2, typename Arg3,
typename Arg4>
class binder4
{
public:
binder4(const Handler& handler, const Arg1& arg1, const Arg2& arg2,
const Arg3& arg3, const Arg4& arg4)
: handler_(handler),
arg1_(arg1),
arg2_(arg2),
arg3_(arg3),
arg4_(arg4)
{
}
void operator()()
{
handler_(arg1_, arg2_, arg3_, arg4_);
}
void operator()() const
{
handler_(arg1_, arg2_, arg3_, arg4_);
}
//private:
Handler handler_;
Arg1 arg1_;
Arg2 arg2_;
Arg3 arg3_;
Arg4 arg4_;
};
template <typename Handler, typename Arg1, typename Arg2, typename Arg3,
typename Arg4>
inline void* asio_handler_allocate(std::size_t size,
binder4<Handler, Arg1, Arg2, Arg3, Arg4>* this_handler)
{
return boost_asio_handler_alloc_helpers::allocate(
size, &this_handler->handler_);
}
template <typename Handler, typename Arg1, typename Arg2, typename Arg3,
typename Arg4>
inline void asio_handler_deallocate(void* pointer, std::size_t size,
binder4<Handler, Arg1, Arg2, Arg3, Arg4>* this_handler)
{
boost_asio_handler_alloc_helpers::deallocate(
pointer, size, &this_handler->handler_);
}
template <typename Function, typename Handler, typename Arg1, typename Arg2,
typename Arg3, typename Arg4>
inline void asio_handler_invoke(const Function& function,
binder4<Handler, Arg1, Arg2, Arg3, Arg4>* this_handler)
{
boost_asio_handler_invoke_helpers::invoke(
function, &this_handler->handler_);
}
template <typename Handler, typename Arg1, typename Arg2, typename Arg3,
typename Arg4>
inline binder4<Handler, Arg1, Arg2, Arg3, Arg4> bind_handler(
const Handler& handler, const Arg1& arg1, const Arg2& arg2,
const Arg3& arg3, const Arg4& arg4)
{
return binder4<Handler, Arg1, Arg2, Arg3, Arg4>(handler, arg1, arg2, arg3,
arg4);
}
template <typename Handler, typename Arg1, typename Arg2, typename Arg3,
typename Arg4, typename Arg5>
class binder5
{
public:
binder5(const Handler& handler, const Arg1& arg1, const Arg2& arg2,
const Arg3& arg3, const Arg4& arg4, const Arg5& arg5)
: handler_(handler),
arg1_(arg1),
arg2_(arg2),
arg3_(arg3),
arg4_(arg4),
arg5_(arg5)
{
}
void operator()()
{
handler_(arg1_, arg2_, arg3_, arg4_, arg5_);
}
void operator()() const
{
handler_(arg1_, arg2_, arg3_, arg4_, arg5_);
}
//private:
Handler handler_;
Arg1 arg1_;
Arg2 arg2_;
Arg3 arg3_;
Arg4 arg4_;
Arg5 arg5_;
};
template <typename Handler, typename Arg1, typename Arg2, typename Arg3,
typename Arg4, typename Arg5>
inline void* asio_handler_allocate(std::size_t size,
binder5<Handler, Arg1, Arg2, Arg3, Arg4, Arg5>* this_handler)
{
return boost_asio_handler_alloc_helpers::allocate(
size, &this_handler->handler_);
}
template <typename Handler, typename Arg1, typename Arg2, typename Arg3,
typename Arg4, typename Arg5>
inline void asio_handler_deallocate(void* pointer, std::size_t size,
binder5<Handler, Arg1, Arg2, Arg3, Arg4, Arg5>* this_handler)
{
boost_asio_handler_alloc_helpers::deallocate(
pointer, size, &this_handler->handler_);
}
template <typename Function, typename Handler, typename Arg1, typename Arg2,
typename Arg3, typename Arg4, typename Arg5>
inline void asio_handler_invoke(const Function& function,
binder5<Handler, Arg1, Arg2, Arg3, Arg4, Arg5>* this_handler)
{
boost_asio_handler_invoke_helpers::invoke(
function, &this_handler->handler_);
}
template <typename Handler, typename Arg1, typename Arg2, typename Arg3,
typename Arg4, typename Arg5>
inline binder5<Handler, Arg1, Arg2, Arg3, Arg4, Arg5> bind_handler(
const Handler& handler, const Arg1& arg1, const Arg2& arg2,
const Arg3& arg3, const Arg4& arg4, const Arg5& arg5)
{
return binder5<Handler, Arg1, Arg2, Arg3, Arg4, Arg5>(handler, arg1, arg2,
arg3, arg4, arg5);
}
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_BIND_HANDLER_HPP

View File

@@ -0,0 +1,72 @@
//
// buffer_resize_guard.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_BUFFER_RESIZE_GUARD_HPP
#define BOOST_ASIO_DETAIL_BUFFER_RESIZE_GUARD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <limits>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
namespace boost {
namespace asio {
namespace detail {
// Helper class to manage buffer resizing in an exception safe way.
template <typename Buffer>
class buffer_resize_guard
{
public:
// Constructor.
buffer_resize_guard(Buffer& buffer)
: buffer_(buffer),
old_size_(buffer.size())
{
}
// Destructor rolls back the buffer resize unless commit was called.
~buffer_resize_guard()
{
if (old_size_
!= std::numeric_limits<size_t>::max BOOST_PREVENT_MACRO_SUBSTITUTION())
{
buffer_.resize(old_size_);
}
}
// Commit the resize transaction.
void commit()
{
old_size_
= std::numeric_limits<size_t>::max BOOST_PREVENT_MACRO_SUBSTITUTION();
}
private:
// The buffer being managed.
Buffer& buffer_;
// The size of the buffer at the time the guard was constructed.
size_t old_size_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_BUFFER_RESIZE_GUARD_HPP

View File

@@ -0,0 +1,129 @@
//
// buffered_stream_storage.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_BUFFERED_STREAM_STORAGE_HPP
#define BOOST_ASIO_DETAIL_BUFFERED_STREAM_STORAGE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <cassert>
#include <cstddef>
#include <cstring>
#include <vector>
#include <boost/asio/detail/pop_options.hpp>
namespace boost {
namespace asio {
namespace detail {
class buffered_stream_storage
{
public:
// The type of the bytes stored in the buffer.
typedef unsigned char byte_type;
// The type used for offsets into the buffer.
typedef std::size_t size_type;
// Constructor.
explicit buffered_stream_storage(std::size_t capacity)
: begin_offset_(0),
end_offset_(0),
buffer_(capacity)
{
}
/// Clear the buffer.
void clear()
{
begin_offset_ = 0;
end_offset_ = 0;
}
// Return a pointer to the beginning of the unread data.
byte_type* data()
{
return &buffer_[0] + begin_offset_;
}
// Return a pointer to the beginning of the unread data.
const byte_type* data() const
{
return &buffer_[0] + begin_offset_;
}
// Is there no unread data in the buffer.
bool empty() const
{
return begin_offset_ == end_offset_;
}
// Return the amount of unread data the is in the buffer.
size_type size() const
{
return end_offset_ - begin_offset_;
}
// Resize the buffer to the specified length.
void resize(size_type length)
{
assert(length <= capacity());
if (begin_offset_ + length <= capacity())
{
end_offset_ = begin_offset_ + length;
}
else
{
using namespace std; // For memmove.
memmove(&buffer_[0], &buffer_[0] + begin_offset_, size());
end_offset_ = length;
begin_offset_ = 0;
}
}
// Return the maximum size for data in the buffer.
size_type capacity() const
{
return buffer_.size();
}
// Consume multiple bytes from the beginning of the buffer.
void consume(size_type count)
{
assert(begin_offset_ + count <= end_offset_);
begin_offset_ += count;
if (empty())
clear();
}
private:
// The offset to the beginning of the unread data.
size_type begin_offset_;
// The offset to the end of the unread data.
size_type end_offset_;
// The data in the buffer.
std::vector<byte_type> buffer_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_BUFFERED_STREAM_STORAGE_HPP

View File

@@ -0,0 +1,92 @@
//
// call_stack.hpp
// ~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_CALL_STACK_HPP
#define BOOST_ASIO_DETAIL_CALL_STACK_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/tss_ptr.hpp>
namespace boost {
namespace asio {
namespace detail {
// Helper class to determine whether or not the current thread is inside an
// invocation of io_service::run() for a specified io_service object.
template <typename Owner>
class call_stack
{
public:
// Context class automatically pushes an owner on to the stack.
class context
: private noncopyable
{
public:
// Push the owner on to the stack.
explicit context(Owner* d)
: owner_(d),
next_(call_stack<Owner>::top_)
{
call_stack<Owner>::top_ = this;
}
// Pop the owner from the stack.
~context()
{
call_stack<Owner>::top_ = next_;
}
private:
friend class call_stack<Owner>;
// The owner associated with the context.
Owner* owner_;
// The next element in the stack.
context* next_;
};
friend class context;
// Determine whether the specified owner is on the stack.
static bool contains(Owner* d)
{
context* elem = top_;
while (elem)
{
if (elem->owner_ == d)
return true;
elem = elem->next_;
}
return false;
}
private:
// The top of the stack of calls for the current thread.
static tss_ptr<context> top_;
};
template <typename Owner>
tss_ptr<typename call_stack<Owner>::context>
call_stack<Owner>::top_;
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_CALL_STACK_HPP

View File

@@ -0,0 +1,153 @@
//
// const_buffers_iterator.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_CONST_BUFFERS_ITERATOR_HPP
#define BOOST_ASIO_DETAIL_CONST_BUFFERS_ITERATOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <boost/config.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/buffer.hpp>
namespace boost {
namespace asio {
namespace detail {
// A proxy iterator for a sub-range in a list of buffers.
template <typename ConstBufferSequence>
class const_buffers_iterator
: public boost::iterator_facade<const_buffers_iterator<ConstBufferSequence>,
const char, boost::bidirectional_traversal_tag>
{
public:
// Default constructor creates an iterator in an undefined state.
const_buffers_iterator()
{
}
// Create an iterator for the specified position.
const_buffers_iterator(const ConstBufferSequence& buffers,
std::size_t position)
: begin_(buffers.begin()),
current_(buffers.begin()),
end_(buffers.end()),
position_(0)
{
while (current_ != end_)
{
current_buffer_ = *current_;
std::size_t buffer_size = boost::asio::buffer_size(current_buffer_);
if (position - position_ < buffer_size)
{
current_buffer_position_ = position - position_;
position_ = position;
return;
}
position_ += buffer_size;
++current_;
}
current_buffer_ = boost::asio::const_buffer();
current_buffer_position_ = 0;
}
std::size_t position() const
{
return position_;
}
private:
friend class boost::iterator_core_access;
void increment()
{
if (current_ == end_)
return;
++position_;
++current_buffer_position_;
if (current_buffer_position_ != boost::asio::buffer_size(current_buffer_))
return;
++current_;
current_buffer_position_ = 0;
while (current_ != end_)
{
current_buffer_ = *current_;
if (boost::asio::buffer_size(current_buffer_) > 0)
return;
++current_;
}
}
void decrement()
{
if (position_ == 0)
return;
--position_;
if (current_buffer_position_ != 0)
{
--current_buffer_position_;
return;
}
typename ConstBufferSequence::const_iterator iter = current_;
while (iter != begin_)
{
--iter;
boost::asio::const_buffer buffer = *iter;
std::size_t buffer_size = boost::asio::buffer_size(buffer);
if (buffer_size > 0)
{
current_ = iter;
current_buffer_ = buffer;
current_buffer_position_ = buffer_size - 1;
return;
}
}
}
bool equal(const const_buffers_iterator& other) const
{
return position_ == other.position_;
}
const char& dereference() const
{
return boost::asio::buffer_cast<const char*>(
current_buffer_)[current_buffer_position_];
}
boost::asio::const_buffer current_buffer_;
std::size_t current_buffer_position_;
typename ConstBufferSequence::const_iterator begin_;
typename ConstBufferSequence::const_iterator current_;
typename ConstBufferSequence::const_iterator end_;
std::size_t position_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_CONST_BUFFERS_ITERATOR_HPP

View File

@@ -0,0 +1,246 @@
//
// consuming_buffers.hpp
// ~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_CONSUMING_BUFFERS_HPP
#define BOOST_ASIO_DETAIL_CONSUMING_BUFFERS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <algorithm>
#include <cstddef>
#include <limits>
#include <boost/config.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/buffer.hpp>
#include <boost/asio/completion_condition.hpp>
namespace boost {
namespace asio {
namespace detail {
// A proxy iterator for a sub-range in a list of buffers.
template <typename Buffer, typename Buffer_Iterator>
class consuming_buffers_iterator
: public boost::iterator_facade<
consuming_buffers_iterator<Buffer, Buffer_Iterator>,
const Buffer, boost::forward_traversal_tag>
{
public:
// Default constructor creates an end iterator.
consuming_buffers_iterator()
: at_end_(true)
{
}
// Construct with a buffer for the first entry and an iterator
// range for the remaining entries.
consuming_buffers_iterator(bool at_end, const Buffer& first,
Buffer_Iterator begin_remainder, Buffer_Iterator end_remainder,
std::size_t max_size)
: at_end_(max_size > 0 ? at_end : true),
first_(buffer(first, max_size)),
begin_remainder_(begin_remainder),
end_remainder_(end_remainder),
offset_(0),
max_size_(max_size)
{
}
private:
friend class boost::iterator_core_access;
void increment()
{
if (!at_end_)
{
if (begin_remainder_ == end_remainder_
|| offset_ + buffer_size(first_) >= max_size_)
{
at_end_ = true;
}
else
{
offset_ += buffer_size(first_);
first_ = buffer(*begin_remainder_++, max_size_ - offset_);
}
}
}
bool equal(const consuming_buffers_iterator& other) const
{
if (at_end_ && other.at_end_)
return true;
return !at_end_ && !other.at_end_
&& buffer_cast<const void*>(first_)
== buffer_cast<const void*>(other.first_)
&& buffer_size(first_) == buffer_size(other.first_)
&& begin_remainder_ == other.begin_remainder_
&& end_remainder_ == other.end_remainder_;
}
const Buffer& dereference() const
{
return first_;
}
bool at_end_;
Buffer first_;
Buffer_Iterator begin_remainder_;
Buffer_Iterator end_remainder_;
std::size_t offset_;
std::size_t max_size_;
};
// A proxy for a sub-range in a list of buffers.
template <typename Buffer, typename Buffers>
class consuming_buffers
{
public:
// The type for each element in the list of buffers.
typedef Buffer value_type;
// A forward-only iterator type that may be used to read elements.
typedef consuming_buffers_iterator<Buffer, typename Buffers::const_iterator>
const_iterator;
// Construct to represent the entire list of buffers.
consuming_buffers(const Buffers& buffers)
: buffers_(buffers),
at_end_(buffers_.begin() == buffers_.end()),
first_(*buffers_.begin()),
begin_remainder_(buffers_.begin()),
max_size_((std::numeric_limits<std::size_t>::max)())
{
if (!at_end_)
++begin_remainder_;
}
// Copy constructor.
consuming_buffers(const consuming_buffers& other)
: buffers_(other.buffers_),
at_end_(other.at_end_),
first_(other.first_),
begin_remainder_(buffers_.begin()),
max_size_(other.max_size_)
{
typename Buffers::const_iterator first = other.buffers_.begin();
typename Buffers::const_iterator second = other.begin_remainder_;
std::advance(begin_remainder_, std::distance(first, second));
}
// Assignment operator.
consuming_buffers& operator=(const consuming_buffers& other)
{
buffers_ = other.buffers_;
at_end_ = other.at_end_;
first_ = other.first_;
begin_remainder_ = buffers_.begin();
typename Buffers::const_iterator first = other.buffers_.begin();
typename Buffers::const_iterator second = other.begin_remainder_;
std::advance(begin_remainder_, std::distance(first, second));
max_size_ = other.max_size_;
return *this;
}
// Get a forward-only iterator to the first element.
const_iterator begin() const
{
return const_iterator(at_end_, first_,
begin_remainder_, buffers_.end(), max_size_);
}
// Get a forward-only iterator for one past the last element.
const_iterator end() const
{
return const_iterator();
}
// Set the maximum size for a single transfer.
void set_max_size(std::size_t max_size)
{
max_size_ = max_size;
}
// Consume the specified number of bytes from the buffers.
void consume(std::size_t size)
{
// Remove buffers from the start until the specified size is reached.
while (size > 0 && !at_end_)
{
if (buffer_size(first_) <= size)
{
size -= buffer_size(first_);
if (begin_remainder_ == buffers_.end())
at_end_ = true;
else
first_ = *begin_remainder_++;
}
else
{
first_ = first_ + size;
size = 0;
}
}
// Remove any more empty buffers at the start.
while (!at_end_ && buffer_size(first_) == 0)
{
if (begin_remainder_ == buffers_.end())
at_end_ = true;
else
first_ = *begin_remainder_++;
}
}
private:
Buffers buffers_;
bool at_end_;
Buffer first_;
typename Buffers::const_iterator begin_remainder_;
std::size_t max_size_;
};
// Specialisation for null_buffers to ensure that the null_buffers type is
// always passed through to the underlying read or write operation.
template <typename Buffer>
class consuming_buffers<Buffer, boost::asio::null_buffers>
: public boost::asio::null_buffers
{
public:
consuming_buffers(const boost::asio::null_buffers&)
{
// No-op.
}
void set_max_size(std::size_t)
{
// No-op.
}
void consume(std::size_t)
{
// No-op.
}
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_CONSUMING_BUFFERS_HPP

View File

@@ -0,0 +1,203 @@
//
// deadline_timer_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_DEADLINE_TIMER_SERVICE_HPP
#define BOOST_ASIO_DETAIL_DEADLINE_TIMER_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <boost/config.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/bind_handler.hpp>
#include <boost/asio/detail/handler_base_from_member.hpp>
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/service_base.hpp>
#include <boost/asio/detail/socket_ops.hpp>
#include <boost/asio/detail/socket_types.hpp>
#include <boost/asio/detail/timer_queue.hpp>
namespace boost {
namespace asio {
namespace detail {
template <typename Time_Traits, typename Timer_Scheduler>
class deadline_timer_service
: public boost::asio::detail::service_base<
deadline_timer_service<Time_Traits, Timer_Scheduler> >
{
public:
// The time type.
typedef typename Time_Traits::time_type time_type;
// The duration type.
typedef typename Time_Traits::duration_type duration_type;
// The implementation type of the timer. This type is dependent on the
// underlying implementation of the timer service.
struct implementation_type
: private boost::asio::detail::noncopyable
{
time_type expiry;
bool might_have_pending_waits;
};
// Constructor.
deadline_timer_service(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<
deadline_timer_service<Time_Traits, Timer_Scheduler> >(io_service),
scheduler_(boost::asio::use_service<Timer_Scheduler>(io_service))
{
scheduler_.init_task();
scheduler_.add_timer_queue(timer_queue_);
}
// Destructor.
~deadline_timer_service()
{
scheduler_.remove_timer_queue(timer_queue_);
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
}
// Construct a new timer implementation.
void construct(implementation_type& impl)
{
impl.expiry = time_type();
impl.might_have_pending_waits = false;
}
// Destroy a timer implementation.
void destroy(implementation_type& impl)
{
boost::system::error_code ec;
cancel(impl, ec);
}
// Cancel any asynchronous wait operations associated with the timer.
std::size_t cancel(implementation_type& impl, boost::system::error_code& ec)
{
if (!impl.might_have_pending_waits)
{
ec = boost::system::error_code();
return 0;
}
std::size_t count = scheduler_.cancel_timer(timer_queue_, &impl);
impl.might_have_pending_waits = false;
ec = boost::system::error_code();
return count;
}
// Get the expiry time for the timer as an absolute time.
time_type expires_at(const implementation_type& impl) const
{
return impl.expiry;
}
// Set the expiry time for the timer as an absolute time.
std::size_t expires_at(implementation_type& impl,
const time_type& expiry_time, boost::system::error_code& ec)
{
std::size_t count = cancel(impl, ec);
impl.expiry = expiry_time;
ec = boost::system::error_code();
return count;
}
// Get the expiry time for the timer relative to now.
duration_type expires_from_now(const implementation_type& impl) const
{
return Time_Traits::subtract(expires_at(impl), Time_Traits::now());
}
// Set the expiry time for the timer relative to now.
std::size_t expires_from_now(implementation_type& impl,
const duration_type& expiry_time, boost::system::error_code& ec)
{
return expires_at(impl,
Time_Traits::add(Time_Traits::now(), expiry_time), ec);
}
// Perform a blocking wait on the timer.
void wait(implementation_type& impl, boost::system::error_code& ec)
{
time_type now = Time_Traits::now();
while (Time_Traits::less_than(now, impl.expiry))
{
boost::posix_time::time_duration timeout =
Time_Traits::to_posix_duration(Time_Traits::subtract(impl.expiry, now));
::timeval tv;
tv.tv_sec = timeout.total_seconds();
tv.tv_usec = timeout.total_microseconds() % 1000000;
boost::system::error_code ec;
socket_ops::select(0, 0, 0, 0, &tv, ec);
now = Time_Traits::now();
}
ec = boost::system::error_code();
}
template <typename Handler>
class wait_handler :
public handler_base_from_member<Handler>
{
public:
wait_handler(boost::asio::io_service& io_service, Handler handler)
: handler_base_from_member<Handler>(handler),
io_service_(io_service),
work_(io_service)
{
}
void operator()(const boost::system::error_code& result)
{
io_service_.post(detail::bind_handler(this->handler_, result));
}
private:
boost::asio::io_service& io_service_;
boost::asio::io_service::work work_;
};
// Start an asynchronous wait on the timer.
template <typename Handler>
void async_wait(implementation_type& impl, Handler handler)
{
impl.might_have_pending_waits = true;
scheduler_.schedule_timer(timer_queue_, impl.expiry,
wait_handler<Handler>(this->get_io_service(), handler), &impl);
}
private:
// The queue of timers.
timer_queue<Time_Traits> timer_queue_;
// The object that schedules and executes timers. Usually a reactor.
Timer_Scheduler& scheduler_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_DEADLINE_TIMER_SERVICE_HPP

View File

@@ -0,0 +1,178 @@
//
// descriptor_ops.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_DESCRIPTOR_OPS_HPP
#define BOOST_ASIO_DETAIL_DESCRIPTOR_OPS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <cerrno>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/socket_types.hpp>
#if !defined(BOOST_WINDOWS) && !defined(__CYGWIN__)
namespace boost {
namespace asio {
namespace detail {
namespace descriptor_ops {
inline void clear_error(boost::system::error_code& ec)
{
errno = 0;
ec = boost::system::error_code();
}
template <typename ReturnType>
inline ReturnType error_wrapper(ReturnType return_value,
boost::system::error_code& ec)
{
ec = boost::system::error_code(errno,
boost::asio::error::get_system_category());
return return_value;
}
inline int open(const char* path, int flags, boost::system::error_code& ec)
{
clear_error(ec);
int result = error_wrapper(::open(path, flags), ec);
if (result >= 0)
clear_error(ec);
return result;
}
inline int close(int d, boost::system::error_code& ec)
{
clear_error(ec);
int result = error_wrapper(::close(d), ec);
if (result == 0)
clear_error(ec);
return result;
}
inline void init_buf_iov_base(void*& base, void* addr)
{
base = addr;
}
template <typename T>
inline void init_buf_iov_base(T& base, void* addr)
{
base = static_cast<T>(addr);
}
typedef iovec buf;
inline void init_buf(buf& b, void* data, size_t size)
{
init_buf_iov_base(b.iov_base, data);
b.iov_len = size;
}
inline void init_buf(buf& b, const void* data, size_t size)
{
init_buf_iov_base(b.iov_base, const_cast<void*>(data));
b.iov_len = size;
}
inline int scatter_read(int d, buf* bufs, size_t count,
boost::system::error_code& ec)
{
clear_error(ec);
int result = error_wrapper(::readv(d, bufs, static_cast<int>(count)), ec);
if (result >= 0)
clear_error(ec);
return result;
}
inline int gather_write(int d, const buf* bufs, size_t count,
boost::system::error_code& ec)
{
clear_error(ec);
int result = error_wrapper(::writev(d, bufs, static_cast<int>(count)), ec);
if (result >= 0)
clear_error(ec);
return result;
}
inline int ioctl(int d, long cmd, ioctl_arg_type* arg,
boost::system::error_code& ec)
{
clear_error(ec);
int result = error_wrapper(::ioctl(d, cmd, arg), ec);
if (result >= 0)
clear_error(ec);
return result;
}
inline int fcntl(int d, long cmd, boost::system::error_code& ec)
{
clear_error(ec);
int result = error_wrapper(::fcntl(d, cmd), ec);
if (result != -1)
clear_error(ec);
return result;
}
inline int fcntl(int d, long cmd, long arg, boost::system::error_code& ec)
{
clear_error(ec);
int result = error_wrapper(::fcntl(d, cmd, arg), ec);
if (result != -1)
clear_error(ec);
return result;
}
inline int poll_read(int d, boost::system::error_code& ec)
{
clear_error(ec);
pollfd fds;
fds.fd = d;
fds.events = POLLIN;
fds.revents = 0;
clear_error(ec);
int result = error_wrapper(::poll(&fds, 1, -1), ec);
if (result >= 0)
clear_error(ec);
return result;
}
inline int poll_write(int d, boost::system::error_code& ec)
{
clear_error(ec);
pollfd fds;
fds.fd = d;
fds.events = POLLOUT;
fds.revents = 0;
clear_error(ec);
int result = error_wrapper(::poll(&fds, 1, -1), ec);
if (result >= 0)
clear_error(ec);
return result;
}
} // namespace descriptor_ops
} // namespace detail
} // namespace asio
} // namespace boost
#endif // !defined(BOOST_WINDOWS) && !defined(__CYGWIN__)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_DESCRIPTOR_OPS_HPP

View File

@@ -0,0 +1,678 @@
//
// dev_poll_reactor.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_DEV_POLL_REACTOR_HPP
#define BOOST_ASIO_DETAIL_DEV_POLL_REACTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/dev_poll_reactor_fwd.hpp>
#if defined(BOOST_ASIO_HAS_DEV_POLL)
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <vector>
#include <boost/config.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
#include <boost/throw_exception.hpp>
#include <sys/devpoll.h>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/bind_handler.hpp>
#include <boost/asio/detail/hash_map.hpp>
#include <boost/asio/detail/mutex.hpp>
#include <boost/asio/detail/task_io_service.hpp>
#include <boost/asio/detail/thread.hpp>
#include <boost/asio/detail/reactor_op_queue.hpp>
#include <boost/asio/detail/select_interrupter.hpp>
#include <boost/asio/detail/service_base.hpp>
#include <boost/asio/detail/signal_blocker.hpp>
#include <boost/asio/detail/socket_types.hpp>
#include <boost/asio/detail/timer_queue.hpp>
namespace boost {
namespace asio {
namespace detail {
template <bool Own_Thread>
class dev_poll_reactor
: public boost::asio::detail::service_base<dev_poll_reactor<Own_Thread> >
{
public:
// Per-descriptor data.
struct per_descriptor_data
{
};
// Constructor.
dev_poll_reactor(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<
dev_poll_reactor<Own_Thread> >(io_service),
mutex_(),
dev_poll_fd_(do_dev_poll_create()),
wait_in_progress_(false),
interrupter_(),
read_op_queue_(),
write_op_queue_(),
except_op_queue_(),
pending_cancellations_(),
stop_thread_(false),
thread_(0),
shutdown_(false)
{
// Start the reactor's internal thread only if needed.
if (Own_Thread)
{
boost::asio::detail::signal_blocker sb;
thread_ = new boost::asio::detail::thread(
bind_handler(&dev_poll_reactor::call_run_thread, this));
}
// Add the interrupter's descriptor to /dev/poll.
::pollfd ev = { 0 };
ev.fd = interrupter_.read_descriptor();
ev.events = POLLIN | POLLERR;
ev.revents = 0;
::write(dev_poll_fd_, &ev, sizeof(ev));
}
// Destructor.
~dev_poll_reactor()
{
shutdown_service();
::close(dev_poll_fd_);
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
shutdown_ = true;
stop_thread_ = true;
lock.unlock();
if (thread_)
{
interrupter_.interrupt();
thread_->join();
delete thread_;
thread_ = 0;
}
read_op_queue_.destroy_operations();
write_op_queue_.destroy_operations();
except_op_queue_.destroy_operations();
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
timer_queues_[i]->destroy_timers();
timer_queues_.clear();
}
// Initialise the task, but only if the reactor is not in its own thread.
void init_task()
{
if (!Own_Thread)
{
typedef task_io_service<dev_poll_reactor<Own_Thread> >
task_io_service_type;
use_service<task_io_service_type>(this->get_io_service()).init_task();
}
}
// Register a socket with the reactor. Returns 0 on success, system error
// code on failure.
int register_descriptor(socket_type, per_descriptor_data&)
{
return 0;
}
// Start a new read operation. The handler object will be invoked when the
// given descriptor is ready to be read, or an error has occurred.
template <typename Handler>
void start_read_op(socket_type descriptor, per_descriptor_data&,
Handler handler, bool allow_speculative_read = true)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
if (allow_speculative_read)
{
if (!read_op_queue_.has_operation(descriptor))
{
boost::system::error_code ec;
std::size_t bytes_transferred = 0;
if (handler.perform(ec, bytes_transferred))
{
handler.complete(ec, bytes_transferred);
return;
}
}
}
if (read_op_queue_.enqueue_operation(descriptor, handler))
{
::pollfd& ev = add_pending_event_change(descriptor);
ev.events = POLLIN | POLLERR | POLLHUP;
if (write_op_queue_.has_operation(descriptor))
ev.events |= POLLOUT;
if (except_op_queue_.has_operation(descriptor))
ev.events |= POLLPRI;
interrupter_.interrupt();
}
}
// Start a new write operation. The handler object will be invoked when the
// given descriptor is ready to be written, or an error has occurred.
template <typename Handler>
void start_write_op(socket_type descriptor, per_descriptor_data&,
Handler handler, bool allow_speculative_write = true)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
if (allow_speculative_write)
{
if (!write_op_queue_.has_operation(descriptor))
{
boost::system::error_code ec;
std::size_t bytes_transferred = 0;
if (handler.perform(ec, bytes_transferred))
{
handler.complete(ec, bytes_transferred);
return;
}
}
}
if (write_op_queue_.enqueue_operation(descriptor, handler))
{
::pollfd& ev = add_pending_event_change(descriptor);
ev.events = POLLOUT | POLLERR | POLLHUP;
if (read_op_queue_.has_operation(descriptor))
ev.events |= POLLIN;
if (except_op_queue_.has_operation(descriptor))
ev.events |= POLLPRI;
interrupter_.interrupt();
}
}
// Start a new exception operation. The handler object will be invoked when
// the given descriptor has exception information, or an error has occurred.
template <typename Handler>
void start_except_op(socket_type descriptor,
per_descriptor_data&, Handler handler)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
if (except_op_queue_.enqueue_operation(descriptor, handler))
{
::pollfd& ev = add_pending_event_change(descriptor);
ev.events = POLLPRI | POLLERR | POLLHUP;
if (read_op_queue_.has_operation(descriptor))
ev.events |= POLLIN;
if (write_op_queue_.has_operation(descriptor))
ev.events |= POLLOUT;
interrupter_.interrupt();
}
}
// Start a new write operation. The handler object will be invoked when the
// information available, or an error has occurred.
template <typename Handler>
void start_connect_op(socket_type descriptor,
per_descriptor_data&, Handler handler)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
if (write_op_queue_.enqueue_operation(descriptor, handler))
{
::pollfd& ev = add_pending_event_change(descriptor);
ev.events = POLLOUT | POLLERR | POLLHUP;
if (read_op_queue_.has_operation(descriptor))
ev.events |= POLLIN;
if (except_op_queue_.has_operation(descriptor))
ev.events |= POLLPRI;
interrupter_.interrupt();
}
}
// Cancel all operations associated with the given descriptor. The
// handlers associated with the descriptor will be invoked with the
// operation_aborted error.
void cancel_ops(socket_type descriptor, per_descriptor_data&)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
cancel_ops_unlocked(descriptor);
}
// Cancel any operations that are running against the descriptor and remove
// its registration from the reactor.
void close_descriptor(socket_type descriptor, per_descriptor_data&)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
// Remove the descriptor from /dev/poll.
::pollfd& ev = add_pending_event_change(descriptor);
ev.events = POLLREMOVE;
interrupter_.interrupt();
// Cancel any outstanding operations associated with the descriptor.
cancel_ops_unlocked(descriptor);
}
// Add a new timer queue to the reactor.
template <typename Time_Traits>
void add_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
timer_queues_.push_back(&timer_queue);
}
// Remove a timer queue from the reactor.
template <typename Time_Traits>
void remove_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
if (timer_queues_[i] == &timer_queue)
{
timer_queues_.erase(timer_queues_.begin() + i);
return;
}
}
}
// Schedule a timer in the given timer queue to expire at the specified
// absolute time. The handler object will be invoked when the timer expires.
template <typename Time_Traits, typename Handler>
void schedule_timer(timer_queue<Time_Traits>& timer_queue,
const typename Time_Traits::time_type& time, Handler handler, void* token)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (!shutdown_)
if (timer_queue.enqueue_timer(time, handler, token))
interrupter_.interrupt();
}
// Cancel the timer associated with the given token. Returns the number of
// handlers that have been posted or dispatched.
template <typename Time_Traits>
std::size_t cancel_timer(timer_queue<Time_Traits>& timer_queue, void* token)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
std::size_t n = timer_queue.cancel_timer(token);
if (n > 0)
interrupter_.interrupt();
return n;
}
private:
friend class task_io_service<dev_poll_reactor<Own_Thread> >;
// Run /dev/poll once until interrupted or events are ready to be dispatched.
void run(bool block)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
// Dispatch any operation cancellations that were made while the select
// loop was not running.
read_op_queue_.perform_cancellations();
write_op_queue_.perform_cancellations();
except_op_queue_.perform_cancellations();
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
timer_queues_[i]->dispatch_cancellations();
// Check if the thread is supposed to stop.
if (stop_thread_)
{
complete_operations_and_timers(lock);
return;
}
// We can return immediately if there's no work to do and the reactor is
// not supposed to block.
if (!block && read_op_queue_.empty() && write_op_queue_.empty()
&& except_op_queue_.empty() && all_timer_queues_are_empty())
{
complete_operations_and_timers(lock);
return;
}
// Write the pending event registration changes to the /dev/poll descriptor.
std::size_t events_size = sizeof(::pollfd) * pending_event_changes_.size();
errno = 0;
int result = ::write(dev_poll_fd_,
&pending_event_changes_[0], events_size);
if (result != static_cast<int>(events_size))
{
for (std::size_t i = 0; i < pending_event_changes_.size(); ++i)
{
int descriptor = pending_event_changes_[i].fd;
boost::system::error_code ec = boost::system::error_code(
errno, boost::asio::error::get_system_category());
read_op_queue_.perform_all_operations(descriptor, ec);
write_op_queue_.perform_all_operations(descriptor, ec);
except_op_queue_.perform_all_operations(descriptor, ec);
}
}
pending_event_changes_.clear();
pending_event_change_index_.clear();
int timeout = block ? get_timeout() : 0;
wait_in_progress_ = true;
lock.unlock();
// Block on the /dev/poll descriptor.
::pollfd events[128] = { { 0 } };
::dvpoll dp = { 0 };
dp.dp_fds = events;
dp.dp_nfds = 128;
dp.dp_timeout = timeout;
int num_events = ::ioctl(dev_poll_fd_, DP_POLL, &dp);
lock.lock();
wait_in_progress_ = false;
// Block signals while performing operations.
boost::asio::detail::signal_blocker sb;
// Dispatch the waiting events.
for (int i = 0; i < num_events; ++i)
{
int descriptor = events[i].fd;
if (descriptor == interrupter_.read_descriptor())
{
interrupter_.reset();
}
else
{
bool more_reads = false;
bool more_writes = false;
bool more_except = false;
boost::system::error_code ec;
// Exception operations must be processed first to ensure that any
// out-of-band data is read before normal data.
if (events[i].events & (POLLPRI | POLLERR | POLLHUP))
more_except = except_op_queue_.perform_operation(descriptor, ec);
else
more_except = except_op_queue_.has_operation(descriptor);
if (events[i].events & (POLLIN | POLLERR | POLLHUP))
more_reads = read_op_queue_.perform_operation(descriptor, ec);
else
more_reads = read_op_queue_.has_operation(descriptor);
if (events[i].events & (POLLOUT | POLLERR | POLLHUP))
more_writes = write_op_queue_.perform_operation(descriptor, ec);
else
more_writes = write_op_queue_.has_operation(descriptor);
if ((events[i].events & (POLLERR | POLLHUP)) != 0
&& (events[i].events & ~(POLLERR | POLLHUP)) == 0
&& !more_except && !more_reads && !more_writes)
{
// If we have an event and no operations associated with the
// descriptor then we need to delete the descriptor from /dev/poll.
// The poll operation can produce POLLHUP or POLLERR events when there
// is no operation pending, so if we do not remove the descriptor we
// can end up in a tight polling loop.
::pollfd ev = { 0 };
ev.fd = descriptor;
ev.events = POLLREMOVE;
ev.revents = 0;
::write(dev_poll_fd_, &ev, sizeof(ev));
}
else
{
::pollfd ev = { 0 };
ev.fd = descriptor;
ev.events = POLLERR | POLLHUP;
if (more_reads)
ev.events |= POLLIN;
if (more_writes)
ev.events |= POLLOUT;
if (more_except)
ev.events |= POLLPRI;
ev.revents = 0;
int result = ::write(dev_poll_fd_, &ev, sizeof(ev));
if (result != sizeof(ev))
{
ec = boost::system::error_code(errno,
boost::asio::error::get_system_category());
read_op_queue_.perform_all_operations(descriptor, ec);
write_op_queue_.perform_all_operations(descriptor, ec);
except_op_queue_.perform_all_operations(descriptor, ec);
}
}
}
}
read_op_queue_.perform_cancellations();
write_op_queue_.perform_cancellations();
except_op_queue_.perform_cancellations();
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
timer_queues_[i]->dispatch_timers();
timer_queues_[i]->dispatch_cancellations();
}
// Issue any pending cancellations.
for (size_t i = 0; i < pending_cancellations_.size(); ++i)
cancel_ops_unlocked(pending_cancellations_[i]);
pending_cancellations_.clear();
complete_operations_and_timers(lock);
}
// Run the select loop in the thread.
void run_thread()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
while (!stop_thread_)
{
lock.unlock();
run(true);
lock.lock();
}
}
// Entry point for the select loop thread.
static void call_run_thread(dev_poll_reactor* reactor)
{
reactor->run_thread();
}
// Interrupt the select loop.
void interrupt()
{
interrupter_.interrupt();
}
// Create the /dev/poll file descriptor. Throws an exception if the descriptor
// cannot be created.
static int do_dev_poll_create()
{
int fd = ::open("/dev/poll", O_RDWR);
if (fd == -1)
{
boost::throw_exception(
boost::system::system_error(
boost::system::error_code(errno,
boost::asio::error::get_system_category()),
"/dev/poll"));
}
return fd;
}
// Check if all timer queues are empty.
bool all_timer_queues_are_empty() const
{
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
if (!timer_queues_[i]->empty())
return false;
return true;
}
// Get the timeout value for the /dev/poll DP_POLL operation. The timeout
// value is returned as a number of milliseconds. A return value of -1
// indicates that the poll should block indefinitely.
int get_timeout()
{
if (all_timer_queues_are_empty())
return -1;
// By default we will wait no longer than 5 minutes. This will ensure that
// any changes to the system clock are detected after no longer than this.
boost::posix_time::time_duration minimum_wait_duration
= boost::posix_time::minutes(5);
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
boost::posix_time::time_duration wait_duration
= timer_queues_[i]->wait_duration();
if (wait_duration < minimum_wait_duration)
minimum_wait_duration = wait_duration;
}
if (minimum_wait_duration > boost::posix_time::time_duration())
{
int milliseconds = minimum_wait_duration.total_milliseconds();
return milliseconds > 0 ? milliseconds : 1;
}
else
{
return 0;
}
}
// Cancel all operations associated with the given descriptor. The do_cancel
// function of the handler objects will be invoked. This function does not
// acquire the dev_poll_reactor's mutex.
void cancel_ops_unlocked(socket_type descriptor)
{
bool interrupt = read_op_queue_.cancel_operations(descriptor);
interrupt = write_op_queue_.cancel_operations(descriptor) || interrupt;
interrupt = except_op_queue_.cancel_operations(descriptor) || interrupt;
if (interrupt)
interrupter_.interrupt();
}
// Clean up operations and timers. We must not hold the lock since the
// destructors may make calls back into this reactor. We make a copy of the
// vector of timer queues since the original may be modified while the lock
// is not held.
void complete_operations_and_timers(
boost::asio::detail::mutex::scoped_lock& lock)
{
timer_queues_for_cleanup_ = timer_queues_;
lock.unlock();
read_op_queue_.complete_operations();
write_op_queue_.complete_operations();
except_op_queue_.complete_operations();
for (std::size_t i = 0; i < timer_queues_for_cleanup_.size(); ++i)
timer_queues_for_cleanup_[i]->complete_timers();
}
// Add a pending event entry for the given descriptor.
::pollfd& add_pending_event_change(int descriptor)
{
hash_map<int, std::size_t>::iterator iter
= pending_event_change_index_.find(descriptor);
if (iter == pending_event_change_index_.end())
{
std::size_t index = pending_event_changes_.size();
pending_event_changes_.reserve(pending_event_changes_.size() + 1);
pending_event_change_index_.insert(std::make_pair(descriptor, index));
pending_event_changes_.push_back(::pollfd());
pending_event_changes_[index].fd = descriptor;
pending_event_changes_[index].revents = 0;
return pending_event_changes_[index];
}
else
{
return pending_event_changes_[iter->second];
}
}
// Mutex to protect access to internal data.
boost::asio::detail::mutex mutex_;
// The /dev/poll file descriptor.
int dev_poll_fd_;
// Vector of /dev/poll events waiting to be written to the descriptor.
std::vector< ::pollfd> pending_event_changes_;
// Hash map to associate a descriptor with a pending event change index.
hash_map<int, std::size_t> pending_event_change_index_;
// Whether the DP_POLL operation is currently in progress
bool wait_in_progress_;
// The interrupter is used to break a blocking DP_POLL operation.
select_interrupter interrupter_;
// The queue of read operations.
reactor_op_queue<socket_type> read_op_queue_;
// The queue of write operations.
reactor_op_queue<socket_type> write_op_queue_;
// The queue of except operations.
reactor_op_queue<socket_type> except_op_queue_;
// The timer queues.
std::vector<timer_queue_base*> timer_queues_;
// A copy of the timer queues, used when cleaning up timers. The copy is
// stored as a class data member to avoid unnecessary memory allocation.
std::vector<timer_queue_base*> timer_queues_for_cleanup_;
// The descriptors that are pending cancellation.
std::vector<socket_type> pending_cancellations_;
// Does the reactor loop thread need to stop.
bool stop_thread_;
// The thread that is running the reactor loop.
boost::asio::detail::thread* thread_;
// Whether the service has been shut down.
bool shutdown_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_ASIO_HAS_DEV_POLL)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_DEV_POLL_REACTOR_HPP

View File

@@ -0,0 +1,42 @@
//
// dev_poll_reactor_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_DEV_POLL_REACTOR_FWD_HPP
#define BOOST_ASIO_DETAIL_DEV_POLL_REACTOR_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#if !defined(BOOST_ASIO_DISABLE_DEV_POLL)
#if defined(__sun) // This service is only supported on Solaris.
// Define this to indicate that /dev/poll is supported on the target platform.
#define BOOST_ASIO_HAS_DEV_POLL 1
namespace boost {
namespace asio {
namespace detail {
template <bool Own_Thread>
class dev_poll_reactor;
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(__sun)
#endif // !defined(BOOST_ASIO_DISABLE_DEV_POLL)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_DEV_POLL_REACTOR_FWD_HPP

View File

@@ -0,0 +1,733 @@
//
// epoll_reactor.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_EPOLL_REACTOR_HPP
#define BOOST_ASIO_DETAIL_EPOLL_REACTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/epoll_reactor_fwd.hpp>
#if defined(BOOST_ASIO_HAS_EPOLL)
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <vector>
#include <sys/epoll.h>
#include <boost/config.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
#include <boost/throw_exception.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/bind_handler.hpp>
#include <boost/asio/detail/hash_map.hpp>
#include <boost/asio/detail/mutex.hpp>
#include <boost/asio/detail/task_io_service.hpp>
#include <boost/asio/detail/thread.hpp>
#include <boost/asio/detail/reactor_op_queue.hpp>
#include <boost/asio/detail/select_interrupter.hpp>
#include <boost/asio/detail/service_base.hpp>
#include <boost/asio/detail/signal_blocker.hpp>
#include <boost/asio/detail/socket_types.hpp>
#include <boost/asio/detail/timer_queue.hpp>
namespace boost {
namespace asio {
namespace detail {
template <bool Own_Thread>
class epoll_reactor
: public boost::asio::detail::service_base<epoll_reactor<Own_Thread> >
{
public:
// Per-descriptor data.
struct per_descriptor_data
{
bool allow_speculative_read;
bool allow_speculative_write;
};
// Constructor.
epoll_reactor(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<epoll_reactor<Own_Thread> >(io_service),
mutex_(),
epoll_fd_(do_epoll_create()),
wait_in_progress_(false),
interrupter_(),
read_op_queue_(),
write_op_queue_(),
except_op_queue_(),
pending_cancellations_(),
stop_thread_(false),
thread_(0),
shutdown_(false),
need_epoll_wait_(true)
{
// Start the reactor's internal thread only if needed.
if (Own_Thread)
{
boost::asio::detail::signal_blocker sb;
thread_ = new boost::asio::detail::thread(
bind_handler(&epoll_reactor::call_run_thread, this));
}
// Add the interrupter's descriptor to epoll.
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR;
ev.data.fd = interrupter_.read_descriptor();
epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, interrupter_.read_descriptor(), &ev);
}
// Destructor.
~epoll_reactor()
{
shutdown_service();
close(epoll_fd_);
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
shutdown_ = true;
stop_thread_ = true;
lock.unlock();
if (thread_)
{
interrupter_.interrupt();
thread_->join();
delete thread_;
thread_ = 0;
}
read_op_queue_.destroy_operations();
write_op_queue_.destroy_operations();
except_op_queue_.destroy_operations();
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
timer_queues_[i]->destroy_timers();
timer_queues_.clear();
}
// Initialise the task, but only if the reactor is not in its own thread.
void init_task()
{
if (!Own_Thread)
{
typedef task_io_service<epoll_reactor<Own_Thread> > task_io_service_type;
use_service<task_io_service_type>(this->get_io_service()).init_task();
}
}
// Register a socket with the reactor. Returns 0 on success, system error
// code on failure.
int register_descriptor(socket_type descriptor,
per_descriptor_data& descriptor_data)
{
// No need to lock according to epoll documentation.
descriptor_data.allow_speculative_read = true;
descriptor_data.allow_speculative_write = true;
epoll_event ev = { 0, { 0 } };
ev.events = 0;
ev.data.fd = descriptor;
int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev);
if (result != 0)
return errno;
return 0;
}
// Start a new read operation. The handler object will be invoked when the
// given descriptor is ready to be read, or an error has occurred.
template <typename Handler>
void start_read_op(socket_type descriptor,
per_descriptor_data& descriptor_data,
Handler handler, bool allow_speculative_read = true)
{
if (allow_speculative_read && descriptor_data.allow_speculative_read)
{
boost::system::error_code ec;
std::size_t bytes_transferred = 0;
if (handler.perform(ec, bytes_transferred))
{
handler.complete(ec, bytes_transferred);
return;
}
// We only get one shot at a speculative read in this function.
allow_speculative_read = false;
}
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
if (!allow_speculative_read)
need_epoll_wait_ = true;
else if (!read_op_queue_.has_operation(descriptor))
{
// Speculative reads are ok as there are no queued read operations.
descriptor_data.allow_speculative_read = true;
boost::system::error_code ec;
std::size_t bytes_transferred = 0;
if (handler.perform(ec, bytes_transferred))
{
handler.complete(ec, bytes_transferred);
return;
}
}
// Speculative reads are not ok as there will be queued read operations.
descriptor_data.allow_speculative_read = false;
if (read_op_queue_.enqueue_operation(descriptor, handler))
{
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLHUP;
if (write_op_queue_.has_operation(descriptor))
ev.events |= EPOLLOUT;
if (except_op_queue_.has_operation(descriptor))
ev.events |= EPOLLPRI;
ev.data.fd = descriptor;
int result = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev);
if (result != 0 && errno == ENOENT)
result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev);
if (result != 0)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
read_op_queue_.perform_all_operations(descriptor, ec);
}
}
}
// Start a new write operation. The handler object will be invoked when the
// given descriptor is ready to be written, or an error has occurred.
template <typename Handler>
void start_write_op(socket_type descriptor,
per_descriptor_data& descriptor_data,
Handler handler, bool allow_speculative_write = true)
{
if (allow_speculative_write && descriptor_data.allow_speculative_write)
{
boost::system::error_code ec;
std::size_t bytes_transferred = 0;
if (handler.perform(ec, bytes_transferred))
{
handler.complete(ec, bytes_transferred);
return;
}
// We only get one shot at a speculative write in this function.
allow_speculative_write = false;
}
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
if (!allow_speculative_write)
need_epoll_wait_ = true;
else if (!write_op_queue_.has_operation(descriptor))
{
// Speculative writes are ok as there are no queued write operations.
descriptor_data.allow_speculative_write = true;
boost::system::error_code ec;
std::size_t bytes_transferred = 0;
if (handler.perform(ec, bytes_transferred))
{
handler.complete(ec, bytes_transferred);
return;
}
}
// Speculative writes are not ok as there will be queued write operations.
descriptor_data.allow_speculative_write = false;
if (write_op_queue_.enqueue_operation(descriptor, handler))
{
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLOUT | EPOLLERR | EPOLLHUP;
if (read_op_queue_.has_operation(descriptor))
ev.events |= EPOLLIN;
if (except_op_queue_.has_operation(descriptor))
ev.events |= EPOLLPRI;
ev.data.fd = descriptor;
int result = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev);
if (result != 0 && errno == ENOENT)
result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev);
if (result != 0)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
write_op_queue_.perform_all_operations(descriptor, ec);
}
}
}
// Start a new exception operation. The handler object will be invoked when
// the given descriptor has exception information, or an error has occurred.
template <typename Handler>
void start_except_op(socket_type descriptor,
per_descriptor_data&, Handler handler)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
if (except_op_queue_.enqueue_operation(descriptor, handler))
{
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLPRI | EPOLLERR | EPOLLHUP;
if (read_op_queue_.has_operation(descriptor))
ev.events |= EPOLLIN;
if (write_op_queue_.has_operation(descriptor))
ev.events |= EPOLLOUT;
ev.data.fd = descriptor;
int result = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev);
if (result != 0 && errno == ENOENT)
result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev);
if (result != 0)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
except_op_queue_.perform_all_operations(descriptor, ec);
}
}
}
// Start a new write operation. The handler object will be invoked when the
// given descriptor is ready for writing or an error has occurred. Speculative
// writes are not allowed.
template <typename Handler>
void start_connect_op(socket_type descriptor,
per_descriptor_data& descriptor_data, Handler handler)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
// Speculative writes are not ok as there will be queued write operations.
descriptor_data.allow_speculative_write = false;
if (write_op_queue_.enqueue_operation(descriptor, handler))
{
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLOUT | EPOLLERR | EPOLLHUP;
if (read_op_queue_.has_operation(descriptor))
ev.events |= EPOLLIN;
if (except_op_queue_.has_operation(descriptor))
ev.events |= EPOLLPRI;
ev.data.fd = descriptor;
int result = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev);
if (result != 0 && errno == ENOENT)
result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev);
if (result != 0)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
write_op_queue_.perform_all_operations(descriptor, ec);
}
}
}
// Cancel all operations associated with the given descriptor. The
// handlers associated with the descriptor will be invoked with the
// operation_aborted error.
void cancel_ops(socket_type descriptor, per_descriptor_data&)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
cancel_ops_unlocked(descriptor);
}
// Cancel any operations that are running against the descriptor and remove
// its registration from the reactor.
void close_descriptor(socket_type descriptor, per_descriptor_data&)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
// Remove the descriptor from epoll.
epoll_event ev = { 0, { 0 } };
epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, descriptor, &ev);
// Cancel any outstanding operations associated with the descriptor.
cancel_ops_unlocked(descriptor);
}
// Add a new timer queue to the reactor.
template <typename Time_Traits>
void add_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
timer_queues_.push_back(&timer_queue);
}
// Remove a timer queue from the reactor.
template <typename Time_Traits>
void remove_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
if (timer_queues_[i] == &timer_queue)
{
timer_queues_.erase(timer_queues_.begin() + i);
return;
}
}
}
// Schedule a timer in the given timer queue to expire at the specified
// absolute time. The handler object will be invoked when the timer expires.
template <typename Time_Traits, typename Handler>
void schedule_timer(timer_queue<Time_Traits>& timer_queue,
const typename Time_Traits::time_type& time, Handler handler, void* token)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (!shutdown_)
if (timer_queue.enqueue_timer(time, handler, token))
interrupter_.interrupt();
}
// Cancel the timer associated with the given token. Returns the number of
// handlers that have been posted or dispatched.
template <typename Time_Traits>
std::size_t cancel_timer(timer_queue<Time_Traits>& timer_queue, void* token)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
std::size_t n = timer_queue.cancel_timer(token);
if (n > 0)
interrupter_.interrupt();
return n;
}
private:
friend class task_io_service<epoll_reactor<Own_Thread> >;
// Run epoll once until interrupted or events are ready to be dispatched.
void run(bool block)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
// Dispatch any operation cancellations that were made while the select
// loop was not running.
read_op_queue_.perform_cancellations();
write_op_queue_.perform_cancellations();
except_op_queue_.perform_cancellations();
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
timer_queues_[i]->dispatch_cancellations();
// Check if the thread is supposed to stop.
if (stop_thread_)
{
complete_operations_and_timers(lock);
return;
}
// We can return immediately if there's no work to do and the reactor is
// not supposed to block.
if (!block && read_op_queue_.empty() && write_op_queue_.empty()
&& except_op_queue_.empty() && all_timer_queues_are_empty())
{
complete_operations_and_timers(lock);
return;
}
int timeout = block ? get_timeout() : 0;
wait_in_progress_ = true;
lock.unlock();
// Block on the epoll descriptor.
epoll_event events[128];
int num_events = (block || need_epoll_wait_)
? epoll_wait(epoll_fd_, events, 128, timeout)
: 0;
lock.lock();
wait_in_progress_ = false;
// Block signals while performing operations.
boost::asio::detail::signal_blocker sb;
// Dispatch the waiting events.
for (int i = 0; i < num_events; ++i)
{
int descriptor = events[i].data.fd;
if (descriptor == interrupter_.read_descriptor())
{
interrupter_.reset();
}
else
{
bool more_reads = false;
bool more_writes = false;
bool more_except = false;
boost::system::error_code ec;
// Exception operations must be processed first to ensure that any
// out-of-band data is read before normal data.
if (events[i].events & (EPOLLPRI | EPOLLERR | EPOLLHUP))
more_except = except_op_queue_.perform_operation(descriptor, ec);
else
more_except = except_op_queue_.has_operation(descriptor);
if (events[i].events & (EPOLLIN | EPOLLERR | EPOLLHUP))
more_reads = read_op_queue_.perform_operation(descriptor, ec);
else
more_reads = read_op_queue_.has_operation(descriptor);
if (events[i].events & (EPOLLOUT | EPOLLERR | EPOLLHUP))
more_writes = write_op_queue_.perform_operation(descriptor, ec);
else
more_writes = write_op_queue_.has_operation(descriptor);
if ((events[i].events & (EPOLLERR | EPOLLHUP)) != 0
&& (events[i].events & ~(EPOLLERR | EPOLLHUP)) == 0
&& !more_except && !more_reads && !more_writes)
{
// If we have an event and no operations associated with the
// descriptor then we need to delete the descriptor from epoll. The
// epoll_wait system call can produce EPOLLHUP or EPOLLERR events
// when there is no operation pending, so if we do not remove the
// descriptor we can end up in a tight loop of repeated
// calls to epoll_wait.
epoll_event ev = { 0, { 0 } };
epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, descriptor, &ev);
}
else
{
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLERR | EPOLLHUP;
if (more_reads)
ev.events |= EPOLLIN;
if (more_writes)
ev.events |= EPOLLOUT;
if (more_except)
ev.events |= EPOLLPRI;
ev.data.fd = descriptor;
int result = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev);
if (result != 0 && errno == ENOENT)
result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev);
if (result != 0)
{
ec = boost::system::error_code(errno,
boost::asio::error::get_system_category());
read_op_queue_.perform_all_operations(descriptor, ec);
write_op_queue_.perform_all_operations(descriptor, ec);
except_op_queue_.perform_all_operations(descriptor, ec);
}
}
}
}
read_op_queue_.perform_cancellations();
write_op_queue_.perform_cancellations();
except_op_queue_.perform_cancellations();
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
timer_queues_[i]->dispatch_timers();
timer_queues_[i]->dispatch_cancellations();
}
// Issue any pending cancellations.
for (size_t i = 0; i < pending_cancellations_.size(); ++i)
cancel_ops_unlocked(pending_cancellations_[i]);
pending_cancellations_.clear();
// Determine whether epoll_wait should be called when the reactor next runs.
need_epoll_wait_ = !read_op_queue_.empty()
|| !write_op_queue_.empty() || !except_op_queue_.empty();
complete_operations_and_timers(lock);
}
// Run the select loop in the thread.
void run_thread()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
while (!stop_thread_)
{
lock.unlock();
run(true);
lock.lock();
}
}
// Entry point for the select loop thread.
static void call_run_thread(epoll_reactor* reactor)
{
reactor->run_thread();
}
// Interrupt the select loop.
void interrupt()
{
interrupter_.interrupt();
}
// The hint to pass to epoll_create to size its data structures.
enum { epoll_size = 20000 };
// Create the epoll file descriptor. Throws an exception if the descriptor
// cannot be created.
static int do_epoll_create()
{
int fd = epoll_create(epoll_size);
if (fd == -1)
{
boost::throw_exception(
boost::system::system_error(
boost::system::error_code(errno,
boost::asio::error::get_system_category()),
"epoll"));
}
return fd;
}
// Check if all timer queues are empty.
bool all_timer_queues_are_empty() const
{
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
if (!timer_queues_[i]->empty())
return false;
return true;
}
// Get the timeout value for the epoll_wait call. The timeout value is
// returned as a number of milliseconds. A return value of -1 indicates
// that epoll_wait should block indefinitely.
int get_timeout()
{
if (all_timer_queues_are_empty())
return -1;
// By default we will wait no longer than 5 minutes. This will ensure that
// any changes to the system clock are detected after no longer than this.
boost::posix_time::time_duration minimum_wait_duration
= boost::posix_time::minutes(5);
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
boost::posix_time::time_duration wait_duration
= timer_queues_[i]->wait_duration();
if (wait_duration < minimum_wait_duration)
minimum_wait_duration = wait_duration;
}
if (minimum_wait_duration > boost::posix_time::time_duration())
{
int milliseconds = minimum_wait_duration.total_milliseconds();
return milliseconds > 0 ? milliseconds : 1;
}
else
{
return 0;
}
}
// Cancel all operations associated with the given descriptor. The do_cancel
// function of the handler objects will be invoked. This function does not
// acquire the epoll_reactor's mutex.
void cancel_ops_unlocked(socket_type descriptor)
{
bool interrupt = read_op_queue_.cancel_operations(descriptor);
interrupt = write_op_queue_.cancel_operations(descriptor) || interrupt;
interrupt = except_op_queue_.cancel_operations(descriptor) || interrupt;
if (interrupt)
interrupter_.interrupt();
}
// Clean up operations and timers. We must not hold the lock since the
// destructors may make calls back into this reactor. We make a copy of the
// vector of timer queues since the original may be modified while the lock
// is not held.
void complete_operations_and_timers(
boost::asio::detail::mutex::scoped_lock& lock)
{
timer_queues_for_cleanup_ = timer_queues_;
lock.unlock();
read_op_queue_.complete_operations();
write_op_queue_.complete_operations();
except_op_queue_.complete_operations();
for (std::size_t i = 0; i < timer_queues_for_cleanup_.size(); ++i)
timer_queues_for_cleanup_[i]->complete_timers();
}
// Mutex to protect access to internal data.
boost::asio::detail::mutex mutex_;
// The epoll file descriptor.
int epoll_fd_;
// Whether the epoll_wait call is currently in progress
bool wait_in_progress_;
// The interrupter is used to break a blocking epoll_wait call.
select_interrupter interrupter_;
// The queue of read operations.
reactor_op_queue<socket_type> read_op_queue_;
// The queue of write operations.
reactor_op_queue<socket_type> write_op_queue_;
// The queue of except operations.
reactor_op_queue<socket_type> except_op_queue_;
// The timer queues.
std::vector<timer_queue_base*> timer_queues_;
// A copy of the timer queues, used when cleaning up timers. The copy is
// stored as a class data member to avoid unnecessary memory allocation.
std::vector<timer_queue_base*> timer_queues_for_cleanup_;
// The descriptors that are pending cancellation.
std::vector<socket_type> pending_cancellations_;
// Does the reactor loop thread need to stop.
bool stop_thread_;
// The thread that is running the reactor loop.
boost::asio::detail::thread* thread_;
// Whether the service has been shut down.
bool shutdown_;
// Whether we need to call epoll_wait the next time the reactor is run.
bool need_epoll_wait_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_ASIO_HAS_EPOLL)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_EPOLL_REACTOR_HPP

View File

@@ -0,0 +1,49 @@
//
// epoll_reactor_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_EPOLL_REACTOR_FWD_HPP
#define BOOST_ASIO_DETAIL_EPOLL_REACTOR_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#if !defined(BOOST_ASIO_DISABLE_EPOLL)
#if defined(__linux__) // This service is only supported on Linux.
#include <boost/asio/detail/push_options.hpp>
#include <linux/version.h>
#include <boost/asio/detail/pop_options.hpp>
#if LINUX_VERSION_CODE >= KERNEL_VERSION (2,5,45) // Only kernels >= 2.5.45.
// Define this to indicate that epoll is supported on the target platform.
#define BOOST_ASIO_HAS_EPOLL 1
namespace boost {
namespace asio {
namespace detail {
template <bool Own_Thread>
class epoll_reactor;
} // namespace detail
} // namespace asio
} // namespace boost
#endif // LINUX_VERSION_CODE >= KERNEL_VERSION (2,5,45)
#endif // defined(__linux__)
#endif // !defined(BOOST_ASIO_DISABLE_EPOLL)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_EPOLL_REACTOR_FWD_HPP

View File

@@ -0,0 +1,52 @@
//
// event.hpp
// ~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_EVENT_HPP
#define BOOST_ASIO_DETAIL_EVENT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if !defined(BOOST_HAS_THREADS)
# include <boost/asio/detail/null_event.hpp>
#elif defined(BOOST_WINDOWS)
# include <boost/asio/detail/win_event.hpp>
#elif defined(BOOST_HAS_PTHREADS)
# include <boost/asio/detail/posix_event.hpp>
#else
# error Only Windows and POSIX are supported!
#endif
namespace boost {
namespace asio {
namespace detail {
#if !defined(BOOST_HAS_THREADS)
typedef null_event event;
#elif defined(BOOST_WINDOWS)
typedef win_event event;
#elif defined(BOOST_HAS_PTHREADS)
typedef posix_event event;
#endif
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_EVENT_HPP

View File

@@ -0,0 +1,157 @@
//
// eventfd_select_interrupter.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2008 Roelof Naude (roelof.naude at gmail dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_EVENTFD_SELECT_INTERRUPTER_HPP
#define BOOST_ASIO_DETAIL_EVENTFD_SELECT_INTERRUPTER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/throw_exception.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if defined(linux)
# if !defined(BOOST_ASIO_DISABLE_EVENTFD)
# include <linux/version.h>
# if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22)
# define BOOST_ASIO_HAS_EVENTFD
# endif // LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22)
# endif // !defined(BOOST_ASIO_DISABLE_EVENTFD)
#endif // defined(linux)
#if defined(BOOST_ASIO_HAS_EVENTFD)
#include <boost/asio/detail/push_options.hpp>
#include <fcntl.h>
#if __GLIBC__ == 2 && __GLIBC_MINOR__ < 8
# include <asm/unistd.h>
#else // __GLIBC__ == 2 && __GLIBC_MINOR__ < 8
# include <sys/eventfd.h>
#endif // __GLIBC__ == 2 && __GLIBC_MINOR__ < 8
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/socket_types.hpp>
namespace boost {
namespace asio {
namespace detail {
class eventfd_select_interrupter
{
public:
// Constructor.
eventfd_select_interrupter()
{
#if __GLIBC__ == 2 && __GLIBC_MINOR__ < 8
write_descriptor_ = read_descriptor_ = syscall(__NR_eventfd, 0);
#else // __GLIBC__ == 2 && __GLIBC_MINOR__ < 8
write_descriptor_ = read_descriptor_ = ::eventfd(0, 0);
#endif // __GLIBC__ == 2 && __GLIBC_MINOR__ < 8
if (read_descriptor_ != -1)
{
::fcntl(read_descriptor_, F_SETFL, O_NONBLOCK);
}
else
{
int pipe_fds[2];
if (pipe(pipe_fds) == 0)
{
read_descriptor_ = pipe_fds[0];
::fcntl(read_descriptor_, F_SETFL, O_NONBLOCK);
write_descriptor_ = pipe_fds[1];
::fcntl(write_descriptor_, F_SETFL, O_NONBLOCK);
}
else
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
boost::system::system_error e(ec, "eventfd_select_interrupter");
boost::throw_exception(e);
}
}
}
// Destructor.
~eventfd_select_interrupter()
{
if (write_descriptor_ != -1 && write_descriptor_ != read_descriptor_)
::close(write_descriptor_);
if (read_descriptor_ != -1)
::close(read_descriptor_);
}
// Interrupt the select call.
void interrupt()
{
uint64_t counter(1UL);
int result = ::write(write_descriptor_, &counter, sizeof(uint64_t));
(void)result;
}
// Reset the select interrupt. Returns true if the call was interrupted.
bool reset()
{
if (write_descriptor_ == read_descriptor_)
{
// Only perform one read. The kernel maintains an atomic counter.
uint64_t counter(0);
int bytes_read = ::read(read_descriptor_, &counter, sizeof(uint64_t));
bool was_interrupted = (bytes_read > 0);
return was_interrupted;
}
else
{
// Clear all data from the pipe.
char data[1024];
int bytes_read = ::read(read_descriptor_, data, sizeof(data));
bool was_interrupted = (bytes_read > 0);
while (bytes_read == sizeof(data))
bytes_read = ::read(read_descriptor_, data, sizeof(data));
return was_interrupted;
}
}
// Get the read descriptor to be passed to select.
int read_descriptor() const
{
return read_descriptor_;
}
private:
// The read end of a connection used to interrupt the select call. This file
// descriptor is passed to select such that when it is time to stop, a single
// 64bit value will be written on the other end of the connection and this
// descriptor will become readable.
int read_descriptor_;
// The write end of a connection used to interrupt the select call. A single
// 64bit non-zero value may be written to this to wake up the select which is
// waiting for the other end to become readable. This descriptor will only
// differ from the read descriptor when a pipe is used.
int write_descriptor_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_ASIO_HAS_EVENTFD)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_EVENTFD_SELECT_INTERRUPTER_HPP

View File

@@ -0,0 +1,43 @@
//
// fd_set_adapter.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_FD_SET_ADAPTER_HPP
#define BOOST_ASIO_DETAIL_FD_SET_ADAPTER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/detail/posix_fd_set_adapter.hpp>
#include <boost/asio/detail/win_fd_set_adapter.hpp>
namespace boost {
namespace asio {
namespace detail {
#if defined(BOOST_WINDOWS) || defined(__CYGWIN__)
typedef win_fd_set_adapter fd_set_adapter;
#else
typedef posix_fd_set_adapter fd_set_adapter;
#endif
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_FD_SET_ADAPTER_HPP

View File

@@ -0,0 +1,258 @@
//
// handler_alloc_helpers.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_HANDLER_ALLOC_HELPERS_HPP
#define BOOST_ASIO_DETAIL_HANDLER_ALLOC_HELPERS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/handler_alloc_hook.hpp>
#include <boost/asio/detail/noncopyable.hpp>
// Calls to asio_handler_allocate and asio_handler_deallocate must be made from
// a namespace that does not contain any overloads of these functions. The
// boost_asio_handler_alloc_helpers namespace is defined here for that purpose.
namespace boost_asio_handler_alloc_helpers {
template <typename Handler>
inline void* allocate(std::size_t s, Handler* h)
{
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
return ::operator new(s);
#else
using namespace boost::asio;
return asio_handler_allocate(s, h);
#endif
}
template <typename Handler>
inline void deallocate(void* p, std::size_t s, Handler* h)
{
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
::operator delete(p);
#else
using namespace boost::asio;
asio_handler_deallocate(p, s, h);
#endif
}
} // namespace boost_asio_handler_alloc_helpers
namespace boost {
namespace asio {
namespace detail {
// Traits for handler allocation.
template <typename Handler, typename Object>
struct handler_alloc_traits
{
typedef Handler handler_type;
typedef Object value_type;
typedef Object* pointer_type;
BOOST_STATIC_CONSTANT(std::size_t, value_size = sizeof(Object));
};
template <typename Alloc_Traits>
class handler_ptr;
// Helper class to provide RAII on uninitialised handler memory.
template <typename Alloc_Traits>
class raw_handler_ptr
: private noncopyable
{
public:
typedef typename Alloc_Traits::handler_type handler_type;
typedef typename Alloc_Traits::value_type value_type;
typedef typename Alloc_Traits::pointer_type pointer_type;
BOOST_STATIC_CONSTANT(std::size_t, value_size = Alloc_Traits::value_size);
// Constructor allocates the memory.
raw_handler_ptr(handler_type& handler)
: handler_(handler),
pointer_(static_cast<pointer_type>(
boost_asio_handler_alloc_helpers::allocate(value_size, &handler_)))
{
}
// Destructor automatically deallocates memory, unless it has been stolen by
// a handler_ptr object.
~raw_handler_ptr()
{
if (pointer_)
boost_asio_handler_alloc_helpers::deallocate(
pointer_, value_size, &handler_);
}
private:
friend class handler_ptr<Alloc_Traits>;
handler_type& handler_;
pointer_type pointer_;
};
// Helper class to provide RAII on uninitialised handler memory.
template <typename Alloc_Traits>
class handler_ptr
: private noncopyable
{
public:
typedef typename Alloc_Traits::handler_type handler_type;
typedef typename Alloc_Traits::value_type value_type;
typedef typename Alloc_Traits::pointer_type pointer_type;
BOOST_STATIC_CONSTANT(std::size_t, value_size = Alloc_Traits::value_size);
typedef raw_handler_ptr<Alloc_Traits> raw_ptr_type;
// Take ownership of existing memory.
handler_ptr(handler_type& handler, pointer_type pointer)
: handler_(handler),
pointer_(pointer)
{
}
// Construct object in raw memory and take ownership if construction succeeds.
handler_ptr(raw_ptr_type& raw_ptr)
: handler_(raw_ptr.handler_),
pointer_(new (raw_ptr.pointer_) value_type)
{
raw_ptr.pointer_ = 0;
}
// Construct object in raw memory and take ownership if construction succeeds.
template <typename Arg1>
handler_ptr(raw_ptr_type& raw_ptr, Arg1& a1)
: handler_(raw_ptr.handler_),
pointer_(new (raw_ptr.pointer_) value_type(a1))
{
raw_ptr.pointer_ = 0;
}
// Construct object in raw memory and take ownership if construction succeeds.
template <typename Arg1, typename Arg2>
handler_ptr(raw_ptr_type& raw_ptr, Arg1& a1, Arg2& a2)
: handler_(raw_ptr.handler_),
pointer_(new (raw_ptr.pointer_) value_type(a1, a2))
{
raw_ptr.pointer_ = 0;
}
// Construct object in raw memory and take ownership if construction succeeds.
template <typename Arg1, typename Arg2, typename Arg3>
handler_ptr(raw_ptr_type& raw_ptr, Arg1& a1, Arg2& a2, Arg3& a3)
: handler_(raw_ptr.handler_),
pointer_(new (raw_ptr.pointer_) value_type(a1, a2, a3))
{
raw_ptr.pointer_ = 0;
}
// Construct object in raw memory and take ownership if construction succeeds.
template <typename Arg1, typename Arg2, typename Arg3, typename Arg4>
handler_ptr(raw_ptr_type& raw_ptr, Arg1& a1, Arg2& a2, Arg3& a3, Arg4& a4)
: handler_(raw_ptr.handler_),
pointer_(new (raw_ptr.pointer_) value_type(a1, a2, a3, a4))
{
raw_ptr.pointer_ = 0;
}
// Construct object in raw memory and take ownership if construction succeeds.
template <typename Arg1, typename Arg2, typename Arg3, typename Arg4,
typename Arg5>
handler_ptr(raw_ptr_type& raw_ptr, Arg1& a1, Arg2& a2, Arg3& a3, Arg4& a4,
Arg5& a5)
: handler_(raw_ptr.handler_),
pointer_(new (raw_ptr.pointer_) value_type(a1, a2, a3, a4, a5))
{
raw_ptr.pointer_ = 0;
}
// Construct object in raw memory and take ownership if construction succeeds.
template <typename Arg1, typename Arg2, typename Arg3, typename Arg4,
typename Arg5, typename Arg6>
handler_ptr(raw_ptr_type& raw_ptr, Arg1& a1, Arg2& a2, Arg3& a3, Arg4& a4,
Arg5& a5, Arg6& a6)
: handler_(raw_ptr.handler_),
pointer_(new (raw_ptr.pointer_) value_type(a1, a2, a3, a4, a5, a6))
{
raw_ptr.pointer_ = 0;
}
// Construct object in raw memory and take ownership if construction succeeds.
template <typename Arg1, typename Arg2, typename Arg3, typename Arg4,
typename Arg5, typename Arg6, typename Arg7>
handler_ptr(raw_ptr_type& raw_ptr, Arg1& a1, Arg2& a2, Arg3& a3, Arg4& a4,
Arg5& a5, Arg6& a6, Arg7& a7)
: handler_(raw_ptr.handler_),
pointer_(new (raw_ptr.pointer_) value_type(a1, a2, a3, a4, a5, a6, a7))
{
raw_ptr.pointer_ = 0;
}
// Construct object in raw memory and take ownership if construction succeeds.
template <typename Arg1, typename Arg2, typename Arg3, typename Arg4,
typename Arg5, typename Arg6, typename Arg7, typename Arg8>
handler_ptr(raw_ptr_type& raw_ptr, Arg1& a1, Arg2& a2, Arg3& a3, Arg4& a4,
Arg5& a5, Arg6& a6, Arg7& a7, Arg8& a8)
: handler_(raw_ptr.handler_),
pointer_(new (raw_ptr.pointer_) value_type(
a1, a2, a3, a4, a5, a6, a7, a8))
{
raw_ptr.pointer_ = 0;
}
// Destructor automatically deallocates memory, unless it has been released.
~handler_ptr()
{
reset();
}
// Get the memory.
pointer_type get() const
{
return pointer_;
}
// Release ownership of the memory.
pointer_type release()
{
pointer_type tmp = pointer_;
pointer_ = 0;
return tmp;
}
// Explicitly destroy and deallocate the memory.
void reset()
{
if (pointer_)
{
pointer_->value_type::~value_type();
boost_asio_handler_alloc_helpers::deallocate(
pointer_, value_size, &handler_);
pointer_ = 0;
}
}
private:
handler_type& handler_;
pointer_type pointer_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_HANDLER_ALLOC_HELPERS_HPP

View File

@@ -0,0 +1,78 @@
//
// handler_base_from_member.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_HANDLER_BASE_FROM_MEMBER_HPP
#define BOOST_ASIO_DETAIL_HANDLER_BASE_FROM_MEMBER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/handler_alloc_helpers.hpp>
#include <boost/asio/detail/handler_invoke_helpers.hpp>
namespace boost {
namespace asio {
namespace detail {
// Base class for classes that need a handler data member. Forwards the custom
// allocation and invocation hooks to the contained handler.
template <typename Handler>
class handler_base_from_member
{
public:
handler_base_from_member(Handler handler)
: handler_(handler)
{
}
//protected:
Handler handler_;
protected:
// Protected destructor to prevent deletion through this type.
~handler_base_from_member()
{
}
};
template <typename Handler>
inline void* asio_handler_allocate(std::size_t size,
handler_base_from_member<Handler>* this_handler)
{
return boost_asio_handler_alloc_helpers::allocate(
size, &this_handler->handler_);
}
template <typename Handler>
inline void asio_handler_deallocate(void* pointer, std::size_t size,
handler_base_from_member<Handler>* this_handler)
{
boost_asio_handler_alloc_helpers::deallocate(
pointer, size, &this_handler->handler_);
}
template <typename Function, typename Handler>
inline void asio_handler_invoke(const Function& function,
handler_base_from_member<Handler>* this_handler)
{
boost_asio_handler_invoke_helpers::invoke(
function, &this_handler->handler_);
}
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_HANDLER_BASE_FROM_MEMBER_HPP

View File

@@ -0,0 +1,47 @@
//
// handler_invoke_helpers.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_HANDLER_INVOKE_HELPERS_HPP
#define BOOST_ASIO_DETAIL_HANDLER_INVOKE_HELPERS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/handler_invoke_hook.hpp>
// Calls to asio_handler_invoke must be made from a namespace that does not
// contain overloads of this function. The boost_asio_handler_invoke_helpers
// namespace is defined here for that purpose.
namespace boost_asio_handler_invoke_helpers {
template <typename Function, typename Context>
inline void invoke(const Function& function, Context* context)
{
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
Function tmp(function);
tmp();
#else
using namespace boost::asio;
asio_handler_invoke(function, context);
#endif
}
} // namespace boost_asio_handler_invoke_helpers
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_HANDLER_INVOKE_HELPERS_HPP

View File

@@ -0,0 +1,231 @@
//
// handler_queue.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_HANDLER_QUEUE_HPP
#define BOOST_ASIO_DETAIL_HANDLER_QUEUE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/handler_alloc_helpers.hpp>
#include <boost/asio/detail/handler_invoke_helpers.hpp>
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
namespace detail {
class handler_queue
: private noncopyable
{
public:
// Base class for handlers in the queue.
class handler
: private noncopyable
{
public:
void invoke()
{
invoke_func_(this);
}
void destroy()
{
destroy_func_(this);
}
protected:
typedef void (*invoke_func_type)(handler*);
typedef void (*destroy_func_type)(handler*);
handler(invoke_func_type invoke_func,
destroy_func_type destroy_func)
: next_(0),
invoke_func_(invoke_func),
destroy_func_(destroy_func)
{
}
~handler()
{
}
private:
friend class handler_queue;
handler* next_;
invoke_func_type invoke_func_;
destroy_func_type destroy_func_;
};
// Smart point to manager handler lifetimes.
class scoped_ptr
: private noncopyable
{
public:
explicit scoped_ptr(handler* h)
: handler_(h)
{
}
~scoped_ptr()
{
if (handler_)
handler_->destroy();
}
handler* get() const
{
return handler_;
}
handler* release()
{
handler* tmp = handler_;
handler_ = 0;
return tmp;
}
private:
handler* handler_;
};
// Constructor.
handler_queue()
: front_(0),
back_(0)
{
}
// Wrap a handler to be pushed into the queue.
template <typename Handler>
static handler* wrap(Handler h)
{
// Allocate and construct an object to wrap the handler.
typedef handler_wrapper<Handler> value_type;
typedef handler_alloc_traits<Handler, value_type> alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(h);
handler_ptr<alloc_traits> ptr(raw_ptr, h);
return ptr.release();
}
// Get the handler at the front of the queue.
handler* front()
{
return front_;
}
// Pop a handler from the front of the queue.
void pop()
{
if (front_)
{
handler* tmp = front_;
front_ = front_->next_;
if (front_ == 0)
back_ = 0;
tmp->next_= 0;
}
}
// Push a handler on to the back of the queue.
void push(handler* h)
{
h->next_ = 0;
if (back_)
{
back_->next_ = h;
back_ = h;
}
else
{
front_ = back_ = h;
}
}
// Whether the queue is empty.
bool empty() const
{
return front_ == 0;
}
private:
// Template wrapper for handlers.
template <typename Handler>
class handler_wrapper
: public handler
{
public:
handler_wrapper(Handler h)
: handler(
&handler_wrapper<Handler>::do_call,
&handler_wrapper<Handler>::do_destroy),
handler_(h)
{
}
static void do_call(handler* base)
{
// Take ownership of the handler object.
typedef handler_wrapper<Handler> this_type;
this_type* h(static_cast<this_type*>(base));
typedef handler_alloc_traits<Handler, this_type> alloc_traits;
handler_ptr<alloc_traits> ptr(h->handler_, h);
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made.
Handler handler(h->handler_);
// Free the memory associated with the handler.
ptr.reset();
// Make the upcall.
boost_asio_handler_invoke_helpers::invoke(handler, &handler);
}
static void do_destroy(handler* base)
{
// Take ownership of the handler object.
typedef handler_wrapper<Handler> this_type;
this_type* h(static_cast<this_type*>(base));
typedef handler_alloc_traits<Handler, this_type> alloc_traits;
handler_ptr<alloc_traits> ptr(h->handler_, h);
// A sub-object of the handler may be the true owner of the memory
// associated with the handler. Consequently, a local copy of the handler
// is required to ensure that any owning sub-object remains valid until
// after we have deallocated the memory here.
Handler handler(h->handler_);
(void)handler;
// Free the memory associated with the handler.
ptr.reset();
}
private:
Handler handler_;
};
// The front of the queue.
handler* front_;
// The back of the queue.
handler* back_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_HANDLER_QUEUE_HPP

View File

@@ -0,0 +1,292 @@
//
// hash_map.hpp
// ~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_HASH_MAP_HPP
#define BOOST_ASIO_DETAIL_HASH_MAP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cassert>
#include <list>
#include <utility>
#include <vector>
#include <boost/functional/hash.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/socket_types.hpp>
namespace boost {
namespace asio {
namespace detail {
template <typename T>
inline std::size_t calculate_hash_value(const T& t)
{
return boost::hash_value(t);
}
#if defined(_WIN64)
inline std::size_t calculate_hash_value(SOCKET s)
{
return static_cast<std::size_t>(s);
}
#endif // defined(_WIN64)
// Note: assumes K and V are POD types.
template <typename K, typename V>
class hash_map
: private noncopyable
{
public:
// The type of a value in the map.
typedef std::pair<K, V> value_type;
// The type of a non-const iterator over the hash map.
typedef typename std::list<value_type>::iterator iterator;
// The type of a const iterator over the hash map.
typedef typename std::list<value_type>::const_iterator const_iterator;
// Constructor.
hash_map()
: size_(0)
{
rehash(hash_size(0));
}
// Get an iterator for the beginning of the map.
iterator begin()
{
return values_.begin();
}
// Get an iterator for the beginning of the map.
const_iterator begin() const
{
return values_.begin();
}
// Get an iterator for the end of the map.
iterator end()
{
return values_.end();
}
// Get an iterator for the end of the map.
const_iterator end() const
{
return values_.end();
}
// Check whether the map is empty.
bool empty() const
{
return values_.empty();
}
// Find an entry in the map.
iterator find(const K& k)
{
size_t bucket = calculate_hash_value(k) % buckets_.size();
iterator it = buckets_[bucket].first;
if (it == values_.end())
return values_.end();
iterator end = buckets_[bucket].last;
++end;
while (it != end)
{
if (it->first == k)
return it;
++it;
}
return values_.end();
}
// Find an entry in the map.
const_iterator find(const K& k) const
{
size_t bucket = calculate_hash_value(k) % buckets_.size();
const_iterator it = buckets_[bucket].first;
if (it == values_.end())
return it;
const_iterator end = buckets_[bucket].last;
++end;
while (it != end)
{
if (it->first == k)
return it;
++it;
}
return values_.end();
}
// Insert a new entry into the map.
std::pair<iterator, bool> insert(const value_type& v)
{
if (size_ + 1 >= buckets_.size())
rehash(hash_size(size_ + 1));
size_t bucket = calculate_hash_value(v.first) % buckets_.size();
iterator it = buckets_[bucket].first;
if (it == values_.end())
{
buckets_[bucket].first = buckets_[bucket].last =
values_insert(values_.end(), v);
++size_;
return std::pair<iterator, bool>(buckets_[bucket].last, true);
}
iterator end = buckets_[bucket].last;
++end;
while (it != end)
{
if (it->first == v.first)
return std::pair<iterator, bool>(it, false);
++it;
}
buckets_[bucket].last = values_insert(end, v);
++size_;
return std::pair<iterator, bool>(buckets_[bucket].last, true);
}
// Erase an entry from the map.
void erase(iterator it)
{
assert(it != values_.end());
size_t bucket = calculate_hash_value(it->first) % buckets_.size();
bool is_first = (it == buckets_[bucket].first);
bool is_last = (it == buckets_[bucket].last);
if (is_first && is_last)
buckets_[bucket].first = buckets_[bucket].last = values_.end();
else if (is_first)
++buckets_[bucket].first;
else if (is_last)
--buckets_[bucket].last;
values_erase(it);
--size_;
}
// Remove all entries from the map.
void clear()
{
// Clear the values.
values_.clear();
size_ = 0;
// Initialise all buckets to empty.
for (size_t i = 0; i < buckets_.size(); ++i)
buckets_[i].first = buckets_[i].last = values_.end();
}
private:
// Calculate the hash size for the specified number of elements.
static std::size_t hash_size(std::size_t num_elems)
{
static std::size_t sizes[] =
{
#if defined(BOOST_ASIO_HASH_MAP_BUCKETS)
BOOST_ASIO_HASH_MAP_BUCKETS
#else // BOOST_ASIO_HASH_MAP_BUCKETS
3, 13, 23, 53, 97, 193, 389, 769, 1543, 3079, 6151, 12289, 24593,
49157, 98317, 196613, 393241, 786433, 1572869, 3145739, 6291469,
12582917, 25165843
#endif // BOOST_ASIO_HASH_MAP_BUCKETS
};
const std::size_t nth_size = sizeof(sizes) / sizeof(std::size_t) - 1;
for (std::size_t i = 0; i < nth_size; ++i)
if (num_elems < sizes[i])
return sizes[i];
return sizes[nth_size];
}
// Re-initialise the hash from the values already contained in the list.
void rehash(std::size_t num_buckets)
{
iterator end = values_.end();
// Update number of buckets and initialise all buckets to empty.
buckets_.resize(num_buckets);
for (std::size_t i = 0; i < buckets_.size(); ++i)
buckets_[i].first = buckets_[i].last = end;
// Put all values back into the hash.
iterator iter = values_.begin();
while (iter != end)
{
std::size_t bucket = calculate_hash_value(iter->first) % buckets_.size();
if (buckets_[bucket].last == end)
{
buckets_[bucket].first = buckets_[bucket].last = iter++;
}
else
{
values_.splice(++buckets_[bucket].last, values_, iter++);
--buckets_[bucket].last;
}
}
}
// Insert an element into the values list by splicing from the spares list,
// if a spare is available, and otherwise by inserting a new element.
iterator values_insert(iterator it, const value_type& v)
{
if (spares_.empty())
{
return values_.insert(it, v);
}
else
{
spares_.front() = v;
values_.splice(it, spares_, spares_.begin());
return --it;
}
}
// Erase an element from the values list by splicing it to the spares list.
void values_erase(iterator it)
{
*it = value_type();
spares_.splice(spares_.begin(), values_, it);
}
// The number of elements in the hash.
std::size_t size_;
// The list of all values in the hash map.
std::list<value_type> values_;
// The list of spare nodes waiting to be recycled. Assumes that POD types only
// are stored in the hash map.
std::list<value_type> spares_;
// The type for a bucket in the hash table.
struct bucket_type
{
iterator first;
iterator last;
};
// The buckets in the hash.
std::vector<bucket_type> buckets_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_HASH_MAP_HPP

View File

@@ -0,0 +1,293 @@
//
// indirect_handler_queue.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_INDIRECT_HANDLER_QUEUE_HPP
#define BOOST_ASIO_DETAIL_INDIRECT_HANDLER_QUEUE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/handler_alloc_helpers.hpp>
#include <boost/asio/detail/handler_invoke_helpers.hpp>
#include <boost/asio/detail/noncopyable.hpp>
#if defined(_MSC_VER) && (_MSC_VER >= 1310)
extern "C" void _ReadWriteBarrier();
# pragma intrinsic(_ReadWriteBarrier)
#endif // defined(_MSC_VER) && (_MSC_VER >= 1310)
namespace boost {
namespace asio {
namespace detail {
class indirect_handler_queue
: private noncopyable
{
public:
class handler;
// Element for a node in the queue.
class node
{
public:
node()
: version_(0),
handler_(0),
next_(0)
{
}
private:
friend class indirect_handler_queue;
unsigned long version_;
handler* handler_;
node* next_;
};
// Base class for handlers in the queue.
class handler
: private noncopyable
{
public:
void invoke()
{
invoke_func_(this);
}
void destroy()
{
destroy_func_(this);
}
protected:
typedef void (*invoke_func_type)(handler*);
typedef void (*destroy_func_type)(handler*);
handler(invoke_func_type invoke_func,
destroy_func_type destroy_func)
: node_(new node),
invoke_func_(invoke_func),
destroy_func_(destroy_func)
{
}
~handler()
{
if (node_)
delete node_;
}
private:
friend class indirect_handler_queue;
node* node_;
invoke_func_type invoke_func_;
destroy_func_type destroy_func_;
};
// Smart point to manager handler lifetimes.
class scoped_ptr
: private noncopyable
{
public:
explicit scoped_ptr(handler* h)
: handler_(h)
{
}
~scoped_ptr()
{
if (handler_)
handler_->destroy();
}
handler* get() const
{
return handler_;
}
handler* release()
{
handler* tmp = handler_;
handler_ = 0;
return tmp;
}
private:
handler* handler_;
};
// Constructor.
indirect_handler_queue()
: front_(new node),
back_(front_),
next_version_(1)
{
}
// Destructor.
~indirect_handler_queue()
{
while (front_)
{
node* tmp = front_;
front_ = front_->next_;
delete tmp;
}
}
// Wrap a handler to be pushed into the queue.
template <typename Handler>
static handler* wrap(Handler h)
{
// Allocate and construct an object to wrap the handler.
typedef handler_wrapper<Handler> value_type;
typedef handler_alloc_traits<Handler, value_type> alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(h);
handler_ptr<alloc_traits> ptr(raw_ptr, h);
return ptr.release();
}
// Determine whether the queue has something ready to pop.
bool poppable()
{
return front_->next_ != 0;
}
// The version number at the front of the queue.
unsigned long front_version()
{
return front_->version_;
}
// The version number at the back of the queue.
unsigned long back_version()
{
return back_->version_;
}
// Pop a handler from the front of the queue.
handler* pop()
{
node* n = front_;
node* new_front = n->next_;
if (new_front)
{
handler* h = new_front->handler_;
h->node_ = n;
new_front->handler_ = 0;
front_ = new_front;
return h;
}
return 0;
}
// Push a handler on to the back of the queue.
void push(handler* h)
{
node* n = h->node_;
h->node_ = 0;
n->version_ = next_version_;
next_version_ += 2;
n->handler_ = h;
n->next_ = 0;
memory_barrier();
back_->next_ = n;
back_ = n;
}
private:
// Template wrapper for handlers.
template <typename Handler>
class handler_wrapper
: public handler
{
public:
handler_wrapper(Handler h)
: handler(
&handler_wrapper<Handler>::do_call,
&handler_wrapper<Handler>::do_destroy),
handler_(h)
{
}
static void do_call(handler* base)
{
// Take ownership of the handler object.
typedef handler_wrapper<Handler> this_type;
this_type* h(static_cast<this_type*>(base));
typedef handler_alloc_traits<Handler, this_type> alloc_traits;
handler_ptr<alloc_traits> ptr(h->handler_, h);
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made.
Handler handler(h->handler_);
// Free the memory associated with the handler.
ptr.reset();
// Make the upcall.
boost_asio_handler_invoke_helpers::invoke(handler, &handler);
}
static void do_destroy(handler* base)
{
// Take ownership of the handler object.
typedef handler_wrapper<Handler> this_type;
this_type* h(static_cast<this_type*>(base));
typedef handler_alloc_traits<Handler, this_type> alloc_traits;
handler_ptr<alloc_traits> ptr(h->handler_, h);
// A sub-object of the handler may be the true owner of the memory
// associated with the handler. Consequently, a local copy of the handler
// is required to ensure that any owning sub-object remains valid until
// after we have deallocated the memory here.
Handler handler(h->handler_);
(void)handler;
// Free the memory associated with the handler.
ptr.reset();
}
private:
Handler handler_;
};
// Helper function to create a memory barrier.
static void memory_barrier()
{
#if defined(_GLIBCXX_WRITE_MEM_BARRIER)
_GLIBCXX_WRITE_MEM_BARRIER;
#elif defined(_MSC_VER) && (_MSC_VER >= 1310)
_ReadWriteBarrier();
#else
# error memory barrier required
#endif
}
// The front of the queue.
node* front_;
// The back of the queue.
node* back_;
// The next version counter to be assigned to a node.
unsigned long next_version_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_INDIRECT_HANDLER_QUEUE_HPP

View File

@@ -0,0 +1,139 @@
//
// io_control.hpp
// ~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_IO_CONTROL_HPP
#define BOOST_ASIO_DETAIL_IO_CONTROL_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/detail/socket_types.hpp>
namespace boost {
namespace asio {
namespace detail {
namespace io_control {
// IO control command for non-blocking I/O.
class non_blocking_io
{
public:
// Default constructor.
non_blocking_io()
: value_(0)
{
}
// Construct with a specific command value.
non_blocking_io(bool value)
: value_(value ? 1 : 0)
{
}
// Get the name of the IO control command.
int name() const
{
return FIONBIO;
}
// Set the value of the I/O control command.
void set(bool value)
{
value_ = value ? 1 : 0;
}
// Get the current value of the I/O control command.
bool get() const
{
return value_ != 0;
}
// Get the address of the command data.
detail::ioctl_arg_type* data()
{
return &value_;
}
// Get the address of the command data.
const detail::ioctl_arg_type* data() const
{
return &value_;
}
private:
detail::ioctl_arg_type value_;
};
// I/O control command for getting number of bytes available.
class bytes_readable
{
public:
// Default constructor.
bytes_readable()
: value_(0)
{
}
// Construct with a specific command value.
bytes_readable(std::size_t value)
: value_(static_cast<detail::ioctl_arg_type>(value))
{
}
// Get the name of the IO control command.
int name() const
{
return FIONREAD;
}
// Set the value of the I/O control command.
void set(std::size_t value)
{
value_ = static_cast<detail::ioctl_arg_type>(value);
}
// Get the current value of the I/O control command.
std::size_t get() const
{
return static_cast<std::size_t>(value_);
}
// Get the address of the command data.
detail::ioctl_arg_type* data()
{
return &value_;
}
// Get the address of the command data.
const detail::ioctl_arg_type* data() const
{
return &value_;
}
private:
detail::ioctl_arg_type value_;
};
} // namespace io_control
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_IO_CONTROL_HPP

View File

@@ -0,0 +1,714 @@
//
// kqueue_reactor.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2005 Stefan Arentz (stefan at soze dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP
#define BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/kqueue_reactor_fwd.hpp>
#if defined(BOOST_ASIO_HAS_KQUEUE)
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <vector>
#include <sys/types.h>
#include <sys/event.h>
#include <sys/time.h>
#include <boost/config.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
#include <boost/throw_exception.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/bind_handler.hpp>
#include <boost/asio/detail/mutex.hpp>
#include <boost/asio/detail/task_io_service.hpp>
#include <boost/asio/detail/thread.hpp>
#include <boost/asio/detail/reactor_op_queue.hpp>
#include <boost/asio/detail/select_interrupter.hpp>
#include <boost/asio/detail/service_base.hpp>
#include <boost/asio/detail/signal_blocker.hpp>
#include <boost/asio/detail/socket_types.hpp>
#include <boost/asio/detail/timer_queue.hpp>
// Older versions of Mac OS X may not define EV_OOBAND.
#if !defined(EV_OOBAND)
# define EV_OOBAND EV_FLAG1
#endif // !defined(EV_OOBAND)
namespace boost {
namespace asio {
namespace detail {
template <bool Own_Thread>
class kqueue_reactor
: public boost::asio::detail::service_base<kqueue_reactor<Own_Thread> >
{
public:
// Per-descriptor data.
struct per_descriptor_data
{
bool allow_speculative_read;
bool allow_speculative_write;
};
// Constructor.
kqueue_reactor(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<
kqueue_reactor<Own_Thread> >(io_service),
mutex_(),
kqueue_fd_(do_kqueue_create()),
wait_in_progress_(false),
interrupter_(),
read_op_queue_(),
write_op_queue_(),
except_op_queue_(),
pending_cancellations_(),
stop_thread_(false),
thread_(0),
shutdown_(false),
need_kqueue_wait_(true)
{
// Start the reactor's internal thread only if needed.
if (Own_Thread)
{
boost::asio::detail::signal_blocker sb;
thread_ = new boost::asio::detail::thread(
bind_handler(&kqueue_reactor::call_run_thread, this));
}
// Add the interrupter's descriptor to the kqueue.
struct kevent event;
EV_SET(&event, interrupter_.read_descriptor(),
EVFILT_READ, EV_ADD, 0, 0, 0);
::kevent(kqueue_fd_, &event, 1, 0, 0, 0);
}
// Destructor.
~kqueue_reactor()
{
shutdown_service();
close(kqueue_fd_);
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
shutdown_ = true;
stop_thread_ = true;
lock.unlock();
if (thread_)
{
interrupter_.interrupt();
thread_->join();
delete thread_;
thread_ = 0;
}
read_op_queue_.destroy_operations();
write_op_queue_.destroy_operations();
except_op_queue_.destroy_operations();
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
timer_queues_[i]->destroy_timers();
timer_queues_.clear();
}
// Initialise the task, but only if the reactor is not in its own thread.
void init_task()
{
if (!Own_Thread)
{
typedef task_io_service<kqueue_reactor<Own_Thread> > task_io_service_type;
use_service<task_io_service_type>(this->get_io_service()).init_task();
}
}
// Register a socket with the reactor. Returns 0 on success, system error
// code on failure.
int register_descriptor(socket_type, per_descriptor_data& descriptor_data)
{
descriptor_data.allow_speculative_read = true;
descriptor_data.allow_speculative_write = true;
return 0;
}
// Start a new read operation. The handler object will be invoked when the
// given descriptor is ready to be read, or an error has occurred.
template <typename Handler>
void start_read_op(socket_type descriptor,
per_descriptor_data& descriptor_data, Handler handler,
bool allow_speculative_read = true)
{
if (allow_speculative_read && descriptor_data.allow_speculative_read)
{
boost::system::error_code ec;
std::size_t bytes_transferred = 0;
if (handler.perform(ec, bytes_transferred))
{
handler.complete(ec, bytes_transferred);
return;
}
// We only get one shot at a speculative read in this function.
allow_speculative_read = false;
}
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
if (!allow_speculative_read)
need_kqueue_wait_ = true;
else if (!read_op_queue_.has_operation(descriptor))
{
// Speculative reads are ok as there are no queued read operations.
descriptor_data.allow_speculative_read = true;
boost::system::error_code ec;
std::size_t bytes_transferred = 0;
if (handler.perform(ec, bytes_transferred))
{
handler.complete(ec, bytes_transferred);
return;
}
}
// Speculative reads are not ok as there will be queued read operations.
descriptor_data.allow_speculative_read = false;
if (read_op_queue_.enqueue_operation(descriptor, handler))
{
struct kevent event;
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
read_op_queue_.perform_all_operations(descriptor, ec);
}
}
}
// Start a new write operation. The handler object will be invoked when the
// given descriptor is ready to be written, or an error has occurred.
template <typename Handler>
void start_write_op(socket_type descriptor,
per_descriptor_data& descriptor_data, Handler handler,
bool allow_speculative_write = true)
{
if (allow_speculative_write && descriptor_data.allow_speculative_write)
{
boost::system::error_code ec;
std::size_t bytes_transferred = 0;
if (handler.perform(ec, bytes_transferred))
{
handler.complete(ec, bytes_transferred);
return;
}
// We only get one shot at a speculative write in this function.
allow_speculative_write = false;
}
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
if (!allow_speculative_write)
need_kqueue_wait_ = true;
else if (!write_op_queue_.has_operation(descriptor))
{
// Speculative writes are ok as there are no queued write operations.
descriptor_data.allow_speculative_write = true;
boost::system::error_code ec;
std::size_t bytes_transferred = 0;
if (handler.perform(ec, bytes_transferred))
{
handler.complete(ec, bytes_transferred);
return;
}
}
// Speculative writes are not ok as there will be queued write operations.
descriptor_data.allow_speculative_write = false;
if (write_op_queue_.enqueue_operation(descriptor, handler))
{
struct kevent event;
EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
write_op_queue_.perform_all_operations(descriptor, ec);
}
}
}
// Start a new exception operation. The handler object will be invoked when
// the given descriptor has exception information, or an error has occurred.
template <typename Handler>
void start_except_op(socket_type descriptor,
per_descriptor_data&, Handler handler)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
if (except_op_queue_.enqueue_operation(descriptor, handler))
{
struct kevent event;
if (read_op_queue_.has_operation(descriptor))
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0);
else
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, EV_OOBAND, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
except_op_queue_.perform_all_operations(descriptor, ec);
}
}
}
// Start a new write operation. The handler object will be invoked when the
// given descriptor is ready to be written, or an error has occurred.
template <typename Handler>
void start_connect_op(socket_type descriptor,
per_descriptor_data& descriptor_data, Handler handler)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
return;
// Speculative writes are not ok as there will be queued write operations.
descriptor_data.allow_speculative_write = false;
if (write_op_queue_.enqueue_operation(descriptor, handler))
{
struct kevent event;
EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
write_op_queue_.perform_all_operations(descriptor, ec);
}
}
}
// Cancel all operations associated with the given descriptor. The
// handlers associated with the descriptor will be invoked with the
// operation_aborted error.
void cancel_ops(socket_type descriptor, per_descriptor_data&)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
cancel_ops_unlocked(descriptor);
}
// Cancel any operations that are running against the descriptor and remove
// its registration from the reactor.
void close_descriptor(socket_type descriptor, per_descriptor_data&)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
// Remove the descriptor from kqueue.
struct kevent event[2];
EV_SET(&event[0], descriptor, EVFILT_READ, EV_DELETE, 0, 0, 0);
EV_SET(&event[1], descriptor, EVFILT_WRITE, EV_DELETE, 0, 0, 0);
::kevent(kqueue_fd_, event, 2, 0, 0, 0);
// Cancel any outstanding operations associated with the descriptor.
cancel_ops_unlocked(descriptor);
}
// Add a new timer queue to the reactor.
template <typename Time_Traits>
void add_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
timer_queues_.push_back(&timer_queue);
}
// Remove a timer queue from the reactor.
template <typename Time_Traits>
void remove_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
if (timer_queues_[i] == &timer_queue)
{
timer_queues_.erase(timer_queues_.begin() + i);
return;
}
}
}
// Schedule a timer in the given timer queue to expire at the specified
// absolute time. The handler object will be invoked when the timer expires.
template <typename Time_Traits, typename Handler>
void schedule_timer(timer_queue<Time_Traits>& timer_queue,
const typename Time_Traits::time_type& time, Handler handler, void* token)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (!shutdown_)
if (timer_queue.enqueue_timer(time, handler, token))
interrupter_.interrupt();
}
// Cancel the timer associated with the given token. Returns the number of
// handlers that have been posted or dispatched.
template <typename Time_Traits>
std::size_t cancel_timer(timer_queue<Time_Traits>& timer_queue, void* token)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
std::size_t n = timer_queue.cancel_timer(token);
if (n > 0)
interrupter_.interrupt();
return n;
}
private:
friend class task_io_service<kqueue_reactor<Own_Thread> >;
// Run the kqueue loop.
void run(bool block)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
// Dispatch any operation cancellations that were made while the select
// loop was not running.
read_op_queue_.perform_cancellations();
write_op_queue_.perform_cancellations();
except_op_queue_.perform_cancellations();
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
timer_queues_[i]->dispatch_cancellations();
// Check if the thread is supposed to stop.
if (stop_thread_)
{
complete_operations_and_timers(lock);
return;
}
// We can return immediately if there's no work to do and the reactor is
// not supposed to block.
if (!block && read_op_queue_.empty() && write_op_queue_.empty()
&& except_op_queue_.empty() && all_timer_queues_are_empty())
{
complete_operations_and_timers(lock);
return;
}
// Determine how long to block while waiting for events.
timespec timeout_buf = { 0, 0 };
timespec* timeout = block ? get_timeout(timeout_buf) : &timeout_buf;
wait_in_progress_ = true;
lock.unlock();
// Block on the kqueue descriptor.
struct kevent events[128];
int num_events = (block || need_kqueue_wait_)
? kevent(kqueue_fd_, 0, 0, events, 128, timeout)
: 0;
lock.lock();
wait_in_progress_ = false;
// Block signals while performing operations.
boost::asio::detail::signal_blocker sb;
// Dispatch the waiting events.
for (int i = 0; i < num_events; ++i)
{
int descriptor = events[i].ident;
if (descriptor == interrupter_.read_descriptor())
{
interrupter_.reset();
}
else if (events[i].filter == EVFILT_READ)
{
// Dispatch operations associated with the descriptor.
bool more_reads = false;
bool more_except = false;
if (events[i].flags & EV_ERROR)
{
boost::system::error_code error(
events[i].data, boost::asio::error::get_system_category());
except_op_queue_.perform_all_operations(descriptor, error);
read_op_queue_.perform_all_operations(descriptor, error);
}
else if (events[i].flags & EV_OOBAND)
{
boost::system::error_code error;
more_except = except_op_queue_.perform_operation(descriptor, error);
if (events[i].data > 0)
more_reads = read_op_queue_.perform_operation(descriptor, error);
else
more_reads = read_op_queue_.has_operation(descriptor);
}
else
{
boost::system::error_code error;
more_reads = read_op_queue_.perform_operation(descriptor, error);
more_except = except_op_queue_.has_operation(descriptor);
}
// Update the descriptor in the kqueue.
struct kevent event;
if (more_reads)
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, 0, 0, 0);
else if (more_except)
EV_SET(&event, descriptor, EVFILT_READ, EV_ADD, EV_OOBAND, 0, 0);
else
EV_SET(&event, descriptor, EVFILT_READ, EV_DELETE, 0, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
boost::system::error_code error(errno,
boost::asio::error::get_system_category());
except_op_queue_.perform_all_operations(descriptor, error);
read_op_queue_.perform_all_operations(descriptor, error);
}
}
else if (events[i].filter == EVFILT_WRITE)
{
// Dispatch operations associated with the descriptor.
bool more_writes = false;
if (events[i].flags & EV_ERROR)
{
boost::system::error_code error(
events[i].data, boost::asio::error::get_system_category());
write_op_queue_.perform_all_operations(descriptor, error);
}
else
{
boost::system::error_code error;
more_writes = write_op_queue_.perform_operation(descriptor, error);
}
// Update the descriptor in the kqueue.
struct kevent event;
if (more_writes)
EV_SET(&event, descriptor, EVFILT_WRITE, EV_ADD, 0, 0, 0);
else
EV_SET(&event, descriptor, EVFILT_WRITE, EV_DELETE, 0, 0, 0);
if (::kevent(kqueue_fd_, &event, 1, 0, 0, 0) == -1)
{
boost::system::error_code error(errno,
boost::asio::error::get_system_category());
write_op_queue_.perform_all_operations(descriptor, error);
}
}
}
read_op_queue_.perform_cancellations();
write_op_queue_.perform_cancellations();
except_op_queue_.perform_cancellations();
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
timer_queues_[i]->dispatch_timers();
timer_queues_[i]->dispatch_cancellations();
}
// Issue any pending cancellations.
for (std::size_t i = 0; i < pending_cancellations_.size(); ++i)
cancel_ops_unlocked(pending_cancellations_[i]);
pending_cancellations_.clear();
// Determine whether kqueue needs to be called next time the reactor is run.
need_kqueue_wait_ = !read_op_queue_.empty()
|| !write_op_queue_.empty() || !except_op_queue_.empty();
complete_operations_and_timers(lock);
}
// Run the select loop in the thread.
void run_thread()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
while (!stop_thread_)
{
lock.unlock();
run(true);
lock.lock();
}
}
// Entry point for the select loop thread.
static void call_run_thread(kqueue_reactor* reactor)
{
reactor->run_thread();
}
// Interrupt the select loop.
void interrupt()
{
interrupter_.interrupt();
}
// Create the kqueue file descriptor. Throws an exception if the descriptor
// cannot be created.
static int do_kqueue_create()
{
int fd = kqueue();
if (fd == -1)
{
boost::throw_exception(
boost::system::system_error(
boost::system::error_code(errno,
boost::asio::error::get_system_category()),
"kqueue"));
}
return fd;
}
// Check if all timer queues are empty.
bool all_timer_queues_are_empty() const
{
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
if (!timer_queues_[i]->empty())
return false;
return true;
}
// Get the timeout value for the kevent call.
timespec* get_timeout(timespec& ts)
{
if (all_timer_queues_are_empty())
return 0;
// By default we will wait no longer than 5 minutes. This will ensure that
// any changes to the system clock are detected after no longer than this.
boost::posix_time::time_duration minimum_wait_duration
= boost::posix_time::minutes(5);
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
boost::posix_time::time_duration wait_duration
= timer_queues_[i]->wait_duration();
if (wait_duration < minimum_wait_duration)
minimum_wait_duration = wait_duration;
}
if (minimum_wait_duration > boost::posix_time::time_duration())
{
ts.tv_sec = minimum_wait_duration.total_seconds();
ts.tv_nsec = minimum_wait_duration.total_nanoseconds() % 1000000000;
}
else
{
ts.tv_sec = 0;
ts.tv_nsec = 0;
}
return &ts;
}
// Cancel all operations associated with the given descriptor. The do_cancel
// function of the handler objects will be invoked. This function does not
// acquire the kqueue_reactor's mutex.
void cancel_ops_unlocked(socket_type descriptor)
{
bool interrupt = read_op_queue_.cancel_operations(descriptor);
interrupt = write_op_queue_.cancel_operations(descriptor) || interrupt;
interrupt = except_op_queue_.cancel_operations(descriptor) || interrupt;
if (interrupt)
interrupter_.interrupt();
}
// Clean up operations and timers. We must not hold the lock since the
// destructors may make calls back into this reactor. We make a copy of the
// vector of timer queues since the original may be modified while the lock
// is not held.
void complete_operations_and_timers(
boost::asio::detail::mutex::scoped_lock& lock)
{
timer_queues_for_cleanup_ = timer_queues_;
lock.unlock();
read_op_queue_.complete_operations();
write_op_queue_.complete_operations();
except_op_queue_.complete_operations();
for (std::size_t i = 0; i < timer_queues_for_cleanup_.size(); ++i)
timer_queues_for_cleanup_[i]->complete_timers();
}
// Mutex to protect access to internal data.
boost::asio::detail::mutex mutex_;
// The kqueue file descriptor.
int kqueue_fd_;
// Whether the kqueue wait call is currently in progress
bool wait_in_progress_;
// The interrupter is used to break a blocking kevent call.
select_interrupter interrupter_;
// The queue of read operations.
reactor_op_queue<socket_type> read_op_queue_;
// The queue of write operations.
reactor_op_queue<socket_type> write_op_queue_;
// The queue of except operations.
reactor_op_queue<socket_type> except_op_queue_;
// The timer queues.
std::vector<timer_queue_base*> timer_queues_;
// A copy of the timer queues, used when cleaning up timers. The copy is
// stored as a class data member to avoid unnecessary memory allocation.
std::vector<timer_queue_base*> timer_queues_for_cleanup_;
// The descriptors that are pending cancellation.
std::vector<socket_type> pending_cancellations_;
// Does the reactor loop thread need to stop.
bool stop_thread_;
// The thread that is running the reactor loop.
boost::asio::detail::thread* thread_;
// Whether the service has been shut down.
bool shutdown_;
// Whether we need to call kqueue the next time the reactor is run.
bool need_kqueue_wait_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_ASIO_HAS_KQUEUE)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_KQUEUE_REACTOR_HPP

View File

@@ -0,0 +1,43 @@
//
// kqueue_reactor_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2005 Stefan Arentz (stefan at soze dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_KQUEUE_REACTOR_FWD_HPP
#define BOOST_ASIO_DETAIL_KQUEUE_REACTOR_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#if !defined(BOOST_ASIO_DISABLE_KQUEUE)
#if defined(__MACH__) && defined(__APPLE__)
// Define this to indicate that epoll is supported on the target platform.
#define BOOST_ASIO_HAS_KQUEUE 1
namespace boost {
namespace asio {
namespace detail {
template <bool Own_Thread>
class kqueue_reactor;
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(__MACH__) && defined(__APPLE__)
#endif // !defined(BOOST_ASIO_DISABLE_KQUEUE)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_KQUEUE_REACTOR_FWD_HPP

View File

@@ -0,0 +1,61 @@
//
// local_free_on_block_exit.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_LOCAL_FREE_ON_BLOCK_EXIT_HPP
#define BOOST_ASIO_DETAIL_LOCAL_FREE_ON_BLOCK_EXIT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if defined(BOOST_WINDOWS) || defined(__CYGWIN__)
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/socket_types.hpp>
namespace boost {
namespace asio {
namespace detail {
class local_free_on_block_exit
: private noncopyable
{
public:
// Constructor blocks all signals for the calling thread.
explicit local_free_on_block_exit(void* p)
: p_(p)
{
}
// Destructor restores the previous signal mask.
~local_free_on_block_exit()
{
::LocalFree(p_);
}
private:
void* p_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_WINDOWS) || defined(__CYGWIN__)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_LOCAL_FREE_ON_BLOCK_EXIT_HPP

View File

@@ -0,0 +1,52 @@
//
// mutex.hpp
// ~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_MUTEX_HPP
#define BOOST_ASIO_DETAIL_MUTEX_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if !defined(BOOST_HAS_THREADS)
# include <boost/asio/detail/null_mutex.hpp>
#elif defined(BOOST_WINDOWS)
# include <boost/asio/detail/win_mutex.hpp>
#elif defined(BOOST_HAS_PTHREADS)
# include <boost/asio/detail/posix_mutex.hpp>
#else
# error Only Windows and POSIX are supported!
#endif
namespace boost {
namespace asio {
namespace detail {
#if !defined(BOOST_HAS_THREADS)
typedef null_mutex mutex;
#elif defined(BOOST_WINDOWS)
typedef win_mutex mutex;
#elif defined(BOOST_HAS_PTHREADS)
typedef posix_mutex mutex;
#endif
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_MUTEX_HPP

View File

@@ -0,0 +1,57 @@
//
// noncopyable.hpp
// ~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_NONCOPYABLE_HPP
#define BOOST_ASIO_DETAIL_NONCOPYABLE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/noncopyable.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/asio/detail/pop_options.hpp>
namespace boost {
namespace asio {
namespace detail {
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
// Redefine the noncopyable class for Borland C++ since that compiler does not
// apply the empty base optimisation unless the base class contains a dummy
// char data member.
class noncopyable
{
protected:
noncopyable() {}
~noncopyable() {}
private:
noncopyable(const noncopyable&);
const noncopyable& operator=(const noncopyable&);
char dummy_;
};
#else
using boost::noncopyable;
#endif
} // namespace detail
using boost::asio::detail::noncopyable;
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_NONCOPYABLE_HPP

View File

@@ -0,0 +1,73 @@
//
// null_event.hpp
// ~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_NULL_EVENT_HPP
#define BOOST_ASIO_DETAIL_NULL_EVENT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if !defined(BOOST_HAS_THREADS)
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
namespace detail {
class null_event
: private noncopyable
{
public:
// Constructor.
null_event()
{
}
// Destructor.
~null_event()
{
}
// Signal the event.
template <typename Lock>
void signal(Lock&)
{
}
// Reset the event.
template <typename Lock>
void clear(Lock&)
{
}
// Wait for the event to become signalled.
template <typename Lock>
void wait(Lock&)
{
}
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // !defined(BOOST_HAS_THREADS)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_NULL_EVENT_HPP

View File

@@ -0,0 +1,68 @@
//
// null_mutex.hpp
// ~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_NULL_MUTEX_HPP
#define BOOST_ASIO_DETAIL_NULL_MUTEX_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if !defined(BOOST_HAS_THREADS)
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/scoped_lock.hpp>
namespace boost {
namespace asio {
namespace detail {
class null_mutex
: private noncopyable
{
public:
typedef boost::asio::detail::scoped_lock<null_mutex> scoped_lock;
// Constructor.
null_mutex()
{
}
// Destructor.
~null_mutex()
{
}
// Lock the mutex.
void lock()
{
}
// Unlock the mutex.
void unlock()
{
}
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // !defined(BOOST_HAS_THREADS)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_NULL_MUTEX_HPP

View File

@@ -0,0 +1,65 @@
//
// null_signal_blocker.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_NULL_SIGNAL_BLOCKER_HPP
#define BOOST_ASIO_DETAIL_NULL_SIGNAL_BLOCKER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if !defined(BOOST_HAS_THREADS)
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
namespace detail {
class null_signal_blocker
: private noncopyable
{
public:
// Constructor blocks all signals for the calling thread.
null_signal_blocker()
{
}
// Destructor restores the previous signal mask.
~null_signal_blocker()
{
}
// Block all signals for the calling thread.
void block()
{
}
// Restore the previous signal mask.
void unblock()
{
}
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // !defined(BOOST_HAS_THREADS)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_NULL_SIGNAL_BLOCKER_HPP

View File

@@ -0,0 +1,70 @@
//
// null_thread.hpp
// ~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_NULL_THREAD_HPP
#define BOOST_ASIO_DETAIL_NULL_THREAD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if !defined(BOOST_HAS_THREADS)
#include <boost/asio/detail/push_options.hpp>
#include <boost/throw_exception.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
namespace detail {
class null_thread
: private noncopyable
{
public:
// Constructor.
template <typename Function>
null_thread(Function f)
{
boost::system::system_error e(
boost::asio::error::operation_not_supported, "thread");
boost::throw_exception(e);
}
// Destructor.
~null_thread()
{
}
// Wait for the thread to exit.
void join()
{
}
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // !defined(BOOST_HAS_THREADS)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_NULL_THREAD_HPP

View File

@@ -0,0 +1,72 @@
//
// null_tss_ptr.hpp
// ~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_NULL_TSS_PTR_HPP
#define BOOST_ASIO_DETAIL_NULL_TSS_PTR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if !defined(BOOST_HAS_THREADS)
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
namespace detail {
template <typename T>
class null_tss_ptr
: private noncopyable
{
public:
// Constructor.
null_tss_ptr()
: value_(0)
{
}
// Destructor.
~null_tss_ptr()
{
}
// Get the value.
operator T*() const
{
return value_;
}
// Set the value.
void operator=(T* value)
{
value_ = value;
}
private:
T* value_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // !defined(BOOST_HAS_THREADS)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_NULL_TSS_PTR_HPP

View File

@@ -0,0 +1,342 @@
//
// old_win_sdk_compat.hpp
// ~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_OLD_WIN_SDK_COMPAT_HPP
#define BOOST_ASIO_DETAIL_OLD_WIN_SDK_COMPAT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if defined(BOOST_WINDOWS) || defined(__CYGWIN__)
// Guess whether we are building against on old Platform SDK.
#if !defined(IN6ADDR_ANY_INIT)
#define BOOST_ASIO_HAS_OLD_WIN_SDK 1
#endif // !defined(IN6ADDR_ANY_INIT)
#if defined(BOOST_ASIO_HAS_OLD_WIN_SDK)
// Emulation of types that are missing from old Platform SDKs.
//
// N.B. this emulation is also used if building for a Windows 2000 target with
// a recent (i.e. Vista or later) SDK, as the SDK does not provide IPv6 support
// in that case.
namespace boost {
namespace asio {
namespace detail {
enum
{
sockaddr_storage_maxsize = 128, // Maximum size.
sockaddr_storage_alignsize = (sizeof(__int64)), // Desired alignment.
sockaddr_storage_pad1size = (sockaddr_storage_alignsize - sizeof(short)),
sockaddr_storage_pad2size = (sockaddr_storage_maxsize -
(sizeof(short) + sockaddr_storage_pad1size + sockaddr_storage_alignsize))
};
struct sockaddr_storage_emulation
{
short ss_family;
char __ss_pad1[sockaddr_storage_pad1size];
__int64 __ss_align;
char __ss_pad2[sockaddr_storage_pad2size];
};
struct in6_addr_emulation
{
union
{
u_char Byte[16];
u_short Word[8];
} u;
};
#if !defined(s6_addr)
# define _S6_un u
# define _S6_u8 Byte
# define s6_addr _S6_un._S6_u8
#endif // !defined(s6_addr)
struct sockaddr_in6_emulation
{
short sin6_family;
u_short sin6_port;
u_long sin6_flowinfo;
in6_addr_emulation sin6_addr;
u_long sin6_scope_id;
};
struct ipv6_mreq_emulation
{
in6_addr_emulation ipv6mr_multiaddr;
unsigned int ipv6mr_interface;
};
#if !defined(IN6ADDR_ANY_INIT)
# define IN6ADDR_ANY_INIT { 0 }
#endif
#if !defined(IN6ADDR_LOOPBACK_INIT)
# define IN6ADDR_LOOPBACK_INIT { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 }
#endif
struct addrinfo_emulation
{
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
size_t ai_addrlen;
char* ai_canonname;
sockaddr* ai_addr;
addrinfo_emulation* ai_next;
};
#if !defined(AI_PASSIVE)
# define AI_PASSIVE 0x1
#endif
#if !defined(AI_CANONNAME)
# define AI_CANONNAME 0x2
#endif
#if !defined(AI_NUMERICHOST)
# define AI_NUMERICHOST 0x4
#endif
#if !defined(EAI_AGAIN)
# define EAI_AGAIN WSATRY_AGAIN
#endif
#if !defined(EAI_BADFLAGS)
# define EAI_BADFLAGS WSAEINVAL
#endif
#if !defined(EAI_FAIL)
# define EAI_FAIL WSANO_RECOVERY
#endif
#if !defined(EAI_FAMILY)
# define EAI_FAMILY WSAEAFNOSUPPORT
#endif
#if !defined(EAI_MEMORY)
# define EAI_MEMORY WSA_NOT_ENOUGH_MEMORY
#endif
#if !defined(EAI_NODATA)
# define EAI_NODATA WSANO_DATA
#endif
#if !defined(EAI_NONAME)
# define EAI_NONAME WSAHOST_NOT_FOUND
#endif
#if !defined(EAI_SERVICE)
# define EAI_SERVICE WSATYPE_NOT_FOUND
#endif
#if !defined(EAI_SOCKTYPE)
# define EAI_SOCKTYPE WSAESOCKTNOSUPPORT
#endif
#if !defined(NI_NOFQDN)
# define NI_NOFQDN 0x01
#endif
#if !defined(NI_NUMERICHOST)
# define NI_NUMERICHOST 0x02
#endif
#if !defined(NI_NAMEREQD)
# define NI_NAMEREQD 0x04
#endif
#if !defined(NI_NUMERICSERV)
# define NI_NUMERICSERV 0x08
#endif
#if !defined(NI_DGRAM)
# define NI_DGRAM 0x10
#endif
#if !defined(IPPROTO_IPV6)
# define IPPROTO_IPV6 41
#endif
#if !defined(IPV6_UNICAST_HOPS)
# define IPV6_UNICAST_HOPS 4
#endif
#if !defined(IPV6_MULTICAST_IF)
# define IPV6_MULTICAST_IF 9
#endif
#if !defined(IPV6_MULTICAST_HOPS)
# define IPV6_MULTICAST_HOPS 10
#endif
#if !defined(IPV6_MULTICAST_LOOP)
# define IPV6_MULTICAST_LOOP 11
#endif
#if !defined(IPV6_JOIN_GROUP)
# define IPV6_JOIN_GROUP 12
#endif
#if !defined(IPV6_LEAVE_GROUP)
# define IPV6_LEAVE_GROUP 13
#endif
inline int IN6_IS_ADDR_UNSPECIFIED(const in6_addr_emulation* a)
{
return ((a->s6_addr[0] == 0)
&& (a->s6_addr[1] == 0)
&& (a->s6_addr[2] == 0)
&& (a->s6_addr[3] == 0)
&& (a->s6_addr[4] == 0)
&& (a->s6_addr[5] == 0)
&& (a->s6_addr[6] == 0)
&& (a->s6_addr[7] == 0)
&& (a->s6_addr[8] == 0)
&& (a->s6_addr[9] == 0)
&& (a->s6_addr[10] == 0)
&& (a->s6_addr[11] == 0)
&& (a->s6_addr[12] == 0)
&& (a->s6_addr[13] == 0)
&& (a->s6_addr[14] == 0)
&& (a->s6_addr[15] == 0));
}
inline int IN6_IS_ADDR_LOOPBACK(const in6_addr_emulation* a)
{
return ((a->s6_addr[0] == 0)
&& (a->s6_addr[1] == 0)
&& (a->s6_addr[2] == 0)
&& (a->s6_addr[3] == 0)
&& (a->s6_addr[4] == 0)
&& (a->s6_addr[5] == 0)
&& (a->s6_addr[6] == 0)
&& (a->s6_addr[7] == 0)
&& (a->s6_addr[8] == 0)
&& (a->s6_addr[9] == 0)
&& (a->s6_addr[10] == 0)
&& (a->s6_addr[11] == 0)
&& (a->s6_addr[12] == 0)
&& (a->s6_addr[13] == 0)
&& (a->s6_addr[14] == 0)
&& (a->s6_addr[15] == 1));
}
inline int IN6_IS_ADDR_MULTICAST(const in6_addr_emulation* a)
{
return (a->s6_addr[0] == 0xff);
}
inline int IN6_IS_ADDR_LINKLOCAL(const in6_addr_emulation* a)
{
return ((a->s6_addr[0] == 0xfe) && ((a->s6_addr[1] & 0xc0) == 0x80));
}
inline int IN6_IS_ADDR_SITELOCAL(const in6_addr_emulation* a)
{
return ((a->s6_addr[0] == 0xfe) && ((a->s6_addr[1] & 0xc0) == 0xc0));
}
inline int IN6_IS_ADDR_V4MAPPED(const in6_addr_emulation* a)
{
return ((a->s6_addr[0] == 0)
&& (a->s6_addr[1] == 0)
&& (a->s6_addr[2] == 0)
&& (a->s6_addr[3] == 0)
&& (a->s6_addr[4] == 0)
&& (a->s6_addr[5] == 0)
&& (a->s6_addr[6] == 0)
&& (a->s6_addr[7] == 0)
&& (a->s6_addr[8] == 0)
&& (a->s6_addr[9] == 0)
&& (a->s6_addr[10] == 0xff)
&& (a->s6_addr[11] == 0xff));
}
inline int IN6_IS_ADDR_V4COMPAT(const in6_addr_emulation* a)
{
return ((a->s6_addr[0] == 0)
&& (a->s6_addr[1] == 0)
&& (a->s6_addr[2] == 0)
&& (a->s6_addr[3] == 0)
&& (a->s6_addr[4] == 0)
&& (a->s6_addr[5] == 0)
&& (a->s6_addr[6] == 0)
&& (a->s6_addr[7] == 0)
&& (a->s6_addr[8] == 0)
&& (a->s6_addr[9] == 0)
&& (a->s6_addr[10] == 0xff)
&& (a->s6_addr[11] == 0xff)
&& !((a->s6_addr[12] == 0)
&& (a->s6_addr[13] == 0)
&& (a->s6_addr[14] == 0)
&& ((a->s6_addr[15] == 0) || (a->s6_addr[15] == 1))));
}
inline int IN6_IS_ADDR_MC_NODELOCAL(const in6_addr_emulation* a)
{
return IN6_IS_ADDR_MULTICAST(a) && ((a->s6_addr[1] & 0xf) == 1);
}
inline int IN6_IS_ADDR_MC_LINKLOCAL(const in6_addr_emulation* a)
{
return IN6_IS_ADDR_MULTICAST(a) && ((a->s6_addr[1] & 0xf) == 2);
}
inline int IN6_IS_ADDR_MC_SITELOCAL(const in6_addr_emulation* a)
{
return IN6_IS_ADDR_MULTICAST(a) && ((a->s6_addr[1] & 0xf) == 5);
}
inline int IN6_IS_ADDR_MC_ORGLOCAL(const in6_addr_emulation* a)
{
return IN6_IS_ADDR_MULTICAST(a) && ((a->s6_addr[1] & 0xf) == 8);
}
inline int IN6_IS_ADDR_MC_GLOBAL(const in6_addr_emulation* a)
{
return IN6_IS_ADDR_MULTICAST(a) && ((a->s6_addr[1] & 0xf) == 0xe);
}
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_ASIO_HAS_OLD_WIN_SDK)
// Even newer Platform SDKs that support IPv6 may not define IPV6_V6ONLY.
#if !defined(IPV6_V6ONLY)
# define IPV6_V6ONLY 27
#endif
// Some SDKs (e.g. Windows CE) don't define IPPROTO_ICMPV6.
#if !defined(IPPROTO_ICMPV6)
# define IPPROTO_ICMPV6 58
#endif
#endif // defined(BOOST_WINDOWS) || defined(__CYGWIN__)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_OLD_WIN_SDK_COMPAT_HPP

View File

@@ -0,0 +1,117 @@
//
// pipe_select_interrupter.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_PIPE_SELECT_INTERRUPTER_HPP
#define BOOST_ASIO_DETAIL_PIPE_SELECT_INTERRUPTER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/throw_exception.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if !defined(BOOST_WINDOWS) && !defined(__CYGWIN__)
#include <boost/asio/detail/push_options.hpp>
#include <fcntl.h>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/socket_types.hpp>
namespace boost {
namespace asio {
namespace detail {
class pipe_select_interrupter
{
public:
// Constructor.
pipe_select_interrupter()
{
int pipe_fds[2];
if (pipe(pipe_fds) == 0)
{
read_descriptor_ = pipe_fds[0];
::fcntl(read_descriptor_, F_SETFL, O_NONBLOCK);
write_descriptor_ = pipe_fds[1];
::fcntl(write_descriptor_, F_SETFL, O_NONBLOCK);
}
else
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
boost::system::system_error e(ec, "pipe_select_interrupter");
boost::throw_exception(e);
}
}
// Destructor.
~pipe_select_interrupter()
{
if (read_descriptor_ != -1)
::close(read_descriptor_);
if (write_descriptor_ != -1)
::close(write_descriptor_);
}
// Interrupt the select call.
void interrupt()
{
char byte = 0;
int result = ::write(write_descriptor_, &byte, 1);
(void)result;
}
// Reset the select interrupt. Returns true if the call was interrupted.
bool reset()
{
char data[1024];
int bytes_read = ::read(read_descriptor_, data, sizeof(data));
bool was_interrupted = (bytes_read > 0);
while (bytes_read == sizeof(data))
bytes_read = ::read(read_descriptor_, data, sizeof(data));
return was_interrupted;
}
// Get the read descriptor to be passed to select.
int read_descriptor() const
{
return read_descriptor_;
}
private:
// The read end of a connection used to interrupt the select call. This file
// descriptor is passed to select such that when it is time to stop, a single
// byte will be written on the other end of the connection and this
// descriptor will become readable.
int read_descriptor_;
// The write end of a connection used to interrupt the select call. A single
// byte may be written to this to wake up the select which is waiting for the
// other end to become readable.
int write_descriptor_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // !defined(BOOST_WINDOWS) && !defined(__CYGWIN__)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_PIPE_SELECT_INTERRUPTER_HPP

View File

@@ -0,0 +1,88 @@
//
// pop_options.hpp
// ~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// No header guard
#if defined(__COMO__)
// Comeau C++
#elif defined(__DMC__)
// Digital Mars C++
#elif defined(__INTEL_COMPILER) || defined(__ICL) \
|| defined(__ICC) || defined(__ECC)
// Intel C++
#elif defined(__GNUC__)
// GNU C++
# if defined(__MINGW32__) || defined(__CYGWIN__)
# pragma pack (pop)
# endif
#elif defined(__KCC)
// Kai C++
#elif defined(__sgi)
// SGI MIPSpro C++
#elif defined(__DECCXX)
// Compaq Tru64 Unix cxx
#elif defined(__ghs)
// Greenhills C++
#elif defined(__BORLANDC__)
// Borland C++
# pragma option pop
# pragma nopushoptwarn
# pragma nopackwarning
#elif defined(__MWERKS__)
// Metrowerks CodeWarrior
#elif defined(__SUNPRO_CC)
// Sun Workshop Compiler C++
#elif defined(__HP_aCC)
// HP aCC
#elif defined(__MRC__) || defined(__SC__)
// MPW MrCpp or SCpp
#elif defined(__IBMCPP__)
// IBM Visual Age
#elif defined(_MSC_VER)
// Microsoft Visual C++
//
// Must remain the last #elif since some other vendors (Metrowerks, for example)
// also #define _MSC_VER
# pragma warning (pop)
# pragma pack (pop)
#endif

View File

@@ -0,0 +1,106 @@
//
// posix_event.hpp
// ~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_POSIX_EVENT_HPP
#define BOOST_ASIO_DETAIL_POSIX_EVENT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if defined(BOOST_HAS_PTHREADS)
#include <boost/asio/detail/push_options.hpp>
#include <boost/assert.hpp>
#include <boost/throw_exception.hpp>
#include <pthread.h>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
namespace detail {
class posix_event
: private noncopyable
{
public:
// Constructor.
posix_event()
: signalled_(false)
{
int error = ::pthread_cond_init(&cond_, 0);
if (error != 0)
{
boost::system::system_error e(
boost::system::error_code(error,
boost::asio::error::get_system_category()),
"event");
boost::throw_exception(e);
}
}
// Destructor.
~posix_event()
{
::pthread_cond_destroy(&cond_);
}
// Signal the event.
template <typename Lock>
void signal(Lock& lock)
{
BOOST_ASSERT(lock.locked());
(void)lock;
signalled_ = true;
::pthread_cond_signal(&cond_); // Ignore EINVAL.
}
// Reset the event.
template <typename Lock>
void clear(Lock& lock)
{
BOOST_ASSERT(lock.locked());
(void)lock;
signalled_ = false;
}
// Wait for the event to become signalled.
template <typename Lock>
void wait(Lock& lock)
{
BOOST_ASSERT(lock.locked());
while (!signalled_)
::pthread_cond_wait(&cond_, &lock.mutex().mutex_); // Ignore EINVAL.
}
private:
::pthread_cond_t cond_;
bool signalled_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_HAS_PTHREADS)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_POSIX_EVENT_HPP

View File

@@ -0,0 +1,83 @@
//
// posix_fd_set_adapter.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_POSIX_FD_SET_ADAPTER_HPP
#define BOOST_ASIO_DETAIL_POSIX_FD_SET_ADAPTER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstring>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/detail/socket_types.hpp>
#if !defined(BOOST_WINDOWS) && !defined(__CYGWIN__)
namespace boost {
namespace asio {
namespace detail {
// Adapts the FD_SET type to meet the Descriptor_Set concept's requirements.
class posix_fd_set_adapter
{
public:
posix_fd_set_adapter()
: max_descriptor_(invalid_socket)
{
using namespace std; // Needed for memset on Solaris.
FD_ZERO(&fd_set_);
}
bool set(socket_type descriptor)
{
if (descriptor < (socket_type)FD_SETSIZE)
{
if (max_descriptor_ == invalid_socket || descriptor > max_descriptor_)
max_descriptor_ = descriptor;
FD_SET(descriptor, &fd_set_);
return true;
}
return false;
}
bool is_set(socket_type descriptor) const
{
return FD_ISSET(descriptor, &fd_set_) != 0;
}
operator fd_set*()
{
return &fd_set_;
}
socket_type max_descriptor() const
{
return max_descriptor_;
}
private:
mutable fd_set fd_set_;
socket_type max_descriptor_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // !defined(BOOST_WINDOWS) && !defined(__CYGWIN__)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_POSIX_FD_SET_ADAPTER_HPP

View File

@@ -0,0 +1,109 @@
//
// posix_mutex.hpp
// ~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_POSIX_MUTEX_HPP
#define BOOST_ASIO_DETAIL_POSIX_MUTEX_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if defined(BOOST_HAS_PTHREADS)
#include <boost/asio/detail/push_options.hpp>
#include <boost/throw_exception.hpp>
#include <pthread.h>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/scoped_lock.hpp>
namespace boost {
namespace asio {
namespace detail {
class posix_event;
class posix_mutex
: private noncopyable
{
public:
typedef boost::asio::detail::scoped_lock<posix_mutex> scoped_lock;
// Constructor.
posix_mutex()
{
int error = ::pthread_mutex_init(&mutex_, 0);
if (error != 0)
{
boost::system::system_error e(
boost::system::error_code(error,
boost::asio::error::get_system_category()),
"mutex");
boost::throw_exception(e);
}
}
// Destructor.
~posix_mutex()
{
::pthread_mutex_destroy(&mutex_);
}
// Lock the mutex.
void lock()
{
int error = ::pthread_mutex_lock(&mutex_);
if (error != 0)
{
boost::system::system_error e(
boost::system::error_code(error,
boost::asio::error::get_system_category()),
"mutex");
boost::throw_exception(e);
}
}
// Unlock the mutex.
void unlock()
{
int error = ::pthread_mutex_unlock(&mutex_);
if (error != 0)
{
boost::system::system_error e(
boost::system::error_code(error,
boost::asio::error::get_system_category()),
"mutex");
boost::throw_exception(e);
}
}
private:
friend class posix_event;
::pthread_mutex_t mutex_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_HAS_PTHREADS)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_POSIX_MUTEX_HPP

View File

@@ -0,0 +1,92 @@
//
// posix_signal_blocker.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_POSIX_SIGNAL_BLOCKER_HPP
#define BOOST_ASIO_DETAIL_POSIX_SIGNAL_BLOCKER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if defined(BOOST_HAS_PTHREADS)
#include <boost/asio/detail/push_options.hpp>
#include <csignal>
#include <pthread.h>
#include <signal.h>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
namespace detail {
class posix_signal_blocker
: private noncopyable
{
public:
// Constructor blocks all signals for the calling thread.
posix_signal_blocker()
: blocked_(false)
{
sigset_t new_mask;
sigfillset(&new_mask);
blocked_ = (pthread_sigmask(SIG_BLOCK, &new_mask, &old_mask_) == 0);
}
// Destructor restores the previous signal mask.
~posix_signal_blocker()
{
if (blocked_)
pthread_sigmask(SIG_SETMASK, &old_mask_, 0);
}
// Block all signals for the calling thread.
void block()
{
if (!blocked_)
{
sigset_t new_mask;
sigfillset(&new_mask);
blocked_ = (pthread_sigmask(SIG_BLOCK, &new_mask, &old_mask_) == 0);
}
}
// Restore the previous signal mask.
void unblock()
{
if (blocked_)
blocked_ = (pthread_sigmask(SIG_SETMASK, &old_mask_, 0) != 0);
}
private:
// Have signals been blocked.
bool blocked_;
// The previous signal mask.
sigset_t old_mask_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_HAS_PTHREADS)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_POSIX_SIGNAL_BLOCKER_HPP

View File

@@ -0,0 +1,131 @@
//
// posix_thread.hpp
// ~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_POSIX_THREAD_HPP
#define BOOST_ASIO_DETAIL_POSIX_THREAD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if defined(BOOST_HAS_PTHREADS)
#include <boost/asio/detail/push_options.hpp>
#include <memory>
#include <boost/throw_exception.hpp>
#include <pthread.h>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
namespace detail {
extern "C" void* asio_detail_posix_thread_function(void* arg);
class posix_thread
: private noncopyable
{
public:
// Constructor.
template <typename Function>
posix_thread(Function f)
: joined_(false)
{
std::auto_ptr<func_base> arg(new func<Function>(f));
int error = ::pthread_create(&thread_, 0,
asio_detail_posix_thread_function, arg.get());
if (error != 0)
{
boost::system::system_error e(
boost::system::error_code(error,
boost::asio::error::get_system_category()),
"thread");
boost::throw_exception(e);
}
arg.release();
}
// Destructor.
~posix_thread()
{
if (!joined_)
::pthread_detach(thread_);
}
// Wait for the thread to exit.
void join()
{
if (!joined_)
{
::pthread_join(thread_, 0);
joined_ = true;
}
}
private:
friend void* asio_detail_posix_thread_function(void* arg);
class func_base
{
public:
virtual ~func_base() {}
virtual void run() = 0;
};
template <typename Function>
class func
: public func_base
{
public:
func(Function f)
: f_(f)
{
}
virtual void run()
{
f_();
}
private:
Function f_;
};
::pthread_t thread_;
bool joined_;
};
inline void* asio_detail_posix_thread_function(void* arg)
{
std::auto_ptr<posix_thread::func_base> f(
static_cast<posix_thread::func_base*>(arg));
f->run();
return 0;
}
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_HAS_PTHREADS)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_POSIX_THREAD_HPP

View File

@@ -0,0 +1,90 @@
//
// posix_tss_ptr.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_POSIX_TSS_PTR_HPP
#define BOOST_ASIO_DETAIL_POSIX_TSS_PTR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if defined(BOOST_HAS_PTHREADS)
#include <boost/asio/detail/push_options.hpp>
#include <boost/throw_exception.hpp>
#include <pthread.h>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
namespace detail {
template <typename T>
class posix_tss_ptr
: private noncopyable
{
public:
// Constructor.
posix_tss_ptr()
{
int error = ::pthread_key_create(&tss_key_, 0);
if (error != 0)
{
boost::system::system_error e(
boost::system::error_code(error,
boost::asio::error::get_system_category()),
"tss");
boost::throw_exception(e);
}
}
// Destructor.
~posix_tss_ptr()
{
::pthread_key_delete(tss_key_);
}
// Get the value.
operator T*() const
{
return static_cast<T*>(::pthread_getspecific(tss_key_));
}
// Set the value.
void operator=(T* value)
{
::pthread_setspecific(tss_key_, value);
}
private:
// Thread-specific storage to allow unlocked access to determine whether a
// thread is a member of the pool.
pthread_key_t tss_key_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_HAS_PTHREADS)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_POSIX_TSS_PTR_HPP

View File

@@ -0,0 +1,114 @@
//
// push_options.hpp
// ~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// No header guard
#if defined(__COMO__)
// Comeau C++
#elif defined(__DMC__)
// Digital Mars C++
#elif defined(__INTEL_COMPILER) || defined(__ICL) \
|| defined(__ICC) || defined(__ECC)
// Intel C++
#elif defined(__GNUC__)
// GNU C++
# if defined(__MINGW32__) || defined(__CYGWIN__)
# pragma pack (push, 8)
# endif
#elif defined(__KCC)
// Kai C++
#elif defined(__sgi)
// SGI MIPSpro C++
#elif defined(__DECCXX)
// Compaq Tru64 Unix cxx
#elif defined(__ghs)
// Greenhills C++
#elif defined(__BORLANDC__)
// Borland C++
# pragma option push -a8 -b -Ve- -Vx- -w-inl -vi-
# pragma nopushoptwarn
# pragma nopackwarning
# if !defined(__MT__)
# error Multithreaded RTL must be selected.
# endif // !defined(__MT__)
#elif defined(__MWERKS__)
// Metrowerks CodeWarrior
#elif defined(__SUNPRO_CC)
// Sun Workshop Compiler C++
#elif defined(__HP_aCC)
// HP aCC
#elif defined(__MRC__) || defined(__SC__)
// MPW MrCpp or SCpp
#elif defined(__IBMCPP__)
// IBM Visual Age
#elif defined(_MSC_VER)
// Microsoft Visual C++
//
// Must remain the last #elif since some other vendors (Metrowerks, for example)
// also #define _MSC_VER
# pragma warning (disable:4103)
# pragma warning (push)
# pragma warning (disable:4127)
# pragma warning (disable:4244)
# pragma warning (disable:4355)
# pragma warning (disable:4512)
# pragma warning (disable:4675)
# if defined(_M_IX86) && defined(_Wp64)
// The /Wp64 option is broken. If you want to check 64 bit portability, use a
// 64 bit compiler!
# pragma warning (disable:4311)
# pragma warning (disable:4312)
# endif // defined(_M_IX86) && defined(_Wp64)
# pragma pack (push, 8)
// Note that if the /Og optimisation flag is enabled with MSVC6, the compiler
// has a tendency to incorrectly optimise away some calls to member template
// functions, even though those functions contain code that should not be
// optimised away! Therefore we will always disable this optimisation option
// for the MSVC6 compiler.
# if (_MSC_VER < 1300)
# pragma optimize ("g", off)
# endif
# if !defined(_MT)
# error Multithreaded RTL must be selected.
# endif // !defined(_MT)
#endif

View File

@@ -0,0 +1,712 @@
//
// reactive_descriptor_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_REACTIVE_DESCRIPTOR_SERVICE_HPP
#define BOOST_ASIO_DETAIL_REACTIVE_DESCRIPTOR_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/buffer.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/bind_handler.hpp>
#include <boost/asio/detail/handler_base_from_member.hpp>
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/service_base.hpp>
#include <boost/asio/detail/descriptor_ops.hpp>
#if !defined(BOOST_WINDOWS) && !defined(__CYGWIN__)
namespace boost {
namespace asio {
namespace detail {
template <typename Reactor>
class reactive_descriptor_service
: public boost::asio::detail::service_base<
reactive_descriptor_service<Reactor> >
{
public:
// The native type of a descriptor.
typedef int native_type;
// The implementation type of the descriptor.
class implementation_type
: private boost::asio::detail::noncopyable
{
public:
// Default constructor.
implementation_type()
: descriptor_(-1),
flags_(0)
{
}
private:
// Only this service will have access to the internal values.
friend class reactive_descriptor_service<Reactor>;
// The native descriptor representation.
int descriptor_;
enum
{
user_set_non_blocking = 1, // The user wants a non-blocking descriptor.
internal_non_blocking = 2 // The descriptor has been set non-blocking.
};
// Flags indicating the current state of the descriptor.
unsigned char flags_;
// Per-descriptor data used by the reactor.
typename Reactor::per_descriptor_data reactor_data_;
};
// The maximum number of buffers to support in a single operation.
enum { max_buffers = 64 < max_iov_len ? 64 : max_iov_len };
// Constructor.
reactive_descriptor_service(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<
reactive_descriptor_service<Reactor> >(io_service),
reactor_(boost::asio::use_service<Reactor>(io_service))
{
reactor_.init_task();
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
}
// Construct a new descriptor implementation.
void construct(implementation_type& impl)
{
impl.descriptor_ = -1;
impl.flags_ = 0;
}
// Destroy a descriptor implementation.
void destroy(implementation_type& impl)
{
if (impl.descriptor_ != -1)
{
reactor_.close_descriptor(impl.descriptor_, impl.reactor_data_);
if (impl.flags_ & implementation_type::internal_non_blocking)
{
ioctl_arg_type non_blocking = 0;
boost::system::error_code ignored_ec;
descriptor_ops::ioctl(impl.descriptor_,
FIONBIO, &non_blocking, ignored_ec);
impl.flags_ &= ~implementation_type::internal_non_blocking;
}
boost::system::error_code ignored_ec;
descriptor_ops::close(impl.descriptor_, ignored_ec);
impl.descriptor_ = -1;
}
}
// Assign a native descriptor to a descriptor implementation.
boost::system::error_code assign(implementation_type& impl,
const native_type& native_descriptor, boost::system::error_code& ec)
{
if (is_open(impl))
{
ec = boost::asio::error::already_open;
return ec;
}
if (int err = reactor_.register_descriptor(
native_descriptor, impl.reactor_data_))
{
ec = boost::system::error_code(err,
boost::asio::error::get_system_category());
return ec;
}
impl.descriptor_ = native_descriptor;
impl.flags_ = 0;
ec = boost::system::error_code();
return ec;
}
// Determine whether the descriptor is open.
bool is_open(const implementation_type& impl) const
{
return impl.descriptor_ != -1;
}
// Destroy a descriptor implementation.
boost::system::error_code close(implementation_type& impl,
boost::system::error_code& ec)
{
if (is_open(impl))
{
reactor_.close_descriptor(impl.descriptor_, impl.reactor_data_);
if (impl.flags_ & implementation_type::internal_non_blocking)
{
ioctl_arg_type non_blocking = 0;
boost::system::error_code ignored_ec;
descriptor_ops::ioctl(impl.descriptor_,
FIONBIO, &non_blocking, ignored_ec);
impl.flags_ &= ~implementation_type::internal_non_blocking;
}
if (descriptor_ops::close(impl.descriptor_, ec) == -1)
return ec;
impl.descriptor_ = -1;
}
ec = boost::system::error_code();
return ec;
}
// Get the native descriptor representation.
native_type native(const implementation_type& impl) const
{
return impl.descriptor_;
}
// Cancel all operations associated with the descriptor.
boost::system::error_code cancel(implementation_type& impl,
boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return ec;
}
reactor_.cancel_ops(impl.descriptor_, impl.reactor_data_);
ec = boost::system::error_code();
return ec;
}
// Perform an IO control command on the descriptor.
template <typename IO_Control_Command>
boost::system::error_code io_control(implementation_type& impl,
IO_Control_Command& command, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return ec;
}
if (command.name() == static_cast<int>(FIONBIO))
{
if (command.get())
impl.flags_ |= implementation_type::user_set_non_blocking;
else
impl.flags_ &= ~implementation_type::user_set_non_blocking;
ec = boost::system::error_code();
}
else
{
descriptor_ops::ioctl(impl.descriptor_, command.name(),
static_cast<ioctl_arg_type*>(command.data()), ec);
}
return ec;
}
// Write some data to the descriptor.
template <typename ConstBufferSequence>
size_t write_some(implementation_type& impl,
const ConstBufferSequence& buffers, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return 0;
}
// Copy buffers into array.
descriptor_ops::buf bufs[max_buffers];
typename ConstBufferSequence::const_iterator iter = buffers.begin();
typename ConstBufferSequence::const_iterator end = buffers.end();
size_t i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
boost::asio::const_buffer buffer(*iter);
descriptor_ops::init_buf(bufs[i],
boost::asio::buffer_cast<const void*>(buffer),
boost::asio::buffer_size(buffer));
total_buffer_size += boost::asio::buffer_size(buffer);
}
// A request to read_some 0 bytes on a stream is a no-op.
if (total_buffer_size == 0)
{
ec = boost::system::error_code();
return 0;
}
// Make descriptor non-blocking if user wants non-blocking.
if (impl.flags_ & implementation_type::user_set_non_blocking)
{
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
ioctl_arg_type non_blocking = 1;
if (descriptor_ops::ioctl(impl.descriptor_,
FIONBIO, &non_blocking, ec))
return 0;
impl.flags_ |= implementation_type::internal_non_blocking;
}
}
// Send the data.
for (;;)
{
// Try to complete the operation without blocking.
int bytes_sent = descriptor_ops::gather_write(
impl.descriptor_, bufs, i, ec);
// Check if operation succeeded.
if (bytes_sent >= 0)
return bytes_sent;
// Operation failed.
if ((impl.flags_ & implementation_type::user_set_non_blocking)
|| (ec != boost::asio::error::would_block
&& ec != boost::asio::error::try_again))
return 0;
// Wait for descriptor to become ready.
if (descriptor_ops::poll_write(impl.descriptor_, ec) < 0)
return 0;
}
}
// Wait until data can be written without blocking.
size_t write_some(implementation_type& impl,
const null_buffers&, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return 0;
}
// Wait for descriptor to become ready.
descriptor_ops::poll_write(impl.descriptor_, ec);
return 0;
}
template <typename ConstBufferSequence, typename Handler>
class write_operation :
public handler_base_from_member<Handler>
{
public:
write_operation(int descriptor, boost::asio::io_service& io_service,
const ConstBufferSequence& buffers, Handler handler)
: handler_base_from_member<Handler>(handler),
descriptor_(descriptor),
io_service_(io_service),
work_(io_service),
buffers_(buffers)
{
}
bool perform(boost::system::error_code& ec,
std::size_t& bytes_transferred)
{
// Check whether the operation was successful.
if (ec)
{
bytes_transferred = 0;
return true;
}
// Copy buffers into array.
descriptor_ops::buf bufs[max_buffers];
typename ConstBufferSequence::const_iterator iter = buffers_.begin();
typename ConstBufferSequence::const_iterator end = buffers_.end();
size_t i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
boost::asio::const_buffer buffer(*iter);
descriptor_ops::init_buf(bufs[i],
boost::asio::buffer_cast<const void*>(buffer),
boost::asio::buffer_size(buffer));
}
// Write the data.
int bytes = descriptor_ops::gather_write(descriptor_, bufs, i, ec);
// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block
|| ec == boost::asio::error::try_again)
return false;
bytes_transferred = (bytes < 0 ? 0 : bytes);
return true;
}
void complete(const boost::system::error_code& ec,
std::size_t bytes_transferred)
{
io_service_.post(bind_handler(this->handler_, ec, bytes_transferred));
}
private:
int descriptor_;
boost::asio::io_service& io_service_;
boost::asio::io_service::work work_;
ConstBufferSequence buffers_;
};
// Start an asynchronous write. The data being sent must be valid for the
// lifetime of the asynchronous operation.
template <typename ConstBufferSequence, typename Handler>
void async_write_some(implementation_type& impl,
const ConstBufferSequence& buffers, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor, 0));
}
else
{
// Determine total size of buffers.
typename ConstBufferSequence::const_iterator iter = buffers.begin();
typename ConstBufferSequence::const_iterator end = buffers.end();
size_t i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
boost::asio::const_buffer buffer(*iter);
total_buffer_size += boost::asio::buffer_size(buffer);
}
// A request to read_some 0 bytes on a stream is a no-op.
if (total_buffer_size == 0)
{
this->get_io_service().post(bind_handler(handler,
boost::system::error_code(), 0));
return;
}
// Make descriptor non-blocking.
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
ioctl_arg_type non_blocking = 1;
boost::system::error_code ec;
if (descriptor_ops::ioctl(impl.descriptor_, FIONBIO, &non_blocking, ec))
{
this->get_io_service().post(bind_handler(handler, ec, 0));
return;
}
impl.flags_ |= implementation_type::internal_non_blocking;
}
reactor_.start_write_op(impl.descriptor_, impl.reactor_data_,
write_operation<ConstBufferSequence, Handler>(
impl.descriptor_, this->get_io_service(), buffers, handler));
}
}
template <typename Handler>
class null_buffers_operation :
public handler_base_from_member<Handler>
{
public:
null_buffers_operation(boost::asio::io_service& io_service, Handler handler)
: handler_base_from_member<Handler>(handler),
work_(io_service)
{
}
bool perform(boost::system::error_code&,
std::size_t& bytes_transferred)
{
bytes_transferred = 0;
return true;
}
void complete(const boost::system::error_code& ec,
std::size_t bytes_transferred)
{
work_.get_io_service().post(bind_handler(
this->handler_, ec, bytes_transferred));
}
private:
boost::asio::io_service::work work_;
};
// Start an asynchronous wait until data can be written without blocking.
template <typename Handler>
void async_write_some(implementation_type& impl,
const null_buffers&, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor, 0));
}
else
{
reactor_.start_write_op(impl.descriptor_, impl.reactor_data_,
null_buffers_operation<Handler>(this->get_io_service(), handler),
false);
}
}
// Read some data from the stream. Returns the number of bytes read.
template <typename MutableBufferSequence>
size_t read_some(implementation_type& impl,
const MutableBufferSequence& buffers, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return 0;
}
// Copy buffers into array.
descriptor_ops::buf bufs[max_buffers];
typename MutableBufferSequence::const_iterator iter = buffers.begin();
typename MutableBufferSequence::const_iterator end = buffers.end();
size_t i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
boost::asio::mutable_buffer buffer(*iter);
descriptor_ops::init_buf(bufs[i],
boost::asio::buffer_cast<void*>(buffer),
boost::asio::buffer_size(buffer));
total_buffer_size += boost::asio::buffer_size(buffer);
}
// A request to read_some 0 bytes on a stream is a no-op.
if (total_buffer_size == 0)
{
ec = boost::system::error_code();
return 0;
}
// Make descriptor non-blocking if user wants non-blocking.
if (impl.flags_ & implementation_type::user_set_non_blocking)
{
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
ioctl_arg_type non_blocking = 1;
if (descriptor_ops::ioctl(impl.descriptor_, FIONBIO, &non_blocking, ec))
return 0;
impl.flags_ |= implementation_type::internal_non_blocking;
}
}
// Read some data.
for (;;)
{
// Try to complete the operation without blocking.
int bytes_read = descriptor_ops::scatter_read(
impl.descriptor_, bufs, i, ec);
// Check if operation succeeded.
if (bytes_read > 0)
return bytes_read;
// Check for EOF.
if (bytes_read == 0)
{
ec = boost::asio::error::eof;
return 0;
}
// Operation failed.
if ((impl.flags_ & implementation_type::user_set_non_blocking)
|| (ec != boost::asio::error::would_block
&& ec != boost::asio::error::try_again))
return 0;
// Wait for descriptor to become ready.
if (descriptor_ops::poll_read(impl.descriptor_, ec) < 0)
return 0;
}
}
// Wait until data can be read without blocking.
size_t read_some(implementation_type& impl,
const null_buffers&, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return 0;
}
// Wait for descriptor to become ready.
descriptor_ops::poll_read(impl.descriptor_, ec);
return 0;
}
template <typename MutableBufferSequence, typename Handler>
class read_operation :
public handler_base_from_member<Handler>
{
public:
read_operation(int descriptor, boost::asio::io_service& io_service,
const MutableBufferSequence& buffers, Handler handler)
: handler_base_from_member<Handler>(handler),
descriptor_(descriptor),
io_service_(io_service),
work_(io_service),
buffers_(buffers)
{
}
bool perform(boost::system::error_code& ec,
std::size_t& bytes_transferred)
{
// Check whether the operation was successful.
if (ec)
{
bytes_transferred = 0;
return true;
}
// Copy buffers into array.
descriptor_ops::buf bufs[max_buffers];
typename MutableBufferSequence::const_iterator iter = buffers_.begin();
typename MutableBufferSequence::const_iterator end = buffers_.end();
size_t i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
boost::asio::mutable_buffer buffer(*iter);
descriptor_ops::init_buf(bufs[i],
boost::asio::buffer_cast<void*>(buffer),
boost::asio::buffer_size(buffer));
}
// Read some data.
int bytes = descriptor_ops::scatter_read(descriptor_, bufs, i, ec);
if (bytes == 0)
ec = boost::asio::error::eof;
// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block
|| ec == boost::asio::error::try_again)
return false;
bytes_transferred = (bytes < 0 ? 0 : bytes);
return true;
}
void complete(const boost::system::error_code& ec,
std::size_t bytes_transferred)
{
io_service_.post(bind_handler(this->handler_, ec, bytes_transferred));
}
private:
int descriptor_;
boost::asio::io_service& io_service_;
boost::asio::io_service::work work_;
MutableBufferSequence buffers_;
};
// Start an asynchronous read. The buffer for the data being read must be
// valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence, typename Handler>
void async_read_some(implementation_type& impl,
const MutableBufferSequence& buffers, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor, 0));
}
else
{
// Determine total size of buffers.
typename MutableBufferSequence::const_iterator iter = buffers.begin();
typename MutableBufferSequence::const_iterator end = buffers.end();
size_t i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
boost::asio::mutable_buffer buffer(*iter);
total_buffer_size += boost::asio::buffer_size(buffer);
}
// A request to read_some 0 bytes on a stream is a no-op.
if (total_buffer_size == 0)
{
this->get_io_service().post(bind_handler(handler,
boost::system::error_code(), 0));
return;
}
// Make descriptor non-blocking.
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
ioctl_arg_type non_blocking = 1;
boost::system::error_code ec;
if (descriptor_ops::ioctl(impl.descriptor_, FIONBIO, &non_blocking, ec))
{
this->get_io_service().post(bind_handler(handler, ec, 0));
return;
}
impl.flags_ |= implementation_type::internal_non_blocking;
}
reactor_.start_read_op(impl.descriptor_, impl.reactor_data_,
read_operation<MutableBufferSequence, Handler>(
impl.descriptor_, this->get_io_service(), buffers, handler));
}
}
// Wait until data can be read without blocking.
template <typename Handler>
void async_read_some(implementation_type& impl,
const null_buffers&, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor, 0));
}
else
{
reactor_.start_read_op(impl.descriptor_, impl.reactor_data_,
null_buffers_operation<Handler>(this->get_io_service(), handler),
false);
}
}
private:
// The selector that performs event demultiplexing for the service.
Reactor& reactor_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // !defined(BOOST_WINDOWS) && !defined(__CYGWIN__)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_REACTIVE_DESCRIPTOR_SERVICE_HPP

View File

@@ -0,0 +1,270 @@
//
// reactive_serial_port_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2008 Rep Invariant Systems, Inc. (info@repinvariant.com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_REACTIVE_SERIAL_PORT_SERVICE_HPP
#define BOOST_ASIO_DETAIL_REACTIVE_SERIAL_PORT_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstring>
#include <string>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/serial_port_base.hpp>
#if defined(BOOST_ASIO_HAS_SERIAL_PORT) \
&& !defined(BOOST_WINDOWS) && !defined(__CYGWIN__)
#include <boost/asio/error.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/descriptor_ops.hpp>
#include <boost/asio/detail/reactive_descriptor_service.hpp>
namespace boost {
namespace asio {
namespace detail {
// Extend reactive_descriptor_service to provide serial port support.
template <typename Reactor>
class reactive_serial_port_service
: public boost::asio::detail::service_base<
reactive_serial_port_service<Reactor> >
{
public:
// The native type of a stream handle.
typedef typename reactive_descriptor_service<Reactor>::native_type
native_type;
// The implementation type of the stream handle.
typedef typename reactive_descriptor_service<Reactor>::implementation_type
implementation_type;
reactive_serial_port_service(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<
reactive_serial_port_service>(io_service),
descriptor_service_(boost::asio::use_service<
reactive_descriptor_service<Reactor> >(io_service))
{
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
}
// Construct a new handle implementation.
void construct(implementation_type& impl)
{
descriptor_service_.construct(impl);
}
// Destroy a handle implementation.
void destroy(implementation_type& impl)
{
descriptor_service_.destroy(impl);
}
// Open the serial port using the specified device name.
boost::system::error_code open(implementation_type& impl,
const std::string& device, boost::system::error_code& ec)
{
if (is_open(impl))
{
ec = boost::asio::error::already_open;
return ec;
}
int fd = descriptor_ops::open(device.c_str(),
O_RDWR | O_NONBLOCK | O_NOCTTY, ec);
if (fd < 0)
return ec;
int s = descriptor_ops::fcntl(fd, F_GETFL, ec);
if (s >= 0)
s = descriptor_ops::fcntl(fd, F_SETFL, s | O_NONBLOCK, ec);
if (s < 0)
{
boost::system::error_code ignored_ec;
descriptor_ops::close(fd, ignored_ec);
return ec;
}
// Set up default serial port options.
termios ios;
descriptor_ops::clear_error(ec);
s = descriptor_ops::error_wrapper(::tcgetattr(fd, &ios), ec);
if (s >= 0)
{
#if defined(_BSD_SOURCE)
::cfmakeraw(&ios);
#else
ios.c_iflag &= ~(IGNBRK | BRKINT | PARMRK
| ISTRIP | INLCR | IGNCR | ICRNL | IXON);
ios.c_oflag &= ~OPOST;
ios.c_lflag &= ~(ECHO | ECHONL | ICANON | ISIG | IEXTEN);
ios.c_cflag &= ~(CSIZE | PARENB);
ios.c_cflag |= CS8;
#endif
ios.c_iflag |= IGNPAR;
ios.c_cflag |= CREAD | CLOCAL;
descriptor_ops::clear_error(ec);
s = descriptor_ops::error_wrapper(::tcsetattr(fd, TCSANOW, &ios), ec);
}
if (s < 0)
{
boost::system::error_code ignored_ec;
descriptor_ops::close(fd, ignored_ec);
return ec;
}
// We're done. Take ownership of the serial port descriptor.
if (descriptor_service_.assign(impl, fd, ec))
{
boost::system::error_code ignored_ec;
descriptor_ops::close(fd, ignored_ec);
}
return ec;
}
// Assign a native handle to a handle implementation.
boost::system::error_code assign(implementation_type& impl,
const native_type& native_descriptor, boost::system::error_code& ec)
{
return descriptor_service_.assign(impl, native_descriptor, ec);
}
// Determine whether the handle is open.
bool is_open(const implementation_type& impl) const
{
return descriptor_service_.is_open(impl);
}
// Destroy a handle implementation.
boost::system::error_code close(implementation_type& impl,
boost::system::error_code& ec)
{
return descriptor_service_.close(impl, ec);
}
// Get the native handle representation.
native_type native(implementation_type& impl)
{
return descriptor_service_.native(impl);
}
// Cancel all operations associated with the handle.
boost::system::error_code cancel(implementation_type& impl,
boost::system::error_code& ec)
{
return descriptor_service_.cancel(impl, ec);
}
// Set an option on the serial port.
template <typename SettableSerialPortOption>
boost::system::error_code set_option(implementation_type& impl,
const SettableSerialPortOption& option, boost::system::error_code& ec)
{
termios ios;
descriptor_ops::clear_error(ec);
descriptor_ops::error_wrapper(::tcgetattr(
descriptor_service_.native(impl), &ios), ec);
if (ec)
return ec;
if (option.store(ios, ec))
return ec;
descriptor_ops::clear_error(ec);
descriptor_ops::error_wrapper(::tcsetattr(
descriptor_service_.native(impl), TCSANOW, &ios), ec);
return ec;
}
// Get an option from the serial port.
template <typename GettableSerialPortOption>
boost::system::error_code get_option(const implementation_type& impl,
GettableSerialPortOption& option, boost::system::error_code& ec) const
{
termios ios;
descriptor_ops::clear_error(ec);
descriptor_ops::error_wrapper(::tcgetattr(
descriptor_service_.native(impl), &ios), ec);
if (ec)
return ec;
return option.load(ios, ec);
}
// Send a break sequence to the serial port.
boost::system::error_code send_break(implementation_type& impl,
boost::system::error_code& ec)
{
descriptor_ops::clear_error(ec);
descriptor_ops::error_wrapper(::tcsendbreak(
descriptor_service_.native(impl), 0), ec);
return ec;
}
// Write the given data. Returns the number of bytes sent.
template <typename ConstBufferSequence>
size_t write_some(implementation_type& impl,
const ConstBufferSequence& buffers, boost::system::error_code& ec)
{
return descriptor_service_.write_some(impl, buffers, ec);
}
// Start an asynchronous write. The data being written must be valid for the
// lifetime of the asynchronous operation.
template <typename ConstBufferSequence, typename Handler>
void async_write_some(implementation_type& impl,
const ConstBufferSequence& buffers, Handler handler)
{
descriptor_service_.async_write_some(impl, buffers, handler);
}
// Read some data. Returns the number of bytes received.
template <typename MutableBufferSequence>
size_t read_some(implementation_type& impl,
const MutableBufferSequence& buffers, boost::system::error_code& ec)
{
return descriptor_service_.read_some(impl, buffers, ec);
}
// Start an asynchronous read. The buffer for the data being received must be
// valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence, typename Handler>
void async_read_some(implementation_type& impl,
const MutableBufferSequence& buffers, Handler handler)
{
descriptor_service_.async_read_some(impl, buffers, handler);
}
private:
// The handle service used for initiating asynchronous operations.
reactive_descriptor_service<Reactor>& descriptor_service_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_ASIO_HAS_SERIAL_PORT)
// && !defined(BOOST_WINDOWS) && !defined(__CYGWIN__)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_REACTIVE_SERIAL_PORT_SERVICE_HPP

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,456 @@
//
// reactor_op_queue.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_REACTOR_OP_QUEUE_HPP
#define BOOST_ASIO_DETAIL_REACTOR_OP_QUEUE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <memory>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/handler_alloc_helpers.hpp>
#include <boost/asio/detail/hash_map.hpp>
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
namespace detail {
template <typename Descriptor>
class reactor_op_queue
: private noncopyable
{
public:
// Constructor.
reactor_op_queue()
: operations_(),
cancelled_operations_(0),
complete_operations_(0)
{
}
// Add a new operation to the queue. Returns true if this is the only
// operation for the given descriptor, in which case the reactor's event
// demultiplexing function call may need to be interrupted and restarted.
template <typename Operation>
bool enqueue_operation(Descriptor descriptor, Operation operation)
{
// Allocate and construct an object to wrap the handler.
typedef handler_alloc_traits<Operation, op<Operation> > alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(operation);
handler_ptr<alloc_traits> ptr(raw_ptr, descriptor, operation);
typedef typename operation_map::iterator iterator;
typedef typename operation_map::value_type value_type;
std::pair<iterator, bool> entry =
operations_.insert(value_type(descriptor, ptr.get()));
if (entry.second)
{
ptr.release();
return true;
}
op_base* current_op = entry.first->second;
while (current_op->next_)
current_op = current_op->next_;
current_op->next_ = ptr.release();
return false;
}
// Cancel all operations associated with the descriptor. Any operations
// pending for the descriptor will be notified that they have been cancelled
// next time perform_cancellations is called. Returns true if any operations
// were cancelled, in which case the reactor's event demultiplexing function
// may need to be interrupted and restarted.
bool cancel_operations(Descriptor descriptor)
{
typename operation_map::iterator i = operations_.find(descriptor);
if (i != operations_.end())
{
op_base* last_op = i->second;
while (last_op->next_)
last_op = last_op->next_;
last_op->next_ = cancelled_operations_;
cancelled_operations_ = i->second;
operations_.erase(i);
return true;
}
return false;
}
// Whether there are no operations in the queue.
bool empty() const
{
return operations_.empty();
}
// Determine whether there are any operations associated with the descriptor.
bool has_operation(Descriptor descriptor) const
{
return operations_.find(descriptor) != operations_.end();
}
// Perform the first operation corresponding to the descriptor. Returns true
// if there are more operations queued for the descriptor.
bool perform_operation(Descriptor descriptor,
const boost::system::error_code& result)
{
typename operation_map::iterator i = operations_.find(descriptor);
if (i != operations_.end())
{
op_base* this_op = i->second;
i->second = this_op->next_;
this_op->next_ = complete_operations_;
complete_operations_ = this_op;
bool done = this_op->perform(result);
if (done)
{
// Operation has finished.
if (i->second)
{
return true;
}
else
{
operations_.erase(i);
return false;
}
}
else
{
// Operation wants to be called again. Leave it at the front of the
// queue for this descriptor, and remove from the completed list.
complete_operations_ = this_op->next_;
this_op->next_ = i->second;
i->second = this_op;
return true;
}
}
return false;
}
// Perform all operations corresponding to the descriptor.
void perform_all_operations(Descriptor descriptor,
const boost::system::error_code& result)
{
typename operation_map::iterator i = operations_.find(descriptor);
if (i != operations_.end())
{
while (i->second)
{
op_base* this_op = i->second;
i->second = this_op->next_;
this_op->next_ = complete_operations_;
complete_operations_ = this_op;
bool done = this_op->perform(result);
if (!done)
{
// Operation has not finished yet, so leave at front of queue, and
// remove from the completed list.
complete_operations_ = this_op->next_;
this_op->next_ = i->second;
i->second = this_op;
return;
}
}
operations_.erase(i);
}
}
// Fill a descriptor set with the descriptors corresponding to each active
// operation.
template <typename Descriptor_Set>
void get_descriptors(Descriptor_Set& descriptors)
{
typename operation_map::iterator i = operations_.begin();
while (i != operations_.end())
{
Descriptor descriptor = i->first;
++i;
if (!descriptors.set(descriptor))
{
boost::system::error_code ec(error::fd_set_failure);
perform_all_operations(descriptor, ec);
}
}
}
// Perform the operations corresponding to the ready file descriptors
// contained in the given descriptor set.
template <typename Descriptor_Set>
void perform_operations_for_descriptors(const Descriptor_Set& descriptors,
const boost::system::error_code& result)
{
typename operation_map::iterator i = operations_.begin();
while (i != operations_.end())
{
typename operation_map::iterator op_iter = i++;
if (descriptors.is_set(op_iter->first))
{
op_base* this_op = op_iter->second;
op_iter->second = this_op->next_;
this_op->next_ = complete_operations_;
complete_operations_ = this_op;
bool done = this_op->perform(result);
if (done)
{
if (!op_iter->second)
operations_.erase(op_iter);
}
else
{
// Operation has not finished yet, so leave at front of queue, and
// remove from the completed list.
complete_operations_ = this_op->next_;
this_op->next_ = op_iter->second;
op_iter->second = this_op;
}
}
}
}
// Perform any pending cancels for operations.
void perform_cancellations()
{
while (cancelled_operations_)
{
op_base* this_op = cancelled_operations_;
cancelled_operations_ = this_op->next_;
this_op->next_ = complete_operations_;
complete_operations_ = this_op;
this_op->perform(boost::asio::error::operation_aborted);
}
}
// Complete all operations that are waiting to be completed.
void complete_operations()
{
while (complete_operations_)
{
op_base* next_op = complete_operations_->next_;
complete_operations_->next_ = 0;
complete_operations_->complete();
complete_operations_ = next_op;
}
}
// Destroy all operations owned by the queue.
void destroy_operations()
{
while (cancelled_operations_)
{
op_base* next_op = cancelled_operations_->next_;
cancelled_operations_->next_ = 0;
cancelled_operations_->destroy();
cancelled_operations_ = next_op;
}
while (complete_operations_)
{
op_base* next_op = complete_operations_->next_;
complete_operations_->next_ = 0;
complete_operations_->destroy();
complete_operations_ = next_op;
}
typename operation_map::iterator i = operations_.begin();
while (i != operations_.end())
{
typename operation_map::iterator op_iter = i++;
op_base* curr_op = op_iter->second;
operations_.erase(op_iter);
while (curr_op)
{
op_base* next_op = curr_op->next_;
curr_op->next_ = 0;
curr_op->destroy();
curr_op = next_op;
}
}
}
private:
// Base class for reactor operations. A function pointer is used instead of
// virtual functions to avoid the associated overhead.
class op_base
{
public:
// Get the descriptor associated with the operation.
Descriptor descriptor() const
{
return descriptor_;
}
// Perform the operation.
bool perform(const boost::system::error_code& result)
{
result_ = result;
return perform_func_(this, result_, bytes_transferred_);
}
// Destroy the operation and post the handler.
void complete()
{
complete_func_(this, result_, bytes_transferred_);
}
// Destroy the operation.
void destroy()
{
destroy_func_(this);
}
protected:
typedef bool (*perform_func_type)(op_base*,
boost::system::error_code&, std::size_t&);
typedef void (*complete_func_type)(op_base*,
const boost::system::error_code&, std::size_t);
typedef void (*destroy_func_type)(op_base*);
// Construct an operation for the given descriptor.
op_base(perform_func_type perform_func, complete_func_type complete_func,
destroy_func_type destroy_func, Descriptor descriptor)
: perform_func_(perform_func),
complete_func_(complete_func),
destroy_func_(destroy_func),
descriptor_(descriptor),
result_(),
bytes_transferred_(0),
next_(0)
{
}
// Prevent deletion through this type.
~op_base()
{
}
private:
friend class reactor_op_queue<Descriptor>;
// The function to be called to perform the operation.
perform_func_type perform_func_;
// The function to be called to delete the operation and post the handler.
complete_func_type complete_func_;
// The function to be called to delete the operation.
destroy_func_type destroy_func_;
// The descriptor associated with the operation.
Descriptor descriptor_;
// The result of the operation.
boost::system::error_code result_;
// The number of bytes transferred in the operation.
std::size_t bytes_transferred_;
// The next operation for the same file descriptor.
op_base* next_;
};
// Adaptor class template for operations.
template <typename Operation>
class op
: public op_base
{
public:
// Constructor.
op(Descriptor descriptor, Operation operation)
: op_base(&op<Operation>::do_perform, &op<Operation>::do_complete,
&op<Operation>::do_destroy, descriptor),
operation_(operation)
{
}
// Perform the operation.
static bool do_perform(op_base* base,
boost::system::error_code& result, std::size_t& bytes_transferred)
{
return static_cast<op<Operation>*>(base)->operation_.perform(
result, bytes_transferred);
}
// Destroy the operation and post the handler.
static void do_complete(op_base* base,
const boost::system::error_code& result, std::size_t bytes_transferred)
{
// Take ownership of the operation object.
typedef op<Operation> this_type;
this_type* this_op(static_cast<this_type*>(base));
typedef handler_alloc_traits<Operation, this_type> alloc_traits;
handler_ptr<alloc_traits> ptr(this_op->operation_, this_op);
// Make a copy of the error_code and the operation so that the memory can
// be deallocated before the upcall is made.
boost::system::error_code ec(result);
Operation operation(this_op->operation_);
// Free the memory associated with the operation.
ptr.reset();
// Make the upcall.
operation.complete(ec, bytes_transferred);
}
// Destroy the operation.
static void do_destroy(op_base* base)
{
// Take ownership of the operation object.
typedef op<Operation> this_type;
this_type* this_op(static_cast<this_type*>(base));
typedef handler_alloc_traits<Operation, this_type> alloc_traits;
handler_ptr<alloc_traits> ptr(this_op->operation_, this_op);
// A sub-object of the operation may be the true owner of the memory
// associated with the operation. Consequently, a local copy of the
// operation is required to ensure that any owning sub-object remains
// valid until after we have deallocated the memory here.
Operation operation(this_op->operation_);
(void)operation;
// Free the memory associated with the operation.
ptr.reset();
}
private:
Operation operation_;
};
// The type for a map of operations.
typedef hash_map<Descriptor, op_base*> operation_map;
// The operations that are currently executing asynchronously.
operation_map operations_;
// The list of operations that have been cancelled.
op_base* cancelled_operations_;
// The list of operations waiting to be completed.
op_base* complete_operations_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_REACTOR_OP_QUEUE_HPP

View File

@@ -0,0 +1,359 @@
//
// resolver_service.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_RESOLVER_SERVICE_HPP
#define BOOST_ASIO_DETAIL_RESOLVER_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstring>
#include <boost/scoped_ptr.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/weak_ptr.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/bind_handler.hpp>
#include <boost/asio/detail/mutex.hpp>
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/service_base.hpp>
#include <boost/asio/detail/socket_ops.hpp>
#include <boost/asio/detail/socket_types.hpp>
#include <boost/asio/detail/thread.hpp>
namespace boost {
namespace asio {
namespace detail {
template <typename Protocol>
class resolver_service
: public boost::asio::detail::service_base<resolver_service<Protocol> >
{
private:
// Helper class to perform exception-safe cleanup of addrinfo objects.
class auto_addrinfo
: private boost::asio::detail::noncopyable
{
public:
explicit auto_addrinfo(boost::asio::detail::addrinfo_type* ai)
: ai_(ai)
{
}
~auto_addrinfo()
{
if (ai_)
socket_ops::freeaddrinfo(ai_);
}
operator boost::asio::detail::addrinfo_type*()
{
return ai_;
}
private:
boost::asio::detail::addrinfo_type* ai_;
};
public:
// The implementation type of the resolver. The shared pointer is used as a
// cancellation token to indicate to the background thread that the operation
// has been cancelled.
typedef boost::shared_ptr<void> implementation_type;
struct noop_deleter { void operator()(void*) {} };
// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
// The query type.
typedef typename Protocol::resolver_query query_type;
// The iterator type.
typedef typename Protocol::resolver_iterator iterator_type;
// Constructor.
resolver_service(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<
resolver_service<Protocol> >(io_service),
mutex_(),
work_io_service_(new boost::asio::io_service),
work_(new boost::asio::io_service::work(*work_io_service_)),
work_thread_(0)
{
}
// Destructor.
~resolver_service()
{
shutdown_service();
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
work_.reset();
if (work_io_service_)
{
work_io_service_->stop();
if (work_thread_)
{
work_thread_->join();
work_thread_.reset();
}
work_io_service_.reset();
}
}
// Construct a new resolver implementation.
void construct(implementation_type& impl)
{
impl.reset(static_cast<void*>(0), noop_deleter());
}
// Destroy a resolver implementation.
void destroy(implementation_type&)
{
}
// Cancel pending asynchronous operations.
void cancel(implementation_type& impl)
{
impl.reset(static_cast<void*>(0), noop_deleter());
}
// Resolve a query to a list of entries.
iterator_type resolve(implementation_type&, const query_type& query,
boost::system::error_code& ec)
{
boost::asio::detail::addrinfo_type* address_info = 0;
std::string host_name = query.host_name();
std::string service_name = query.service_name();
boost::asio::detail::addrinfo_type hints = query.hints();
socket_ops::getaddrinfo(host_name.length() ? host_name.c_str() : 0,
service_name.c_str(), &hints, &address_info, ec);
auto_addrinfo auto_address_info(address_info);
if (ec)
return iterator_type();
return iterator_type::create(address_info, host_name, service_name);
}
template <typename Handler>
class resolve_query_handler
{
public:
resolve_query_handler(implementation_type impl, const query_type& query,
boost::asio::io_service& io_service, Handler handler)
: impl_(impl),
query_(query),
io_service_(io_service),
work_(io_service),
handler_(handler)
{
}
void operator()()
{
// Check if the operation has been cancelled.
if (impl_.expired())
{
iterator_type iterator;
io_service_.post(boost::asio::detail::bind_handler(handler_,
boost::asio::error::operation_aborted, iterator));
return;
}
// Perform the blocking host resolution operation.
boost::asio::detail::addrinfo_type* address_info = 0;
std::string host_name = query_.host_name();
std::string service_name = query_.service_name();
boost::asio::detail::addrinfo_type hints = query_.hints();
boost::system::error_code ec;
socket_ops::getaddrinfo(host_name.length() ? host_name.c_str() : 0,
service_name.c_str(), &hints, &address_info, ec);
auto_addrinfo auto_address_info(address_info);
// Invoke the handler and pass the result.
iterator_type iterator;
if (!ec)
iterator = iterator_type::create(address_info, host_name, service_name);
io_service_.post(boost::asio::detail::bind_handler(
handler_, ec, iterator));
}
private:
boost::weak_ptr<void> impl_;
query_type query_;
boost::asio::io_service& io_service_;
boost::asio::io_service::work work_;
Handler handler_;
};
// Asynchronously resolve a query to a list of entries.
template <typename Handler>
void async_resolve(implementation_type& impl, const query_type& query,
Handler handler)
{
if (work_io_service_)
{
start_work_thread();
work_io_service_->post(
resolve_query_handler<Handler>(
impl, query, this->get_io_service(), handler));
}
}
// Resolve an endpoint to a list of entries.
iterator_type resolve(implementation_type&,
const endpoint_type& endpoint, boost::system::error_code& ec)
{
// First try resolving with the service name. If that fails try resolving
// but allow the service to be returned as a number.
char host_name[NI_MAXHOST];
char service_name[NI_MAXSERV];
int flags = endpoint.protocol().type() == SOCK_DGRAM ? NI_DGRAM : 0;
socket_ops::getnameinfo(endpoint.data(), endpoint.size(),
host_name, NI_MAXHOST, service_name, NI_MAXSERV, flags, ec);
if (ec)
{
flags |= NI_NUMERICSERV;
socket_ops::getnameinfo(endpoint.data(), endpoint.size(),
host_name, NI_MAXHOST, service_name, NI_MAXSERV, flags, ec);
}
if (ec)
return iterator_type();
return iterator_type::create(endpoint, host_name, service_name);
}
template <typename Handler>
class resolve_endpoint_handler
{
public:
resolve_endpoint_handler(implementation_type impl,
const endpoint_type& endpoint, boost::asio::io_service& io_service,
Handler handler)
: impl_(impl),
endpoint_(endpoint),
io_service_(io_service),
work_(io_service),
handler_(handler)
{
}
void operator()()
{
// Check if the operation has been cancelled.
if (impl_.expired())
{
iterator_type iterator;
io_service_.post(boost::asio::detail::bind_handler(handler_,
boost::asio::error::operation_aborted, iterator));
return;
}
// First try resolving with the service name. If that fails try resolving
// but allow the service to be returned as a number.
char host_name[NI_MAXHOST];
char service_name[NI_MAXSERV];
int flags = endpoint_.protocol().type() == SOCK_DGRAM ? NI_DGRAM : 0;
boost::system::error_code ec;
socket_ops::getnameinfo(endpoint_.data(), endpoint_.size(),
host_name, NI_MAXHOST, service_name, NI_MAXSERV, flags, ec);
if (ec)
{
flags |= NI_NUMERICSERV;
socket_ops::getnameinfo(endpoint_.data(), endpoint_.size(),
host_name, NI_MAXHOST, service_name, NI_MAXSERV, flags, ec);
}
// Invoke the handler and pass the result.
iterator_type iterator;
if (!ec)
iterator = iterator_type::create(endpoint_, host_name, service_name);
io_service_.post(boost::asio::detail::bind_handler(
handler_, ec, iterator));
}
private:
boost::weak_ptr<void> impl_;
endpoint_type endpoint_;
boost::asio::io_service& io_service_;
boost::asio::io_service::work work_;
Handler handler_;
};
// Asynchronously resolve an endpoint to a list of entries.
template <typename Handler>
void async_resolve(implementation_type& impl, const endpoint_type& endpoint,
Handler handler)
{
if (work_io_service_)
{
start_work_thread();
work_io_service_->post(
resolve_endpoint_handler<Handler>(
impl, endpoint, this->get_io_service(), handler));
}
}
private:
// Helper class to run the work io_service in a thread.
class work_io_service_runner
{
public:
work_io_service_runner(boost::asio::io_service& io_service)
: io_service_(io_service) {}
void operator()() { io_service_.run(); }
private:
boost::asio::io_service& io_service_;
};
// Start the work thread if it's not already running.
void start_work_thread()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (!work_thread_)
{
work_thread_.reset(new boost::asio::detail::thread(
work_io_service_runner(*work_io_service_)));
}
}
// Mutex to protect access to internal data.
boost::asio::detail::mutex mutex_;
// Private io_service used for performing asynchronous host resolution.
boost::scoped_ptr<boost::asio::io_service> work_io_service_;
// Work for the private io_service to perform.
boost::scoped_ptr<boost::asio::io_service::work> work_;
// Thread used for running the work io_service's run loop.
boost::scoped_ptr<boost::asio::detail::thread> work_thread_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_RESOLVER_SERVICE_HPP

View File

@@ -0,0 +1,93 @@
//
// scoped_lock.hpp
// ~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_SCOPED_LOCK_HPP
#define BOOST_ASIO_DETAIL_SCOPED_LOCK_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
namespace detail {
// Helper class to lock and unlock a mutex automatically.
template <typename Mutex>
class scoped_lock
: private noncopyable
{
public:
// Constructor acquires the lock.
scoped_lock(Mutex& m)
: mutex_(m)
{
mutex_.lock();
locked_ = true;
}
// Destructor releases the lock.
~scoped_lock()
{
if (locked_)
mutex_.unlock();
}
// Explicitly acquire the lock.
void lock()
{
if (!locked_)
{
mutex_.lock();
locked_ = true;
}
}
// Explicitly release the lock.
void unlock()
{
if (locked_)
{
mutex_.unlock();
locked_ = false;
}
}
// Test whether the lock is held.
bool locked() const
{
return locked_;
}
// Get the underlying mutex.
Mutex& mutex()
{
return mutex_;
}
private:
// The underlying mutex.
Mutex& mutex_;
// Whether the mutex is currently locked or unlocked.
bool locked_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_SCOPED_LOCK_HPP

View File

@@ -0,0 +1,46 @@
//
// select_interrupter.hpp
// ~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_SELECT_INTERRUPTER_HPP
#define BOOST_ASIO_DETAIL_SELECT_INTERRUPTER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/detail/eventfd_select_interrupter.hpp>
#include <boost/asio/detail/pipe_select_interrupter.hpp>
#include <boost/asio/detail/socket_select_interrupter.hpp>
namespace boost {
namespace asio {
namespace detail {
#if defined(BOOST_WINDOWS) || defined(__CYGWIN__)
typedef socket_select_interrupter select_interrupter;
#elif defined(BOOST_ASIO_HAS_EVENTFD)
typedef eventfd_select_interrupter select_interrupter;
#else
typedef pipe_select_interrupter select_interrupter;
#endif
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_SELECT_INTERRUPTER_HPP

View File

@@ -0,0 +1,546 @@
//
// select_reactor.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_SELECT_REACTOR_HPP
#define BOOST_ASIO_DETAIL_SELECT_REACTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/socket_types.hpp> // Must come before posix_time.
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <boost/config.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
#include <boost/shared_ptr.hpp>
#include <vector>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/bind_handler.hpp>
#include <boost/asio/detail/fd_set_adapter.hpp>
#include <boost/asio/detail/mutex.hpp>
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/reactor_op_queue.hpp>
#include <boost/asio/detail/select_interrupter.hpp>
#include <boost/asio/detail/select_reactor_fwd.hpp>
#include <boost/asio/detail/service_base.hpp>
#include <boost/asio/detail/signal_blocker.hpp>
#include <boost/asio/detail/socket_ops.hpp>
#include <boost/asio/detail/socket_types.hpp>
#include <boost/asio/detail/task_io_service.hpp>
#include <boost/asio/detail/thread.hpp>
#include <boost/asio/detail/timer_queue.hpp>
namespace boost {
namespace asio {
namespace detail {
template <bool Own_Thread>
class select_reactor
: public boost::asio::detail::service_base<select_reactor<Own_Thread> >
{
public:
// Per-descriptor data.
struct per_descriptor_data
{
};
// Constructor.
select_reactor(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<
select_reactor<Own_Thread> >(io_service),
mutex_(),
select_in_progress_(false),
interrupter_(),
read_op_queue_(),
write_op_queue_(),
except_op_queue_(),
pending_cancellations_(),
stop_thread_(false),
thread_(0),
shutdown_(false)
{
if (Own_Thread)
{
boost::asio::detail::signal_blocker sb;
thread_ = new boost::asio::detail::thread(
bind_handler(&select_reactor::call_run_thread, this));
}
}
// Destructor.
~select_reactor()
{
shutdown_service();
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
shutdown_ = true;
stop_thread_ = true;
lock.unlock();
if (thread_)
{
interrupter_.interrupt();
thread_->join();
delete thread_;
thread_ = 0;
}
read_op_queue_.destroy_operations();
write_op_queue_.destroy_operations();
except_op_queue_.destroy_operations();
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
timer_queues_[i]->destroy_timers();
timer_queues_.clear();
}
// Initialise the task, but only if the reactor is not in its own thread.
void init_task()
{
if (!Own_Thread)
{
typedef task_io_service<select_reactor<Own_Thread> > task_io_service_type;
use_service<task_io_service_type>(this->get_io_service()).init_task();
}
}
// Register a socket with the reactor. Returns 0 on success, system error
// code on failure.
int register_descriptor(socket_type, per_descriptor_data&)
{
return 0;
}
// Start a new read operation. The handler object will be invoked when the
// given descriptor is ready to be read, or an error has occurred.
template <typename Handler>
void start_read_op(socket_type descriptor, per_descriptor_data&,
Handler handler, bool /*allow_speculative_read*/ = true)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (!shutdown_)
if (read_op_queue_.enqueue_operation(descriptor, handler))
interrupter_.interrupt();
}
// Start a new write operation. The handler object will be invoked when the
// given descriptor is ready to be written, or an error has occurred.
template <typename Handler>
void start_write_op(socket_type descriptor, per_descriptor_data&,
Handler handler, bool /*allow_speculative_write*/ = true)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (!shutdown_)
if (write_op_queue_.enqueue_operation(descriptor, handler))
interrupter_.interrupt();
}
// Start a new exception operation. The handler object will be invoked when
// the given descriptor has exception information, or an error has occurred.
template <typename Handler>
void start_except_op(socket_type descriptor,
per_descriptor_data&, Handler handler)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (!shutdown_)
if (except_op_queue_.enqueue_operation(descriptor, handler))
interrupter_.interrupt();
}
// Wrapper for connect handlers to enable the handler object to be placed
// in both the write and the except operation queues, but ensure that only
// one of the handlers is called.
template <typename Handler>
class connect_handler_wrapper
{
public:
connect_handler_wrapper(socket_type descriptor,
boost::shared_ptr<bool> completed,
select_reactor<Own_Thread>& reactor, Handler handler)
: descriptor_(descriptor),
completed_(completed),
reactor_(reactor),
handler_(handler)
{
}
bool perform(boost::system::error_code& ec,
std::size_t& bytes_transferred)
{
// Check whether one of the handlers has already been called. If it has,
// then we don't want to do anything in this handler.
if (*completed_)
{
completed_.reset(); // Indicate that this handler should not complete.
return true;
}
// Cancel the other reactor operation for the connection.
*completed_ = true;
reactor_.enqueue_cancel_ops_unlocked(descriptor_);
// Call the contained handler.
return handler_.perform(ec, bytes_transferred);
}
void complete(const boost::system::error_code& ec,
std::size_t bytes_transferred)
{
if (completed_.get())
handler_.complete(ec, bytes_transferred);
}
private:
socket_type descriptor_;
boost::shared_ptr<bool> completed_;
select_reactor<Own_Thread>& reactor_;
Handler handler_;
};
// Start new write and exception operations. The handler object will be
// invoked when the given descriptor is ready for writing or has exception
// information available, or an error has occurred. The handler will be called
// only once.
template <typename Handler>
void start_connect_op(socket_type descriptor,
per_descriptor_data&, Handler handler)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (!shutdown_)
{
boost::shared_ptr<bool> completed(new bool(false));
connect_handler_wrapper<Handler> wrapped_handler(
descriptor, completed, *this, handler);
bool interrupt = write_op_queue_.enqueue_operation(
descriptor, wrapped_handler);
interrupt = except_op_queue_.enqueue_operation(
descriptor, wrapped_handler) || interrupt;
if (interrupt)
interrupter_.interrupt();
}
}
// Cancel all operations associated with the given descriptor. The
// handlers associated with the descriptor will be invoked with the
// operation_aborted error.
void cancel_ops(socket_type descriptor, per_descriptor_data&)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
cancel_ops_unlocked(descriptor);
}
// Enqueue cancellation of all operations associated with the given
// descriptor. The handlers associated with the descriptor will be invoked
// with the operation_aborted error. This function does not acquire the
// select_reactor's mutex, and so should only be used when the reactor lock is
// already held.
void enqueue_cancel_ops_unlocked(socket_type descriptor)
{
pending_cancellations_.push_back(descriptor);
}
// Cancel any operations that are running against the descriptor and remove
// its registration from the reactor.
void close_descriptor(socket_type descriptor, per_descriptor_data&)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
cancel_ops_unlocked(descriptor);
}
// Add a new timer queue to the reactor.
template <typename Time_Traits>
void add_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
timer_queues_.push_back(&timer_queue);
}
// Remove a timer queue from the reactor.
template <typename Time_Traits>
void remove_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
if (timer_queues_[i] == &timer_queue)
{
timer_queues_.erase(timer_queues_.begin() + i);
return;
}
}
}
// Schedule a timer in the given timer queue to expire at the specified
// absolute time. The handler object will be invoked when the timer expires.
template <typename Time_Traits, typename Handler>
void schedule_timer(timer_queue<Time_Traits>& timer_queue,
const typename Time_Traits::time_type& time, Handler handler, void* token)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (!shutdown_)
if (timer_queue.enqueue_timer(time, handler, token))
interrupter_.interrupt();
}
// Cancel the timer associated with the given token. Returns the number of
// handlers that have been posted or dispatched.
template <typename Time_Traits>
std::size_t cancel_timer(timer_queue<Time_Traits>& timer_queue, void* token)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
std::size_t n = timer_queue.cancel_timer(token);
if (n > 0)
interrupter_.interrupt();
return n;
}
private:
friend class task_io_service<select_reactor<Own_Thread> >;
// Run select once until interrupted or events are ready to be dispatched.
void run(bool block)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
// Dispatch any operation cancellations that were made while the select
// loop was not running.
read_op_queue_.perform_cancellations();
write_op_queue_.perform_cancellations();
except_op_queue_.perform_cancellations();
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
timer_queues_[i]->dispatch_cancellations();
// Check if the thread is supposed to stop.
if (stop_thread_)
{
complete_operations_and_timers(lock);
return;
}
// We can return immediately if there's no work to do and the reactor is
// not supposed to block.
if (!block && read_op_queue_.empty() && write_op_queue_.empty()
&& except_op_queue_.empty() && all_timer_queues_are_empty())
{
complete_operations_and_timers(lock);
return;
}
// Set up the descriptor sets.
fd_set_adapter read_fds;
read_fds.set(interrupter_.read_descriptor());
read_op_queue_.get_descriptors(read_fds);
fd_set_adapter write_fds;
write_op_queue_.get_descriptors(write_fds);
fd_set_adapter except_fds;
except_op_queue_.get_descriptors(except_fds);
socket_type max_fd = read_fds.max_descriptor();
if (write_fds.max_descriptor() > max_fd)
max_fd = write_fds.max_descriptor();
if (except_fds.max_descriptor() > max_fd)
max_fd = except_fds.max_descriptor();
// Block on the select call without holding the lock so that new
// operations can be started while the call is executing.
timeval tv_buf = { 0, 0 };
timeval* tv = block ? get_timeout(tv_buf) : &tv_buf;
select_in_progress_ = true;
lock.unlock();
boost::system::error_code ec;
int retval = socket_ops::select(static_cast<int>(max_fd + 1),
read_fds, write_fds, except_fds, tv, ec);
lock.lock();
select_in_progress_ = false;
// Block signals while dispatching operations.
boost::asio::detail::signal_blocker sb;
// Reset the interrupter.
if (retval > 0 && read_fds.is_set(interrupter_.read_descriptor()))
interrupter_.reset();
// Dispatch all ready operations.
if (retval > 0)
{
// Exception operations must be processed first to ensure that any
// out-of-band data is read before normal data.
except_op_queue_.perform_operations_for_descriptors(
except_fds, boost::system::error_code());
read_op_queue_.perform_operations_for_descriptors(
read_fds, boost::system::error_code());
write_op_queue_.perform_operations_for_descriptors(
write_fds, boost::system::error_code());
except_op_queue_.perform_cancellations();
read_op_queue_.perform_cancellations();
write_op_queue_.perform_cancellations();
}
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
timer_queues_[i]->dispatch_timers();
timer_queues_[i]->dispatch_cancellations();
}
// Issue any pending cancellations.
for (size_t i = 0; i < pending_cancellations_.size(); ++i)
cancel_ops_unlocked(pending_cancellations_[i]);
pending_cancellations_.clear();
complete_operations_and_timers(lock);
}
// Run the select loop in the thread.
void run_thread()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
while (!stop_thread_)
{
lock.unlock();
run(true);
lock.lock();
}
}
// Entry point for the select loop thread.
static void call_run_thread(select_reactor* reactor)
{
reactor->run_thread();
}
// Interrupt the select loop.
void interrupt()
{
interrupter_.interrupt();
}
// Check if all timer queues are empty.
bool all_timer_queues_are_empty() const
{
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
if (!timer_queues_[i]->empty())
return false;
return true;
}
// Get the timeout value for the select call.
timeval* get_timeout(timeval& tv)
{
if (all_timer_queues_are_empty())
return 0;
// By default we will wait no longer than 5 minutes. This will ensure that
// any changes to the system clock are detected after no longer than this.
boost::posix_time::time_duration minimum_wait_duration
= boost::posix_time::minutes(5);
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
boost::posix_time::time_duration wait_duration
= timer_queues_[i]->wait_duration();
if (wait_duration < minimum_wait_duration)
minimum_wait_duration = wait_duration;
}
if (minimum_wait_duration > boost::posix_time::time_duration())
{
tv.tv_sec = minimum_wait_duration.total_seconds();
tv.tv_usec = minimum_wait_duration.total_microseconds() % 1000000;
}
else
{
tv.tv_sec = 0;
tv.tv_usec = 0;
}
return &tv;
}
// Cancel all operations associated with the given descriptor. The do_cancel
// function of the handler objects will be invoked. This function does not
// acquire the select_reactor's mutex.
void cancel_ops_unlocked(socket_type descriptor)
{
bool interrupt = read_op_queue_.cancel_operations(descriptor);
interrupt = write_op_queue_.cancel_operations(descriptor) || interrupt;
interrupt = except_op_queue_.cancel_operations(descriptor) || interrupt;
if (interrupt)
interrupter_.interrupt();
}
// Clean up operations and timers. We must not hold the lock since the
// destructors may make calls back into this reactor. We make a copy of the
// vector of timer queues since the original may be modified while the lock
// is not held.
void complete_operations_and_timers(
boost::asio::detail::mutex::scoped_lock& lock)
{
timer_queues_for_cleanup_ = timer_queues_;
lock.unlock();
read_op_queue_.complete_operations();
write_op_queue_.complete_operations();
except_op_queue_.complete_operations();
for (std::size_t i = 0; i < timer_queues_for_cleanup_.size(); ++i)
timer_queues_for_cleanup_[i]->complete_timers();
}
// Mutex to protect access to internal data.
boost::asio::detail::mutex mutex_;
// Whether the select loop is currently running or not.
bool select_in_progress_;
// The interrupter is used to break a blocking select call.
select_interrupter interrupter_;
// The queue of read operations.
reactor_op_queue<socket_type> read_op_queue_;
// The queue of write operations.
reactor_op_queue<socket_type> write_op_queue_;
// The queue of exception operations.
reactor_op_queue<socket_type> except_op_queue_;
// The timer queues.
std::vector<timer_queue_base*> timer_queues_;
// A copy of the timer queues, used when cleaning up timers. The copy is
// stored as a class data member to avoid unnecessary memory allocation.
std::vector<timer_queue_base*> timer_queues_for_cleanup_;
// The descriptors that are pending cancellation.
std::vector<socket_type> pending_cancellations_;
// Does the reactor loop thread need to stop.
bool stop_thread_;
// The thread that is running the reactor loop.
boost::asio::detail::thread* thread_;
// Whether the service has been shut down.
bool shutdown_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_SELECT_REACTOR_HPP

View File

@@ -0,0 +1,33 @@
//
// select_reactor_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_SELECT_REACTOR_FWD_HPP
#define BOOST_ASIO_DETAIL_SELECT_REACTOR_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
namespace boost {
namespace asio {
namespace detail {
template <bool Own_Thread>
class select_reactor;
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_SELECT_REACTOR_FWD_HPP

View File

@@ -0,0 +1,51 @@
//
// service_base.hpp
// ~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_SERVICE_BASE_HPP
#define BOOST_ASIO_DETAIL_SERVICE_BASE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/service_id.hpp>
namespace boost {
namespace asio {
namespace detail {
// Special service base class to keep classes header-file only.
template <typename Type>
class service_base
: public boost::asio::io_service::service
{
public:
static boost::asio::detail::service_id<Type> id;
// Constructor.
service_base(boost::asio::io_service& io_service)
: boost::asio::io_service::service(io_service)
{
}
};
template <typename Type>
boost::asio::detail::service_id<Type> service_base<Type>::id;
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_SERVICE_BASE_HPP

View File

@@ -0,0 +1,39 @@
//
// service_id.hpp
// ~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_SERVICE_ID_HPP
#define BOOST_ASIO_DETAIL_SERVICE_ID_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/io_service.hpp>
namespace boost {
namespace asio {
namespace detail {
// Special derived service id type to keep classes header-file only.
template <typename Type>
class service_id
: public boost::asio::io_service::id
{
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_SERVICE_ID_HPP

View File

@@ -0,0 +1,228 @@
//
// service_registry.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_SERVICE_REGISTRY_HPP
#define BOOST_ASIO_DETAIL_SERVICE_REGISTRY_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <memory>
#include <typeinfo>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/mutex.hpp>
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/service_id.hpp>
#if defined(BOOST_NO_TYPEID)
# if !defined(BOOST_ASIO_NO_TYPEID)
# define BOOST_ASIO_NO_TYPEID
# endif // !defined(BOOST_ASIO_NO_TYPEID)
#endif // defined(BOOST_NO_TYPEID)
namespace boost {
namespace asio {
namespace detail {
#if defined(__GNUC__)
# if (__GNUC__ == 4 && __GNUC_MINOR__ >= 1) || (__GNUC__ > 4)
# pragma GCC visibility push (default)
# endif // (__GNUC__ == 4 && __GNUC_MINOR__ >= 1) || (__GNUC__ > 4)
#endif // defined(__GNUC__)
template <typename T>
class typeid_wrapper {};
#if defined(__GNUC__)
# if (__GNUC__ == 4 && __GNUC_MINOR__ >= 1) || (__GNUC__ > 4)
# pragma GCC visibility pop
# endif // (__GNUC__ == 4 && __GNUC_MINOR__ >= 1) || (__GNUC__ > 4)
#endif // defined(__GNUC__)
class service_registry
: private noncopyable
{
public:
// Constructor.
service_registry(boost::asio::io_service& o)
: owner_(o),
first_service_(0)
{
}
// Destructor.
~service_registry()
{
// Shutdown all services. This must be done in a separate loop before the
// services are destroyed since the destructors of user-defined handler
// objects may try to access other service objects.
boost::asio::io_service::service* service = first_service_;
while (service)
{
service->shutdown_service();
service = service->next_;
}
// Destroy all services.
while (first_service_)
{
boost::asio::io_service::service* next_service = first_service_->next_;
delete first_service_;
first_service_ = next_service;
}
}
// Get the service object corresponding to the specified service type. Will
// create a new service object automatically if no such object already
// exists. Ownership of the service object is not transferred to the caller.
template <typename Service>
Service& use_service()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
// First see if there is an existing service object for the given type.
boost::asio::io_service::service* service = first_service_;
while (service)
{
if (service_id_matches(*service, Service::id))
return *static_cast<Service*>(service);
service = service->next_;
}
// Create a new service object. The service registry's mutex is not locked
// at this time to allow for nested calls into this function from the new
// service's constructor.
lock.unlock();
std::auto_ptr<Service> new_service(new Service(owner_));
init_service_id(*new_service, Service::id);
Service& new_service_ref = *new_service;
lock.lock();
// Check that nobody else created another service object of the same type
// while the lock was released.
service = first_service_;
while (service)
{
if (service_id_matches(*service, Service::id))
return *static_cast<Service*>(service);
service = service->next_;
}
// Service was successfully initialised, pass ownership to registry.
new_service->next_ = first_service_;
first_service_ = new_service.release();
return new_service_ref;
}
// Add a service object. Returns false on error, in which case ownership of
// the object is retained by the caller.
template <typename Service>
bool add_service(Service* new_service)
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
// Check if there is an existing service object for the given type.
boost::asio::io_service::service* service = first_service_;
while (service)
{
if (service_id_matches(*service, Service::id))
return false;
service = service->next_;
}
// Take ownership of the service object.
init_service_id(*new_service, Service::id);
new_service->next_ = first_service_;
first_service_ = new_service;
return true;
}
// Check whether a service object of the specified type already exists.
template <typename Service>
bool has_service() const
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
boost::asio::io_service::service* service = first_service_;
while (service)
{
if (service_id_matches(*service, Service::id))
return true;
service = service->next_;
}
return false;
}
private:
// Set a service's id.
void init_service_id(boost::asio::io_service::service& service,
const boost::asio::io_service::id& id)
{
service.type_info_ = 0;
service.id_ = &id;
}
#if !defined(BOOST_ASIO_NO_TYPEID)
// Set a service's id.
template <typename Service>
void init_service_id(boost::asio::io_service::service& service,
const boost::asio::detail::service_id<Service>& /*id*/)
{
service.type_info_ = &typeid(typeid_wrapper<Service>);
service.id_ = 0;
}
#endif // !defined(BOOST_ASIO_NO_TYPEID)
// Check if a service matches the given id.
static bool service_id_matches(
const boost::asio::io_service::service& service,
const boost::asio::io_service::id& id)
{
return service.id_ == &id;
}
#if !defined(BOOST_ASIO_NO_TYPEID)
// Check if a service matches the given id.
template <typename Service>
static bool service_id_matches(
const boost::asio::io_service::service& service,
const boost::asio::detail::service_id<Service>& /*id*/)
{
return service.type_info_ != 0
&& *service.type_info_ == typeid(typeid_wrapper<Service>);
}
#endif // !defined(BOOST_ASIO_NO_TYPEID)
// Mutex to protect access to internal data.
mutable boost::asio::detail::mutex mutex_;
// The owner of this service registry and the services it contains.
boost::asio::io_service& owner_;
// The first service in the list of contained services.
boost::asio::io_service::service* first_service_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_SERVICE_REGISTRY_HPP

View File

@@ -0,0 +1,32 @@
//
// service_registry_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_SERVICE_REGISTRY_FWD_HPP
#define BOOST_ASIO_DETAIL_SERVICE_REGISTRY_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
namespace boost {
namespace asio {
namespace detail {
class service_registry;
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_SERVICE_REGISTRY_FWD_HPP

View File

@@ -0,0 +1,52 @@
//
// signal_blocker.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_SIGNAL_BLOCKER_HPP
#define BOOST_ASIO_DETAIL_SIGNAL_BLOCKER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if !defined(BOOST_HAS_THREADS)
# include <boost/asio/detail/null_signal_blocker.hpp>
#elif defined(BOOST_WINDOWS) || defined(__CYGWIN__)
# include <boost/asio/detail/win_signal_blocker.hpp>
#elif defined(BOOST_HAS_PTHREADS)
# include <boost/asio/detail/posix_signal_blocker.hpp>
#else
# error Only Windows and POSIX are supported!
#endif
namespace boost {
namespace asio {
namespace detail {
#if !defined(BOOST_HAS_THREADS)
typedef null_signal_blocker signal_blocker;
#elif defined(BOOST_WINDOWS) || defined(__CYGWIN__)
typedef win_signal_blocker signal_blocker;
#elif defined(BOOST_HAS_PTHREADS)
typedef posix_signal_blocker signal_blocker;
#endif
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_SIGNAL_BLOCKER_HPP

View File

@@ -0,0 +1,53 @@
//
// signal_init.hpp
// ~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_SIGNAL_INIT_HPP
#define BOOST_ASIO_DETAIL_SIGNAL_INIT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if !defined(BOOST_WINDOWS) && !defined(__CYGWIN__)
#include <boost/asio/detail/push_options.hpp>
#include <csignal>
#include <boost/asio/detail/pop_options.hpp>
namespace boost {
namespace asio {
namespace detail {
template <int Signal = SIGPIPE>
class signal_init
{
public:
// Constructor.
signal_init()
{
std::signal(Signal, SIG_IGN);
}
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // !defined(BOOST_WINDOWS) && !defined(__CYGWIN__)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_SIGNAL_INIT_HPP

View File

@@ -0,0 +1,97 @@
//
// socket_holder.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_SOCKET_HOLDER_HPP
#define BOOST_ASIO_DETAIL_SOCKET_HOLDER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/socket_ops.hpp>
namespace boost {
namespace asio {
namespace detail {
// Implement the resource acquisition is initialisation idiom for sockets.
class socket_holder
: private noncopyable
{
public:
// Construct as an uninitialised socket.
socket_holder()
: socket_(invalid_socket)
{
}
// Construct to take ownership of the specified socket.
explicit socket_holder(socket_type s)
: socket_(s)
{
}
// Destructor.
~socket_holder()
{
if (socket_ != invalid_socket)
{
boost::system::error_code ec;
socket_ops::close(socket_, ec);
}
}
// Get the underlying socket.
socket_type get() const
{
return socket_;
}
// Reset to an uninitialised socket.
void reset()
{
if (socket_ != invalid_socket)
{
boost::system::error_code ec;
socket_ops::close(socket_, ec);
socket_ = invalid_socket;
}
}
// Reset to take ownership of the specified socket.
void reset(socket_type s)
{
reset();
socket_ = s;
}
// Release ownership of the socket.
socket_type release()
{
socket_type tmp = socket_;
socket_ = invalid_socket;
return tmp;
}
private:
// The underlying socket.
socket_type socket_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_SOCKET_HOLDER_HPP

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,311 @@
//
// socket_option.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_SOCKET_OPTION_HPP
#define BOOST_ASIO_DETAIL_SOCKET_OPTION_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <stdexcept>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/detail/socket_types.hpp>
namespace boost {
namespace asio {
namespace detail {
namespace socket_option {
// Helper template for implementing boolean-based options.
template <int Level, int Name>
class boolean
{
public:
// Default constructor.
boolean()
: value_(0)
{
}
// Construct with a specific option value.
explicit boolean(bool v)
: value_(v ? 1 : 0)
{
}
// Set the current value of the boolean.
boolean& operator=(bool v)
{
value_ = v ? 1 : 0;
return *this;
}
// Get the current value of the boolean.
bool value() const
{
return !!value_;
}
// Convert to bool.
operator bool() const
{
return !!value_;
}
// Test for false.
bool operator!() const
{
return !value_;
}
// Get the level of the socket option.
template <typename Protocol>
int level(const Protocol&) const
{
return Level;
}
// Get the name of the socket option.
template <typename Protocol>
int name(const Protocol&) const
{
return Name;
}
// Get the address of the boolean data.
template <typename Protocol>
int* data(const Protocol&)
{
return &value_;
}
// Get the address of the boolean data.
template <typename Protocol>
const int* data(const Protocol&) const
{
return &value_;
}
// Get the size of the boolean data.
template <typename Protocol>
std::size_t size(const Protocol&) const
{
return sizeof(value_);
}
// Set the size of the boolean data.
template <typename Protocol>
void resize(const Protocol&, std::size_t s)
{
// On some platforms (e.g. Windows Vista), the getsockopt function will
// return the size of a boolean socket option as one byte, even though a
// four byte integer was passed in.
switch (s)
{
case sizeof(char):
value_ = *reinterpret_cast<char*>(&value_) ? 1 : 0;
break;
case sizeof(value_):
break;
default:
throw std::length_error("boolean socket option resize");
}
}
private:
int value_;
};
// Helper template for implementing integer options.
template <int Level, int Name>
class integer
{
public:
// Default constructor.
integer()
: value_(0)
{
}
// Construct with a specific option value.
explicit integer(int v)
: value_(v)
{
}
// Set the value of the int option.
integer& operator=(int v)
{
value_ = v;
return *this;
}
// Get the current value of the int option.
int value() const
{
return value_;
}
// Get the level of the socket option.
template <typename Protocol>
int level(const Protocol&) const
{
return Level;
}
// Get the name of the socket option.
template <typename Protocol>
int name(const Protocol&) const
{
return Name;
}
// Get the address of the int data.
template <typename Protocol>
int* data(const Protocol&)
{
return &value_;
}
// Get the address of the int data.
template <typename Protocol>
const int* data(const Protocol&) const
{
return &value_;
}
// Get the size of the int data.
template <typename Protocol>
std::size_t size(const Protocol&) const
{
return sizeof(value_);
}
// Set the size of the int data.
template <typename Protocol>
void resize(const Protocol&, std::size_t s)
{
if (s != sizeof(value_))
throw std::length_error("integer socket option resize");
}
private:
int value_;
};
// Helper template for implementing linger options.
template <int Level, int Name>
class linger
{
public:
// Default constructor.
linger()
{
value_.l_onoff = 0;
value_.l_linger = 0;
}
// Construct with specific option values.
linger(bool e, int t)
{
enabled(e);
timeout BOOST_PREVENT_MACRO_SUBSTITUTION(t);
}
// Set the value for whether linger is enabled.
void enabled(bool value)
{
value_.l_onoff = value ? 1 : 0;
}
// Get the value for whether linger is enabled.
bool enabled() const
{
return value_.l_onoff != 0;
}
// Set the value for the linger timeout.
void timeout BOOST_PREVENT_MACRO_SUBSTITUTION(int value)
{
#if defined(WIN32)
value_.l_linger = static_cast<u_short>(value);
#else
value_.l_linger = value;
#endif
}
// Get the value for the linger timeout.
int timeout BOOST_PREVENT_MACRO_SUBSTITUTION() const
{
return static_cast<int>(value_.l_linger);
}
// Get the level of the socket option.
template <typename Protocol>
int level(const Protocol&) const
{
return Level;
}
// Get the name of the socket option.
template <typename Protocol>
int name(const Protocol&) const
{
return Name;
}
// Get the address of the linger data.
template <typename Protocol>
::linger* data(const Protocol&)
{
return &value_;
}
// Get the address of the linger data.
template <typename Protocol>
const ::linger* data(const Protocol&) const
{
return &value_;
}
// Get the size of the linger data.
template <typename Protocol>
std::size_t size(const Protocol&) const
{
return sizeof(value_);
}
// Set the size of the int data.
template <typename Protocol>
void resize(const Protocol&, std::size_t s)
{
if (s != sizeof(value_))
throw std::length_error("linger socket option resize");
}
private:
::linger value_;
};
} // namespace socket_option
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_SOCKET_OPTION_HPP

View File

@@ -0,0 +1,189 @@
//
// socket_select_interrupter.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_SOCKET_SELECT_INTERRUPTER_HPP
#define BOOST_ASIO_DETAIL_SOCKET_SELECT_INTERRUPTER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstdlib>
#include <boost/throw_exception.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/socket_holder.hpp>
#include <boost/asio/detail/socket_ops.hpp>
#include <boost/asio/detail/socket_types.hpp>
namespace boost {
namespace asio {
namespace detail {
class socket_select_interrupter
{
public:
// Constructor.
socket_select_interrupter()
{
boost::system::error_code ec;
socket_holder acceptor(socket_ops::socket(
AF_INET, SOCK_STREAM, IPPROTO_TCP, ec));
if (acceptor.get() == invalid_socket)
{
boost::system::system_error e(ec, "socket_select_interrupter");
boost::throw_exception(e);
}
int opt = 1;
socket_ops::setsockopt(acceptor.get(),
SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt), ec);
using namespace std; // For memset.
sockaddr_in4_type addr;
std::size_t addr_len = sizeof(addr);
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = inet_addr("127.0.0.1");
addr.sin_port = 0;
if (socket_ops::bind(acceptor.get(), (const socket_addr_type*)&addr,
addr_len, ec) == socket_error_retval)
{
boost::system::system_error e(ec, "socket_select_interrupter");
boost::throw_exception(e);
}
if (socket_ops::getsockname(acceptor.get(), (socket_addr_type*)&addr,
&addr_len, ec) == socket_error_retval)
{
boost::system::system_error e(ec, "socket_select_interrupter");
boost::throw_exception(e);
}
if (socket_ops::listen(acceptor.get(),
SOMAXCONN, ec) == socket_error_retval)
{
boost::system::system_error e(ec, "socket_select_interrupter");
boost::throw_exception(e);
}
socket_holder client(socket_ops::socket(
AF_INET, SOCK_STREAM, IPPROTO_TCP, ec));
if (client.get() == invalid_socket)
{
boost::system::system_error e(ec, "socket_select_interrupter");
boost::throw_exception(e);
}
if (socket_ops::connect(client.get(), (const socket_addr_type*)&addr,
addr_len, ec) == socket_error_retval)
{
boost::system::system_error e(ec, "socket_select_interrupter");
boost::throw_exception(e);
}
socket_holder server(socket_ops::accept(acceptor.get(), 0, 0, ec));
if (server.get() == invalid_socket)
{
boost::system::system_error e(ec, "socket_select_interrupter");
boost::throw_exception(e);
}
ioctl_arg_type non_blocking = 1;
if (socket_ops::ioctl(client.get(), FIONBIO, &non_blocking, ec))
{
boost::system::system_error e(ec, "socket_select_interrupter");
boost::throw_exception(e);
}
opt = 1;
socket_ops::setsockopt(client.get(),
IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt), ec);
non_blocking = 1;
if (socket_ops::ioctl(server.get(), FIONBIO, &non_blocking, ec))
{
boost::system::system_error e(ec, "socket_select_interrupter");
boost::throw_exception(e);
}
opt = 1;
socket_ops::setsockopt(server.get(),
IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt), ec);
read_descriptor_ = server.release();
write_descriptor_ = client.release();
}
// Destructor.
~socket_select_interrupter()
{
boost::system::error_code ec;
if (read_descriptor_ != invalid_socket)
socket_ops::close(read_descriptor_, ec);
if (write_descriptor_ != invalid_socket)
socket_ops::close(write_descriptor_, ec);
}
// Interrupt the select call.
void interrupt()
{
char byte = 0;
socket_ops::buf b;
socket_ops::init_buf(b, &byte, 1);
boost::system::error_code ec;
socket_ops::send(write_descriptor_, &b, 1, 0, ec);
}
// Reset the select interrupt. Returns true if the call was interrupted.
bool reset()
{
char data[1024];
socket_ops::buf b;
socket_ops::init_buf(b, data, sizeof(data));
boost::system::error_code ec;
int bytes_read = socket_ops::recv(read_descriptor_, &b, 1, 0, ec);
bool was_interrupted = (bytes_read > 0);
while (bytes_read == sizeof(data))
bytes_read = socket_ops::recv(read_descriptor_, &b, 1, 0, ec);
return was_interrupted;
}
// Get the read descriptor to be passed to select.
socket_type read_descriptor() const
{
return read_descriptor_;
}
private:
// The read end of a connection used to interrupt the select call. This file
// descriptor is passed to select such that when it is time to stop, a single
// byte will be written on the other end of the connection and this
// descriptor will become readable.
socket_type read_descriptor_;
// The write end of a connection used to interrupt the select call. A single
// byte may be written to this to wake up the select which is waiting for the
// other end to become readable.
socket_type write_descriptor_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_SOCKET_SELECT_INTERRUPTER_HPP

View File

@@ -0,0 +1,212 @@
//
// socket_types.hpp
// ~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_SOCKET_TYPES_HPP
#define BOOST_ASIO_DETAIL_SOCKET_TYPES_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#if defined(BOOST_WINDOWS) || defined(__CYGWIN__)
# if defined(_WINSOCKAPI_) && !defined(_WINSOCK2API_)
# error WinSock.h has already been included
# endif // defined(_WINSOCKAPI_) && !defined(_WINSOCK2API_)
# if !defined(_WIN32_WINNT) && !defined(_WIN32_WINDOWS)
# if defined(_MSC_VER) || defined(__BORLANDC__)
# pragma message( \
"Please define _WIN32_WINNT or _WIN32_WINDOWS appropriately. For example:\n"\
"- add -D_WIN32_WINNT=0x0501 to the compiler command line; or\n"\
"- add _WIN32_WINNT=0x0501 to your project's Preprocessor Definitions.\n"\
"Assuming _WIN32_WINNT=0x0501 (i.e. Windows XP target).")
# else // defined(_MSC_VER) || defined(__BORLANDC__)
# warning Please define _WIN32_WINNT or _WIN32_WINDOWS appropriately.
# warning For example, add -D_WIN32_WINNT=0x0501 to the compiler command line.
# warning Assuming _WIN32_WINNT=0x0501 (i.e. Windows XP target).
# endif // defined(_MSC_VER) || defined(__BORLANDC__)
# define _WIN32_WINNT 0x0501
# endif // !defined(_WIN32_WINNT) && !defined(_WIN32_WINDOWS)
# if defined(_MSC_VER)
# if defined(_WIN32) && !defined(WIN32)
# if !defined(_WINSOCK2API_)
# define WIN32 // Needed for correct types in winsock2.h
# else // !defined(_WINSOCK2API_)
# error Please define the macro WIN32 in your compiler options
# endif // !defined(_WINSOCK2API_)
# endif // defined(_WIN32) && !defined(WIN32)
# endif // defined(_MSC_VER)
# if defined(__BORLANDC__)
# include <stdlib.h> // Needed for __errno
# if defined(__WIN32__) && !defined(WIN32)
# if !defined(_WINSOCK2API_)
# define WIN32 // Needed for correct types in winsock2.h
# else // !defined(_WINSOCK2API_)
# error Please define the macro WIN32 in your compiler options
# endif // !defined(_WINSOCK2API_)
# endif // defined(__WIN32__) && !defined(WIN32)
# if !defined(_WSPIAPI_H_)
# define _WSPIAPI_H_
# define BOOST_ASIO_WSPIAPI_H_DEFINED
# endif // !defined(_WSPIAPI_H_)
# endif // defined(__BORLANDC__)
# if !defined(BOOST_ASIO_NO_WIN32_LEAN_AND_MEAN)
# if !defined(WIN32_LEAN_AND_MEAN)
# define WIN32_LEAN_AND_MEAN
# endif // !defined(WIN32_LEAN_AND_MEAN)
# endif // !defined(BOOST_ASIO_NO_WIN32_LEAN_AND_MEAN)
# if defined(__CYGWIN__)
# if !defined(__USE_W32_SOCKETS)
# error You must add -D__USE_W32_SOCKETS to your compiler options.
# endif // !defined(__USE_W32_SOCKETS)
# if !defined(NOMINMAX)
# define NOMINMAX 1
# endif // !defined(NOMINMAX)
# endif // defined(__CYGWIN__)
# include <winsock2.h>
# include <ws2tcpip.h>
# include <mswsock.h>
# if defined(BOOST_ASIO_WSPIAPI_H_DEFINED)
# undef _WSPIAPI_H_
# undef BOOST_ASIO_WSPIAPI_H_DEFINED
# endif // defined(BOOST_ASIO_WSPIAPI_H_DEFINED)
# if !defined(BOOST_ASIO_NO_DEFAULT_LINKED_LIBS)
# if defined(UNDER_CE)
# pragma comment(lib, "ws2.lib")
# elif defined(_MSC_VER) || defined(__BORLANDC__)
# pragma comment(lib, "ws2_32.lib")
# pragma comment(lib, "mswsock.lib")
# endif // defined(_MSC_VER) || defined(__BORLANDC__)
# endif // !defined(BOOST_ASIO_NO_DEFAULT_LINKED_LIBS)
# include <boost/asio/detail/old_win_sdk_compat.hpp>
#else
# include <sys/ioctl.h>
# include <sys/poll.h>
# include <sys/types.h>
# if defined(__hpux) && !defined(__HP_aCC)
# include <sys/time.h>
# else
# include <sys/select.h>
# endif
# include <sys/socket.h>
# include <sys/uio.h>
# include <sys/un.h>
# include <netinet/in.h>
# include <netinet/tcp.h>
# include <arpa/inet.h>
# include <netdb.h>
# include <net/if.h>
# include <limits.h>
# if defined(__sun)
# include <sys/filio.h>
# include <sys/sockio.h>
# endif
#endif
#include <boost/asio/detail/pop_options.hpp>
namespace boost {
namespace asio {
namespace detail {
#if defined(BOOST_WINDOWS) || defined(__CYGWIN__)
typedef SOCKET socket_type;
const SOCKET invalid_socket = INVALID_SOCKET;
const int socket_error_retval = SOCKET_ERROR;
const int max_addr_v4_str_len = 256;
const int max_addr_v6_str_len = 256;
typedef sockaddr socket_addr_type;
typedef in_addr in4_addr_type;
typedef ip_mreq in4_mreq_type;
typedef sockaddr_in sockaddr_in4_type;
# if defined(BOOST_ASIO_HAS_OLD_WIN_SDK)
typedef in6_addr_emulation in6_addr_type;
typedef ipv6_mreq_emulation in6_mreq_type;
typedef sockaddr_in6_emulation sockaddr_in6_type;
typedef sockaddr_storage_emulation sockaddr_storage_type;
typedef addrinfo_emulation addrinfo_type;
# else
typedef in6_addr in6_addr_type;
typedef ipv6_mreq in6_mreq_type;
typedef sockaddr_in6 sockaddr_in6_type;
typedef sockaddr_storage sockaddr_storage_type;
typedef addrinfo addrinfo_type;
# endif
typedef unsigned long ioctl_arg_type;
typedef u_long u_long_type;
typedef u_short u_short_type;
const int shutdown_receive = SD_RECEIVE;
const int shutdown_send = SD_SEND;
const int shutdown_both = SD_BOTH;
const int message_peek = MSG_PEEK;
const int message_out_of_band = MSG_OOB;
const int message_do_not_route = MSG_DONTROUTE;
# if defined (_WIN32_WINNT)
const int max_iov_len = 64;
# else
const int max_iov_len = 16;
# endif
#else
typedef int socket_type;
const int invalid_socket = -1;
const int socket_error_retval = -1;
const int max_addr_v4_str_len = INET_ADDRSTRLEN;
const int max_addr_v6_str_len = INET6_ADDRSTRLEN + 1 + IF_NAMESIZE;
typedef sockaddr socket_addr_type;
typedef in_addr in4_addr_type;
# if defined(__hpux)
// HP-UX doesn't provide ip_mreq when _XOPEN_SOURCE_EXTENDED is defined.
struct in4_mreq_type
{
struct in_addr imr_multiaddr;
struct in_addr imr_interface;
};
# else
typedef ip_mreq in4_mreq_type;
# endif
typedef sockaddr_in sockaddr_in4_type;
typedef in6_addr in6_addr_type;
typedef ipv6_mreq in6_mreq_type;
typedef sockaddr_in6 sockaddr_in6_type;
typedef sockaddr_storage sockaddr_storage_type;
typedef sockaddr_un sockaddr_un_type;
typedef addrinfo addrinfo_type;
typedef int ioctl_arg_type;
typedef uint32_t u_long_type;
typedef uint16_t u_short_type;
const int shutdown_receive = SHUT_RD;
const int shutdown_send = SHUT_WR;
const int shutdown_both = SHUT_RDWR;
const int message_peek = MSG_PEEK;
const int message_out_of_band = MSG_OOB;
const int message_do_not_route = MSG_DONTROUTE;
# if defined(IOV_MAX)
const int max_iov_len = IOV_MAX;
# else
// POSIX platforms are not required to define IOV_MAX.
const int max_iov_len = 16;
# endif
#endif
const int custom_socket_option_level = 0xA5100000;
const int enable_connection_aborted_option = 1;
const int always_fail_option = 2;
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_SOCKET_TYPES_HPP

View File

@@ -0,0 +1,532 @@
//
// strand_service.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_STRAND_SERVICE_HPP
#define BOOST_ASIO_DETAIL_STRAND_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/aligned_storage.hpp>
#include <boost/assert.hpp>
#include <boost/detail/atomic_count.hpp>
#include <boost/intrusive_ptr.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/bind_handler.hpp>
#include <boost/asio/detail/call_stack.hpp>
#include <boost/asio/detail/handler_alloc_helpers.hpp>
#include <boost/asio/detail/handler_invoke_helpers.hpp>
#include <boost/asio/detail/mutex.hpp>
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/service_base.hpp>
namespace boost {
namespace asio {
namespace detail {
// Default service implementation for a strand.
class strand_service
: public boost::asio::detail::service_base<strand_service>
{
public:
class handler_base;
class invoke_current_handler;
class post_next_waiter_on_exit;
// The underlying implementation of a strand.
class strand_impl
{
#if defined (__BORLANDC__)
public:
#else
private:
#endif
void add_ref()
{
++ref_count_;
}
void release()
{
if (--ref_count_ == 0)
delete this;
}
private:
// Only this service will have access to the internal values.
friend class strand_service;
friend class post_next_waiter_on_exit;
friend class invoke_current_handler;
strand_impl(strand_service& owner)
: owner_(owner),
current_handler_(0),
first_waiter_(0),
last_waiter_(0),
ref_count_(0)
{
// Insert implementation into linked list of all implementations.
boost::asio::detail::mutex::scoped_lock lock(owner_.mutex_);
next_ = owner_.impl_list_;
prev_ = 0;
if (owner_.impl_list_)
owner_.impl_list_->prev_ = this;
owner_.impl_list_ = this;
}
~strand_impl()
{
// Remove implementation from linked list of all implementations.
boost::asio::detail::mutex::scoped_lock lock(owner_.mutex_);
if (owner_.impl_list_ == this)
owner_.impl_list_ = next_;
if (prev_)
prev_->next_ = next_;
if (next_)
next_->prev_= prev_;
next_ = 0;
prev_ = 0;
lock.unlock();
if (current_handler_)
{
current_handler_->destroy();
}
while (first_waiter_)
{
handler_base* next = first_waiter_->next_;
first_waiter_->destroy();
first_waiter_ = next;
}
}
// Mutex to protect access to internal data.
boost::asio::detail::mutex mutex_;
// The service that owns this implementation.
strand_service& owner_;
// The handler that is ready to execute. If this pointer is non-null then it
// indicates that a handler holds the lock.
handler_base* current_handler_;
// The start of the list of waiting handlers for the strand.
handler_base* first_waiter_;
// The end of the list of waiting handlers for the strand.
handler_base* last_waiter_;
// Storage for posted handlers.
typedef boost::aligned_storage<128> handler_storage_type;
#if defined(__BORLANDC__)
boost::aligned_storage<128> handler_storage_;
#else
handler_storage_type handler_storage_;
#endif
// Pointers to adjacent socket implementations in linked list.
strand_impl* next_;
strand_impl* prev_;
// The reference count on the strand implementation.
boost::detail::atomic_count ref_count_;
#if !defined(__BORLANDC__)
friend void intrusive_ptr_add_ref(strand_impl* p)
{
p->add_ref();
}
friend void intrusive_ptr_release(strand_impl* p)
{
p->release();
}
#endif
};
friend class strand_impl;
typedef boost::intrusive_ptr<strand_impl> implementation_type;
// Base class for all handler types.
class handler_base
{
public:
typedef void (*invoke_func_type)(handler_base*,
strand_service&, implementation_type&);
typedef void (*destroy_func_type)(handler_base*);
handler_base(invoke_func_type invoke_func, destroy_func_type destroy_func)
: next_(0),
invoke_func_(invoke_func),
destroy_func_(destroy_func)
{
}
void invoke(strand_service& service_impl, implementation_type& impl)
{
invoke_func_(this, service_impl, impl);
}
void destroy()
{
destroy_func_(this);
}
protected:
~handler_base()
{
}
private:
friend class strand_service;
friend class strand_impl;
friend class post_next_waiter_on_exit;
handler_base* next_;
invoke_func_type invoke_func_;
destroy_func_type destroy_func_;
};
// Helper class to allow handlers to be dispatched.
class invoke_current_handler
{
public:
invoke_current_handler(strand_service& service_impl,
const implementation_type& impl)
: service_impl_(service_impl),
impl_(impl)
{
}
void operator()()
{
impl_->current_handler_->invoke(service_impl_, impl_);
}
friend void* asio_handler_allocate(std::size_t size,
invoke_current_handler* this_handler)
{
return this_handler->do_handler_allocate(size);
}
friend void asio_handler_deallocate(void*, std::size_t,
invoke_current_handler*)
{
}
void* do_handler_allocate(std::size_t size)
{
#if defined(__BORLANDC__)
BOOST_ASSERT(size <= boost::aligned_storage<128>::size);
#else
BOOST_ASSERT(size <= strand_impl::handler_storage_type::size);
#endif
(void)size;
return impl_->handler_storage_.address();
}
// The asio_handler_invoke hook is not defined here since the default one
// provides the correct behaviour, and including it here breaks MSVC 7.1
// in some situations.
private:
strand_service& service_impl_;
implementation_type impl_;
};
// Helper class to automatically enqueue next waiter on block exit.
class post_next_waiter_on_exit
{
public:
post_next_waiter_on_exit(strand_service& service_impl,
implementation_type& impl)
: service_impl_(service_impl),
impl_(impl),
cancelled_(false)
{
}
~post_next_waiter_on_exit()
{
if (!cancelled_)
{
boost::asio::detail::mutex::scoped_lock lock(impl_->mutex_);
impl_->current_handler_ = impl_->first_waiter_;
if (impl_->current_handler_)
{
impl_->first_waiter_ = impl_->first_waiter_->next_;
if (impl_->first_waiter_ == 0)
impl_->last_waiter_ = 0;
lock.unlock();
service_impl_.get_io_service().post(
invoke_current_handler(service_impl_, impl_));
}
}
}
void cancel()
{
cancelled_ = true;
}
private:
strand_service& service_impl_;
implementation_type& impl_;
bool cancelled_;
};
// Class template for a waiter.
template <typename Handler>
class handler_wrapper
: public handler_base
{
public:
handler_wrapper(Handler handler)
: handler_base(&handler_wrapper<Handler>::do_invoke,
&handler_wrapper<Handler>::do_destroy),
handler_(handler)
{
}
static void do_invoke(handler_base* base,
strand_service& service_impl, implementation_type& impl)
{
// Take ownership of the handler object.
typedef handler_wrapper<Handler> this_type;
this_type* h(static_cast<this_type*>(base));
typedef handler_alloc_traits<Handler, this_type> alloc_traits;
handler_ptr<alloc_traits> ptr(h->handler_, h);
post_next_waiter_on_exit p1(service_impl, impl);
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made.
Handler handler(h->handler_);
// A handler object must still be valid when the next waiter is posted
// since destroying the last handler might cause the strand object to be
// destroyed. Therefore we create a second post_next_waiter_on_exit object
// that will be destroyed before the handler object.
p1.cancel();
post_next_waiter_on_exit p2(service_impl, impl);
// Free the memory associated with the handler.
ptr.reset();
// Indicate that this strand is executing on the current thread.
call_stack<strand_impl>::context ctx(impl.get());
// Make the upcall.
boost_asio_handler_invoke_helpers::invoke(handler, &handler);
}
static void do_destroy(handler_base* base)
{
// Take ownership of the handler object.
typedef handler_wrapper<Handler> this_type;
this_type* h(static_cast<this_type*>(base));
typedef handler_alloc_traits<Handler, this_type> alloc_traits;
handler_ptr<alloc_traits> ptr(h->handler_, h);
// A sub-object of the handler may be the true owner of the memory
// associated with the handler. Consequently, a local copy of the handler
// is required to ensure that any owning sub-object remains valid until
// after we have deallocated the memory here.
Handler handler(h->handler_);
(void)handler;
// Free the memory associated with the handler.
ptr.reset();
}
private:
Handler handler_;
};
// Construct a new strand service for the specified io_service.
explicit strand_service(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<strand_service>(io_service),
mutex_(),
impl_list_(0)
{
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
// Construct a list of all handlers to be destroyed.
boost::asio::detail::mutex::scoped_lock lock(mutex_);
strand_impl* impl = impl_list_;
handler_base* first_handler = 0;
while (impl)
{
if (impl->current_handler_)
{
impl->current_handler_->next_ = first_handler;
first_handler = impl->current_handler_;
impl->current_handler_ = 0;
}
if (impl->first_waiter_)
{
impl->last_waiter_->next_ = first_handler;
first_handler = impl->first_waiter_;
impl->first_waiter_ = 0;
impl->last_waiter_ = 0;
}
impl = impl->next_;
}
// Destroy all handlers without holding the lock.
lock.unlock();
while (first_handler)
{
handler_base* next = first_handler->next_;
first_handler->destroy();
first_handler = next;
}
}
// Construct a new strand implementation.
void construct(implementation_type& impl)
{
impl = implementation_type(new strand_impl(*this));
}
// Destroy a strand implementation.
void destroy(implementation_type& impl)
{
implementation_type().swap(impl);
}
// Request the io_service to invoke the given handler.
template <typename Handler>
void dispatch(implementation_type& impl, Handler handler)
{
if (call_stack<strand_impl>::contains(impl.get()))
{
boost_asio_handler_invoke_helpers::invoke(handler, &handler);
}
else
{
// Allocate and construct an object to wrap the handler.
typedef handler_wrapper<Handler> value_type;
typedef handler_alloc_traits<Handler, value_type> alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(handler);
handler_ptr<alloc_traits> ptr(raw_ptr, handler);
boost::asio::detail::mutex::scoped_lock lock(impl->mutex_);
if (impl->current_handler_ == 0)
{
// This handler now has the lock, so can be dispatched immediately.
impl->current_handler_ = ptr.release();
lock.unlock();
this->get_io_service().dispatch(invoke_current_handler(*this, impl));
}
else
{
// Another handler already holds the lock, so this handler must join
// the list of waiters. The handler will be posted automatically when
// its turn comes.
if (impl->last_waiter_)
{
impl->last_waiter_->next_ = ptr.get();
impl->last_waiter_ = impl->last_waiter_->next_;
}
else
{
impl->first_waiter_ = ptr.get();
impl->last_waiter_ = ptr.get();
}
ptr.release();
}
}
}
// Request the io_service to invoke the given handler and return immediately.
template <typename Handler>
void post(implementation_type& impl, Handler handler)
{
// Allocate and construct an object to wrap the handler.
typedef handler_wrapper<Handler> value_type;
typedef handler_alloc_traits<Handler, value_type> alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(handler);
handler_ptr<alloc_traits> ptr(raw_ptr, handler);
boost::asio::detail::mutex::scoped_lock lock(impl->mutex_);
if (impl->current_handler_ == 0)
{
// This handler now has the lock, so can be dispatched immediately.
impl->current_handler_ = ptr.release();
lock.unlock();
this->get_io_service().post(invoke_current_handler(*this, impl));
}
else
{
// Another handler already holds the lock, so this handler must join the
// list of waiters. The handler will be posted automatically when its turn
// comes.
if (impl->last_waiter_)
{
impl->last_waiter_->next_ = ptr.get();
impl->last_waiter_ = impl->last_waiter_->next_;
}
else
{
impl->first_waiter_ = ptr.get();
impl->last_waiter_ = ptr.get();
}
ptr.release();
}
}
private:
// Mutex to protect access to the linked list of implementations.
boost::asio::detail::mutex mutex_;
// The head of a linked list of all implementations.
strand_impl* impl_list_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#if defined(__BORLANDC__)
namespace boost {
inline void intrusive_ptr_add_ref(
boost::asio::detail::strand_service::strand_impl* p)
{
p->add_ref();
}
inline void intrusive_ptr_release(
boost::asio::detail::strand_service::strand_impl* p)
{
p->release();
}
} // namespace boost
#endif // defined(__BORLANDC__)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_STRAND_SERVICE_HPP

View File

@@ -0,0 +1,438 @@
//
// task_io_service.hpp
// ~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_TASK_IO_SERVICE_HPP
#define BOOST_ASIO_DETAIL_TASK_IO_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#if defined(BOOST_ASIO_ENABLE_TWO_LOCK_QUEUE)
#include <boost/asio/detail/task_io_service_2lock.hpp>
#else // defined(BOOST_ASIO_ENABLE_TWO_LOCK_QUEUE)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/call_stack.hpp>
#include <boost/asio/detail/event.hpp>
#include <boost/asio/detail/handler_alloc_helpers.hpp>
#include <boost/asio/detail/handler_invoke_helpers.hpp>
#include <boost/asio/detail/handler_queue.hpp>
#include <boost/asio/detail/mutex.hpp>
#include <boost/asio/detail/service_base.hpp>
#include <boost/asio/detail/task_io_service_fwd.hpp>
namespace boost {
namespace asio {
namespace detail {
template <typename Task>
class task_io_service
: public boost::asio::detail::service_base<task_io_service<Task> >
{
public:
// Constructor.
task_io_service(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<task_io_service<Task> >(io_service),
mutex_(),
task_(0),
task_interrupted_(true),
outstanding_work_(0),
stopped_(false),
shutdown_(false),
first_idle_thread_(0)
{
}
void init(size_t /*concurrency_hint*/)
{
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
shutdown_ = true;
lock.unlock();
// Destroy handler objects.
while (!handler_queue_.empty())
{
handler_queue::handler* h = handler_queue_.front();
handler_queue_.pop();
if (h != &task_handler_)
h->destroy();
}
// Reset to initial state.
task_ = 0;
}
// Initialise the task, if required.
void init_task()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (!shutdown_ && !task_)
{
task_ = &use_service<Task>(this->get_io_service());
handler_queue_.push(&task_handler_);
interrupt_one_idle_thread(lock);
}
}
// Run the event loop until interrupted or no more work.
size_t run(boost::system::error_code& ec)
{
typename call_stack<task_io_service>::context ctx(this);
idle_thread_info this_idle_thread;
this_idle_thread.next = 0;
boost::asio::detail::mutex::scoped_lock lock(mutex_);
size_t n = 0;
while (do_one(lock, &this_idle_thread, ec))
if (n != (std::numeric_limits<size_t>::max)())
++n;
return n;
}
// Run until interrupted or one operation is performed.
size_t run_one(boost::system::error_code& ec)
{
typename call_stack<task_io_service>::context ctx(this);
idle_thread_info this_idle_thread;
this_idle_thread.next = 0;
boost::asio::detail::mutex::scoped_lock lock(mutex_);
return do_one(lock, &this_idle_thread, ec);
}
// Poll for operations without blocking.
size_t poll(boost::system::error_code& ec)
{
typename call_stack<task_io_service>::context ctx(this);
boost::asio::detail::mutex::scoped_lock lock(mutex_);
size_t n = 0;
while (do_one(lock, 0, ec))
if (n != (std::numeric_limits<size_t>::max)())
++n;
return n;
}
// Poll for one operation without blocking.
size_t poll_one(boost::system::error_code& ec)
{
typename call_stack<task_io_service>::context ctx(this);
boost::asio::detail::mutex::scoped_lock lock(mutex_);
return do_one(lock, 0, ec);
}
// Interrupt the event processing loop.
void stop()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
stop_all_threads(lock);
}
// Reset in preparation for a subsequent run invocation.
void reset()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
stopped_ = false;
}
// Notify that some work has started.
void work_started()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
++outstanding_work_;
}
// Notify that some work has finished.
void work_finished()
{
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (--outstanding_work_ == 0)
stop_all_threads(lock);
}
// Request invocation of the given handler.
template <typename Handler>
void dispatch(Handler handler)
{
if (call_stack<task_io_service>::contains(this))
boost_asio_handler_invoke_helpers::invoke(handler, &handler);
else
post(handler);
}
// Request invocation of the given handler and return immediately.
template <typename Handler>
void post(Handler handler)
{
// Allocate and construct an operation to wrap the handler.
handler_queue::scoped_ptr ptr(handler_queue::wrap(handler));
boost::asio::detail::mutex::scoped_lock lock(mutex_);
// If the service has been shut down we silently discard the handler.
if (shutdown_)
return;
// Add the handler to the end of the queue.
handler_queue_.push(ptr.get());
ptr.release();
// An undelivered handler is treated as unfinished work.
++outstanding_work_;
// Wake up a thread to execute the handler.
if (!interrupt_one_idle_thread(lock))
{
if (!task_interrupted_ && task_)
{
task_interrupted_ = true;
task_->interrupt();
}
}
}
private:
struct idle_thread_info;
size_t do_one(boost::asio::detail::mutex::scoped_lock& lock,
idle_thread_info* this_idle_thread, boost::system::error_code& ec)
{
if (outstanding_work_ == 0 && !stopped_)
{
stop_all_threads(lock);
ec = boost::system::error_code();
return 0;
}
bool polling = !this_idle_thread;
bool task_has_run = false;
while (!stopped_)
{
if (!handler_queue_.empty())
{
// Prepare to execute first handler from queue.
handler_queue::handler* h = handler_queue_.front();
handler_queue_.pop();
if (h == &task_handler_)
{
bool more_handlers = (!handler_queue_.empty());
task_interrupted_ = more_handlers || polling;
// If the task has already run and we're polling then we're done.
if (task_has_run && polling)
{
task_interrupted_ = true;
handler_queue_.push(&task_handler_);
ec = boost::system::error_code();
return 0;
}
task_has_run = true;
lock.unlock();
task_cleanup c(lock, *this);
// Run the task. May throw an exception. Only block if the handler
// queue is empty and we have an idle_thread_info object, otherwise
// we want to return as soon as possible.
task_->run(!more_handlers && !polling);
}
else
{
lock.unlock();
handler_cleanup c(lock, *this);
// Invoke the handler. May throw an exception.
h->invoke(); // invoke() deletes the handler object
ec = boost::system::error_code();
return 1;
}
}
else if (this_idle_thread)
{
// Nothing to run right now, so just wait for work to do.
this_idle_thread->next = first_idle_thread_;
first_idle_thread_ = this_idle_thread;
this_idle_thread->wakeup_event.clear(lock);
this_idle_thread->wakeup_event.wait(lock);
}
else
{
ec = boost::system::error_code();
return 0;
}
}
ec = boost::system::error_code();
return 0;
}
// Stop the task and all idle threads.
void stop_all_threads(
boost::asio::detail::mutex::scoped_lock& lock)
{
stopped_ = true;
interrupt_all_idle_threads(lock);
if (!task_interrupted_ && task_)
{
task_interrupted_ = true;
task_->interrupt();
}
}
// Interrupt a single idle thread. Returns true if a thread was interrupted,
// false if no running thread could be found to interrupt.
bool interrupt_one_idle_thread(
boost::asio::detail::mutex::scoped_lock& lock)
{
if (first_idle_thread_)
{
idle_thread_info* idle_thread = first_idle_thread_;
first_idle_thread_ = idle_thread->next;
idle_thread->next = 0;
idle_thread->wakeup_event.signal(lock);
return true;
}
return false;
}
// Interrupt all idle threads.
void interrupt_all_idle_threads(
boost::asio::detail::mutex::scoped_lock& lock)
{
while (first_idle_thread_)
{
idle_thread_info* idle_thread = first_idle_thread_;
first_idle_thread_ = idle_thread->next;
idle_thread->next = 0;
idle_thread->wakeup_event.signal(lock);
}
}
// Helper class to perform task-related operations on block exit.
class task_cleanup;
friend class task_cleanup;
class task_cleanup
{
public:
task_cleanup(boost::asio::detail::mutex::scoped_lock& lock,
task_io_service& task_io_svc)
: lock_(lock),
task_io_service_(task_io_svc)
{
}
~task_cleanup()
{
// Reinsert the task at the end of the handler queue.
lock_.lock();
task_io_service_.task_interrupted_ = true;
task_io_service_.handler_queue_.push(&task_io_service_.task_handler_);
}
private:
boost::asio::detail::mutex::scoped_lock& lock_;
task_io_service& task_io_service_;
};
// Helper class to perform handler-related operations on block exit.
class handler_cleanup;
friend class handler_cleanup;
class handler_cleanup
{
public:
handler_cleanup(boost::asio::detail::mutex::scoped_lock& lock,
task_io_service& task_io_svc)
: lock_(lock),
task_io_service_(task_io_svc)
{
}
~handler_cleanup()
{
lock_.lock();
if (--task_io_service_.outstanding_work_ == 0)
task_io_service_.stop_all_threads(lock_);
}
private:
boost::asio::detail::mutex::scoped_lock& lock_;
task_io_service& task_io_service_;
};
// Mutex to protect access to internal data.
boost::asio::detail::mutex mutex_;
// The task to be run by this service.
Task* task_;
// Handler object to represent the position of the task in the queue.
class task_handler
: public handler_queue::handler
{
public:
task_handler()
: handler_queue::handler(0, 0)
{
}
} task_handler_;
// Whether the task has been interrupted.
bool task_interrupted_;
// The count of unfinished work.
int outstanding_work_;
// The queue of handlers that are ready to be delivered.
handler_queue handler_queue_;
// Flag to indicate that the dispatcher has been stopped.
bool stopped_;
// Flag to indicate that the dispatcher has been shut down.
bool shutdown_;
// Structure containing information about an idle thread.
struct idle_thread_info
{
event wakeup_event;
idle_thread_info* next;
};
// The number of threads that are currently idle.
idle_thread_info* first_idle_thread_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/system/error_code.hpp>
#include <boost/asio/detail/pop_options.hpp>
#endif // defined(BOOST_ASIO_ENABLE_TWO_LOCK_QUEUE)
#endif // BOOST_ASIO_DETAIL_TASK_IO_SERVICE_HPP

View File

@@ -0,0 +1,475 @@
//
// task_io_service_2lock.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_TASK_IO_SERVICE_2LOCK_HPP
#define BOOST_ASIO_DETAIL_TASK_IO_SERVICE_2LOCK_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/call_stack.hpp>
#include <boost/asio/detail/event.hpp>
#include <boost/asio/detail/handler_alloc_helpers.hpp>
#include <boost/asio/detail/handler_invoke_helpers.hpp>
#include <boost/asio/detail/indirect_handler_queue.hpp>
#include <boost/asio/detail/mutex.hpp>
#include <boost/asio/detail/service_base.hpp>
#include <boost/asio/detail/task_io_service_fwd.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/detail/atomic_count.hpp>
#include <boost/system/error_code.hpp>
#include <boost/asio/detail/pop_options.hpp>
namespace boost {
namespace asio {
namespace detail {
// An alternative task_io_service implementation based on a two-lock queue.
template <typename Task>
class task_io_service
: public boost::asio::detail::service_base<task_io_service<Task> >
{
public:
typedef indirect_handler_queue handler_queue;
// Constructor.
task_io_service(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<task_io_service<Task> >(io_service),
front_mutex_(),
back_mutex_(),
task_(&use_service<Task>(io_service)),
outstanding_work_(0),
front_stopped_(false),
back_stopped_(false),
back_shutdown_(false),
back_first_idle_thread_(0),
back_task_thread_(0)
{
}
void init(size_t /*concurrency_hint*/)
{
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
boost::asio::detail::mutex::scoped_lock back_lock(back_mutex_);
back_shutdown_ = true;
back_lock.unlock();
// Destroy handler objects.
while (handler_queue::handler* h = handler_queue_.pop())
if (h != &task_handler_)
h->destroy();
// Reset to initial state.
task_ = 0;
}
// Initialise the task, if required.
void init_task()
{
boost::asio::detail::mutex::scoped_lock back_lock(back_mutex_);
if (!back_shutdown_ && !task_)
{
task_ = &use_service<Task>(this->get_io_service());
handler_queue_.push(&task_handler_);
interrupt_one_idle_thread(back_lock);
}
}
// Run the event loop until interrupted or no more work.
size_t run(boost::system::error_code& ec)
{
if (outstanding_work_ == 0)
{
stop();
ec = boost::system::error_code();
return 0;
}
typename call_stack<task_io_service>::context ctx(this);
idle_thread_info this_idle_thread;
this_idle_thread.next = 0;
size_t n = 0;
while (do_one(&this_idle_thread, ec))
if (n != (std::numeric_limits<size_t>::max)())
++n;
return n;
}
// Run until interrupted or one operation is performed.
size_t run_one(boost::system::error_code& ec)
{
if (outstanding_work_ == 0)
{
stop();
ec = boost::system::error_code();
return 0;
}
typename call_stack<task_io_service>::context ctx(this);
idle_thread_info this_idle_thread;
this_idle_thread.next = 0;
return do_one(&this_idle_thread, ec);
}
// Poll for operations without blocking.
size_t poll(boost::system::error_code& ec)
{
if (outstanding_work_ == 0)
{
stop();
ec = boost::system::error_code();
return 0;
}
typename call_stack<task_io_service>::context ctx(this);
size_t n = 0;
while (do_one(0, ec))
if (n != (std::numeric_limits<size_t>::max)())
++n;
return n;
}
// Poll for one operation without blocking.
size_t poll_one(boost::system::error_code& ec)
{
if (outstanding_work_ == 0)
{
stop();
ec = boost::system::error_code();
return 0;
}
typename call_stack<task_io_service>::context ctx(this);
return do_one(0, ec);
}
// Interrupt the event processing loop.
void stop()
{
boost::asio::detail::mutex::scoped_lock front_lock(front_mutex_);
front_stopped_ = true;
front_lock.unlock();
boost::asio::detail::mutex::scoped_lock back_lock(back_mutex_);
back_stopped_ = true;
interrupt_all_idle_threads(back_lock);
}
// Reset in preparation for a subsequent run invocation.
void reset()
{
boost::asio::detail::mutex::scoped_lock front_lock(front_mutex_);
front_stopped_ = false;
front_lock.unlock();
boost::asio::detail::mutex::scoped_lock back_lock(back_mutex_);
back_stopped_ = false;
}
// Notify that some work has started.
void work_started()
{
++outstanding_work_;
}
// Notify that some work has finished.
void work_finished()
{
if (--outstanding_work_ == 0)
stop();
}
// Request invocation of the given handler.
template <typename Handler>
void dispatch(Handler handler)
{
if (call_stack<task_io_service>::contains(this))
boost_asio_handler_invoke_helpers::invoke(handler, &handler);
else
post(handler);
}
// Request invocation of the given handler and return immediately.
template <typename Handler>
void post(Handler handler)
{
// Allocate and construct an operation to wrap the handler.
handler_queue::scoped_ptr ptr(handler_queue::wrap(handler));
boost::asio::detail::mutex::scoped_lock back_lock(back_mutex_);
// If the service has been shut down we silently discard the handler.
if (back_shutdown_)
return;
// Add the handler to the end of the queue.
handler_queue_.push(ptr.get());
ptr.release();
// An undelivered handler is treated as unfinished work.
++outstanding_work_;
// Wake up a thread to execute the handler.
interrupt_one_idle_thread(back_lock);
}
private:
struct idle_thread_info;
size_t do_one(idle_thread_info* this_idle_thread,
boost::system::error_code& ec)
{
bool task_has_run = false;
for (;;)
{
// The front lock must be held before we can pop items from the queue.
boost::asio::detail::mutex::scoped_lock front_lock(front_mutex_);
if (front_stopped_)
{
ec = boost::system::error_code();
return 0;
}
if (handler_queue::handler* h = handler_queue_.pop())
{
if (h == &task_handler_)
{
bool more_handlers = handler_queue_.poppable();
unsigned long front_version = handler_queue_.front_version();
front_lock.unlock();
// The task is always added to the back of the queue when we exit
// this block.
task_cleanup c(*this);
// If we're polling and the task has already run then we're done.
bool polling = !this_idle_thread;
if (task_has_run && polling)
{
ec = boost::system::error_code();
return 0;
}
// If we're considering going idle we need to check whether the queue
// is still empty. If it is, add the thread to the list of idle
// threads.
if (!more_handlers && !polling)
{
boost::asio::detail::mutex::scoped_lock back_lock(back_mutex_);
if (back_stopped_)
{
ec = boost::system::error_code();
return 0;
}
else if (front_version == handler_queue_.back_version())
{
back_task_thread_ = this_idle_thread;
}
else
{
more_handlers = true;
}
}
// Run the task. May throw an exception. Only block if the handler
// queue is empty and we're not polling, otherwise we want to return
// as soon as possible.
task_has_run = true;
task_->run(!more_handlers && !polling);
}
else
{
front_lock.unlock();
handler_cleanup c(*this);
// Invoke the handler. May throw an exception.
h->invoke(); // invoke() deletes the handler object
ec = boost::system::error_code();
return 1;
}
}
else if (this_idle_thread)
{
unsigned long front_version = handler_queue_.front_version();
front_lock.unlock();
// If we're considering going idle we need to check whether the queue
// is still empty. If it is, add the thread to the list of idle
// threads.
boost::asio::detail::mutex::scoped_lock back_lock(back_mutex_);
if (back_stopped_)
{
ec = boost::system::error_code();
return 0;
}
else if (front_version == handler_queue_.back_version())
{
this_idle_thread->next = back_first_idle_thread_;
back_first_idle_thread_ = this_idle_thread;
this_idle_thread->wakeup_event.clear(back_lock);
this_idle_thread->wakeup_event.wait(back_lock);
}
}
else
{
ec = boost::system::error_code();
return 0;
}
}
}
// Interrupt a single idle thread.
void interrupt_one_idle_thread(
boost::asio::detail::mutex::scoped_lock& back_lock)
{
if (back_first_idle_thread_)
{
idle_thread_info* idle_thread = back_first_idle_thread_;
back_first_idle_thread_ = idle_thread->next;
idle_thread->next = 0;
idle_thread->wakeup_event.signal(back_lock);
}
else if (back_task_thread_ && task_)
{
back_task_thread_ = 0;
task_->interrupt();
}
}
// Interrupt all idle threads.
void interrupt_all_idle_threads(
boost::asio::detail::mutex::scoped_lock& back_lock)
{
while (back_first_idle_thread_)
{
idle_thread_info* idle_thread = back_first_idle_thread_;
back_first_idle_thread_ = idle_thread->next;
idle_thread->next = 0;
idle_thread->wakeup_event.signal(back_lock);
}
if (back_task_thread_ && task_)
{
back_task_thread_ = 0;
task_->interrupt();
}
}
// Helper class to perform task-related operations on block exit.
class task_cleanup;
friend class task_cleanup;
class task_cleanup
{
public:
task_cleanup(task_io_service& task_io_svc)
: task_io_service_(task_io_svc)
{
}
~task_cleanup()
{
// Reinsert the task at the end of the handler queue.
boost::asio::detail::mutex::scoped_lock back_lock(
task_io_service_.back_mutex_);
task_io_service_.back_task_thread_ = 0;
task_io_service_.handler_queue_.push(&task_io_service_.task_handler_);
}
private:
task_io_service& task_io_service_;
};
// Helper class to perform handler-related operations on block exit.
class handler_cleanup
{
public:
handler_cleanup(task_io_service& task_io_svc)
: task_io_service_(task_io_svc)
{
}
~handler_cleanup()
{
task_io_service_.work_finished();
}
private:
task_io_service& task_io_service_;
};
// Mutexes to protect access to internal data.
boost::asio::detail::mutex front_mutex_;
boost::asio::detail::mutex back_mutex_;
// The task to be run by this service.
Task* task_;
// Handler object to represent the position of the task in the queue.
class task_handler
: public handler_queue::handler
{
public:
task_handler()
: handler_queue::handler(0, 0)
{
}
} task_handler_;
// The count of unfinished work.
boost::detail::atomic_count outstanding_work_;
// The queue of handlers that are ready to be delivered.
handler_queue handler_queue_;
// Flag to indicate that the dispatcher has been stopped.
bool front_stopped_;
bool back_stopped_;
// Flag to indicate that the dispatcher has been shut down.
bool back_shutdown_;
// Structure containing information about an idle thread.
struct idle_thread_info
{
event wakeup_event;
idle_thread_info* next;
};
// The number of threads that are currently idle.
idle_thread_info* back_first_idle_thread_;
// The thread that is currently blocked on the task.
idle_thread_info* back_task_thread_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_TASK_IO_SERVICE_2LOCK_HPP

View File

@@ -0,0 +1,33 @@
//
// task_io_service_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_TASK_IO_SERVICE_FWD_HPP
#define BOOST_ASIO_DETAIL_TASK_IO_SERVICE_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
namespace boost {
namespace asio {
namespace detail {
template <typename Task>
class task_io_service;
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_TASK_IO_SERVICE_FWD_HPP

View File

@@ -0,0 +1,60 @@
//
// thread.hpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_THREAD_HPP
#define BOOST_ASIO_DETAIL_THREAD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if !defined(BOOST_HAS_THREADS)
# include <boost/asio/detail/null_thread.hpp>
#elif defined(BOOST_WINDOWS)
# if defined(UNDER_CE)
# include <boost/asio/detail/wince_thread.hpp>
# else
# include <boost/asio/detail/win_thread.hpp>
# endif
#elif defined(BOOST_HAS_PTHREADS)
# include <boost/asio/detail/posix_thread.hpp>
#else
# error Only Windows and POSIX are supported!
#endif
namespace boost {
namespace asio {
namespace detail {
#if !defined(BOOST_HAS_THREADS)
typedef null_thread thread;
#elif defined(BOOST_WINDOWS)
# if defined(UNDER_CE)
typedef wince_thread thread;
# else
typedef win_thread thread;
# endif
#elif defined(BOOST_HAS_PTHREADS)
typedef posix_thread thread;
#endif
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_THREAD_HPP

View File

@@ -0,0 +1,46 @@
//
// throw_error.hpp
// ~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_THROW_ERROR_HPP
#define BOOST_ASIO_DETAIL_THROW_ERROR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/throw_exception.hpp>
#include <boost/system/error_code.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
namespace boost {
namespace asio {
namespace detail {
inline void throw_error(const boost::system::error_code& err)
{
if (err)
{
boost::system::system_error e(err);
boost::throw_exception(e);
}
}
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_THROW_ERROR_HPP

View File

@@ -0,0 +1,438 @@
//
// timer_queue.hpp
// ~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_TIMER_QUEUE_HPP
#define BOOST_ASIO_DETAIL_TIMER_QUEUE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <cstddef>
#include <functional>
#include <limits>
#include <memory>
#include <vector>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/detail/handler_alloc_helpers.hpp>
#include <boost/asio/detail/hash_map.hpp>
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/timer_queue_base.hpp>
namespace boost {
namespace asio {
namespace detail {
template <typename Time_Traits>
class timer_queue
: public timer_queue_base
{
public:
// The time type.
typedef typename Time_Traits::time_type time_type;
// The duration type.
typedef typename Time_Traits::duration_type duration_type;
// Constructor.
timer_queue()
: timers_(),
heap_(),
cancelled_timers_(0),
complete_timers_(0)
{
}
// Add a new timer to the queue. Returns true if this is the timer that is
// earliest in the queue, in which case the reactor's event demultiplexing
// function call may need to be interrupted and restarted.
template <typename Handler>
bool enqueue_timer(const time_type& time, Handler handler, void* token)
{
// Ensure that there is space for the timer in the heap. We reserve here so
// that the push_back below will not throw due to a reallocation failure.
heap_.reserve(heap_.size() + 1);
// Create a new timer object.
std::auto_ptr<timer<Handler> > new_timer(
new timer<Handler>(time, handler, token));
// Insert the new timer into the hash.
typedef typename hash_map<void*, timer_base*>::iterator iterator;
typedef typename hash_map<void*, timer_base*>::value_type value_type;
std::pair<iterator, bool> result =
timers_.insert(value_type(token, new_timer.get()));
if (!result.second)
{
result.first->second->prev_ = new_timer.get();
new_timer->next_ = result.first->second;
result.first->second = new_timer.get();
}
// Put the timer at the correct position in the heap.
new_timer->heap_index_ = heap_.size();
heap_.push_back(new_timer.get());
up_heap(heap_.size() - 1);
bool is_first = (heap_[0] == new_timer.get());
// Ownership of the timer is transferred to the timer queue.
new_timer.release();
return is_first;
}
// Whether there are no timers in the queue.
virtual bool empty() const
{
return heap_.empty();
}
// Get the time for the timer that is earliest in the queue.
virtual boost::posix_time::time_duration wait_duration() const
{
if (heap_.empty())
return boost::posix_time::pos_infin;
return Time_Traits::to_posix_duration(
Time_Traits::subtract(heap_[0]->time_, Time_Traits::now()));
}
// Dispatch the timers that are earlier than the specified time.
virtual void dispatch_timers()
{
const time_type now = Time_Traits::now();
while (!heap_.empty() && !Time_Traits::less_than(now, heap_[0]->time_))
{
timer_base* t = heap_[0];
remove_timer(t);
t->result_ = boost::system::error_code();
t->prev_ = 0;
t->next_ = complete_timers_;
complete_timers_ = t;
}
}
// Cancel the timers with the given token. Any timers pending for the token
// will be notified that they have been cancelled next time
// dispatch_cancellations is called. Returns the number of timers that were
// cancelled.
std::size_t cancel_timer(void* timer_token)
{
std::size_t num_cancelled = 0;
typedef typename hash_map<void*, timer_base*>::iterator iterator;
iterator it = timers_.find(timer_token);
if (it != timers_.end())
{
timer_base* t = it->second;
while (t)
{
timer_base* next = t->next_;
remove_timer(t);
t->prev_ = 0;
t->next_ = cancelled_timers_;
cancelled_timers_ = t;
t = next;
++num_cancelled;
}
}
return num_cancelled;
}
// Dispatch any pending cancels for timers.
virtual void dispatch_cancellations()
{
while (cancelled_timers_)
{
timer_base* this_timer = cancelled_timers_;
this_timer->result_ = boost::asio::error::operation_aborted;
cancelled_timers_ = this_timer->next_;
this_timer->next_ = complete_timers_;
complete_timers_ = this_timer;
}
}
// Complete any timers that are waiting to be completed.
virtual void complete_timers()
{
while (complete_timers_)
{
timer_base* this_timer = complete_timers_;
complete_timers_ = this_timer->next_;
this_timer->next_ = 0;
this_timer->complete();
}
}
// Destroy all timers.
virtual void destroy_timers()
{
typename hash_map<void*, timer_base*>::iterator i = timers_.begin();
typename hash_map<void*, timer_base*>::iterator end = timers_.end();
while (i != end)
{
timer_base* t = i->second;
typename hash_map<void*, timer_base*>::iterator old_i = i++;
timers_.erase(old_i);
destroy_timer_list(t);
}
heap_.clear();
timers_.clear();
destroy_timer_list(cancelled_timers_);
destroy_timer_list(complete_timers_);
}
private:
// Base class for timer operations. Function pointers are used instead of
// virtual functions to avoid the associated overhead.
class timer_base
{
public:
// Delete the timer and post the handler.
void complete()
{
complete_func_(this, result_);
}
// Delete the timer.
void destroy()
{
destroy_func_(this);
}
protected:
typedef void (*complete_func_type)(timer_base*,
const boost::system::error_code&);
typedef void (*destroy_func_type)(timer_base*);
// Constructor.
timer_base(complete_func_type complete_func, destroy_func_type destroy_func,
const time_type& time, void* token)
: complete_func_(complete_func),
destroy_func_(destroy_func),
time_(time),
token_(token),
next_(0),
prev_(0),
heap_index_(
std::numeric_limits<size_t>::max BOOST_PREVENT_MACRO_SUBSTITUTION())
{
}
// Prevent deletion through this type.
~timer_base()
{
}
private:
friend class timer_queue<Time_Traits>;
// The function to be called to delete the timer and post the handler.
complete_func_type complete_func_;
// The function to be called to delete the timer.
destroy_func_type destroy_func_;
// The result of the timer operation.
boost::system::error_code result_;
// The time when the timer should fire.
time_type time_;
// The token associated with the timer.
void* token_;
// The next timer known to the queue.
timer_base* next_;
// The previous timer known to the queue.
timer_base* prev_;
// The index of the timer in the heap.
size_t heap_index_;
};
// Adaptor class template for using handlers in timers.
template <typename Handler>
class timer
: public timer_base
{
public:
// Constructor.
timer(const time_type& time, Handler handler, void* token)
: timer_base(&timer<Handler>::complete_handler,
&timer<Handler>::destroy_handler, time, token),
handler_(handler)
{
}
// Delete the timer and post the handler.
static void complete_handler(timer_base* base,
const boost::system::error_code& result)
{
// Take ownership of the timer object.
typedef timer<Handler> this_type;
this_type* this_timer(static_cast<this_type*>(base));
typedef handler_alloc_traits<Handler, this_type> alloc_traits;
handler_ptr<alloc_traits> ptr(this_timer->handler_, this_timer);
// Make a copy of the error_code and the handler so that the memory can
// be deallocated before the upcall is made.
boost::system::error_code ec(result);
Handler handler(this_timer->handler_);
// Free the memory associated with the handler.
ptr.reset();
// Make the upcall.
handler(ec);
}
// Delete the timer.
static void destroy_handler(timer_base* base)
{
// Take ownership of the timer object.
typedef timer<Handler> this_type;
this_type* this_timer(static_cast<this_type*>(base));
typedef handler_alloc_traits<Handler, this_type> alloc_traits;
handler_ptr<alloc_traits> ptr(this_timer->handler_, this_timer);
// A sub-object of the handler may be the true owner of the memory
// associated with the handler. Consequently, a local copy of the handler
// is required to ensure that any owning sub-object remains valid until
// after we have deallocated the memory here.
Handler handler(this_timer->handler_);
(void)handler;
// Free the memory associated with the handler.
ptr.reset();
}
private:
Handler handler_;
};
// Move the item at the given index up the heap to its correct position.
void up_heap(size_t index)
{
size_t parent = (index - 1) / 2;
while (index > 0
&& Time_Traits::less_than(heap_[index]->time_, heap_[parent]->time_))
{
swap_heap(index, parent);
index = parent;
parent = (index - 1) / 2;
}
}
// Move the item at the given index down the heap to its correct position.
void down_heap(size_t index)
{
size_t child = index * 2 + 1;
while (child < heap_.size())
{
size_t min_child = (child + 1 == heap_.size()
|| Time_Traits::less_than(
heap_[child]->time_, heap_[child + 1]->time_))
? child : child + 1;
if (Time_Traits::less_than(heap_[index]->time_, heap_[min_child]->time_))
break;
swap_heap(index, min_child);
index = min_child;
child = index * 2 + 1;
}
}
// Swap two entries in the heap.
void swap_heap(size_t index1, size_t index2)
{
timer_base* tmp = heap_[index1];
heap_[index1] = heap_[index2];
heap_[index2] = tmp;
heap_[index1]->heap_index_ = index1;
heap_[index2]->heap_index_ = index2;
}
// Remove a timer from the heap and list of timers.
void remove_timer(timer_base* t)
{
// Remove the timer from the heap.
size_t index = t->heap_index_;
if (!heap_.empty() && index < heap_.size())
{
if (index == heap_.size() - 1)
{
heap_.pop_back();
}
else
{
swap_heap(index, heap_.size() - 1);
heap_.pop_back();
size_t parent = (index - 1) / 2;
if (index > 0 && Time_Traits::less_than(
heap_[index]->time_, heap_[parent]->time_))
up_heap(index);
else
down_heap(index);
}
}
// Remove the timer from the hash.
typedef typename hash_map<void*, timer_base*>::iterator iterator;
iterator it = timers_.find(t->token_);
if (it != timers_.end())
{
if (it->second == t)
it->second = t->next_;
if (t->prev_)
t->prev_->next_ = t->next_;
if (t->next_)
t->next_->prev_ = t->prev_;
if (it->second == 0)
timers_.erase(it);
}
}
// Destroy all timers in a linked list.
void destroy_timer_list(timer_base*& t)
{
while (t)
{
timer_base* next = t->next_;
t->next_ = 0;
t->destroy();
t = next;
}
}
// A hash of timer token to linked lists of timers.
hash_map<void*, timer_base*> timers_;
// The heap of timers, with the earliest timer at the front.
std::vector<timer_base*> heap_;
// The list of timers to be cancelled.
timer_base* cancelled_timers_;
// The list of timers waiting to be completed.
timer_base* complete_timers_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_TIMER_QUEUE_HPP

View File

@@ -0,0 +1,64 @@
//
// timer_queue_base.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_TIMER_QUEUE_BASE_HPP
#define BOOST_ASIO_DETAIL_TIMER_QUEUE_BASE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/socket_types.hpp> // Must come before posix_time.
#include <boost/asio/detail/push_options.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/detail/noncopyable.hpp>
namespace boost {
namespace asio {
namespace detail {
class timer_queue_base
: private noncopyable
{
public:
// Destructor.
virtual ~timer_queue_base() {}
// Whether there are no timers in the queue.
virtual bool empty() const = 0;
// Get the time to wait until the next timer.
virtual boost::posix_time::time_duration wait_duration() const = 0;
// Dispatch all ready timers.
virtual void dispatch_timers() = 0;
// Dispatch any pending cancels for timers.
virtual void dispatch_cancellations() = 0;
// Complete all timers that are waiting to be completed.
virtual void complete_timers() = 0;
// Destroy all timers.
virtual void destroy_timers() = 0;
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_TIMER_QUEUE_BASE_HPP

View File

@@ -0,0 +1,67 @@
//
// tss_ptr.hpp
// ~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_TSS_PTR_HPP
#define BOOST_ASIO_DETAIL_TSS_PTR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if !defined(BOOST_HAS_THREADS)
# include <boost/asio/detail/null_tss_ptr.hpp>
#elif defined(BOOST_WINDOWS)
# include <boost/asio/detail/win_tss_ptr.hpp>
#elif defined(BOOST_HAS_PTHREADS)
# include <boost/asio/detail/posix_tss_ptr.hpp>
#else
# error Only Windows and POSIX are supported!
#endif
namespace boost {
namespace asio {
namespace detail {
template <typename T>
class tss_ptr
#if !defined(BOOST_HAS_THREADS)
: public null_tss_ptr<T>
#elif defined(BOOST_WINDOWS)
: public win_tss_ptr<T>
#elif defined(BOOST_HAS_PTHREADS)
: public posix_tss_ptr<T>
#endif
{
public:
void operator=(T* value)
{
#if !defined(BOOST_HAS_THREADS)
null_tss_ptr<T>::operator=(value);
#elif defined(BOOST_WINDOWS)
win_tss_ptr<T>::operator=(value);
#elif defined(BOOST_HAS_PTHREADS)
posix_tss_ptr<T>::operator=(value);
#endif
}
};
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_TSS_PTR_HPP

View File

@@ -0,0 +1,105 @@
//
// win_event.hpp
// ~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_WIN_EVENT_HPP
#define BOOST_ASIO_DETAIL_WIN_EVENT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
#if defined(BOOST_WINDOWS)
#include <boost/asio/error.hpp>
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/socket_types.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/assert.hpp>
#include <boost/throw_exception.hpp>
#include <boost/asio/detail/pop_options.hpp>
namespace boost {
namespace asio {
namespace detail {
class win_event
: private noncopyable
{
public:
// Constructor.
win_event()
: event_(::CreateEvent(0, true, false, 0))
{
if (!event_)
{
DWORD last_error = ::GetLastError();
boost::system::system_error e(
boost::system::error_code(last_error,
boost::asio::error::get_system_category()),
"event");
boost::throw_exception(e);
}
}
// Destructor.
~win_event()
{
::CloseHandle(event_);
}
// Signal the event.
template <typename Lock>
void signal(Lock& lock)
{
BOOST_ASSERT(lock.locked());
(void)lock;
::SetEvent(event_);
}
// Reset the event.
template <typename Lock>
void clear(Lock& lock)
{
BOOST_ASSERT(lock.locked());
(void)lock;
::ResetEvent(event_);
}
// Wait for the event to become signalled.
template <typename Lock>
void wait(Lock& lock)
{
BOOST_ASSERT(lock.locked());
lock.unlock();
::WaitForSingleObject(event_, INFINITE);
lock.lock();
}
private:
HANDLE event_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_WINDOWS)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_WIN_EVENT_HPP

View File

@@ -0,0 +1,90 @@
//
// win_fd_set_adapter.hpp
// ~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_WIN_FD_SET_ADAPTER_HPP
#define BOOST_ASIO_DETAIL_WIN_FD_SET_ADAPTER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/socket_types.hpp>
#if defined(BOOST_WINDOWS) || defined(__CYGWIN__)
namespace boost {
namespace asio {
namespace detail {
// Adapts the FD_SET type to meet the Descriptor_Set concept's requirements.
class win_fd_set_adapter
{
public:
enum { win_fd_set_size = 1024 };
win_fd_set_adapter()
: max_descriptor_(invalid_socket)
{
fd_set_.fd_count = 0;
}
bool set(socket_type descriptor)
{
for (u_int i = 0; i < fd_set_.fd_count; ++i)
if (fd_set_.fd_array[i] == descriptor)
return true;
if (fd_set_.fd_count < win_fd_set_size)
{
fd_set_.fd_array[fd_set_.fd_count++] = descriptor;
return true;
}
return false;
}
bool is_set(socket_type descriptor) const
{
return !!__WSAFDIsSet(descriptor,
const_cast<fd_set*>(reinterpret_cast<const fd_set*>(&fd_set_)));
}
operator fd_set*()
{
return reinterpret_cast<fd_set*>(&fd_set_);
}
socket_type max_descriptor() const
{
return max_descriptor_;
}
private:
// This structure is defined to be compatible with the Windows API fd_set
// structure, but without being dependent on the value of FD_SETSIZE.
struct win_fd_set
{
u_int fd_count;
SOCKET fd_array[win_fd_set_size];
};
win_fd_set fd_set_;
socket_type max_descriptor_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_WINDOWS) || defined(__CYGWIN__)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_WIN_FD_SET_ADAPTER_HPP

View File

@@ -0,0 +1,834 @@
//
// win_iocp_handle_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2008 Rep Invariant Systems, Inc. (info@repinvariant.com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_WIN_IOCP_HANDLE_SERVICE_HPP
#define BOOST_ASIO_DETAIL_WIN_IOCP_HANDLE_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/win_iocp_io_service_fwd.hpp>
#if defined(BOOST_ASIO_HAS_IOCP)
#include <boost/asio/detail/push_options.hpp>
#include <boost/cstdint.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/buffer.hpp>
#include <boost/asio/error.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/bind_handler.hpp>
#include <boost/asio/detail/handler_alloc_helpers.hpp>
#include <boost/asio/detail/handler_invoke_helpers.hpp>
#include <boost/asio/detail/mutex.hpp>
#include <boost/asio/detail/win_iocp_io_service.hpp>
namespace boost {
namespace asio {
namespace detail {
class win_iocp_handle_service
: public boost::asio::detail::service_base<win_iocp_handle_service>
{
public:
// Base class for all operations.
typedef win_iocp_io_service::operation operation;
// The native type of a stream handle.
typedef HANDLE native_type;
// The implementation type of the stream handle.
class implementation_type
{
public:
// Default constructor.
implementation_type()
: handle_(INVALID_HANDLE_VALUE),
safe_cancellation_thread_id_(0),
next_(0),
prev_(0)
{
}
private:
// Only this service will have access to the internal values.
friend class win_iocp_handle_service;
// The native stream handle representation.
native_type handle_;
// The ID of the thread from which it is safe to cancel asynchronous
// operations. 0 means no asynchronous operations have been started yet.
// ~0 means asynchronous operations have been started from more than one
// thread, and cancellation is not supported for the handle.
DWORD safe_cancellation_thread_id_;
// Pointers to adjacent handle implementations in linked list.
implementation_type* next_;
implementation_type* prev_;
};
win_iocp_handle_service(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<win_iocp_handle_service>(io_service),
iocp_service_(boost::asio::use_service<win_iocp_io_service>(io_service)),
mutex_(),
impl_list_(0)
{
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
// Close all implementations, causing all operations to complete.
boost::asio::detail::mutex::scoped_lock lock(mutex_);
implementation_type* impl = impl_list_;
while (impl)
{
close_for_destruction(*impl);
impl = impl->next_;
}
}
// Construct a new handle implementation.
void construct(implementation_type& impl)
{
impl.handle_ = INVALID_HANDLE_VALUE;
impl.safe_cancellation_thread_id_ = 0;
// Insert implementation into linked list of all implementations.
boost::asio::detail::mutex::scoped_lock lock(mutex_);
impl.next_ = impl_list_;
impl.prev_ = 0;
if (impl_list_)
impl_list_->prev_ = &impl;
impl_list_ = &impl;
}
// Destroy a handle implementation.
void destroy(implementation_type& impl)
{
close_for_destruction(impl);
// Remove implementation from linked list of all implementations.
boost::asio::detail::mutex::scoped_lock lock(mutex_);
if (impl_list_ == &impl)
impl_list_ = impl.next_;
if (impl.prev_)
impl.prev_->next_ = impl.next_;
if (impl.next_)
impl.next_->prev_= impl.prev_;
impl.next_ = 0;
impl.prev_ = 0;
}
// Assign a native handle to a handle implementation.
boost::system::error_code assign(implementation_type& impl,
const native_type& native_handle, boost::system::error_code& ec)
{
if (is_open(impl))
{
ec = boost::asio::error::already_open;
return ec;
}
if (iocp_service_.register_handle(native_handle, ec))
return ec;
impl.handle_ = native_handle;
ec = boost::system::error_code();
return ec;
}
// Determine whether the handle is open.
bool is_open(const implementation_type& impl) const
{
return impl.handle_ != INVALID_HANDLE_VALUE;
}
// Destroy a handle implementation.
boost::system::error_code close(implementation_type& impl,
boost::system::error_code& ec)
{
if (is_open(impl))
{
if (!::CloseHandle(impl.handle_))
{
DWORD last_error = ::GetLastError();
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
return ec;
}
impl.handle_ = INVALID_HANDLE_VALUE;
impl.safe_cancellation_thread_id_ = 0;
}
ec = boost::system::error_code();
return ec;
}
// Get the native handle representation.
native_type native(const implementation_type& impl) const
{
return impl.handle_;
}
// Cancel all operations associated with the handle.
boost::system::error_code cancel(implementation_type& impl,
boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
}
else if (FARPROC cancel_io_ex_ptr = ::GetProcAddress(
::GetModuleHandleA("KERNEL32"), "CancelIoEx"))
{
// The version of Windows supports cancellation from any thread.
typedef BOOL (WINAPI* cancel_io_ex_t)(HANDLE, LPOVERLAPPED);
cancel_io_ex_t cancel_io_ex = (cancel_io_ex_t)cancel_io_ex_ptr;
if (!cancel_io_ex(impl.handle_, 0))
{
DWORD last_error = ::GetLastError();
if (last_error == ERROR_NOT_FOUND)
{
// ERROR_NOT_FOUND means that there were no operations to be
// cancelled. We swallow this error to match the behaviour on other
// platforms.
ec = boost::system::error_code();
}
else
{
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
}
}
else
{
ec = boost::system::error_code();
}
}
else if (impl.safe_cancellation_thread_id_ == 0)
{
// No operations have been started, so there's nothing to cancel.
ec = boost::system::error_code();
}
else if (impl.safe_cancellation_thread_id_ == ::GetCurrentThreadId())
{
// Asynchronous operations have been started from the current thread only,
// so it is safe to try to cancel them using CancelIo.
if (!::CancelIo(impl.handle_))
{
DWORD last_error = ::GetLastError();
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
}
else
{
ec = boost::system::error_code();
}
}
else
{
// Asynchronous operations have been started from more than one thread,
// so cancellation is not safe.
ec = boost::asio::error::operation_not_supported;
}
return ec;
}
class overlapped_wrapper
: public OVERLAPPED
{
public:
explicit overlapped_wrapper(boost::system::error_code& ec)
{
Internal = 0;
InternalHigh = 0;
Offset = 0;
OffsetHigh = 0;
// Create a non-signalled manual-reset event, for GetOverlappedResult.
hEvent = ::CreateEvent(0, TRUE, FALSE, 0);
if (hEvent)
{
// As documented in GetQueuedCompletionStatus, setting the low order
// bit of this event prevents our synchronous writes from being treated
// as completion port events.
*reinterpret_cast<DWORD_PTR*>(&hEvent) |= 1;
}
else
{
DWORD last_error = ::GetLastError();
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
}
}
~overlapped_wrapper()
{
if (hEvent)
{
::CloseHandle(hEvent);
}
}
};
// Write the given data. Returns the number of bytes written.
template <typename ConstBufferSequence>
size_t write_some(implementation_type& impl,
const ConstBufferSequence& buffers, boost::system::error_code& ec)
{
return write_some_at(impl, 0, buffers, ec);
}
// Write the given data at the specified offset. Returns the number of bytes
// written.
template <typename ConstBufferSequence>
size_t write_some_at(implementation_type& impl, boost::uint64_t offset,
const ConstBufferSequence& buffers, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return 0;
}
// Find first buffer of non-zero length.
boost::asio::const_buffer buffer;
typename ConstBufferSequence::const_iterator iter = buffers.begin();
typename ConstBufferSequence::const_iterator end = buffers.end();
for (DWORD i = 0; iter != end; ++iter, ++i)
{
buffer = boost::asio::const_buffer(*iter);
if (boost::asio::buffer_size(buffer) != 0)
break;
}
// A request to write 0 bytes on a handle is a no-op.
if (boost::asio::buffer_size(buffer) == 0)
{
ec = boost::system::error_code();
return 0;
}
overlapped_wrapper overlapped(ec);
if (ec)
{
return 0;
}
// Write the data.
overlapped.Offset = offset & 0xFFFFFFFF;
overlapped.OffsetHigh = (offset >> 32) & 0xFFFFFFFF;
BOOL ok = ::WriteFile(impl.handle_,
boost::asio::buffer_cast<LPCVOID>(buffer),
static_cast<DWORD>(boost::asio::buffer_size(buffer)), 0, &overlapped);
if (!ok)
{
DWORD last_error = ::GetLastError();
if (last_error != ERROR_IO_PENDING)
{
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
return 0;
}
}
// Wait for the operation to complete.
DWORD bytes_transferred = 0;
ok = ::GetOverlappedResult(impl.handle_,
&overlapped, &bytes_transferred, TRUE);
if (!ok)
{
DWORD last_error = ::GetLastError();
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
}
ec = boost::system::error_code();
return bytes_transferred;
}
template <typename ConstBufferSequence, typename Handler>
class write_operation
: public operation
{
public:
write_operation(win_iocp_io_service& io_service,
const ConstBufferSequence& buffers, Handler handler)
: operation(io_service,
&write_operation<ConstBufferSequence, Handler>::do_completion_impl,
&write_operation<ConstBufferSequence, Handler>::destroy_impl),
work_(io_service.get_io_service()),
buffers_(buffers),
handler_(handler)
{
}
private:
static void do_completion_impl(operation* op,
DWORD last_error, size_t bytes_transferred)
{
// Take ownership of the operation object.
typedef write_operation<ConstBufferSequence, Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
// Check whether buffers are still valid.
typename ConstBufferSequence::const_iterator iter
= handler_op->buffers_.begin();
typename ConstBufferSequence::const_iterator end
= handler_op->buffers_.end();
while (iter != end)
{
boost::asio::const_buffer buffer(*iter);
boost::asio::buffer_cast<const char*>(buffer);
++iter;
}
#endif // defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made.
Handler handler(handler_op->handler_);
// Free the memory associated with the handler.
ptr.reset();
// Call the handler.
boost::system::error_code ec(last_error,
boost::asio::error::get_system_category());
boost_asio_handler_invoke_helpers::invoke(
bind_handler(handler, ec, bytes_transferred), &handler);
}
static void destroy_impl(operation* op)
{
// Take ownership of the operation object.
typedef write_operation<ConstBufferSequence, Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
// A sub-object of the handler may be the true owner of the memory
// associated with the handler. Consequently, a local copy of the handler
// is required to ensure that any owning sub-object remains valid until
// after we have deallocated the memory here.
Handler handler(handler_op->handler_);
(void)handler;
// Free the memory associated with the handler.
ptr.reset();
}
boost::asio::io_service::work work_;
ConstBufferSequence buffers_;
Handler handler_;
};
// Start an asynchronous write. The data being written must be valid for the
// lifetime of the asynchronous operation.
template <typename ConstBufferSequence, typename Handler>
void async_write_some(implementation_type& impl,
const ConstBufferSequence& buffers, Handler handler)
{
async_write_some_at(impl, 0, buffers, handler);
}
// Start an asynchronous write at a specified offset. The data being written
// must be valid for the lifetime of the asynchronous operation.
template <typename ConstBufferSequence, typename Handler>
void async_write_some_at(implementation_type& impl, boost::uint64_t offset,
const ConstBufferSequence& buffers, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor, 0));
return;
}
// Update the ID of the thread from which cancellation is safe.
if (impl.safe_cancellation_thread_id_ == 0)
impl.safe_cancellation_thread_id_ = ::GetCurrentThreadId();
else if (impl.safe_cancellation_thread_id_ != ::GetCurrentThreadId())
impl.safe_cancellation_thread_id_ = ~DWORD(0);
// Allocate and construct an operation to wrap the handler.
typedef write_operation<ConstBufferSequence, Handler> value_type;
typedef handler_alloc_traits<Handler, value_type> alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(handler);
handler_ptr<alloc_traits> ptr(raw_ptr, iocp_service_, buffers, handler);
// Find first buffer of non-zero length.
boost::asio::const_buffer buffer;
typename ConstBufferSequence::const_iterator iter = buffers.begin();
typename ConstBufferSequence::const_iterator end = buffers.end();
for (DWORD i = 0; iter != end; ++iter, ++i)
{
buffer = boost::asio::const_buffer(*iter);
if (boost::asio::buffer_size(buffer) != 0)
break;
}
// A request to write 0 bytes on a handle is a no-op.
if (boost::asio::buffer_size(buffer) == 0)
{
boost::asio::io_service::work work(this->get_io_service());
ptr.reset();
boost::system::error_code error;
iocp_service_.post(bind_handler(handler, error, 0));
return;
}
// Write the data.
DWORD bytes_transferred = 0;
ptr.get()->Offset = offset & 0xFFFFFFFF;
ptr.get()->OffsetHigh = (offset >> 32) & 0xFFFFFFFF;
BOOL ok = ::WriteFile(impl.handle_,
boost::asio::buffer_cast<LPCVOID>(buffer),
static_cast<DWORD>(boost::asio::buffer_size(buffer)),
&bytes_transferred, ptr.get());
DWORD last_error = ::GetLastError();
// Check if the operation completed immediately.
if (!ok && last_error != ERROR_IO_PENDING)
{
boost::asio::io_service::work work(this->get_io_service());
ptr.reset();
boost::system::error_code ec(last_error,
boost::asio::error::get_system_category());
iocp_service_.post(bind_handler(handler, ec, bytes_transferred));
}
else
{
ptr.release();
}
}
// Read some data. Returns the number of bytes received.
template <typename MutableBufferSequence>
size_t read_some(implementation_type& impl,
const MutableBufferSequence& buffers, boost::system::error_code& ec)
{
return read_some_at(impl, 0, buffers, ec);
}
// Read some data at a specified offset. Returns the number of bytes received.
template <typename MutableBufferSequence>
size_t read_some_at(implementation_type& impl, boost::uint64_t offset,
const MutableBufferSequence& buffers, boost::system::error_code& ec)
{
if (!is_open(impl))
{
ec = boost::asio::error::bad_descriptor;
return 0;
}
// Find first buffer of non-zero length.
boost::asio::mutable_buffer buffer;
typename MutableBufferSequence::const_iterator iter = buffers.begin();
typename MutableBufferSequence::const_iterator end = buffers.end();
for (DWORD i = 0; iter != end; ++iter, ++i)
{
buffer = boost::asio::mutable_buffer(*iter);
if (boost::asio::buffer_size(buffer) != 0)
break;
}
// A request to read 0 bytes on a stream handle is a no-op.
if (boost::asio::buffer_size(buffer) == 0)
{
ec = boost::system::error_code();
return 0;
}
overlapped_wrapper overlapped(ec);
if (ec)
{
return 0;
}
// Read some data.
overlapped.Offset = offset & 0xFFFFFFFF;
overlapped.OffsetHigh = (offset >> 32) & 0xFFFFFFFF;
BOOL ok = ::ReadFile(impl.handle_,
boost::asio::buffer_cast<LPVOID>(buffer),
static_cast<DWORD>(boost::asio::buffer_size(buffer)), 0, &overlapped);
if (!ok)
{
DWORD last_error = ::GetLastError();
if (last_error != ERROR_IO_PENDING && last_error != ERROR_MORE_DATA)
{
if (last_error == ERROR_HANDLE_EOF)
{
ec = boost::asio::error::eof;
}
else
{
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
}
return 0;
}
}
// Wait for the operation to complete.
DWORD bytes_transferred = 0;
ok = ::GetOverlappedResult(impl.handle_,
&overlapped, &bytes_transferred, TRUE);
if (!ok)
{
DWORD last_error = ::GetLastError();
if (last_error == ERROR_HANDLE_EOF)
{
ec = boost::asio::error::eof;
}
else
{
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
}
}
ec = boost::system::error_code();
return bytes_transferred;
}
template <typename MutableBufferSequence, typename Handler>
class read_operation
: public operation
{
public:
read_operation(win_iocp_io_service& io_service,
const MutableBufferSequence& buffers, Handler handler)
: operation(io_service,
&read_operation<
MutableBufferSequence, Handler>::do_completion_impl,
&read_operation<
MutableBufferSequence, Handler>::destroy_impl),
work_(io_service.get_io_service()),
buffers_(buffers),
handler_(handler)
{
}
private:
static void do_completion_impl(operation* op,
DWORD last_error, size_t bytes_transferred)
{
// Take ownership of the operation object.
typedef read_operation<MutableBufferSequence, Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
#if defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
// Check whether buffers are still valid.
typename MutableBufferSequence::const_iterator iter
= handler_op->buffers_.begin();
typename MutableBufferSequence::const_iterator end
= handler_op->buffers_.end();
while (iter != end)
{
boost::asio::mutable_buffer buffer(*iter);
boost::asio::buffer_cast<char*>(buffer);
++iter;
}
#endif // defined(BOOST_ASIO_ENABLE_BUFFER_DEBUGGING)
// Check for the end-of-file condition.
boost::system::error_code ec(last_error,
boost::asio::error::get_system_category());
if (!ec && bytes_transferred == 0 || last_error == ERROR_HANDLE_EOF)
{
ec = boost::asio::error::eof;
}
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made.
Handler handler(handler_op->handler_);
// Free the memory associated with the handler.
ptr.reset();
// Call the handler.
boost_asio_handler_invoke_helpers::invoke(
bind_handler(handler, ec, bytes_transferred), &handler);
}
static void destroy_impl(operation* op)
{
// Take ownership of the operation object.
typedef read_operation<MutableBufferSequence, Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef boost::asio::detail::handler_alloc_traits<
Handler, op_type> alloc_traits;
boost::asio::detail::handler_ptr<alloc_traits> ptr(
handler_op->handler_, handler_op);
// A sub-object of the handler may be the true owner of the memory
// associated with the handler. Consequently, a local copy of the handler
// is required to ensure that any owning sub-object remains valid until
// after we have deallocated the memory here.
Handler handler(handler_op->handler_);
(void)handler;
// Free the memory associated with the handler.
ptr.reset();
}
boost::asio::io_service::work work_;
MutableBufferSequence buffers_;
Handler handler_;
};
// Start an asynchronous read. The buffer for the data being received must be
// valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence, typename Handler>
void async_read_some(implementation_type& impl,
const MutableBufferSequence& buffers, Handler handler)
{
async_read_some_at(impl, 0, buffers, handler);
}
// Start an asynchronous read at a specified offset. The buffer for the data
// being received must be valid for the lifetime of the asynchronous
// operation.
template <typename MutableBufferSequence, typename Handler>
void async_read_some_at(implementation_type& impl, boost::uint64_t offset,
const MutableBufferSequence& buffers, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
boost::asio::error::bad_descriptor, 0));
return;
}
// Update the ID of the thread from which cancellation is safe.
if (impl.safe_cancellation_thread_id_ == 0)
impl.safe_cancellation_thread_id_ = ::GetCurrentThreadId();
else if (impl.safe_cancellation_thread_id_ != ::GetCurrentThreadId())
impl.safe_cancellation_thread_id_ = ~DWORD(0);
// Allocate and construct an operation to wrap the handler.
typedef read_operation<MutableBufferSequence, Handler> value_type;
typedef handler_alloc_traits<Handler, value_type> alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(handler);
handler_ptr<alloc_traits> ptr(raw_ptr, iocp_service_, buffers, handler);
// Find first buffer of non-zero length.
boost::asio::mutable_buffer buffer;
typename MutableBufferSequence::const_iterator iter = buffers.begin();
typename MutableBufferSequence::const_iterator end = buffers.end();
for (DWORD i = 0; iter != end; ++iter, ++i)
{
buffer = boost::asio::mutable_buffer(*iter);
if (boost::asio::buffer_size(buffer) != 0)
break;
}
// A request to receive 0 bytes on a stream handle is a no-op.
if (boost::asio::buffer_size(buffer) == 0)
{
boost::asio::io_service::work work(this->get_io_service());
ptr.reset();
boost::system::error_code error;
iocp_service_.post(bind_handler(handler, error, 0));
return;
}
// Read some data.
DWORD bytes_transferred = 0;
ptr.get()->Offset = offset & 0xFFFFFFFF;
ptr.get()->OffsetHigh = (offset >> 32) & 0xFFFFFFFF;
BOOL ok = ::ReadFile(impl.handle_,
boost::asio::buffer_cast<LPVOID>(buffer),
static_cast<DWORD>(boost::asio::buffer_size(buffer)),
&bytes_transferred, ptr.get());
DWORD last_error = ::GetLastError();
if (!ok && last_error != ERROR_IO_PENDING && last_error != ERROR_MORE_DATA)
{
boost::asio::io_service::work work(this->get_io_service());
ptr.reset();
boost::system::error_code ec(last_error,
boost::asio::error::get_system_category());
iocp_service_.post(bind_handler(handler, ec, bytes_transferred));
}
else
{
ptr.release();
}
}
private:
// Prevent the use of the null_buffers type with this service.
size_t write_some(implementation_type& impl,
const null_buffers& buffers, boost::system::error_code& ec);
size_t write_some_at(implementation_type& impl, boost::uint64_t offset,
const null_buffers& buffers, boost::system::error_code& ec);
template <typename Handler>
void async_write_some(implementation_type& impl,
const null_buffers& buffers, Handler handler);
template <typename Handler>
void async_write_some_at(implementation_type& impl, boost::uint64_t offset,
const null_buffers& buffers, Handler handler);
size_t read_some(implementation_type& impl,
const null_buffers& buffers, boost::system::error_code& ec);
size_t read_some_at(implementation_type& impl, boost::uint64_t offset,
const null_buffers& buffers, boost::system::error_code& ec);
template <typename Handler>
void async_read_some(implementation_type& impl,
const null_buffers& buffers, Handler handler);
template <typename Handler>
void async_read_some_at(implementation_type& impl, boost::uint64_t offset,
const null_buffers& buffers, Handler handler);
// Helper function to close a handle when the associated object is being
// destroyed.
void close_for_destruction(implementation_type& impl)
{
if (is_open(impl))
{
::CloseHandle(impl.handle_);
impl.handle_ = INVALID_HANDLE_VALUE;
impl.safe_cancellation_thread_id_ = 0;
}
}
// The IOCP service used for running asynchronous operations and dispatching
// handlers.
win_iocp_io_service& iocp_service_;
// Mutex to protect access to the linked list of implementations.
boost::asio::detail::mutex mutex_;
// The head of a linked list of all implementations.
implementation_type* impl_list_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_ASIO_HAS_IOCP)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_WIN_IOCP_HANDLE_SERVICE_HPP

View File

@@ -0,0 +1,738 @@
//
// win_iocp_io_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_WIN_IOCP_IO_SERVICE_HPP
#define BOOST_ASIO_DETAIL_WIN_IOCP_IO_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/win_iocp_io_service_fwd.hpp>
#if defined(BOOST_ASIO_HAS_IOCP)
#include <boost/asio/detail/push_options.hpp>
#include <limits>
#include <boost/throw_exception.hpp>
#include <boost/system/system_error.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/io_service.hpp>
#include <boost/asio/detail/call_stack.hpp>
#include <boost/asio/detail/handler_alloc_helpers.hpp>
#include <boost/asio/detail/handler_invoke_helpers.hpp>
#include <boost/asio/detail/service_base.hpp>
#include <boost/asio/detail/socket_types.hpp>
#include <boost/asio/detail/timer_queue.hpp>
#include <boost/asio/detail/mutex.hpp>
namespace boost {
namespace asio {
namespace detail {
class win_iocp_io_service
: public boost::asio::detail::service_base<win_iocp_io_service>
{
public:
// Base class for all operations. A function pointer is used instead of
// virtual functions to avoid the associated overhead.
//
// This class inherits from OVERLAPPED so that we can downcast to get back to
// the operation pointer from the LPOVERLAPPED out parameter of
// GetQueuedCompletionStatus.
class operation
: public OVERLAPPED
{
public:
typedef void (*invoke_func_type)(operation*, DWORD, size_t);
typedef void (*destroy_func_type)(operation*);
operation(win_iocp_io_service& iocp_service,
invoke_func_type invoke_func, destroy_func_type destroy_func)
: outstanding_operations_(&iocp_service.outstanding_operations_),
invoke_func_(invoke_func),
destroy_func_(destroy_func)
{
Internal = 0;
InternalHigh = 0;
Offset = 0;
OffsetHigh = 0;
hEvent = 0;
::InterlockedIncrement(outstanding_operations_);
}
void do_completion(DWORD last_error, size_t bytes_transferred)
{
invoke_func_(this, last_error, bytes_transferred);
}
void destroy()
{
destroy_func_(this);
}
protected:
// Prevent deletion through this type.
~operation()
{
::InterlockedDecrement(outstanding_operations_);
}
private:
long* outstanding_operations_;
invoke_func_type invoke_func_;
destroy_func_type destroy_func_;
};
// Constructor.
win_iocp_io_service(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<win_iocp_io_service>(io_service),
iocp_(),
outstanding_work_(0),
outstanding_operations_(0),
stopped_(0),
shutdown_(0),
timer_thread_(0),
timer_interrupt_issued_(false)
{
}
void init(size_t concurrency_hint)
{
iocp_.handle = ::CreateIoCompletionPort(INVALID_HANDLE_VALUE, 0, 0,
static_cast<DWORD>((std::min<size_t>)(concurrency_hint, DWORD(~0))));
if (!iocp_.handle)
{
DWORD last_error = ::GetLastError();
boost::system::system_error e(
boost::system::error_code(last_error,
boost::asio::error::get_system_category()),
"iocp");
boost::throw_exception(e);
}
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
::InterlockedExchange(&shutdown_, 1);
while (::InterlockedExchangeAdd(&outstanding_operations_, 0) > 0)
{
DWORD bytes_transferred = 0;
#if (WINVER < 0x0500)
DWORD completion_key = 0;
#else
DWORD_PTR completion_key = 0;
#endif
LPOVERLAPPED overlapped = 0;
::GetQueuedCompletionStatus(iocp_.handle, &bytes_transferred,
&completion_key, &overlapped, INFINITE);
if (overlapped)
static_cast<operation*>(overlapped)->destroy();
}
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
timer_queues_[i]->destroy_timers();
timer_queues_.clear();
}
// Initialise the task. Nothing to do here.
void init_task()
{
}
// Register a handle with the IO completion port.
boost::system::error_code register_handle(
HANDLE handle, boost::system::error_code& ec)
{
if (::CreateIoCompletionPort(handle, iocp_.handle, 0, 0) == 0)
{
DWORD last_error = ::GetLastError();
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
}
else
{
ec = boost::system::error_code();
}
return ec;
}
// Run the event loop until stopped or no more work.
size_t run(boost::system::error_code& ec)
{
if (::InterlockedExchangeAdd(&outstanding_work_, 0) == 0)
{
ec = boost::system::error_code();
return 0;
}
call_stack<win_iocp_io_service>::context ctx(this);
size_t n = 0;
while (do_one(true, ec))
if (n != (std::numeric_limits<size_t>::max)())
++n;
return n;
}
// Run until stopped or one operation is performed.
size_t run_one(boost::system::error_code& ec)
{
if (::InterlockedExchangeAdd(&outstanding_work_, 0) == 0)
{
ec = boost::system::error_code();
return 0;
}
call_stack<win_iocp_io_service>::context ctx(this);
return do_one(true, ec);
}
// Poll for operations without blocking.
size_t poll(boost::system::error_code& ec)
{
if (::InterlockedExchangeAdd(&outstanding_work_, 0) == 0)
{
ec = boost::system::error_code();
return 0;
}
call_stack<win_iocp_io_service>::context ctx(this);
size_t n = 0;
while (do_one(false, ec))
if (n != (std::numeric_limits<size_t>::max)())
++n;
return n;
}
// Poll for one operation without blocking.
size_t poll_one(boost::system::error_code& ec)
{
if (::InterlockedExchangeAdd(&outstanding_work_, 0) == 0)
{
ec = boost::system::error_code();
return 0;
}
call_stack<win_iocp_io_service>::context ctx(this);
return do_one(false, ec);
}
// Stop the event processing loop.
void stop()
{
if (::InterlockedExchange(&stopped_, 1) == 0)
{
if (!::PostQueuedCompletionStatus(iocp_.handle, 0, 0, 0))
{
DWORD last_error = ::GetLastError();
boost::system::system_error e(
boost::system::error_code(last_error,
boost::asio::error::get_system_category()),
"pqcs");
boost::throw_exception(e);
}
}
}
// Reset in preparation for a subsequent run invocation.
void reset()
{
::InterlockedExchange(&stopped_, 0);
}
// Notify that some work has started.
void work_started()
{
::InterlockedIncrement(&outstanding_work_);
}
// Notify that some work has finished.
void work_finished()
{
if (::InterlockedDecrement(&outstanding_work_) == 0)
stop();
}
// Request invocation of the given handler.
template <typename Handler>
void dispatch(Handler handler)
{
if (call_stack<win_iocp_io_service>::contains(this))
boost_asio_handler_invoke_helpers::invoke(handler, &handler);
else
post(handler);
}
// Request invocation of the given handler and return immediately.
template <typename Handler>
void post(Handler handler)
{
// If the service has been shut down we silently discard the handler.
if (::InterlockedExchangeAdd(&shutdown_, 0) != 0)
return;
// Allocate and construct an operation to wrap the handler.
typedef handler_operation<Handler> value_type;
typedef handler_alloc_traits<Handler, value_type> alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(handler);
handler_ptr<alloc_traits> ptr(raw_ptr, *this, handler);
// Enqueue the operation on the I/O completion port.
if (!::PostQueuedCompletionStatus(iocp_.handle, 0, 0, ptr.get()))
{
DWORD last_error = ::GetLastError();
boost::system::system_error e(
boost::system::error_code(last_error,
boost::asio::error::get_system_category()),
"pqcs");
boost::throw_exception(e);
}
// Operation has been successfully posted.
ptr.release();
}
// Request invocation of the given OVERLAPPED-derived operation.
void post_completion(operation* op, DWORD op_last_error,
DWORD bytes_transferred)
{
// Enqueue the operation on the I/O completion port.
if (!::PostQueuedCompletionStatus(iocp_.handle,
bytes_transferred, op_last_error, op))
{
DWORD last_error = ::GetLastError();
boost::system::system_error e(
boost::system::error_code(last_error,
boost::asio::error::get_system_category()),
"pqcs");
boost::throw_exception(e);
}
}
// Add a new timer queue to the service.
template <typename Time_Traits>
void add_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
boost::asio::detail::mutex::scoped_lock lock(timer_mutex_);
timer_queues_.push_back(&timer_queue);
}
// Remove a timer queue from the service.
template <typename Time_Traits>
void remove_timer_queue(timer_queue<Time_Traits>& timer_queue)
{
boost::asio::detail::mutex::scoped_lock lock(timer_mutex_);
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
if (timer_queues_[i] == &timer_queue)
{
timer_queues_.erase(timer_queues_.begin() + i);
return;
}
}
}
// Schedule a timer in the given timer queue to expire at the specified
// absolute time. The handler object will be invoked when the timer expires.
template <typename Time_Traits, typename Handler>
void schedule_timer(timer_queue<Time_Traits>& timer_queue,
const typename Time_Traits::time_type& time, Handler handler, void* token)
{
// If the service has been shut down we silently discard the timer.
if (::InterlockedExchangeAdd(&shutdown_, 0) != 0)
return;
boost::asio::detail::mutex::scoped_lock lock(timer_mutex_);
if (timer_queue.enqueue_timer(time, handler, token))
{
if (!timer_interrupt_issued_)
{
timer_interrupt_issued_ = true;
lock.unlock();
::PostQueuedCompletionStatus(iocp_.handle,
0, steal_timer_dispatching, 0);
}
}
}
// Cancel the timer associated with the given token. Returns the number of
// handlers that have been posted or dispatched.
template <typename Time_Traits>
std::size_t cancel_timer(timer_queue<Time_Traits>& timer_queue, void* token)
{
// If the service has been shut down we silently ignore the cancellation.
if (::InterlockedExchangeAdd(&shutdown_, 0) != 0)
return 0;
boost::asio::detail::mutex::scoped_lock lock(timer_mutex_);
std::size_t n = timer_queue.cancel_timer(token);
if (n > 0 && !timer_interrupt_issued_)
{
timer_interrupt_issued_ = true;
lock.unlock();
::PostQueuedCompletionStatus(iocp_.handle,
0, steal_timer_dispatching, 0);
}
return n;
}
private:
// Dequeues at most one operation from the I/O completion port, and then
// executes it. Returns the number of operations that were dequeued (i.e.
// either 0 or 1).
size_t do_one(bool block, boost::system::error_code& ec)
{
long this_thread_id = static_cast<long>(::GetCurrentThreadId());
for (;;)
{
// Try to acquire responsibility for dispatching timers.
bool dispatching_timers = (::InterlockedCompareExchange(
&timer_thread_, this_thread_id, 0) == 0);
// Calculate timeout for GetQueuedCompletionStatus call.
DWORD timeout = max_timeout;
if (dispatching_timers)
{
boost::asio::detail::mutex::scoped_lock lock(timer_mutex_);
timer_interrupt_issued_ = false;
timeout = get_timeout();
}
// Get the next operation from the queue.
DWORD bytes_transferred = 0;
#if (WINVER < 0x0500)
DWORD completion_key = 0;
#else
DWORD_PTR completion_key = 0;
#endif
LPOVERLAPPED overlapped = 0;
::SetLastError(0);
BOOL ok = ::GetQueuedCompletionStatus(iocp_.handle, &bytes_transferred,
&completion_key, &overlapped, block ? timeout : 0);
DWORD last_error = ::GetLastError();
// Dispatch any pending timers.
if (dispatching_timers)
{
try
{
boost::asio::detail::mutex::scoped_lock lock(timer_mutex_);
if (!timer_queues_.empty())
{
timer_queues_copy_ = timer_queues_;
for (std::size_t i = 0; i < timer_queues_copy_.size(); ++i)
{
timer_queues_copy_[i]->dispatch_timers();
timer_queues_copy_[i]->dispatch_cancellations();
timer_queues_copy_[i]->complete_timers();
}
}
}
catch (...)
{
// Transfer responsibility for dispatching timers to another thread.
if (::InterlockedCompareExchange(&timer_thread_,
0, this_thread_id) == this_thread_id)
{
::PostQueuedCompletionStatus(iocp_.handle,
0, transfer_timer_dispatching, 0);
}
throw;
}
}
if (!ok && overlapped == 0)
{
if (block && last_error == WAIT_TIMEOUT)
{
// Relinquish responsibility for dispatching timers.
if (dispatching_timers)
{
::InterlockedCompareExchange(&timer_thread_, 0, this_thread_id);
}
continue;
}
// Transfer responsibility for dispatching timers to another thread.
if (dispatching_timers && ::InterlockedCompareExchange(
&timer_thread_, 0, this_thread_id) == this_thread_id)
{
::PostQueuedCompletionStatus(iocp_.handle,
0, transfer_timer_dispatching, 0);
}
ec = boost::system::error_code();
return 0;
}
else if (overlapped)
{
// We may have been passed a last_error value in the completion_key.
if (last_error == 0)
{
last_error = completion_key;
}
// Transfer responsibility for dispatching timers to another thread.
if (dispatching_timers && ::InterlockedCompareExchange(
&timer_thread_, 0, this_thread_id) == this_thread_id)
{
::PostQueuedCompletionStatus(iocp_.handle,
0, transfer_timer_dispatching, 0);
}
// Ensure that the io_service does not exit due to running out of work
// while we make the upcall.
auto_work work(*this);
// Dispatch the operation.
operation* op = static_cast<operation*>(overlapped);
op->do_completion(last_error, bytes_transferred);
ec = boost::system::error_code();
return 1;
}
else if (completion_key == transfer_timer_dispatching)
{
// Woken up to try to acquire responsibility for dispatching timers.
::InterlockedCompareExchange(&timer_thread_, 0, this_thread_id);
}
else if (completion_key == steal_timer_dispatching)
{
// Woken up to steal responsibility for dispatching timers.
::InterlockedExchange(&timer_thread_, 0);
}
else
{
// Relinquish responsibility for dispatching timers. If the io_service
// is not being stopped then the thread will get an opportunity to
// reacquire timer responsibility on the next loop iteration.
if (dispatching_timers)
{
::InterlockedCompareExchange(&timer_thread_, 0, this_thread_id);
}
// The stopped_ flag is always checked to ensure that any leftover
// interrupts from a previous run invocation are ignored.
if (::InterlockedExchangeAdd(&stopped_, 0) != 0)
{
// Wake up next thread that is blocked on GetQueuedCompletionStatus.
if (!::PostQueuedCompletionStatus(iocp_.handle, 0, 0, 0))
{
last_error = ::GetLastError();
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
return 0;
}
ec = boost::system::error_code();
return 0;
}
}
}
}
// Check if all timer queues are empty.
bool all_timer_queues_are_empty() const
{
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
if (!timer_queues_[i]->empty())
return false;
return true;
}
// Get the timeout value for the GetQueuedCompletionStatus call. The timeout
// value is returned as a number of milliseconds. We will wait no longer than
// 1000 milliseconds.
DWORD get_timeout()
{
if (all_timer_queues_are_empty())
return max_timeout;
boost::posix_time::time_duration minimum_wait_duration
= boost::posix_time::milliseconds(max_timeout);
for (std::size_t i = 0; i < timer_queues_.size(); ++i)
{
boost::posix_time::time_duration wait_duration
= timer_queues_[i]->wait_duration();
if (wait_duration < minimum_wait_duration)
minimum_wait_duration = wait_duration;
}
if (minimum_wait_duration > boost::posix_time::time_duration())
{
int milliseconds = minimum_wait_duration.total_milliseconds();
return static_cast<DWORD>(milliseconds > 0 ? milliseconds : 1);
}
else
{
return 0;
}
}
struct auto_work
{
auto_work(win_iocp_io_service& io_service)
: io_service_(io_service)
{
io_service_.work_started();
}
~auto_work()
{
io_service_.work_finished();
}
private:
win_iocp_io_service& io_service_;
};
template <typename Handler>
struct handler_operation
: public operation
{
handler_operation(win_iocp_io_service& io_service,
Handler handler)
: operation(io_service, &handler_operation<Handler>::do_completion_impl,
&handler_operation<Handler>::destroy_impl),
io_service_(io_service),
handler_(handler)
{
io_service_.work_started();
}
~handler_operation()
{
io_service_.work_finished();
}
private:
// Prevent copying and assignment.
handler_operation(const handler_operation&);
void operator=(const handler_operation&);
static void do_completion_impl(operation* op, DWORD, size_t)
{
// Take ownership of the operation object.
typedef handler_operation<Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made.
Handler handler(handler_op->handler_);
// Free the memory associated with the handler.
ptr.reset();
// Make the upcall.
boost_asio_handler_invoke_helpers::invoke(handler, &handler);
}
static void destroy_impl(operation* op)
{
// Take ownership of the operation object.
typedef handler_operation<Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
// A sub-object of the handler may be the true owner of the memory
// associated with the handler. Consequently, a local copy of the handler
// is required to ensure that any owning sub-object remains valid until
// after we have deallocated the memory here.
Handler handler(handler_op->handler_);
(void)handler;
// Free the memory associated with the handler.
ptr.reset();
}
win_iocp_io_service& io_service_;
Handler handler_;
};
// The IO completion port used for queueing operations.
struct iocp_holder
{
HANDLE handle;
iocp_holder() : handle(0) {}
~iocp_holder() { if (handle) ::CloseHandle(handle); }
} iocp_;
// The count of unfinished work.
long outstanding_work_;
// The count of unfinished operations.
long outstanding_operations_;
friend class operation;
// Flag to indicate whether the event loop has been stopped.
long stopped_;
// Flag to indicate whether the service has been shut down.
long shutdown_;
enum
{
// Maximum GetQueuedCompletionStatus timeout, in milliseconds.
max_timeout = 500,
// Completion key value to indicate that responsibility for dispatching
// timers is being cooperatively transferred from one thread to another.
transfer_timer_dispatching = 1,
// Completion key value to indicate that responsibility for dispatching
// timers should be stolen from another thread.
steal_timer_dispatching = 2
};
// The thread that's currently in charge of dispatching timers.
long timer_thread_;
// Mutex for protecting access to the timer queues.
mutex timer_mutex_;
// Whether a thread has been interrupted to process a new timeout.
bool timer_interrupt_issued_;
// The timer queues.
std::vector<timer_queue_base*> timer_queues_;
// A copy of the timer queues, used when dispatching, cancelling and cleaning
// up timers. The copy is stored as a class data member to avoid unnecessary
// memory allocation.
std::vector<timer_queue_base*> timer_queues_copy_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_ASIO_HAS_IOCP)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_WIN_IOCP_IO_SERVICE_HPP

View File

@@ -0,0 +1,53 @@
//
// win_iocp_io_service_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_WIN_IOCP_IO_SERVICE_FWD_HPP
#define BOOST_ASIO_DETAIL_WIN_IOCP_IO_SERVICE_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/push_options.hpp>
#include <boost/config.hpp>
#include <boost/asio/detail/pop_options.hpp>
#include <boost/asio/detail/socket_types.hpp>
// This service is only supported on Win32 (NT4 and later).
#if !defined(BOOST_ASIO_DISABLE_IOCP)
#if defined(BOOST_WINDOWS) || defined(__CYGWIN__)
#if defined(_WIN32_WINNT) && (_WIN32_WINNT >= 0x0400)
#if !defined(UNDER_CE)
// Define this to indicate that IOCP is supported on the target platform.
#define BOOST_ASIO_HAS_IOCP 1
namespace boost {
namespace asio {
namespace detail {
class win_iocp_io_service;
class win_iocp_overlapped_ptr;
} // namespace detail
} // namespace asio
} // namespace boost
#endif // !defined(UNDER_CE)
#endif // defined(_WIN32_WINNT) && (_WIN32_WINNT >= 0x0400)
#endif // defined(BOOST_WINDOWS) || defined(__CYGWIN__)
#endif // !defined(BOOST_ASIO_DISABLE_IOCP)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_WIN_IOCP_IO_SERVICE_FWD_HPP

View File

@@ -0,0 +1,210 @@
//
// win_iocp_overlapped_ptr.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_WIN_IOCP_OVERLAPPED_PTR_HPP
#define BOOST_ASIO_DETAIL_WIN_IOCP_OVERLAPPED_PTR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/push_options.hpp>
#include <boost/asio/detail/win_iocp_io_service_fwd.hpp>
#if defined(BOOST_ASIO_HAS_IOCP)
#include <boost/asio/detail/noncopyable.hpp>
#include <boost/asio/detail/win_iocp_io_service.hpp>
namespace boost {
namespace asio {
namespace detail {
// Wraps a handler to create an OVERLAPPED object for use with overlapped I/O.
class win_iocp_overlapped_ptr
: private noncopyable
{
public:
// Construct an empty win_iocp_overlapped_ptr.
win_iocp_overlapped_ptr()
: ptr_(0)
{
}
// Construct an win_iocp_overlapped_ptr to contain the specified handler.
template <typename Handler>
explicit win_iocp_overlapped_ptr(
boost::asio::io_service& io_service, Handler handler)
: ptr_(0)
{
this->reset(io_service, handler);
}
// Destructor automatically frees the OVERLAPPED object unless released.
~win_iocp_overlapped_ptr()
{
reset();
}
// Reset to empty.
void reset()
{
if (ptr_)
{
ptr_->destroy();
ptr_ = 0;
}
}
// Reset to contain the specified handler, freeing any current OVERLAPPED
// object.
template <typename Handler>
void reset(boost::asio::io_service& io_service, Handler handler)
{
typedef overlapped_operation<Handler> value_type;
typedef handler_alloc_traits<Handler, value_type> alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(handler);
handler_ptr<alloc_traits> ptr(raw_ptr, io_service.impl_, handler);
reset();
ptr_ = ptr.release();
}
// Get the contained OVERLAPPED object.
OVERLAPPED* get()
{
return ptr_;
}
// Get the contained OVERLAPPED object.
const OVERLAPPED* get() const
{
return ptr_;
}
// Release ownership of the OVERLAPPED object.
OVERLAPPED* release()
{
OVERLAPPED* tmp = ptr_;
ptr_ = 0;
return tmp;
}
// Post completion notification for overlapped operation. Releases ownership.
void complete(const boost::system::error_code& ec,
std::size_t bytes_transferred)
{
if (ptr_)
{
ptr_->ec_ = ec;
ptr_->io_service_.post_completion(ptr_, 0,
static_cast<DWORD>(bytes_transferred));
ptr_ = 0;
}
}
private:
struct overlapped_operation_base
: public win_iocp_io_service::operation
{
overlapped_operation_base(win_iocp_io_service& io_service,
invoke_func_type invoke_func, destroy_func_type destroy_func)
: win_iocp_io_service::operation(io_service, invoke_func, destroy_func),
io_service_(io_service)
{
io_service_.work_started();
}
~overlapped_operation_base()
{
io_service_.work_finished();
}
win_iocp_io_service& io_service_;
boost::system::error_code ec_;
};
template <typename Handler>
struct overlapped_operation
: public overlapped_operation_base
{
overlapped_operation(win_iocp_io_service& io_service,
Handler handler)
: overlapped_operation_base(io_service,
&overlapped_operation<Handler>::do_completion_impl,
&overlapped_operation<Handler>::destroy_impl),
handler_(handler)
{
}
private:
// Prevent copying and assignment.
overlapped_operation(const overlapped_operation&);
void operator=(const overlapped_operation&);
static void do_completion_impl(win_iocp_io_service::operation* op,
DWORD last_error, size_t bytes_transferred)
{
// Take ownership of the operation object.
typedef overlapped_operation<Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
// Make a copy of the handler and error_code so that the memory can be
// deallocated before the upcall is made.
Handler handler(handler_op->handler_);
boost::system::error_code ec(handler_op->ec_);
if (last_error)
ec = boost::system::error_code(last_error,
boost::asio::error::get_system_category());
// Free the memory associated with the handler.
ptr.reset();
// Make the upcall.
boost_asio_handler_invoke_helpers::invoke(
bind_handler(handler, ec, bytes_transferred), &handler);
}
static void destroy_impl(win_iocp_io_service::operation* op)
{
// Take ownership of the operation object.
typedef overlapped_operation<Handler> op_type;
op_type* handler_op(static_cast<op_type*>(op));
typedef handler_alloc_traits<Handler, op_type> alloc_traits;
handler_ptr<alloc_traits> ptr(handler_op->handler_, handler_op);
// A sub-object of the handler may be the true owner of the memory
// associated with the handler. Consequently, a local copy of the handler
// is required to ensure that any owning sub-object remains valid until
// after we have deallocated the memory here.
Handler handler(handler_op->handler_);
(void)handler;
// Free the memory associated with the handler.
ptr.reset();
}
Handler handler_;
};
overlapped_operation_base* ptr_;
};
} // namespace detail
} // namespace asio
} // namespace boost
#endif // defined(BOOST_ASIO_HAS_IOCP)
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_DETAIL_WIN_IOCP_OVERLAPPED_PTR_HPP

Some files were not shown because too many files have changed in this diff Show More